[158] | 1 | /**************************************************************************************** |
---|
| 2 | File : drivers.c |
---|
| 3 | Written by Alain Greiner & Nicolas Pouillon |
---|
| 4 | Date : december 2010 |
---|
| 5 | |
---|
| 6 | Basic drivers used by the GIET, that is running |
---|
| 7 | on the MIPS32 processor architecture. |
---|
| 8 | |
---|
| 9 | The supported peripherals are: |
---|
| 10 | - the SoClib pibus_multi_tty |
---|
| 11 | - the SocLib pibus_timer |
---|
| 12 | - the SocLib pibus_dma |
---|
| 13 | - The SoCLib pibus_icu |
---|
| 14 | - The SoCLib pibus_gcd |
---|
| 15 | - The SoCLib pibus_frame_buffer |
---|
| 16 | - The SoCLib pibus_block_device |
---|
| 17 | |
---|
| 18 | The following global parameters must be defined in the ldscript. |
---|
| 19 | - NB_CLUSTERS : number of clusters |
---|
| 20 | - NB_PROCS : number of processor per cluster |
---|
| 21 | - NB_NTASKS : max number of tasks per processor |
---|
| 22 | - NB_LOCKS : max number of supported spin_locks |
---|
| 23 | - NB_TIMERS : max number of timers per processor |
---|
| 24 | |
---|
| 25 | The follobing base addresses must be defined in the ldscript |
---|
| 26 | - seg_icu_base |
---|
| 27 | - seg_timer_base |
---|
| 28 | - seg_tty_base |
---|
| 29 | - seg_gcd_base |
---|
| 30 | - seg_dma_base |
---|
| 31 | - seg_locks_base |
---|
| 32 | - seg_fb_base |
---|
| 33 | - seg_ioc_base |
---|
| 34 | ****************************************************************************************/ |
---|
| 35 | |
---|
| 36 | #include "drivers.h" |
---|
| 37 | #include "icu.h" |
---|
| 38 | #include "block_device.h" |
---|
| 39 | #include "dma.h" |
---|
| 40 | |
---|
| 41 | struct plouf; |
---|
| 42 | |
---|
| 43 | ////////////////////////////////////////////////////////////// |
---|
| 44 | // various informations that must be defined in ldscript |
---|
| 45 | ////////////////////////////////////////////////////////////// |
---|
| 46 | extern struct plouf seg_icu_base; |
---|
| 47 | extern struct plouf seg_timer_base; |
---|
| 48 | extern struct plouf seg_tty_base; |
---|
| 49 | extern struct plouf seg_gcd_base; |
---|
| 50 | extern struct plouf seg_dma_base; |
---|
| 51 | extern struct plouf seg_locks_base; |
---|
| 52 | extern struct plouf seg_fb_base; |
---|
| 53 | extern struct plouf seg_ioc_base; |
---|
| 54 | |
---|
| 55 | extern struct plouf NB_CLUSTERS; |
---|
| 56 | extern struct plouf NB_PROCS; |
---|
| 57 | extern struct plouf NB_TASKS; |
---|
| 58 | extern struct plouf NB_TIMERS; |
---|
| 59 | extern struct plouf NB_LOCKS; |
---|
| 60 | |
---|
| 61 | #define in_drivers __attribute__((section (".drivers"))) |
---|
| 62 | #define in_unckdata __attribute__((section (".unckdata"))) |
---|
| 63 | |
---|
| 64 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 65 | // Global uncachable variables for synchronization between drivers and ISRs |
---|
| 66 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 67 | |
---|
| 68 | in_unckdata int volatile _dma_status[256]; |
---|
| 69 | in_unckdata int volatile _dma_busy[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 70 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 71 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 72 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 73 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 74 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 75 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 76 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 77 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 78 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 79 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 80 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 81 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 82 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 83 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 84 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
---|
| 85 | |
---|
| 86 | in_unckdata int volatile _ioc_lock = 0; |
---|
| 87 | in_unckdata int volatile _ioc_done = 0; |
---|
| 88 | in_unckdata int volatile _ioc_status; |
---|
| 89 | |
---|
| 90 | in_unckdata char volatile _tty_get_buf[256]; |
---|
| 91 | in_unckdata int volatile _tty_get_full[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 92 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 93 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 94 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 95 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 96 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 97 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 98 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 99 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 100 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 101 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 102 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 103 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 104 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 105 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 106 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
---|
| 107 | |
---|
| 108 | in_unckdata char volatile _tty_put_buf[256]; |
---|
| 109 | in_unckdata int volatile _tty_put_full[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 110 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 111 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 112 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 113 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 114 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 115 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 116 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 117 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 118 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 119 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 120 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 121 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 122 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 123 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 124 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
---|
| 125 | |
---|
| 126 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 127 | // Global uncachable variables for inter-task barriers |
---|
| 128 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 129 | |
---|
| 130 | in_unckdata int volatile _barrier_initial_value[8] = { 0,0,0,0,0,0,0,0 }; |
---|
| 131 | in_unckdata int volatile _barrier_count[8] = { 0,0,0,0,0,0,0,0 }; |
---|
| 132 | |
---|
| 133 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 134 | // Global uncachable variables for spin_locks using LL/C instructions |
---|
| 135 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 136 | |
---|
| 137 | in_unckdata int volatile _spin_lock[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 138 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 139 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 140 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 141 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 142 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 143 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 144 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 145 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 146 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 147 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 148 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 149 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 150 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 151 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 152 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
---|
| 153 | |
---|
| 154 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 155 | // mempcy() |
---|
| 156 | // GCC requires this function. Taken from MutekH. |
---|
| 157 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 158 | __attribute((used)) |
---|
| 159 | in_drivers static void *memcpy(void *_dst, const void *_src, unsigned int size) |
---|
| 160 | { |
---|
| 161 | unsigned int *dst = _dst; |
---|
| 162 | const unsigned int *src = _src; |
---|
| 163 | if ( ! ((unsigned int)dst & 3) && ! ((unsigned int)src & 3) ) |
---|
| 164 | while (size > 3) { |
---|
| 165 | *dst++ = *src++; |
---|
| 166 | size -= 4; |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | unsigned char *cdst = (unsigned char*)dst; |
---|
| 170 | unsigned char *csrc = (unsigned char*)src; |
---|
| 171 | |
---|
| 172 | while (size--) { |
---|
| 173 | *cdst++ = *csrc++; |
---|
| 174 | } |
---|
| 175 | return _dst; |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 179 | // _procid() |
---|
| 180 | // Access CP0 and returns processor ident |
---|
| 181 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 182 | in_drivers unsigned int _procid() |
---|
| 183 | { |
---|
| 184 | unsigned int ret; |
---|
| 185 | asm volatile( "mfc0 %0, $15, 1": "=r"(ret) ); |
---|
| 186 | return (ret & 0xFF); |
---|
| 187 | } |
---|
| 188 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 189 | // _segment_increment() |
---|
| 190 | // Access CP0 to get the procid, and returns the address increment to access |
---|
| 191 | // various peripherals (TTY, TIMER, ICU, DMA), in case of multiprocessors architectures. |
---|
| 192 | // It uses the NB_PROCS and NB_CLUSTERS parameters to compute this increment: |
---|
| 193 | // - increment = cluster_id*cluster_increment + local_id*local_increment |
---|
| 194 | // - cluster_id = procid / NB_PROCS |
---|
| 195 | // - local_id = procid % NB_PROCS |
---|
| 196 | // - cluster_increment = 4G / NB_CLUSTERS |
---|
| 197 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 198 | in_drivers unsigned int _segment_increment(unsigned int local_increment) |
---|
| 199 | { |
---|
| 200 | unsigned int nprocs = (unsigned int)&NB_PROCS; |
---|
| 201 | unsigned int nclusters = (unsigned int)&NB_CLUSTERS; |
---|
| 202 | unsigned int cluster_increment = (0x80000000/nclusters)*2; |
---|
| 203 | unsigned int pid = _procid(); |
---|
| 204 | return (pid / nprocs)*cluster_increment + (pid % nprocs)*local_increment; |
---|
| 205 | } |
---|
| 206 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 207 | // _proctime() |
---|
| 208 | // Access CP0 and returns processor time |
---|
| 209 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 210 | in_drivers unsigned int _proctime() |
---|
| 211 | { |
---|
| 212 | unsigned int ret; |
---|
| 213 | asm volatile( "mfc0 %0, $9": "=r"(ret) ); |
---|
| 214 | return ret; |
---|
| 215 | } |
---|
| 216 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 217 | // _procnumber() |
---|
| 218 | // Returns the number of processsors controled by the GIET |
---|
| 219 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 220 | in_drivers unsigned int _procnumber() |
---|
| 221 | { |
---|
| 222 | return (unsigned int)&NB_PROCS * (unsigned int)&NB_CLUSTERS; |
---|
| 223 | } |
---|
| 224 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 225 | // _it_mask() |
---|
| 226 | // Access CP0 and mask IRQs |
---|
| 227 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 228 | in_drivers void _it_mask() |
---|
| 229 | { |
---|
| 230 | int tmp; |
---|
| 231 | asm volatile("mfc0 %0, $12" : "=r" (tmp) ); |
---|
| 232 | asm volatile("ori %0, %0, 1" : "=r" (tmp) ); |
---|
| 233 | asm volatile("mtc0 %0, $12" : "=r" (tmp) ); |
---|
| 234 | } |
---|
| 235 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 236 | // _it_enable() |
---|
| 237 | // Access CP0 and enable IRQs |
---|
| 238 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 239 | in_drivers void _it_enable() |
---|
| 240 | { |
---|
| 241 | int tmp; |
---|
| 242 | asm volatile("mfc0 %0, $12" : "=r" (tmp) ); |
---|
| 243 | asm volatile("addi %0, %0, -1" : "=r" (tmp) ); |
---|
| 244 | asm volatile("mtc0 %0, $12" : "=r" (tmp) ); |
---|
| 245 | } |
---|
| 246 | ////////////////////////////////////////////////////////////////////// |
---|
| 247 | // _dcache_buf_invalidate() |
---|
| 248 | // Invalidate all cache lines corresponding to a memory buffer. |
---|
| 249 | // This is used by the block_device driver. |
---|
| 250 | ///////////////////////////////////////////////////////////////////////// |
---|
| 251 | in_drivers void _dcache_buf_invalidate(const void * buffer, size_t size) |
---|
| 252 | { |
---|
| 253 | size_t i; |
---|
| 254 | size_t dcache_line_size; |
---|
| 255 | |
---|
| 256 | // retrieve dcache line size from config register (bits 12:10) |
---|
| 257 | asm volatile("mfc0 %0, $16, 1" : "=r" (dcache_line_size)); |
---|
| 258 | |
---|
| 259 | dcache_line_size = 2 << ((dcache_line_size>>10) & 0x7); |
---|
| 260 | |
---|
| 261 | // iterate on lines to invalidate each one of them |
---|
| 262 | for ( i=0; i<size; i+=dcache_line_size ) |
---|
| 263 | asm volatile(" cache %0, %1" |
---|
| 264 | : |
---|
| 265 | :"i" (0x11), "R" (*((char*)buffer+i))); |
---|
| 266 | } |
---|
| 267 | |
---|
| 268 | ///////////////////////////////////////////////////////////////////////// |
---|
| 269 | // _itoa_dec() |
---|
| 270 | // convert a 32 bits unsigned int to a string of 10 decimal characters. |
---|
| 271 | ///////////////////////////////////////////////////////////////////////// |
---|
| 272 | in_drivers void _itoa_dec(unsigned val, char* buf) |
---|
| 273 | { |
---|
| 274 | const char DecTab[] = "0123456789"; |
---|
| 275 | unsigned int i; |
---|
| 276 | for( i=0 ; i<10 ; i++ ) |
---|
| 277 | { |
---|
| 278 | if( (val!=0) || (i==0) ) buf[9-i] = DecTab[val % 10]; |
---|
| 279 | else buf[9-i] = 0x20; |
---|
| 280 | val /= 10; |
---|
| 281 | } |
---|
| 282 | } |
---|
| 283 | ////////////////////////////////////////////////////////////////////////// |
---|
| 284 | // _itoa_hex() |
---|
| 285 | // convert a 32 bits unsigned int to a string of 8 hexadecimal characters. |
---|
| 286 | /////////////////////////////////////////////////////////////////////////// |
---|
| 287 | in_drivers void _itoa_hex(int val, char* buf) |
---|
| 288 | { |
---|
| 289 | const char HexaTab[] = "0123456789ABCD"; |
---|
| 290 | unsigned int i; |
---|
| 291 | for( i=0 ; i<8 ; i++ ) |
---|
| 292 | { |
---|
| 293 | buf[7-i] = HexaTab[val % 16]; |
---|
| 294 | val /= 16; |
---|
| 295 | } |
---|
| 296 | } |
---|
| 297 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 298 | // MULTI_TIMER component |
---|
| 299 | // Each processor can handle up to NB_TIMERS independant timers. |
---|
| 300 | // The segment base address is defined as |
---|
| 301 | // seg_timer_base + segment_increment(NB_TIMERS*16) + index*16 |
---|
| 302 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 303 | // _timer_write() |
---|
| 304 | // Write a 32 bits word in a memory mapped register of the MULTI_TIMER |
---|
| 305 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 306 | in_drivers int _timer_write(size_t timer_index, size_t register_index, int value) |
---|
| 307 | { |
---|
| 308 | int* timer_address; |
---|
| 309 | size_t ntimers = (size_t)&NB_TIMERS; |
---|
| 310 | unsigned int base = (unsigned int)&seg_timer_base; |
---|
| 311 | unsigned int increment = _segment_increment(ntimers*TIMER_SPAN*4); |
---|
| 312 | |
---|
| 313 | if( timer_index >= ntimers) return -1; |
---|
| 314 | if( register_index >= TIMER_SPAN ) return -1; |
---|
| 315 | |
---|
| 316 | timer_address = (int*)(base + increment + timer_index*TIMER_SPAN*4); |
---|
| 317 | timer_address[register_index] = value; // write word |
---|
| 318 | return 0; |
---|
| 319 | } |
---|
| 320 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 321 | // _timer_read() |
---|
| 322 | // Read a 32 bits word in a memory mapped register of the MULTI_TIMER |
---|
| 323 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 324 | in_drivers int _timer_read(size_t timer_index, size_t register_index, int* buffer) |
---|
| 325 | { |
---|
| 326 | int* timer_address; |
---|
| 327 | size_t ntimers = (size_t)&NB_TIMERS; |
---|
| 328 | unsigned int base = (unsigned int)&seg_timer_base; |
---|
| 329 | unsigned int increment = _segment_increment(ntimers*TIMER_SPAN*4); |
---|
| 330 | |
---|
| 331 | if( timer_index >= ntimers) return -1; |
---|
| 332 | if( register_index >= TIMER_SPAN ) return -1; |
---|
| 333 | |
---|
| 334 | if( timer_index >= ntimers) return -1; |
---|
| 335 | if( register_index >= TIMER_SPAN ) return -1; |
---|
| 336 | |
---|
| 337 | timer_address = (int*)(base + increment + timer_index*TIMER_SPAN*4); |
---|
| 338 | *buffer = timer_address[register_index]; // read word |
---|
| 339 | return 0; |
---|
| 340 | } |
---|
| 341 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 342 | // MULTI_TTY COMPONENT |
---|
| 343 | // The total number of TTYs is equal to NB_CLUSTERS * NB_PROCS * NB_TASKS. |
---|
| 344 | // - tty_address = seg_tty_base + _segment_increment(NB_TASKS*16) + task_id*16 |
---|
| 345 | // - tty_index = proc_id*NB_TASKS + task_id |
---|
| 346 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 347 | // _tty_write() |
---|
| 348 | // Write one or several characters directly from a fixed length user buffer |
---|
| 349 | // to the TTY_WRITE register of the TTY controler. |
---|
| 350 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
---|
| 351 | // This is a non blocking call : it test the TTY_STATUS register. |
---|
| 352 | // If the TTY_STATUS_WRITE bit is set, the transfer stops and the function |
---|
| 353 | // returns the number of characters that have been actually written. |
---|
| 354 | // It returns -1 in case of error (proc_id or task index too large) |
---|
| 355 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 356 | in_drivers int _tty_write(char* buffer, int length) |
---|
| 357 | { |
---|
| 358 | char* tty_address; |
---|
| 359 | size_t ntasks = (size_t)&NB_TASKS; |
---|
| 360 | size_t nprocs = (size_t)&NB_PROCS; |
---|
| 361 | size_t nclusters = (size_t)&NB_CLUSTERS; |
---|
| 362 | unsigned int base = (unsigned int)&seg_tty_base; |
---|
| 363 | unsigned int increment = _segment_increment(ntasks*TTY_SPAN*4); |
---|
| 364 | size_t pid = _procid(); |
---|
| 365 | size_t tid = _current_task_array[pid]; |
---|
| 366 | int nwritten = 0; |
---|
| 367 | int i; |
---|
| 368 | |
---|
| 369 | if( tid >= ntasks ) return -1; |
---|
| 370 | if( pid >= nprocs*nclusters ) return -1; |
---|
| 371 | |
---|
| 372 | tty_address = (char*)(base + increment + tid*TTY_SPAN*4); |
---|
| 373 | |
---|
| 374 | for ( i=0 ; i < length ; i++ ) |
---|
| 375 | { |
---|
| 376 | if((tty_address[TTY_STATUS*4] & 0x2) == 0x2) break; |
---|
| 377 | else |
---|
| 378 | { |
---|
| 379 | tty_address[TTY_WRITE*4] = buffer[i]; // write character |
---|
| 380 | nwritten++; |
---|
| 381 | } |
---|
| 382 | } |
---|
| 383 | return nwritten; |
---|
| 384 | } |
---|
| 385 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 386 | // _tty_read() |
---|
| 387 | // Fetch one character directly from the TTY_READ register of the TTY controler, |
---|
| 388 | // and writes this character to the user buffer. |
---|
| 389 | // It doesn't use the TTY_GET_IRQ interrupt and the associated kernel buffer. |
---|
| 390 | // This is a non blocking call : it returns 0 if the register is empty, |
---|
| 391 | // and returns 1 if the register is full. |
---|
| 392 | // It returns -1 in case of error (proc_id or task_id too large or length != 1) |
---|
| 393 | // The length argument is not used in this implementation, and has been |
---|
| 394 | // introduced for future implementations. |
---|
| 395 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 396 | in_drivers int _tty_read(char* buffer, int length) |
---|
| 397 | { |
---|
| 398 | char* tty_address; |
---|
| 399 | size_t ntasks = (size_t)&NB_TASKS; |
---|
| 400 | size_t nprocs = (size_t)&NB_PROCS; |
---|
| 401 | size_t nclusters = (size_t)&NB_CLUSTERS; |
---|
| 402 | unsigned int base = (unsigned int)&seg_tty_base; |
---|
| 403 | unsigned int increment = _segment_increment(ntasks*TTY_SPAN*4); |
---|
| 404 | size_t pid = _procid(); |
---|
| 405 | size_t tid = _current_task_array[pid]; |
---|
| 406 | |
---|
| 407 | if( length != 1) return -1; |
---|
| 408 | if( pid >= nprocs*nclusters ) return -1; |
---|
| 409 | if( tid >= ntasks ) return -1; |
---|
| 410 | |
---|
| 411 | tty_address = (char*)(base + increment + tid*TTY_SPAN*4); |
---|
| 412 | |
---|
| 413 | if((tty_address[TTY_STATUS*4] & 0x1) == 0x1) |
---|
| 414 | { |
---|
| 415 | buffer[0] = tty_address[TTY_READ*4]; |
---|
| 416 | return 1; |
---|
| 417 | } |
---|
| 418 | else |
---|
| 419 | { |
---|
| 420 | return 0; |
---|
| 421 | } |
---|
| 422 | } |
---|
| 423 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 424 | // _tty_read_irq() |
---|
| 425 | // iAS it uses the TTY_GET_IRQ interrupt and the associated kernel buffer, |
---|
| 426 | // that has been written by the ISR, this function does not access the TTY registers. |
---|
| 427 | // It fetch one single character from the _tty_get_buf[tty_index] kernel buffer, writes |
---|
| 428 | // this character to the user buffer, and reset the _tty_get_full[tty_index] buffer. |
---|
| 429 | // This is a non blocking call : it returns 0 if the kernel buffer is empty, |
---|
| 430 | // and returns 1 if the buffer is full. |
---|
| 431 | // It returns -1 in case of error (proc_id or task_id too large, or length != 1) |
---|
| 432 | // The length argument is not used in this implementation, and has been |
---|
| 433 | // introduced for future implementations. |
---|
| 434 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 435 | in_drivers int _tty_read_irq(char* buffer, int length) |
---|
| 436 | { |
---|
| 437 | int pid = _procid(); |
---|
| 438 | int tid = _current_task_array[pid]; |
---|
| 439 | int ntasks = (int)&NB_TASKS; |
---|
| 440 | int nprocs = (int)&NB_PROCS; |
---|
| 441 | int nclusters = (int)&NB_CLUSTERS; |
---|
| 442 | int tty_index; |
---|
| 443 | |
---|
| 444 | if( length != 1) return -1; |
---|
| 445 | if( pid >= nprocs*nclusters ) return -1; |
---|
| 446 | if( tid >= ntasks ) return -1; |
---|
| 447 | |
---|
| 448 | tty_index = pid*ntasks + tid; |
---|
| 449 | if( _tty_get_full[tty_index] == 0 ) return 0; |
---|
| 450 | |
---|
| 451 | *buffer = _tty_get_buf[tty_index]; |
---|
| 452 | _tty_get_full[tty_index] = 0; |
---|
| 453 | return 1; |
---|
| 454 | } |
---|
| 455 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 456 | // _exit() |
---|
| 457 | // Exit (suicide) after printing message on a TTY terminal. |
---|
| 458 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 459 | in_drivers int _exit() |
---|
| 460 | { |
---|
| 461 | char buf[] = "\n\n!!! Exit Processor !!!\n"; |
---|
| 462 | int pid = _procid(); |
---|
| 463 | |
---|
| 464 | buf[24] = '0'; |
---|
| 465 | buf[25] = 'x'; |
---|
| 466 | buf[26] = (char)((pid>>8) & 0xF) + 0x30; |
---|
| 467 | buf[27] = (char)((pid>>4) & 0xF) + 0x30; |
---|
| 468 | buf[28] = (char)(pid & 0xF) + 0x30; |
---|
| 469 | _tty_write(buf, 36); |
---|
| 470 | |
---|
| 471 | while(1) asm volatile("nop"); // infinite loop... |
---|
| 472 | } |
---|
| 473 | |
---|
| 474 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 475 | // _icu_write() |
---|
| 476 | // Write a 32 bits word in a memory mapped register of the ICU peripheral |
---|
| 477 | // The base address is defined by the processor ID |
---|
| 478 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 479 | in_drivers int _icu_write(size_t register_index, int value) |
---|
| 480 | { |
---|
| 481 | int* icu_address; |
---|
| 482 | unsigned int base = (int)&seg_icu_base; |
---|
| 483 | unsigned int increment = _segment_increment(ICU_SPAN*4); |
---|
| 484 | |
---|
| 485 | if( register_index >= ICU_SPAN ) return -1; |
---|
| 486 | |
---|
| 487 | icu_address = (int*)(base + increment); |
---|
| 488 | icu_address[register_index] = value; // write word |
---|
| 489 | return 0; |
---|
| 490 | } |
---|
| 491 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 492 | // _icu_read() |
---|
| 493 | // Read a 32 bits word in a memory mapped register of the ICU peripheral |
---|
| 494 | // The ICU base address is defined by the processor ID |
---|
| 495 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 496 | in_drivers int _icu_read(size_t register_index, int* buffer) |
---|
| 497 | { |
---|
| 498 | int* icu_address; |
---|
| 499 | unsigned int base = (int)&seg_icu_base; |
---|
| 500 | unsigned int increment = _segment_increment(ICU_SPAN*4); |
---|
| 501 | |
---|
| 502 | if( register_index >= ICU_SPAN ) return -1; |
---|
| 503 | |
---|
| 504 | icu_address = (int*)(base + increment); |
---|
| 505 | *buffer = icu_address[register_index]; // read word |
---|
| 506 | return 0; |
---|
| 507 | } |
---|
| 508 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 509 | // _gcd_write() |
---|
| 510 | // Write a 32 bits word in a memory mapped register of the GCD coprocessor |
---|
| 511 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 512 | in_drivers int _gcd_write(size_t register_index, int value) |
---|
| 513 | { |
---|
| 514 | int* gcd_address; |
---|
| 515 | if( register_index >= 4 ) return -1; |
---|
| 516 | |
---|
| 517 | gcd_address = (int*)&seg_gcd_base; |
---|
| 518 | gcd_address[register_index] = value; // write word |
---|
| 519 | return 0; |
---|
| 520 | } |
---|
| 521 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 522 | // _gcd_read() |
---|
| 523 | // Read a 32 bits word in a memory mapped register of the GCD coprocessor |
---|
| 524 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 525 | in_drivers int _gcd_read(size_t register_index, int* buffer) |
---|
| 526 | { |
---|
| 527 | int* gcd_address; |
---|
| 528 | if( register_index >= 4 ) return -1; |
---|
| 529 | |
---|
| 530 | gcd_address = (int*)&seg_gcd_base; |
---|
| 531 | *buffer = gcd_address[register_index]; // read word |
---|
| 532 | return 0; |
---|
| 533 | } |
---|
| 534 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 535 | // _locks_write() |
---|
| 536 | // Release a software spin-lock |
---|
| 537 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 538 | in_drivers int _locks_write(size_t index) |
---|
| 539 | |
---|
| 540 | { |
---|
| 541 | int max = (int)&NB_LOCKS; |
---|
| 542 | if( index >= max ) return -1; |
---|
| 543 | |
---|
| 544 | _spin_lock[index] = 0; |
---|
| 545 | return 0; |
---|
| 546 | } |
---|
| 547 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 548 | // _locks_read() |
---|
| 549 | // Try to take a software spin-lock. |
---|
| 550 | // This is a blocking call, as there is a busy-waiting loop, |
---|
| 551 | // until the lock is granted to the requester. |
---|
| 552 | // There is an internal delay of about 100 cycles between |
---|
| 553 | // two successive lock read, to avoid bus saturation. |
---|
| 554 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 555 | in_drivers int _locks_read(size_t index) |
---|
| 556 | { |
---|
| 557 | int max = (int)&NB_LOCKS; |
---|
| 558 | if( index >= max ) return -1; |
---|
| 559 | |
---|
| 560 | register int delay = ( (_proctime() + _procid() ) & 0xF) << 4; |
---|
| 561 | register int* plock = (int*)&_spin_lock[index]; |
---|
| 562 | |
---|
| 563 | asm volatile ("_locks_llsc: \n" |
---|
| 564 | "ll $2, 0(%0) \n" // $2 <= _locks_lock |
---|
| 565 | "bnez $2, _locks_delay \n" // random delay if busy |
---|
| 566 | "li $3, 1 \n" // prepare argument for sc |
---|
| 567 | "sc $3, 0(%0) \n" // try to set _locks_busy |
---|
| 568 | "bnez $3, _locks_ok \n" // exit if atomic |
---|
| 569 | "_locks_delay: \n" |
---|
| 570 | "move $4, %1 \n" // $4 <= delay |
---|
| 571 | "_locks_loop: \n" |
---|
| 572 | "addi $4, $4, -1 \n" // $4 <= $4 - 1 |
---|
| 573 | "beqz $4, _locks_loop \n" // test end delay |
---|
| 574 | "j _locks_llsc \n" // retry |
---|
| 575 | "_locks_ok: \n" |
---|
| 576 | ::"r"(plock),"r"(delay):"$2","$3","$4"); |
---|
| 577 | return 0; |
---|
| 578 | } |
---|
| 579 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
| 580 | // I/O BLOCK_DEVICE |
---|
| 581 | // The three functions below use the three variables _ioc_lock _ioc_done, |
---|
| 582 | // and _ioc_status for synchronsation. |
---|
| 583 | // - As the IOC component can be used by several programs running in parallel, |
---|
| 584 | // the _ioc_lock variable guaranties exclusive access to the device. |
---|
| 585 | // The _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
---|
| 586 | // and set _ioc_lock to a non zero value. |
---|
| 587 | // The _ioc_write() and _ioc_read() functions are blocking, polling the _ioc_lock |
---|
| 588 | // variable until the device is available. |
---|
| 589 | // - When the tranfer is completed, the ISR routine activated by the IOC IRQ |
---|
| 590 | // set the _ioc_done variable to a non-zero value. Possible address errors detected |
---|
| 591 | // by the IOC peripheral are reported by the ISR in the _ioc_status variable. |
---|
| 592 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
---|
| 593 | // tranfer conpletion. When the completion is signaled, the _ioc_completed() function |
---|
| 594 | // reset the _ioc_done variable to zero, and releases the _ioc_lock variable. |
---|
| 595 | // |
---|
| 596 | // In a multi-tasks environment, this polling policy must be replaced by a |
---|
| 597 | // descheduling policy for the requesting process. |
---|
| 598 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 599 | // _ioc_get_lock() |
---|
| 600 | // This blocking function is used by the _ioc_read() and _ioc_write() functions |
---|
| 601 | // to get _ioc_lock using LL/SC. |
---|
| 602 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 603 | in_drivers void _ioc_get_lock() |
---|
| 604 | { |
---|
| 605 | register unsigned int delay = (_proctime() & 0xF) << 4; |
---|
| 606 | register unsigned int* plock = (unsigned int*)&_ioc_lock; |
---|
| 607 | |
---|
| 608 | asm volatile ("_ioc_llsc: \n" |
---|
| 609 | "ll $2, 0(%0) \n" // $2 <= _ioc_lock |
---|
| 610 | "bnez $2, _ioc_delay \n" // random delay if busy |
---|
| 611 | "li $3, 1 \n" // prepare argument for sc |
---|
| 612 | "sc $3, 0(%0) \n" // try to set _ioc_busy |
---|
| 613 | "bnez $3, _ioc_ok \n" // exit if atomic |
---|
| 614 | "_ioc_delay: \n" |
---|
| 615 | "move $4, %1 \n" // $4 <= delay |
---|
| 616 | "_ioc_loop: \n" |
---|
| 617 | "addi $4, $4, -1 \n" // $4 <= $4 - 1 |
---|
| 618 | "beqz $4, _ioc_loop \n" // test end delay |
---|
| 619 | "j _ioc_llsc \n" // retry |
---|
| 620 | "_ioc_ok: \n" |
---|
| 621 | ::"r"(plock),"r"(delay):"$2","$3","$4"); |
---|
| 622 | } |
---|
| 623 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 624 | // _ioc_write() |
---|
| 625 | // Transfer data from a memory buffer to a file on the block_device. |
---|
| 626 | // - lba : first block index on the disk |
---|
| 627 | // - buffer : base address of the memory buffer |
---|
| 628 | // - count : number of blocks to be transfered |
---|
| 629 | // The source buffer must be in user address space. |
---|
| 630 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 631 | in_drivers int _ioc_write(size_t lba, void* buffer, size_t count) |
---|
| 632 | { |
---|
| 633 | volatile unsigned int* ioc_address = (unsigned int*)&seg_ioc_base; |
---|
| 634 | |
---|
| 635 | // buffer must be in user space |
---|
| 636 | // size_t block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
| 637 | // if( ( (size_t)buffer + block_size*count ) >= 0x80000000 ) return -1; |
---|
| 638 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 639 | |
---|
| 640 | // get the lock |
---|
| 641 | _ioc_get_lock(); |
---|
| 642 | |
---|
| 643 | // block_device configuration |
---|
| 644 | ioc_address[BLOCK_DEVICE_BUFFER] = (int)buffer; |
---|
| 645 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
| 646 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
| 647 | ioc_address[BLOCK_DEVICE_IRQ_ENABLE] = 1; |
---|
| 648 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
---|
| 649 | return 0; |
---|
| 650 | } |
---|
| 651 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 652 | // _ioc_read() |
---|
| 653 | // Transfer data from a file on the block device to a memory buffer. |
---|
| 654 | // - lba : first block index on the disk |
---|
| 655 | // - buffer : base address of the memory buffer |
---|
| 656 | // - count : number of blocks to be transfered |
---|
| 657 | // The destination buffer must be in user address space. |
---|
| 658 | // All cache lines corresponding to the the target buffer must be invalidated |
---|
| 659 | // for cache coherence. |
---|
| 660 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 661 | in_drivers int _ioc_read(size_t lba, void* buffer, size_t count) |
---|
| 662 | { |
---|
| 663 | volatile unsigned int* ioc_address = (unsigned int*)&seg_ioc_base; |
---|
| 664 | |
---|
| 665 | // buffer must be in user space |
---|
| 666 | // size_t block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
| 667 | // if( ( (size_t)buffer + block_size*count ) >= 0x80000000 ) return -1; |
---|
| 668 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 669 | |
---|
| 670 | // get the lock |
---|
| 671 | _ioc_get_lock(); |
---|
| 672 | |
---|
| 673 | // block_device configuration |
---|
| 674 | ioc_address[BLOCK_DEVICE_BUFFER] = (int)buffer; |
---|
| 675 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
| 676 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
| 677 | ioc_address[BLOCK_DEVICE_IRQ_ENABLE] = 1; |
---|
| 678 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
---|
| 679 | |
---|
| 680 | return 0; |
---|
| 681 | } |
---|
| 682 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 683 | // _ioc_completed() |
---|
| 684 | // This blocking function cheks completion of an I/O transfer and reports errors. |
---|
| 685 | // It returns 0 if the transfer is successfully completed. |
---|
| 686 | // It returns -1 if an error has been reported. |
---|
| 687 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 688 | in_drivers int _ioc_completed() |
---|
| 689 | { |
---|
| 690 | // waiting for completion |
---|
| 691 | while (_ioc_done == 0) { asm volatile("nop"); } |
---|
| 692 | |
---|
| 693 | // reset synchronisation variables |
---|
| 694 | _ioc_done = 0; |
---|
| 695 | _ioc_lock = 0; |
---|
| 696 | |
---|
| 697 | // return errors |
---|
| 698 | if((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) && |
---|
| 699 | (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) return -1; |
---|
| 700 | else return 0; |
---|
| 701 | } |
---|
| 702 | |
---|
| 703 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 704 | // FRAME_BUFFER |
---|
| 705 | // The _fb_sync_write & _fb_sync_read functions use a memcpy strategy to implement |
---|
| 706 | // the transfer between a data buffer (user space) and the frame buffer (kernel space). |
---|
| 707 | // They are blocking until completion of the transfer. |
---|
| 708 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 709 | // _fb_sync_write() |
---|
| 710 | // Transfer data from an user buffer to the frame_buffer device with a memcpy. |
---|
| 711 | // - offset : offset (in bytes) in the frame buffer |
---|
| 712 | // - buffer : base address of the memory buffer |
---|
| 713 | // - length : number of bytes to be transfered |
---|
| 714 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 715 | in_drivers int _fb_sync_write(size_t offset, void* buffer, size_t length) |
---|
| 716 | { |
---|
| 717 | volatile char* fb = (char*)(void*)&seg_fb_base + offset; |
---|
| 718 | char* ub = buffer; |
---|
| 719 | size_t i; |
---|
| 720 | |
---|
| 721 | // buffer must be in user space |
---|
| 722 | // if( ( (size_t)buffer + length ) >= 0x80000000 ) return -1; |
---|
| 723 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 724 | |
---|
| 725 | // memory copy |
---|
| 726 | for(i=0 ; i<length ; i++) fb[i] = ub[i]; |
---|
| 727 | return 0; |
---|
| 728 | } |
---|
| 729 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 730 | // _fb_sync_read() |
---|
| 731 | // Transfer data from the frame_buffer device to an user buffer with a memcpy. |
---|
| 732 | // - offset : offset (in bytes) in the frame buffer |
---|
| 733 | // - buffer : base address of the memory buffer |
---|
| 734 | // - length : number of bytes to be transfered |
---|
| 735 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 736 | in_drivers int _fb_sync_read(size_t offset, void* buffer, size_t length) |
---|
| 737 | { |
---|
| 738 | volatile char* fb = (char*)(void*)&seg_fb_base + offset; |
---|
| 739 | char* ub = buffer; |
---|
| 740 | size_t i; |
---|
| 741 | |
---|
| 742 | // buffer must be in user space |
---|
| 743 | // if( ( (size_t)buffer + length ) >= 0x80000000 ) return -1; |
---|
| 744 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 745 | |
---|
| 746 | // memory copy |
---|
| 747 | for(i=0 ; i<length ; i++) ub[i] = fb[i]; |
---|
| 748 | return 0; |
---|
| 749 | } |
---|
| 750 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 751 | // The _fb_write() and _fb_read() functions use the MULTI_DMA |
---|
| 752 | // coprocessor to transfer data between the user buffer and the frame buffer. |
---|
| 753 | // The _fb_completed() function, use a polling policy to test |
---|
| 754 | // the global variables _dma_busy[i] and detect the transfer completion. |
---|
| 755 | // As each processor can have it's private DMA, there is up to 256 _dma_busy[i] |
---|
| 756 | // set/reset variables that are indexed by the proc_id. |
---|
| 757 | // The _dma_busy variable is reset by the ISR associated to the DMA IRQ. |
---|
| 758 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 759 | // _fb_write() |
---|
| 760 | // Transfer data from an user buffer to the frame_buffer device using DMA. |
---|
| 761 | // - offset : offset (in bytes) in the frame buffer |
---|
| 762 | // - buffer : base address of the memory buffer |
---|
| 763 | // - length : number of bytes to be transfered |
---|
| 764 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 765 | in_drivers int _fb_write(size_t offset, void* buffer, size_t length) |
---|
| 766 | { |
---|
| 767 | int* dma_address; |
---|
| 768 | unsigned int base = (unsigned int)&seg_dma_base; |
---|
| 769 | unsigned int increment = _segment_increment(DMA_SPAN*4); |
---|
| 770 | char* fb = (char*)&seg_fb_base + offset; |
---|
| 771 | unsigned int delay = (_proctime() & 0xF) << 4; |
---|
| 772 | unsigned int pid = _procid(); |
---|
| 773 | unsigned int i; |
---|
| 774 | |
---|
| 775 | |
---|
| 776 | // checking buffer boundaries (bytes) |
---|
| 777 | // if( ( (size_t)buffer + length ) >= 0x80000000 ) return -1; |
---|
| 778 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 779 | |
---|
| 780 | // waiting until DMA device is available |
---|
| 781 | while (_dma_busy[pid] != 0) |
---|
| 782 | { |
---|
| 783 | for( i=0 ; i<delay ; i++) // busy waiting |
---|
| 784 | { // with a pseudo random |
---|
| 785 | asm volatile("nop"); // delay between bus accesses |
---|
| 786 | } |
---|
| 787 | } |
---|
| 788 | _dma_busy[pid] = 1; |
---|
| 789 | |
---|
| 790 | dma_address = (int*)(base + increment); |
---|
| 791 | |
---|
| 792 | // DMA configuration |
---|
| 793 | dma_address[DMA_IRQ_DISABLE] = 0; |
---|
| 794 | dma_address[DMA_SRC] = (int)buffer; |
---|
| 795 | dma_address[DMA_DST] = (int)fb; |
---|
| 796 | dma_address[DMA_LEN] = (int)length; |
---|
| 797 | return 0; |
---|
| 798 | } |
---|
| 799 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 800 | // _fb_read() |
---|
| 801 | // Transfer data from the frame_buffer device to an user buffer using DMA. |
---|
| 802 | // - offset : offset (in bytes) in the frame buffer |
---|
| 803 | // - buffer : base address of the memory buffer |
---|
| 804 | // - length : number of bytes to be transfered |
---|
| 805 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 806 | in_drivers int _fb_read(size_t offset, void* buffer, size_t length) |
---|
| 807 | { |
---|
| 808 | int* dma_address; |
---|
| 809 | unsigned int base = (unsigned int)&seg_dma_base; |
---|
| 810 | unsigned int increment = _segment_increment(DMA_SPAN*4); |
---|
| 811 | char* fb = (char*)&seg_fb_base + offset; |
---|
| 812 | unsigned int delay = (_proctime() & 0xF) << 4; |
---|
| 813 | unsigned int pid = _procid(); |
---|
| 814 | unsigned int i; |
---|
| 815 | |
---|
| 816 | // checking buffer boundaries (bytes) |
---|
| 817 | // if( ( (size_t)buffer + length ) >= 0x80000000 ) return -1; |
---|
| 818 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 819 | |
---|
| 820 | // waiting until DMA device is available |
---|
| 821 | while (_dma_busy[pid] != 0) |
---|
| 822 | { |
---|
| 823 | for( i=0 ; i<delay ; i++) // busy waiting |
---|
| 824 | { // with a pseudo random |
---|
| 825 | asm volatile("nop"); // delay between bus accesses |
---|
| 826 | } |
---|
| 827 | } |
---|
| 828 | _dma_busy[pid] = 1; |
---|
| 829 | |
---|
| 830 | dma_address = (int*)(base + increment); |
---|
| 831 | |
---|
| 832 | // DMA configuration |
---|
| 833 | dma_address[DMA_IRQ_DISABLE] = 0; |
---|
| 834 | dma_address[DMA_SRC] = (int)fb; |
---|
| 835 | dma_address[DMA_DST] = (int)buffer; |
---|
| 836 | dma_address[DMA_LEN] = (int)length; |
---|
| 837 | return 0; |
---|
| 838 | } |
---|
| 839 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 840 | // _fb_completed() |
---|
| 841 | // This blocking function cheks completion of a DMA transfer to or fom the frame buffer. |
---|
| 842 | // The MIPS32 wait instruction stall the processor until the next interrupt. |
---|
| 843 | // It returns 0 if the transfer is successfully completed |
---|
| 844 | // It returns -1 if an error has been reported. |
---|
| 845 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 846 | in_drivers int _fb_completed() |
---|
| 847 | { |
---|
| 848 | unsigned int pid = _procid(); |
---|
| 849 | |
---|
| 850 | while (_dma_busy[pid] != 0) |
---|
| 851 | { |
---|
| 852 | asm volatile("nop"); |
---|
| 853 | } |
---|
| 854 | if(_dma_status[pid] == DMA_SUCCESS) return 0; |
---|
| 855 | else return _dma_status[pid]; |
---|
| 856 | } |
---|
| 857 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 858 | // _barrier_init() |
---|
| 859 | // This function makes a cooperative initialisation of the barrier: |
---|
| 860 | // Several tasks can try to initialize the barrier, but the initialisation |
---|
| 861 | // is done by only one task, using LL/SC instructions. |
---|
| 862 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 863 | in_drivers int _barrier_init(unsigned int index, unsigned int value) |
---|
| 864 | { |
---|
| 865 | |
---|
| 866 | register int* pinit = (int*)&_barrier_initial_value[index]; |
---|
| 867 | register int* pcount = (int*)&_barrier_count[index]; |
---|
| 868 | |
---|
| 869 | if ( index > 7 ) return 1; |
---|
| 870 | |
---|
| 871 | // parallel initialisation using atomic instructions LL/SC |
---|
| 872 | asm volatile ("_barrier_init_test: \n" |
---|
| 873 | "ll $2, 0(%0) \n" // read initial value |
---|
| 874 | "bnez $2, _barrier_init_done \n" |
---|
| 875 | "move $3, %2 \n" |
---|
| 876 | "sc $3, 0(%0) \n" // try to write initial value |
---|
| 877 | "beqz $3, _barrier_init_test \n" |
---|
| 878 | "move $3, %2 \n" |
---|
| 879 | "sw $3, 0(%1) \n" // write count |
---|
| 880 | "_barrier_init_done: \n" |
---|
| 881 | ::"r"(pinit),"r"(pcount),"r"(value):"$2","$3"); |
---|
| 882 | return 0 ; |
---|
| 883 | } |
---|
| 884 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 885 | // _barrier_wait() |
---|
| 886 | // This blocking function uses a busy_wait technics (on the counter value), |
---|
| 887 | // because the GIET does not support dynamic scheduling/descheduling of tasks. |
---|
| 888 | // In the busy waiting state, each task uses a pseudo-random delay between |
---|
| 889 | // two successive read of the barrier counter in order to avoid bus saturation. |
---|
| 890 | // the average delay is about 1000 cycles. |
---|
| 891 | // There is at most 8 independant barriers, and an error is returned |
---|
| 892 | // if the barrier index is larger than 7. |
---|
| 893 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 894 | in_drivers int _barrier_wait(unsigned int index) |
---|
| 895 | { |
---|
| 896 | register int* pcount = (int*)&_barrier_count[index]; |
---|
| 897 | register int maxcount = _barrier_initial_value[index]; |
---|
| 898 | register int count; |
---|
| 899 | |
---|
| 900 | if ( index > 7 ) return 1; |
---|
| 901 | |
---|
| 902 | // parallel decrement barrier counter using atomic instructions LL/SC |
---|
| 903 | // input : pointer on the barrier counter |
---|
| 904 | // output : counter value |
---|
| 905 | asm volatile ("_barrier_decrement: \n" |
---|
| 906 | "ll %0, 0(%1) \n" |
---|
| 907 | "addi $3, %0, -1 \n" |
---|
| 908 | "sc $3, 0(%1) \n" |
---|
| 909 | "beqz $3, _barrier_decrement \n" |
---|
| 910 | :"=r"(count):"r"(pcount):"$2","$3"); |
---|
| 911 | |
---|
| 912 | // the last task re-initializes the barrier counter |
---|
| 913 | // to the max value, waking up all other waiting tasks |
---|
| 914 | |
---|
| 915 | if ( count == 1 ) // last task |
---|
| 916 | { |
---|
| 917 | *pcount = maxcount; |
---|
| 918 | return 0; |
---|
| 919 | } |
---|
| 920 | else // other tasks |
---|
| 921 | { |
---|
| 922 | while ( *pcount != maxcount ) { } // busy waiting |
---|
| 923 | return 0 ; |
---|
| 924 | } |
---|
| 925 | } |
---|
| 926 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 927 | |
---|
| 928 | |
---|
| 929 | // Local Variables: |
---|
| 930 | // tab-width: 4; |
---|
| 931 | // c-basic-offset: 4; |
---|
| 932 | // c-file-offsets:((innamespace . 0)(inline-open . 0)); |
---|
| 933 | // indent-tabs-mode: nil; |
---|
| 934 | // End: |
---|
| 935 | // |
---|
| 936 | // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
| 937 | |
---|