///////////////////////////////////////////////////////////////////////// // File: top.cpp // Author: Alain Greiner // Copyright: UPMC/LIP6 // Date : august 2012 // This program is released under the GNU public license ///////////////////////////////////////////////////////////////////////// // This file define a generic TSAR architecture with virtual memory. // - It uses vci_local_crossbar as local interconnect // - It uses virtual_dspin as global interconnect // - It uses the vci_cc_vcache_wrapper_v4 // - It uses the vci_mem_cache_v4 // - It contains one vci_xicu and one vci_multi_dma per cluster. // The peripherals BDEV, FBUF, MTTY, and the boot BROM // are in the cluster containing address 0xBFC00000. // // It is build with one single component implementing a cluster: // The Tsarv4ClusterMmu component is defined in files // tsarv4_cluster_mmu.* (with * = cpp, h, sd) // // The IRQs are connected to XICUs as follow: // - The IRQ_IN[0] to IRQ_IN[7] ports are not used in all clusters. // - The DMA IRQs are connected to IRQ_IN[8] to IRQ_IN[15] in all clusters. // - The TTY IRQs are connected to IRQ_IN[16] to IRQ_IN[30] in I/O cluster. // - The BDEV IRQ is connected to IRQ_IN[31] in I/O cluster. // // The physical address space is 32 bits. // The number of clusters cannot be larger than 256. // The number of processors per cluster cannot be larger than 8. // // The hardware parameters are : // - xmax : number of clusters in a row (power of 2) // - ymax : number of clusters in a column (power of 2) // - nb_procs : number of processors per cluster (power of 2) // - nb_dmas : number of DMA channels per cluster (< 9) // - nb_ttys : number of TTYs in I/O cluster (< 16) // // General policy for 32 bits physical address decoding: // All segments base addresses are multiple of 64 Kbytes // Therefore the 16 address MSB bits completely define the target: // The (x_width + y_width) MSB bits (left aligned) define // the cluster index, and the 8 LSB bits define the local index: // | X_ID | Y_ID |---| LADR | OFFSET | // |x_width|y_width|---| 8 | 16 | ///////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include "gdbserver.h" #include "mapping_table.h" #include "tsarv4_cluster_mmu.h" #include "alloc_elems.h" /////////////////////////////////////////////////// // OS /////////////////////////////////////////////////// #define USE_ALMOS 0 #define almos_bootloader_pathname "bootloader.bin" #define almos_kernel_pathname "kernel-soclib.bin@0xbfc10000:D" #define almos_archinfo_pathname "arch-info.bin@0xBFC08000:D" /////////////////////////////////////////////////// // Parallelisation /////////////////////////////////////////////////// #define USE_OPENMP 0 #if USE_OPENMP #include #endif /////////////////////////////////////////////////// // cluster index (computed from x,y coordinates) #define cluster(x,y) (y + ymax*x) // flit widths for the DSPIN network #define cmd_width 40 #define rsp_width 33 // VCI format #define cell_width 4 #define address_width 32 #define plen_width 8 #define error_width 2 #define clen_width 1 #define rflag_width 1 #define srcid_width 14 #define pktid_width 4 #define trdid_width 4 #define wrplen_width 1 /////////////////////////////////////////////////// // Parameters default values /////////////////////////////////////////////////// #define MESH_XMAX 2 #define MESH_YMAX 2 #define NB_PROCS 1 #define NB_TTYS 2 #define NB_DMAS 1 #define XRAM_LATENCY 0 #define MEMC_WAYS 16 #define MEMC_SETS 256 #define L1_IWAYS 4 #define L1_ISETS 64 #define L1_DWAYS 4 #define L1_DSETS 64 #define FBUF_X_SIZE 128 #define FBUF_Y_SIZE 128 #define BDEV_SECTOR_SIZE 512 #define BDEV_IMAGE_NAME "hdd-img.bin" #define BOOT_SOFT_NAME "soft.bin" #define MAX_FROZEN_CYCLES 10000 #define TRACE_MEMC_ID 1000000 #define TRACE_PROC_ID 1000000 ///////////////////////////////////////////////////////// // Physical segments definition ///////////////////////////////////////////////////////// // There is 3 segments replicated in all clusters: // - seg_memc -> MEMC / BASE = 0x**000000 (12 M bytes) // - seg_icu -> ICU / BASE = 0x**F00000 // - seg_dma -> CDMA / BASE = 0x**F30000 // // There is 4 specific segments in the "IO" cluster // (containing address 0xBF000000) // - seg_reset -> BROM / BASE = 0xBFC00000 (1 Mbytes) // - seg_fbuf -> FBUF / BASE = 0xBFD00000 (2 M bytes) // - seg_bdev -> BDEV / BASE = 0xBFF10000 // - seg_tty -> MTTY / BASE = 0x**F20000 // // There is one special segment corresponding to // the processors in the coherence address space // - seg_proc -> PROC / BASE = 0x**B0 to 0xBF /////////////////////////////////////////////////// // specific segments in "IO" cluster : absolute physical address #define BROM_BASE 0xBFC00000 #define BROM_SIZE 0x00100000 #define FBUF_BASE 0x80D00000 #define FBUF_SIZE 0x00200000 #define BDEV_BASE 0x80F10000 #define BDEV_SIZE 0x00001000 #define MTTY_BASE 0x80F20000 #define MTTY_SIZE 0x00001000 // replicated segments : physical address is incremented by an offset // offset = cluster(x,y) << (address_width-x_width-y_width); #define MEMC_BASE 0x00000000 #define MEMC_SIZE 0x00C00000 #define XICU_BASE 0x00F00000 #define XICU_SIZE 0x00001000 #define CDMA_BASE 0x00F30000 #define CDMA_SIZE 0x00008000 //////////////////////////////////////////////////////////////////// // TGTID definition in direct space // For all components: global TGTID = global SRCID = cluster_index //////////////////////////////////////////////////////////////////// #define MEMC_TGTID 0 #define XICU_TGTID 1 #define CDMA_TGTID 2 #define MTTY_TGTID 3 #define FBUF_TGTID 4 #define BROM_TGTID 5 #define BDEV_TGTID 6 ///////////////////////////////// int _main(int argc, char *argv[]) { using namespace sc_core; using namespace soclib::caba; using namespace soclib::common; char soft_name[256] = BOOT_SOFT_NAME; // pathname to binary code size_t ncycles = 1000000000; // simulated cycles size_t xmax = MESH_XMAX; // number of clusters in a row size_t ymax = MESH_YMAX; // number of clusters in a column size_t nb_procs = NB_PROCS; // number of processors per cluster size_t nb_dmas = NB_DMAS; // number of RDMA channels per cluster size_t nb_ttys = NB_TTYS; // number of TTY terminals in I/O cluster size_t xfb = FBUF_X_SIZE; // frameBuffer column number size_t yfb = FBUF_Y_SIZE; // frameBuffer lines number size_t memc_ways = MEMC_WAYS; size_t memc_sets = MEMC_SETS; size_t l1_d_ways = L1_DWAYS; size_t l1_d_sets = L1_DSETS; size_t l1_i_ways = L1_IWAYS; size_t l1_i_sets = L1_ISETS; char disk_name[256] = BDEV_IMAGE_NAME; // pathname to the disk image size_t blk_size = BDEV_SECTOR_SIZE; // block size (in bytes) size_t xram_latency = XRAM_LATENCY; // external RAM latency ssize_t threads_nr = 1; // simulator's threads number bool debug_ok = false; // trace activated size_t debug_period = 1; // trace period size_t debug_memc_id = TRACE_MEMC_ID; // index of memc to be traced (cluster_id) size_t debug_proc_id = TRACE_PROC_ID; // index of proc to be traced uint32_t debug_from = 0; // trace start cycle uint32_t frozen_cycles = MAX_FROZEN_CYCLES; // monitoring frozen processor ////////////// command line arguments ////////////////////// if (argc > 1) { for (int n = 1; n < argc; n = n + 2) { if ((strcmp(argv[n],"-NCYCLES") == 0) && (n+1 vci_param; // Define parameters depending on mesh size size_t cluster_io_id; size_t x_width; size_t y_width; if (xmax == 1) x_width = 0; else if (xmax == 2) x_width = 1; else if (xmax <= 4) x_width = 2; else if (xmax <= 8) x_width = 3; else x_width = 4; if (ymax == 1) y_width = 0; else if (ymax == 2) y_width = 1; else if (ymax <= 4) y_width = 2; else if (ymax <= 8) y_width = 3; else y_width = 4; cluster_io_id = 0xBF >> (8 - x_width - y_width); ///////////////////// // Mapping Tables ///////////////////// // direct network MappingTable maptabd(address_width, IntTab(x_width + y_width, 16 - x_width - y_width), IntTab(x_width + y_width, srcid_width - x_width - y_width), 0x00FF0000); for (size_t x = 0; x < xmax; x++) { for (size_t y = 0; y < ymax; y++) { sc_uint offset = cluster(x,y) << (address_width-x_width-y_width); std::ostringstream sh; sh << "d_seg_memc_" << x << "_" << y; maptabd.add(Segment(sh.str(), MEMC_BASE+offset, MEMC_SIZE, IntTab(cluster(x,y),MEMC_TGTID), true)); std::ostringstream si; si << "d_seg_xicu_" << x << "_" << y; maptabd.add(Segment(si.str(), XICU_BASE+offset, XICU_SIZE, IntTab(cluster(x,y),XICU_TGTID), false)); std::ostringstream sd; sd << "d_seg_mdma_" << x << "_" << y; maptabd.add(Segment(sd.str(), CDMA_BASE+offset, CDMA_SIZE, IntTab(cluster(x,y),CDMA_TGTID), false)); if ( cluster(x,y) == cluster_io_id ) { maptabd.add(Segment("d_seg_mtty", MTTY_BASE, MTTY_SIZE, IntTab(cluster(x,y),MTTY_TGTID), false)); maptabd.add(Segment("d_seg_fbuf", FBUF_BASE, FBUF_SIZE, IntTab(cluster(x,y),FBUF_TGTID), false)); maptabd.add(Segment("d_seg_bdev", BDEV_BASE, BDEV_SIZE, IntTab(cluster(x,y),BDEV_TGTID), false)); maptabd.add(Segment("d_seg_brom", BROM_BASE, BROM_SIZE, IntTab(cluster(x,y),BROM_TGTID), true)); } } } std::cout << maptabd << std::endl; // coherence network // - tgtid_c_proc = srcid_c_proc = local procid // - tgtid_c_memc = srcid_c_memc = nb_procs MappingTable maptabc(address_width, IntTab(x_width + y_width, srcid_width - x_width - y_width), IntTab(x_width + y_width, srcid_width - x_width - y_width), 0x00FF0000); for (size_t x = 0; x < xmax; x++) { for (size_t y = 0; y < ymax; y++) { sc_uint offset = cluster(x,y) << (address_width-x_width-y_width); // cleanup requests must be routed to the memory cache std::ostringstream sh; sh << "c_seg_memc_" << x << "_" << y; maptabc.add(Segment(sh.str(), (nb_procs << (address_width - srcid_width)) + offset, 0x10, IntTab(cluster(x,y), nb_procs), false)); // update & invalidate requests must be routed to the proper processor for ( size_t p = 0 ; p < nb_procs ; p++) { std::ostringstream sp; sp << "c_seg_proc_" << x << "_" << y << "_" << p; maptabc.add( Segment( sp.str() , (p << (address_width - srcid_width)) + offset , 0x10 , IntTab(cluster(x,y), p) , false)); } } } std::cout << maptabc << std::endl; // external network MappingTable maptabx(address_width, IntTab(1), IntTab(x_width+y_width), 0xF0000000); for (size_t x = 0; x < xmax; x++) { for (size_t y = 0; y < ymax ; y++) { sc_uint offset = cluster(x,y) << (address_width-x_width-y_width); std::ostringstream sh; sh << "x_seg_memc_" << x << "_" << y; maptabx.add(Segment(sh.str(), MEMC_BASE+offset, MEMC_SIZE, IntTab(cluster(x,y)), false)); } } std::cout << maptabx << std::endl; //////////////////// // Signals /////////////////// sc_clock signal_clk("clk"); sc_signal signal_resetn("resetn"); // Horizontal inter-clusters DSPIN signals DspinSignals*** signal_dspin_h_cmd_inc = alloc_elems >("signal_dspin_h_cmd_inc", xmax-1, ymax, 2); DspinSignals*** signal_dspin_h_cmd_dec = alloc_elems >("signal_dspin_h_cmd_dec", xmax-1, ymax, 2); DspinSignals*** signal_dspin_h_rsp_inc = alloc_elems >("signal_dspin_h_rsp_inc", xmax-1, ymax, 2); DspinSignals*** signal_dspin_h_rsp_dec = alloc_elems >("signal_dspin_h_rsp_dec", xmax-1, ymax, 2); // Vertical inter-clusters DSPIN signals DspinSignals*** signal_dspin_v_cmd_inc = alloc_elems >("signal_dspin_v_cmd_inc", xmax, ymax-1, 2); DspinSignals*** signal_dspin_v_cmd_dec = alloc_elems >("signal_dspin_v_cmd_dec", xmax, ymax-1, 2); DspinSignals*** signal_dspin_v_rsp_inc = alloc_elems >("signal_dspin_v_rsp_inc", xmax, ymax-1, 2); DspinSignals*** signal_dspin_v_rsp_dec = alloc_elems >("signal_dspin_v_rsp_dec", xmax, ymax-1, 2); // Mesh boundaries DSPIN signals DspinSignals**** signal_dspin_false_cmd_in = alloc_elems >("signal_dspin_false_cmd_in", xmax, ymax, 2, 4); DspinSignals**** signal_dspin_false_cmd_out = alloc_elems >("signal_dspin_false_cmd_out", xmax, ymax, 2, 4); DspinSignals**** signal_dspin_false_rsp_in = alloc_elems >("signal_dspin_false_rsp_in", xmax, ymax, 2, 4); DspinSignals**** signal_dspin_false_rsp_out = alloc_elems >("signal_dspin_false_rsp_out", xmax, ymax, 2, 4); //////////////////////////// // Components //////////////////////////// #if USE_ALMOS soclib::common::Loader loader(almos_bootloader_pathname, almos_archinfo_pathname, almos_kernel_pathname); #else soclib::common::Loader loader(soft_name); #endif typedef soclib::common::GdbServer proc_iss; proc_iss::set_loader(loader); TsarV4ClusterMmu* clusters[xmax][ymax]; #if USE_OPENMP #pragma omp parallel { #pragma omp for for(size_t i = 0; i < (xmax * ymax); i++) { size_t x = i / ymax; size_t y = i % ymax; #pragma omp critical std::cout << "building cluster_" << x << "_" << y << std::endl; std::ostringstream sc; sc << "cluster_" << x << "_" << y; clusters[x][y] = new TsarV4ClusterMmu (sc.str().c_str(), nb_procs, nb_ttys, nb_dmas, x, y, cluster(x,y), maptabd, maptabc, maptabx, x_width, y_width, MEMC_TGTID, XICU_TGTID, FBUF_TGTID, MTTY_TGTID, BROM_TGTID, BDEV_TGTID, CDMA_TGTID, memc_ways, memc_sets, l1_i_ways, l1_i_sets, l1_d_ways, l1_d_sets, xram_latency, (cluster(x,y) == cluster_io_id), xfb, yfb, disk_name, blk_size, loader, frozen_cycles, debug_from, debug_ok and (cluster(x,y) == debug_memc_id), debug_ok and (cluster(x,y) == debug_proc_id) ); std::cout << "cluster_" << x << "_" << y << " constructed" << std::endl; } } #else // NO OPENMP for (size_t x = 0; x < xmax; x++) { for (size_t y = 0; y < ymax; y++) { std::cout << "building cluster_" << x << "_" << y << std::endl; std::ostringstream sc; sc << "cluster_" << x << "_" << y; clusters[x][y] = new TsarV4ClusterMmu (sc.str().c_str(), nb_procs, nb_ttys, nb_dmas, x, y, cluster(x,y), maptabd, maptabc, maptabx, x_width, y_width, MEMC_TGTID, XICU_TGTID, FBUF_TGTID, MTTY_TGTID, BROM_TGTID, BDEV_TGTID, CDMA_TGTID, memc_ways, memc_sets, l1_i_ways, l1_i_sets, l1_d_ways, l1_d_sets, xram_latency, (cluster(x,y) == cluster_io_id), xfb, yfb, disk_name, blk_size, loader, frozen_cycles, debug_from, debug_ok and ( cluster(x,y) == debug_memc_id ), debug_ok and ( cluster(x,y) == debug_proc_id ) ); std::cout << "cluster_" << x << "_" << y << " constructed" << std::endl; } } #endif // USE_OPENMP /////////////////////////////////////////////////////////////// // Net-list /////////////////////////////////////////////////////////////// // Clock & RESET for (size_t x = 0; x < (xmax); x++){ for (size_t y = 0; y < ymax; y++){ clusters[x][y]->p_clk (signal_clk); clusters[x][y]->p_resetn (signal_resetn); } } // Inter Clusters horizontal connections if (xmax > 1){ for (size_t x = 0; x < (xmax-1); x++){ for (size_t y = 0; y < ymax; y++){ for (size_t k = 0; k < 2; k++){ clusters[x][y]->p_cmd_out[k][EAST] (signal_dspin_h_cmd_inc[x][y][k]); clusters[x+1][y]->p_cmd_in[k][WEST] (signal_dspin_h_cmd_inc[x][y][k]); clusters[x][y]->p_cmd_in[k][EAST] (signal_dspin_h_cmd_dec[x][y][k]); clusters[x+1][y]->p_cmd_out[k][WEST] (signal_dspin_h_cmd_dec[x][y][k]); clusters[x][y]->p_rsp_out[k][EAST] (signal_dspin_h_rsp_inc[x][y][k]); clusters[x+1][y]->p_rsp_in[k][WEST] (signal_dspin_h_rsp_inc[x][y][k]); clusters[x][y]->p_rsp_in[k][EAST] (signal_dspin_h_rsp_dec[x][y][k]); clusters[x+1][y]->p_rsp_out[k][WEST] (signal_dspin_h_rsp_dec[x][y][k]); } } } } std::cout << "Horizontal connections established" << std::endl; // Inter Clusters vertical connections if (ymax > 1) { for (size_t y = 0; y < (ymax-1); y++){ for (size_t x = 0; x < xmax; x++){ for (size_t k = 0; k < 2; k++){ clusters[x][y]->p_cmd_out[k][NORTH] (signal_dspin_v_cmd_inc[x][y][k]); clusters[x][y+1]->p_cmd_in[k][SOUTH] (signal_dspin_v_cmd_inc[x][y][k]); clusters[x][y]->p_cmd_in[k][NORTH] (signal_dspin_v_cmd_dec[x][y][k]); clusters[x][y+1]->p_cmd_out[k][SOUTH] (signal_dspin_v_cmd_dec[x][y][k]); clusters[x][y]->p_rsp_out[k][NORTH] (signal_dspin_v_rsp_inc[x][y][k]); clusters[x][y+1]->p_rsp_in[k][SOUTH] (signal_dspin_v_rsp_inc[x][y][k]); clusters[x][y]->p_rsp_in[k][NORTH] (signal_dspin_v_rsp_dec[x][y][k]); clusters[x][y+1]->p_rsp_out[k][SOUTH] (signal_dspin_v_rsp_dec[x][y][k]); } } } } std::cout << "Vertical connections established" << std::endl; // East & West boundary cluster connections for (size_t y = 0; y < ymax; y++) { for (size_t k = 0; k < 2; k++) { clusters[0][y]->p_cmd_in[k][WEST] (signal_dspin_false_cmd_in[0][y][k][WEST]); clusters[0][y]->p_cmd_out[k][WEST] (signal_dspin_false_cmd_out[0][y][k][WEST]); clusters[0][y]->p_rsp_in[k][WEST] (signal_dspin_false_rsp_in[0][y][k][WEST]); clusters[0][y]->p_rsp_out[k][WEST] (signal_dspin_false_rsp_out[0][y][k][WEST]); clusters[xmax-1][y]->p_cmd_in[k][EAST] (signal_dspin_false_cmd_in[xmax-1][y][k][EAST]); clusters[xmax-1][y]->p_cmd_out[k][EAST] (signal_dspin_false_cmd_out[xmax-1][y][k][EAST]); clusters[xmax-1][y]->p_rsp_in[k][EAST] (signal_dspin_false_rsp_in[xmax-1][y][k][EAST]); clusters[xmax-1][y]->p_rsp_out[k][EAST] (signal_dspin_false_rsp_out[xmax-1][y][k][EAST]); } } // North & South boundary clusters connections for (size_t x = 0; x < xmax; x++) { for (size_t k = 0; k < 2; k++) { clusters[x][0]->p_cmd_in[k][SOUTH] (signal_dspin_false_cmd_in[x][0][k][SOUTH]); clusters[x][0]->p_cmd_out[k][SOUTH] (signal_dspin_false_cmd_out[x][0][k][SOUTH]); clusters[x][0]->p_rsp_in[k][SOUTH] (signal_dspin_false_rsp_in[x][0][k][SOUTH]); clusters[x][0]->p_rsp_out[k][SOUTH] (signal_dspin_false_rsp_out[x][0][k][SOUTH]); clusters[x][ymax-1]->p_cmd_in[k][NORTH] (signal_dspin_false_cmd_in[x][ymax-1][k][NORTH]); clusters[x][ymax-1]->p_cmd_out[k][NORTH] (signal_dspin_false_cmd_out[x][ymax-1][k][NORTH]); clusters[x][ymax-1]->p_rsp_in[k][NORTH] (signal_dspin_false_rsp_in[x][ymax-1][k][NORTH]); clusters[x][ymax-1]->p_rsp_out[k][NORTH] (signal_dspin_false_rsp_out[x][ymax-1][k][NORTH]); } } //////////////////////////////////////////////////////// // Simulation /////////////////////////////////////////////////////// sc_start(sc_core::sc_time(0, SC_NS)); signal_resetn = false; // network boundaries signals for (size_t x = 0; x < xmax ; x++){ for (size_t y = 0; y < ymax ; y++){ for (size_t k = 0; k < 2; k++){ for (size_t a = 0; a < 4; a++){ signal_dspin_false_cmd_in[x][y][k][a].write = false; signal_dspin_false_cmd_in[x][y][k][a].read = true; signal_dspin_false_cmd_out[x][y][k][a].write = false; signal_dspin_false_cmd_out[x][y][k][a].read = true; signal_dspin_false_rsp_in[x][y][k][a].write = false; signal_dspin_false_rsp_in[x][y][k][a].read = true; signal_dspin_false_rsp_out[x][y][k][a].write = false; signal_dspin_false_rsp_out[x][y][k][a].read = true; } } } } sc_start(sc_core::sc_time(1, SC_NS)); signal_resetn = true; for (size_t n = 1; n < ncycles; n++) { if (debug_ok and (n > debug_from) and (n % debug_period == 0)) { std::cout << "****************** cycle " << std::dec << n ; std::cout << " ************************************************" << std::endl; // trace proc[debug_proc_id] if ( debug_proc_id < (xmax * ymax * nb_procs) ) { size_t proc_x = debug_proc_id / ymax; size_t proc_y = debug_proc_id % ymax; clusters[proc_x][proc_y]->proc[0]->print_trace(); clusters[proc_x][proc_y]->signal_vci_ini_d_proc[0].print_trace("proc_ini_d"); clusters[proc_x][proc_y]->signal_vci_ini_c_proc[0].print_trace("proc_ini_c"); clusters[proc_x][proc_y]->signal_vci_tgt_c_proc[0].print_trace("proc_tgt_c"); } // trace memc[debug_memc_id] if ( debug_memc_id < (xmax * ymax) ) { size_t memc_x = debug_memc_id / ymax; size_t memc_y = debug_memc_id % ymax; clusters[memc_x][memc_y]->memc->print_trace(); clusters[memc_x][memc_y]->signal_vci_tgt_d_memc.print_trace("memc_tgt_d"); clusters[memc_x][memc_y]->signal_vci_ini_c_memc.print_trace("memc_ini_c"); clusters[memc_x][memc_y]->signal_vci_tgt_c_memc.print_trace("memc_tgt_c"); } // clusters[0][0]->signal_vci_tgt_d_xicu.print_trace("xicu_0_0"); // clusters[0][1]->signal_vci_tgt_d_xicu.print_trace("xicu_0_1"); // clusters[1][0]->signal_vci_tgt_d_xicu.print_trace("xicu_1_0"); // clusters[1][1]->signal_vci_tgt_d_xicu.print_trace("xicu_1_1"); // if ( clusters[1][1]->signal_irq_mdma[0].read() ) // std::cout << std::endl << " IRQ_DMA_1_1 activated" << std::endl; // if ( clusters[1][1]->signal_proc_it[0].read() ) // std::cout << " IRQ_PROC_1_1 activated" << std::endl << std::endl; // trace ioc component size_t io_x = cluster_io_id / ymax; size_t io_y = cluster_io_id % ymax; // clusters[io_x][io_y]->bdev->print_trace(); // clusters[io_x][io_y]->signal_vci_tgt_d_bdev.print_trace("bdev_1_0_tgt_d "); // clusters[io_x][io_y]->signal_vci_ini_d_bdev.print_trace("bdev_1_0_ini_d "); clusters[1][1]->mdma->print_trace(); clusters[1][1]->signal_vci_tgt_d_mdma.print_trace("mdma_1_1_tgt_d "); clusters[1][1]->signal_vci_ini_d_mdma.print_trace("mdma_1_1_ini_d "); } sc_start(sc_core::sc_time(1, SC_NS)); } return EXIT_SUCCESS; } int sc_main (int argc, char *argv[]) { try { return _main(argc, argv); } catch (std::exception &e) { std::cout << e.what() << std::endl; } catch (...) { std::cout << "Unknown exception occured" << std::endl; throw; } return 1; } // Local Variables: // tab-width: 3 // c-basic-offset: 3 // c-file-offsets:((innamespace . 0)(inline-open . 0)) // indent-tabs-mode: nil // End: // vim: filetype=cpp:expandtab:shiftwidth=3:tabstop=3:softtabstop=3