[158] | 1 | /**************************************************************************************** |
---|
| 2 | File : drivers.c |
---|
| 3 | Written by Alain Greiner & Nicolas Pouillon |
---|
| 4 | Date : december 2010 |
---|
| 5 | |
---|
| 6 | Basic drivers used by the GIET, that is running |
---|
| 7 | on the MIPS32 processor architecture. |
---|
| 8 | |
---|
| 9 | The supported peripherals are: |
---|
| 10 | - the SoClib pibus_multi_tty |
---|
| 11 | - the SocLib pibus_timer |
---|
| 12 | - the SocLib pibus_dma |
---|
| 13 | - The SoCLib pibus_icu |
---|
| 14 | - The SoCLib pibus_gcd |
---|
| 15 | - The SoCLib pibus_frame_buffer |
---|
| 16 | - The SoCLib pibus_block_device |
---|
| 17 | |
---|
| 18 | The following global parameters must be defined in the ldscript. |
---|
| 19 | - NB_CLUSTERS : number of clusters |
---|
| 20 | - NB_PROCS : number of processor per cluster |
---|
| 21 | - NB_NTASKS : max number of tasks per processor |
---|
| 22 | - NB_LOCKS : max number of supported spin_locks |
---|
| 23 | - NB_TIMERS : max number of timers per processor |
---|
| 24 | |
---|
| 25 | The follobing base addresses must be defined in the ldscript |
---|
| 26 | - seg_icu_base |
---|
| 27 | - seg_timer_base |
---|
| 28 | - seg_tty_base |
---|
| 29 | - seg_gcd_base |
---|
| 30 | - seg_dma_base |
---|
| 31 | - seg_locks_base |
---|
| 32 | - seg_fb_base |
---|
| 33 | - seg_ioc_base |
---|
| 34 | ****************************************************************************************/ |
---|
| 35 | |
---|
| 36 | #include "drivers.h" |
---|
| 37 | #include "icu.h" |
---|
| 38 | #include "block_device.h" |
---|
| 39 | #include "dma.h" |
---|
| 40 | |
---|
| 41 | struct plouf; |
---|
| 42 | |
---|
| 43 | ////////////////////////////////////////////////////////////// |
---|
| 44 | // various informations that must be defined in ldscript |
---|
| 45 | ////////////////////////////////////////////////////////////// |
---|
| 46 | extern struct plouf seg_icu_base; |
---|
| 47 | extern struct plouf seg_timer_base; |
---|
| 48 | extern struct plouf seg_tty_base; |
---|
| 49 | extern struct plouf seg_gcd_base; |
---|
| 50 | extern struct plouf seg_dma_base; |
---|
| 51 | extern struct plouf seg_locks_base; |
---|
| 52 | extern struct plouf seg_fb_base; |
---|
| 53 | extern struct plouf seg_ioc_base; |
---|
| 54 | |
---|
| 55 | extern struct plouf NB_CLUSTERS; |
---|
| 56 | extern struct plouf NB_PROCS; |
---|
| 57 | extern struct plouf NB_TASKS; |
---|
| 58 | extern struct plouf NB_TIMERS; |
---|
| 59 | extern struct plouf NB_LOCKS; |
---|
| 60 | |
---|
| 61 | #define in_drivers __attribute__((section (".drivers"))) |
---|
| 62 | #define in_unckdata __attribute__((section (".unckdata"))) |
---|
| 63 | |
---|
| 64 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 65 | // Global uncachable variables for synchronization between drivers and ISRs |
---|
| 66 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 67 | |
---|
| 68 | in_unckdata int volatile _dma_status[256]; |
---|
| 69 | in_unckdata int volatile _dma_busy[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 70 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 71 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 72 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 73 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 74 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 75 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 76 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 77 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 78 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 79 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 80 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 81 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 82 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 83 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 84 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
---|
| 85 | |
---|
| 86 | in_unckdata int volatile _ioc_lock = 0; |
---|
| 87 | in_unckdata int volatile _ioc_done = 0; |
---|
| 88 | in_unckdata int volatile _ioc_status; |
---|
| 89 | |
---|
| 90 | in_unckdata char volatile _tty_get_buf[256]; |
---|
| 91 | in_unckdata int volatile _tty_get_full[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 92 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 93 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 94 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 95 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 96 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 97 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 98 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 99 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 100 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 101 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 102 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 103 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 104 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 105 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 106 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
---|
| 107 | |
---|
| 108 | in_unckdata char volatile _tty_put_buf[256]; |
---|
| 109 | in_unckdata int volatile _tty_put_full[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 110 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 111 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 112 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 113 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 114 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 115 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 116 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 117 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 118 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 119 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 120 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 121 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 122 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 123 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 124 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
---|
| 125 | |
---|
| 126 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 127 | // Global uncachable variables for inter-task barriers |
---|
| 128 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 129 | |
---|
[173] | 130 | in_unckdata int volatile _barrier_initial_value[16] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
---|
| 131 | in_unckdata int volatile _barrier_count[16] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
---|
| 132 | in_unckdata int volatile _barrier_lock[16] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
---|
[158] | 133 | |
---|
| 134 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 135 | // Global uncachable variables for spin_locks using LL/C instructions |
---|
| 136 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 137 | |
---|
| 138 | in_unckdata int volatile _spin_lock[256] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 139 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 140 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 141 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 142 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 143 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 144 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 145 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 146 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 147 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 148 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 149 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 150 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 151 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 152 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, |
---|
| 153 | 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; |
---|
| 154 | |
---|
| 155 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 156 | // mempcy() |
---|
| 157 | // GCC requires this function. Taken from MutekH. |
---|
| 158 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 159 | __attribute((used)) |
---|
| 160 | in_drivers static void *memcpy(void *_dst, const void *_src, unsigned int size) |
---|
| 161 | { |
---|
| 162 | unsigned int *dst = _dst; |
---|
| 163 | const unsigned int *src = _src; |
---|
| 164 | if ( ! ((unsigned int)dst & 3) && ! ((unsigned int)src & 3) ) |
---|
| 165 | while (size > 3) { |
---|
| 166 | *dst++ = *src++; |
---|
| 167 | size -= 4; |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | unsigned char *cdst = (unsigned char*)dst; |
---|
| 171 | unsigned char *csrc = (unsigned char*)src; |
---|
| 172 | |
---|
| 173 | while (size--) { |
---|
| 174 | *cdst++ = *csrc++; |
---|
| 175 | } |
---|
| 176 | return _dst; |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 180 | // _procid() |
---|
| 181 | // Access CP0 and returns processor ident |
---|
[173] | 182 | // No more than 1024 processors... |
---|
[158] | 183 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 184 | in_drivers unsigned int _procid() |
---|
| 185 | { |
---|
| 186 | unsigned int ret; |
---|
| 187 | asm volatile( "mfc0 %0, $15, 1": "=r"(ret) ); |
---|
[173] | 188 | return (ret & 0x3FF); |
---|
[158] | 189 | } |
---|
| 190 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 191 | // _segment_increment() |
---|
| 192 | // Access CP0 to get the procid, and returns the address increment to access |
---|
| 193 | // various peripherals (TTY, TIMER, ICU, DMA), in case of multiprocessors architectures. |
---|
| 194 | // It uses the NB_PROCS and NB_CLUSTERS parameters to compute this increment: |
---|
| 195 | // - increment = cluster_id*cluster_increment + local_id*local_increment |
---|
| 196 | // - cluster_id = procid / NB_PROCS |
---|
| 197 | // - local_id = procid % NB_PROCS |
---|
| 198 | // - cluster_increment = 4G / NB_CLUSTERS |
---|
| 199 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 200 | in_drivers unsigned int _segment_increment(unsigned int local_increment) |
---|
| 201 | { |
---|
| 202 | unsigned int nprocs = (unsigned int)&NB_PROCS; |
---|
| 203 | unsigned int nclusters = (unsigned int)&NB_CLUSTERS; |
---|
| 204 | unsigned int cluster_increment = (0x80000000/nclusters)*2; |
---|
| 205 | unsigned int pid = _procid(); |
---|
| 206 | return (pid / nprocs)*cluster_increment + (pid % nprocs)*local_increment; |
---|
| 207 | } |
---|
| 208 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 209 | // _proctime() |
---|
| 210 | // Access CP0 and returns processor time |
---|
| 211 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 212 | in_drivers unsigned int _proctime() |
---|
| 213 | { |
---|
| 214 | unsigned int ret; |
---|
| 215 | asm volatile( "mfc0 %0, $9": "=r"(ret) ); |
---|
| 216 | return ret; |
---|
| 217 | } |
---|
| 218 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 219 | // _procnumber() |
---|
| 220 | // Returns the number of processsors controled by the GIET |
---|
| 221 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 222 | in_drivers unsigned int _procnumber() |
---|
| 223 | { |
---|
| 224 | return (unsigned int)&NB_PROCS * (unsigned int)&NB_CLUSTERS; |
---|
| 225 | } |
---|
| 226 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 227 | // _it_mask() |
---|
| 228 | // Access CP0 and mask IRQs |
---|
| 229 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 230 | in_drivers void _it_mask() |
---|
| 231 | { |
---|
| 232 | int tmp; |
---|
| 233 | asm volatile("mfc0 %0, $12" : "=r" (tmp) ); |
---|
| 234 | asm volatile("ori %0, %0, 1" : "=r" (tmp) ); |
---|
| 235 | asm volatile("mtc0 %0, $12" : "=r" (tmp) ); |
---|
| 236 | } |
---|
| 237 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 238 | // _it_enable() |
---|
| 239 | // Access CP0 and enable IRQs |
---|
| 240 | //////////////////////////////////////////////////////////////////////////////////////// |
---|
| 241 | in_drivers void _it_enable() |
---|
| 242 | { |
---|
| 243 | int tmp; |
---|
| 244 | asm volatile("mfc0 %0, $12" : "=r" (tmp) ); |
---|
| 245 | asm volatile("addi %0, %0, -1" : "=r" (tmp) ); |
---|
| 246 | asm volatile("mtc0 %0, $12" : "=r" (tmp) ); |
---|
| 247 | } |
---|
| 248 | ////////////////////////////////////////////////////////////////////// |
---|
| 249 | // _dcache_buf_invalidate() |
---|
| 250 | // Invalidate all cache lines corresponding to a memory buffer. |
---|
| 251 | // This is used by the block_device driver. |
---|
| 252 | ///////////////////////////////////////////////////////////////////////// |
---|
| 253 | in_drivers void _dcache_buf_invalidate(const void * buffer, size_t size) |
---|
| 254 | { |
---|
| 255 | size_t i; |
---|
| 256 | size_t dcache_line_size; |
---|
| 257 | |
---|
| 258 | // retrieve dcache line size from config register (bits 12:10) |
---|
| 259 | asm volatile("mfc0 %0, $16, 1" : "=r" (dcache_line_size)); |
---|
| 260 | |
---|
| 261 | dcache_line_size = 2 << ((dcache_line_size>>10) & 0x7); |
---|
| 262 | |
---|
| 263 | // iterate on lines to invalidate each one of them |
---|
| 264 | for ( i=0; i<size; i+=dcache_line_size ) |
---|
| 265 | asm volatile(" cache %0, %1" |
---|
| 266 | : |
---|
| 267 | :"i" (0x11), "R" (*((char*)buffer+i))); |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | ///////////////////////////////////////////////////////////////////////// |
---|
| 271 | // _itoa_dec() |
---|
| 272 | // convert a 32 bits unsigned int to a string of 10 decimal characters. |
---|
| 273 | ///////////////////////////////////////////////////////////////////////// |
---|
| 274 | in_drivers void _itoa_dec(unsigned val, char* buf) |
---|
| 275 | { |
---|
| 276 | const char DecTab[] = "0123456789"; |
---|
| 277 | unsigned int i; |
---|
| 278 | for( i=0 ; i<10 ; i++ ) |
---|
| 279 | { |
---|
| 280 | if( (val!=0) || (i==0) ) buf[9-i] = DecTab[val % 10]; |
---|
| 281 | else buf[9-i] = 0x20; |
---|
| 282 | val /= 10; |
---|
| 283 | } |
---|
| 284 | } |
---|
| 285 | ////////////////////////////////////////////////////////////////////////// |
---|
| 286 | // _itoa_hex() |
---|
| 287 | // convert a 32 bits unsigned int to a string of 8 hexadecimal characters. |
---|
| 288 | /////////////////////////////////////////////////////////////////////////// |
---|
| 289 | in_drivers void _itoa_hex(int val, char* buf) |
---|
| 290 | { |
---|
| 291 | const char HexaTab[] = "0123456789ABCD"; |
---|
| 292 | unsigned int i; |
---|
| 293 | for( i=0 ; i<8 ; i++ ) |
---|
| 294 | { |
---|
| 295 | buf[7-i] = HexaTab[val % 16]; |
---|
| 296 | val /= 16; |
---|
| 297 | } |
---|
| 298 | } |
---|
| 299 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 300 | // MULTI_TIMER component |
---|
| 301 | // Each processor can handle up to NB_TIMERS independant timers. |
---|
| 302 | // The segment base address is defined as |
---|
| 303 | // seg_timer_base + segment_increment(NB_TIMERS*16) + index*16 |
---|
| 304 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 305 | // _timer_write() |
---|
| 306 | // Write a 32 bits word in a memory mapped register of the MULTI_TIMER |
---|
| 307 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 308 | in_drivers int _timer_write(size_t timer_index, size_t register_index, int value) |
---|
| 309 | { |
---|
| 310 | int* timer_address; |
---|
| 311 | size_t ntimers = (size_t)&NB_TIMERS; |
---|
| 312 | unsigned int base = (unsigned int)&seg_timer_base; |
---|
| 313 | unsigned int increment = _segment_increment(ntimers*TIMER_SPAN*4); |
---|
| 314 | |
---|
| 315 | if( timer_index >= ntimers) return -1; |
---|
| 316 | if( register_index >= TIMER_SPAN ) return -1; |
---|
| 317 | |
---|
| 318 | timer_address = (int*)(base + increment + timer_index*TIMER_SPAN*4); |
---|
| 319 | timer_address[register_index] = value; // write word |
---|
| 320 | return 0; |
---|
| 321 | } |
---|
| 322 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 323 | // _timer_read() |
---|
| 324 | // Read a 32 bits word in a memory mapped register of the MULTI_TIMER |
---|
| 325 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 326 | in_drivers int _timer_read(size_t timer_index, size_t register_index, int* buffer) |
---|
| 327 | { |
---|
| 328 | int* timer_address; |
---|
| 329 | size_t ntimers = (size_t)&NB_TIMERS; |
---|
| 330 | unsigned int base = (unsigned int)&seg_timer_base; |
---|
| 331 | unsigned int increment = _segment_increment(ntimers*TIMER_SPAN*4); |
---|
| 332 | |
---|
| 333 | if( timer_index >= ntimers) return -1; |
---|
| 334 | if( register_index >= TIMER_SPAN ) return -1; |
---|
| 335 | |
---|
| 336 | if( timer_index >= ntimers) return -1; |
---|
| 337 | if( register_index >= TIMER_SPAN ) return -1; |
---|
| 338 | |
---|
| 339 | timer_address = (int*)(base + increment + timer_index*TIMER_SPAN*4); |
---|
| 340 | *buffer = timer_address[register_index]; // read word |
---|
| 341 | return 0; |
---|
| 342 | } |
---|
| 343 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 344 | // MULTI_TTY COMPONENT |
---|
| 345 | // The total number of TTYs is equal to NB_CLUSTERS * NB_PROCS * NB_TASKS. |
---|
| 346 | // - tty_address = seg_tty_base + _segment_increment(NB_TASKS*16) + task_id*16 |
---|
| 347 | // - tty_index = proc_id*NB_TASKS + task_id |
---|
| 348 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 349 | // _tty_write() |
---|
| 350 | // Write one or several characters directly from a fixed length user buffer |
---|
| 351 | // to the TTY_WRITE register of the TTY controler. |
---|
| 352 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
---|
| 353 | // This is a non blocking call : it test the TTY_STATUS register. |
---|
| 354 | // If the TTY_STATUS_WRITE bit is set, the transfer stops and the function |
---|
| 355 | // returns the number of characters that have been actually written. |
---|
| 356 | // It returns -1 in case of error (proc_id or task index too large) |
---|
| 357 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 358 | in_drivers int _tty_write(char* buffer, int length) |
---|
| 359 | { |
---|
| 360 | char* tty_address; |
---|
| 361 | size_t ntasks = (size_t)&NB_TASKS; |
---|
| 362 | size_t nprocs = (size_t)&NB_PROCS; |
---|
[173] | 363 | size_t nclusters = (size_t)&NB_CLUSTERS; |
---|
| 364 | unsigned int base = (unsigned int)&seg_tty_base; |
---|
[158] | 365 | unsigned int increment = _segment_increment(ntasks*TTY_SPAN*4); |
---|
| 366 | size_t pid = _procid(); |
---|
| 367 | int nwritten = 0; |
---|
[173] | 368 | size_t tid; |
---|
[158] | 369 | int i; |
---|
| 370 | |
---|
[173] | 371 | if( ntasks == 0 ) tid = 0; |
---|
| 372 | else tid = _current_task_array[pid]; |
---|
| 373 | |
---|
| 374 | if( tid >= ntasks ) return -1; |
---|
[158] | 375 | if( pid >= nprocs*nclusters ) return -1; |
---|
| 376 | |
---|
| 377 | tty_address = (char*)(base + increment + tid*TTY_SPAN*4); |
---|
| 378 | |
---|
| 379 | for ( i=0 ; i < length ; i++ ) |
---|
| 380 | { |
---|
| 381 | if((tty_address[TTY_STATUS*4] & 0x2) == 0x2) break; |
---|
| 382 | else |
---|
| 383 | { |
---|
| 384 | tty_address[TTY_WRITE*4] = buffer[i]; // write character |
---|
| 385 | nwritten++; |
---|
| 386 | } |
---|
| 387 | } |
---|
| 388 | return nwritten; |
---|
| 389 | } |
---|
| 390 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 391 | // _tty_read() |
---|
| 392 | // Fetch one character directly from the TTY_READ register of the TTY controler, |
---|
| 393 | // and writes this character to the user buffer. |
---|
| 394 | // It doesn't use the TTY_GET_IRQ interrupt and the associated kernel buffer. |
---|
| 395 | // This is a non blocking call : it returns 0 if the register is empty, |
---|
| 396 | // and returns 1 if the register is full. |
---|
| 397 | // It returns -1 in case of error (proc_id or task_id too large or length != 1) |
---|
| 398 | // The length argument is not used in this implementation, and has been |
---|
| 399 | // introduced for future implementations. |
---|
| 400 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 401 | in_drivers int _tty_read(char* buffer, int length) |
---|
| 402 | { |
---|
| 403 | char* tty_address; |
---|
| 404 | size_t ntasks = (size_t)&NB_TASKS; |
---|
| 405 | size_t nprocs = (size_t)&NB_PROCS; |
---|
| 406 | size_t nclusters = (size_t)&NB_CLUSTERS; |
---|
[173] | 407 | unsigned int base = (unsigned int)&seg_tty_base; |
---|
[158] | 408 | unsigned int increment = _segment_increment(ntasks*TTY_SPAN*4); |
---|
| 409 | size_t pid = _procid(); |
---|
[173] | 410 | size_t tid; |
---|
[158] | 411 | |
---|
[173] | 412 | if( pid > 7 ) tid = 0; |
---|
| 413 | else tid = _current_task_array[pid]; |
---|
| 414 | |
---|
| 415 | if( length != 1) return -1; |
---|
| 416 | if( pid >= nprocs*nclusters ) return -1; |
---|
| 417 | if( tid >= ntasks ) return -1; |
---|
[158] | 418 | |
---|
| 419 | tty_address = (char*)(base + increment + tid*TTY_SPAN*4); |
---|
| 420 | |
---|
| 421 | if((tty_address[TTY_STATUS*4] & 0x1) == 0x1) |
---|
| 422 | { |
---|
| 423 | buffer[0] = tty_address[TTY_READ*4]; |
---|
| 424 | return 1; |
---|
| 425 | } |
---|
| 426 | else |
---|
| 427 | { |
---|
| 428 | return 0; |
---|
| 429 | } |
---|
| 430 | } |
---|
| 431 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 432 | // _tty_read_irq() |
---|
| 433 | // iAS it uses the TTY_GET_IRQ interrupt and the associated kernel buffer, |
---|
| 434 | // that has been written by the ISR, this function does not access the TTY registers. |
---|
| 435 | // It fetch one single character from the _tty_get_buf[tty_index] kernel buffer, writes |
---|
| 436 | // this character to the user buffer, and reset the _tty_get_full[tty_index] buffer. |
---|
| 437 | // This is a non blocking call : it returns 0 if the kernel buffer is empty, |
---|
| 438 | // and returns 1 if the buffer is full. |
---|
| 439 | // It returns -1 in case of error (proc_id or task_id too large, or length != 1) |
---|
| 440 | // The length argument is not used in this implementation, and has been |
---|
| 441 | // introduced for future implementations. |
---|
| 442 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 443 | in_drivers int _tty_read_irq(char* buffer, int length) |
---|
| 444 | { |
---|
| 445 | int pid = _procid(); |
---|
| 446 | int ntasks = (int)&NB_TASKS; |
---|
| 447 | int nprocs = (int)&NB_PROCS; |
---|
| 448 | int nclusters = (int)&NB_CLUSTERS; |
---|
| 449 | int tty_index; |
---|
[173] | 450 | int tid; |
---|
[158] | 451 | |
---|
[173] | 452 | if( pid > 7 ) tid = 0; |
---|
| 453 | else tid = _current_task_array[pid]; |
---|
| 454 | |
---|
[158] | 455 | if( length != 1) return -1; |
---|
| 456 | if( pid >= nprocs*nclusters ) return -1; |
---|
| 457 | if( tid >= ntasks ) return -1; |
---|
| 458 | |
---|
| 459 | tty_index = pid*ntasks + tid; |
---|
| 460 | if( _tty_get_full[tty_index] == 0 ) return 0; |
---|
| 461 | |
---|
| 462 | *buffer = _tty_get_buf[tty_index]; |
---|
| 463 | _tty_get_full[tty_index] = 0; |
---|
| 464 | return 1; |
---|
| 465 | } |
---|
| 466 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 467 | // _exit() |
---|
| 468 | // Exit (suicide) after printing message on a TTY terminal. |
---|
| 469 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 470 | in_drivers int _exit() |
---|
| 471 | { |
---|
| 472 | char buf[] = "\n\n!!! Exit Processor !!!\n"; |
---|
| 473 | int pid = _procid(); |
---|
| 474 | |
---|
| 475 | buf[24] = '0'; |
---|
| 476 | buf[25] = 'x'; |
---|
| 477 | buf[26] = (char)((pid>>8) & 0xF) + 0x30; |
---|
| 478 | buf[27] = (char)((pid>>4) & 0xF) + 0x30; |
---|
| 479 | buf[28] = (char)(pid & 0xF) + 0x30; |
---|
| 480 | _tty_write(buf, 36); |
---|
| 481 | |
---|
| 482 | while(1) asm volatile("nop"); // infinite loop... |
---|
| 483 | } |
---|
| 484 | |
---|
| 485 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 486 | // _icu_write() |
---|
| 487 | // Write a 32 bits word in a memory mapped register of the ICU peripheral |
---|
| 488 | // The base address is defined by the processor ID |
---|
| 489 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 490 | in_drivers int _icu_write(size_t register_index, int value) |
---|
| 491 | { |
---|
| 492 | int* icu_address; |
---|
| 493 | unsigned int base = (int)&seg_icu_base; |
---|
| 494 | unsigned int increment = _segment_increment(ICU_SPAN*4); |
---|
| 495 | |
---|
| 496 | if( register_index >= ICU_SPAN ) return -1; |
---|
| 497 | |
---|
| 498 | icu_address = (int*)(base + increment); |
---|
| 499 | icu_address[register_index] = value; // write word |
---|
| 500 | return 0; |
---|
| 501 | } |
---|
| 502 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 503 | // _icu_read() |
---|
| 504 | // Read a 32 bits word in a memory mapped register of the ICU peripheral |
---|
| 505 | // The ICU base address is defined by the processor ID |
---|
| 506 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 507 | in_drivers int _icu_read(size_t register_index, int* buffer) |
---|
| 508 | { |
---|
| 509 | int* icu_address; |
---|
| 510 | unsigned int base = (int)&seg_icu_base; |
---|
| 511 | unsigned int increment = _segment_increment(ICU_SPAN*4); |
---|
| 512 | |
---|
| 513 | if( register_index >= ICU_SPAN ) return -1; |
---|
| 514 | |
---|
| 515 | icu_address = (int*)(base + increment); |
---|
| 516 | *buffer = icu_address[register_index]; // read word |
---|
| 517 | return 0; |
---|
| 518 | } |
---|
| 519 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 520 | // _gcd_write() |
---|
| 521 | // Write a 32 bits word in a memory mapped register of the GCD coprocessor |
---|
| 522 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 523 | in_drivers int _gcd_write(size_t register_index, int value) |
---|
| 524 | { |
---|
| 525 | int* gcd_address; |
---|
| 526 | if( register_index >= 4 ) return -1; |
---|
| 527 | |
---|
| 528 | gcd_address = (int*)&seg_gcd_base; |
---|
| 529 | gcd_address[register_index] = value; // write word |
---|
| 530 | return 0; |
---|
| 531 | } |
---|
| 532 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 533 | // _gcd_read() |
---|
| 534 | // Read a 32 bits word in a memory mapped register of the GCD coprocessor |
---|
| 535 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 536 | in_drivers int _gcd_read(size_t register_index, int* buffer) |
---|
| 537 | { |
---|
| 538 | int* gcd_address; |
---|
| 539 | if( register_index >= 4 ) return -1; |
---|
| 540 | |
---|
| 541 | gcd_address = (int*)&seg_gcd_base; |
---|
| 542 | *buffer = gcd_address[register_index]; // read word |
---|
| 543 | return 0; |
---|
| 544 | } |
---|
| 545 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 546 | // _locks_write() |
---|
| 547 | // Release a software spin-lock |
---|
| 548 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 549 | in_drivers int _locks_write(size_t index) |
---|
| 550 | |
---|
| 551 | { |
---|
| 552 | int max = (int)&NB_LOCKS; |
---|
| 553 | if( index >= max ) return -1; |
---|
| 554 | |
---|
| 555 | _spin_lock[index] = 0; |
---|
| 556 | return 0; |
---|
| 557 | } |
---|
| 558 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 559 | // _locks_read() |
---|
| 560 | // Try to take a software spin-lock. |
---|
| 561 | // This is a blocking call, as there is a busy-waiting loop, |
---|
| 562 | // until the lock is granted to the requester. |
---|
| 563 | // There is an internal delay of about 100 cycles between |
---|
| 564 | // two successive lock read, to avoid bus saturation. |
---|
| 565 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 566 | in_drivers int _locks_read(size_t index) |
---|
| 567 | { |
---|
| 568 | int max = (int)&NB_LOCKS; |
---|
| 569 | if( index >= max ) return -1; |
---|
| 570 | |
---|
| 571 | register int delay = ( (_proctime() + _procid() ) & 0xF) << 4; |
---|
| 572 | register int* plock = (int*)&_spin_lock[index]; |
---|
| 573 | |
---|
| 574 | asm volatile ("_locks_llsc: \n" |
---|
| 575 | "ll $2, 0(%0) \n" // $2 <= _locks_lock |
---|
| 576 | "bnez $2, _locks_delay \n" // random delay if busy |
---|
| 577 | "li $3, 1 \n" // prepare argument for sc |
---|
| 578 | "sc $3, 0(%0) \n" // try to set _locks_busy |
---|
| 579 | "bnez $3, _locks_ok \n" // exit if atomic |
---|
| 580 | "_locks_delay: \n" |
---|
| 581 | "move $4, %1 \n" // $4 <= delay |
---|
| 582 | "_locks_loop: \n" |
---|
| 583 | "addi $4, $4, -1 \n" // $4 <= $4 - 1 |
---|
| 584 | "beqz $4, _locks_loop \n" // test end delay |
---|
| 585 | "j _locks_llsc \n" // retry |
---|
| 586 | "_locks_ok: \n" |
---|
| 587 | ::"r"(plock),"r"(delay):"$2","$3","$4"); |
---|
| 588 | return 0; |
---|
| 589 | } |
---|
| 590 | ////////////////////////////////////////////////////////////////////////////////////////// |
---|
| 591 | // I/O BLOCK_DEVICE |
---|
| 592 | // The three functions below use the three variables _ioc_lock _ioc_done, |
---|
| 593 | // and _ioc_status for synchronsation. |
---|
| 594 | // - As the IOC component can be used by several programs running in parallel, |
---|
| 595 | // the _ioc_lock variable guaranties exclusive access to the device. |
---|
| 596 | // The _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
---|
| 597 | // and set _ioc_lock to a non zero value. |
---|
| 598 | // The _ioc_write() and _ioc_read() functions are blocking, polling the _ioc_lock |
---|
| 599 | // variable until the device is available. |
---|
| 600 | // - When the tranfer is completed, the ISR routine activated by the IOC IRQ |
---|
| 601 | // set the _ioc_done variable to a non-zero value. Possible address errors detected |
---|
| 602 | // by the IOC peripheral are reported by the ISR in the _ioc_status variable. |
---|
| 603 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
---|
| 604 | // tranfer conpletion. When the completion is signaled, the _ioc_completed() function |
---|
| 605 | // reset the _ioc_done variable to zero, and releases the _ioc_lock variable. |
---|
| 606 | // |
---|
| 607 | // In a multi-tasks environment, this polling policy must be replaced by a |
---|
| 608 | // descheduling policy for the requesting process. |
---|
| 609 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 610 | // _ioc_get_lock() |
---|
| 611 | // This blocking function is used by the _ioc_read() and _ioc_write() functions |
---|
| 612 | // to get _ioc_lock using LL/SC. |
---|
| 613 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 614 | in_drivers void _ioc_get_lock() |
---|
| 615 | { |
---|
| 616 | register unsigned int delay = (_proctime() & 0xF) << 4; |
---|
| 617 | register unsigned int* plock = (unsigned int*)&_ioc_lock; |
---|
| 618 | |
---|
| 619 | asm volatile ("_ioc_llsc: \n" |
---|
| 620 | "ll $2, 0(%0) \n" // $2 <= _ioc_lock |
---|
| 621 | "bnez $2, _ioc_delay \n" // random delay if busy |
---|
| 622 | "li $3, 1 \n" // prepare argument for sc |
---|
| 623 | "sc $3, 0(%0) \n" // try to set _ioc_busy |
---|
| 624 | "bnez $3, _ioc_ok \n" // exit if atomic |
---|
| 625 | "_ioc_delay: \n" |
---|
| 626 | "move $4, %1 \n" // $4 <= delay |
---|
| 627 | "_ioc_loop: \n" |
---|
| 628 | "addi $4, $4, -1 \n" // $4 <= $4 - 1 |
---|
| 629 | "beqz $4, _ioc_loop \n" // test end delay |
---|
| 630 | "j _ioc_llsc \n" // retry |
---|
| 631 | "_ioc_ok: \n" |
---|
| 632 | ::"r"(plock),"r"(delay):"$2","$3","$4"); |
---|
| 633 | } |
---|
| 634 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 635 | // _ioc_write() |
---|
| 636 | // Transfer data from a memory buffer to a file on the block_device. |
---|
| 637 | // - lba : first block index on the disk |
---|
| 638 | // - buffer : base address of the memory buffer |
---|
| 639 | // - count : number of blocks to be transfered |
---|
| 640 | // The source buffer must be in user address space. |
---|
| 641 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 642 | in_drivers int _ioc_write(size_t lba, void* buffer, size_t count) |
---|
| 643 | { |
---|
| 644 | volatile unsigned int* ioc_address = (unsigned int*)&seg_ioc_base; |
---|
| 645 | |
---|
| 646 | // buffer must be in user space |
---|
| 647 | // size_t block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
| 648 | // if( ( (size_t)buffer + block_size*count ) >= 0x80000000 ) return -1; |
---|
| 649 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 650 | |
---|
| 651 | // get the lock |
---|
| 652 | _ioc_get_lock(); |
---|
| 653 | |
---|
| 654 | // block_device configuration |
---|
| 655 | ioc_address[BLOCK_DEVICE_BUFFER] = (int)buffer; |
---|
| 656 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
| 657 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
| 658 | ioc_address[BLOCK_DEVICE_IRQ_ENABLE] = 1; |
---|
| 659 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
---|
| 660 | return 0; |
---|
| 661 | } |
---|
| 662 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 663 | // _ioc_read() |
---|
| 664 | // Transfer data from a file on the block device to a memory buffer. |
---|
| 665 | // - lba : first block index on the disk |
---|
| 666 | // - buffer : base address of the memory buffer |
---|
| 667 | // - count : number of blocks to be transfered |
---|
| 668 | // The destination buffer must be in user address space. |
---|
| 669 | // All cache lines corresponding to the the target buffer must be invalidated |
---|
| 670 | // for cache coherence. |
---|
| 671 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 672 | in_drivers int _ioc_read(size_t lba, void* buffer, size_t count) |
---|
| 673 | { |
---|
| 674 | volatile unsigned int* ioc_address = (unsigned int*)&seg_ioc_base; |
---|
| 675 | |
---|
| 676 | // buffer must be in user space |
---|
| 677 | // size_t block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
| 678 | // if( ( (size_t)buffer + block_size*count ) >= 0x80000000 ) return -1; |
---|
| 679 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 680 | |
---|
| 681 | // get the lock |
---|
| 682 | _ioc_get_lock(); |
---|
| 683 | |
---|
| 684 | // block_device configuration |
---|
| 685 | ioc_address[BLOCK_DEVICE_BUFFER] = (int)buffer; |
---|
| 686 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
| 687 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
| 688 | ioc_address[BLOCK_DEVICE_IRQ_ENABLE] = 1; |
---|
| 689 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
---|
| 690 | |
---|
| 691 | return 0; |
---|
| 692 | } |
---|
| 693 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 694 | // _ioc_completed() |
---|
| 695 | // This blocking function cheks completion of an I/O transfer and reports errors. |
---|
| 696 | // It returns 0 if the transfer is successfully completed. |
---|
| 697 | // It returns -1 if an error has been reported. |
---|
| 698 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 699 | in_drivers int _ioc_completed() |
---|
| 700 | { |
---|
| 701 | // waiting for completion |
---|
| 702 | while (_ioc_done == 0) { asm volatile("nop"); } |
---|
| 703 | |
---|
| 704 | // reset synchronisation variables |
---|
| 705 | _ioc_done = 0; |
---|
| 706 | _ioc_lock = 0; |
---|
| 707 | |
---|
| 708 | // return errors |
---|
| 709 | if((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) && |
---|
| 710 | (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) return -1; |
---|
| 711 | else return 0; |
---|
| 712 | } |
---|
| 713 | |
---|
| 714 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 715 | // FRAME_BUFFER |
---|
| 716 | // The _fb_sync_write & _fb_sync_read functions use a memcpy strategy to implement |
---|
| 717 | // the transfer between a data buffer (user space) and the frame buffer (kernel space). |
---|
| 718 | // They are blocking until completion of the transfer. |
---|
| 719 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 720 | // _fb_sync_write() |
---|
| 721 | // Transfer data from an user buffer to the frame_buffer device with a memcpy. |
---|
| 722 | // - offset : offset (in bytes) in the frame buffer |
---|
| 723 | // - buffer : base address of the memory buffer |
---|
| 724 | // - length : number of bytes to be transfered |
---|
| 725 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 726 | in_drivers int _fb_sync_write(size_t offset, void* buffer, size_t length) |
---|
| 727 | { |
---|
| 728 | volatile char* fb = (char*)(void*)&seg_fb_base + offset; |
---|
| 729 | char* ub = buffer; |
---|
| 730 | size_t i; |
---|
| 731 | |
---|
| 732 | // buffer must be in user space |
---|
| 733 | // if( ( (size_t)buffer + length ) >= 0x80000000 ) return -1; |
---|
| 734 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 735 | |
---|
| 736 | // memory copy |
---|
| 737 | for(i=0 ; i<length ; i++) fb[i] = ub[i]; |
---|
| 738 | return 0; |
---|
| 739 | } |
---|
| 740 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 741 | // _fb_sync_read() |
---|
| 742 | // Transfer data from the frame_buffer device to an user buffer with a memcpy. |
---|
| 743 | // - offset : offset (in bytes) in the frame buffer |
---|
| 744 | // - buffer : base address of the memory buffer |
---|
| 745 | // - length : number of bytes to be transfered |
---|
| 746 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 747 | in_drivers int _fb_sync_read(size_t offset, void* buffer, size_t length) |
---|
| 748 | { |
---|
| 749 | volatile char* fb = (char*)(void*)&seg_fb_base + offset; |
---|
| 750 | char* ub = buffer; |
---|
| 751 | size_t i; |
---|
| 752 | |
---|
| 753 | // buffer must be in user space |
---|
| 754 | // if( ( (size_t)buffer + length ) >= 0x80000000 ) return -1; |
---|
| 755 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 756 | |
---|
| 757 | // memory copy |
---|
| 758 | for(i=0 ; i<length ; i++) ub[i] = fb[i]; |
---|
| 759 | return 0; |
---|
| 760 | } |
---|
| 761 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 762 | // The _fb_write() and _fb_read() functions use the MULTI_DMA |
---|
| 763 | // coprocessor to transfer data between the user buffer and the frame buffer. |
---|
| 764 | // The _fb_completed() function, use a polling policy to test |
---|
| 765 | // the global variables _dma_busy[i] and detect the transfer completion. |
---|
| 766 | // As each processor can have it's private DMA, there is up to 256 _dma_busy[i] |
---|
| 767 | // set/reset variables that are indexed by the proc_id. |
---|
| 768 | // The _dma_busy variable is reset by the ISR associated to the DMA IRQ. |
---|
| 769 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 770 | // _fb_write() |
---|
| 771 | // Transfer data from an user buffer to the frame_buffer device using DMA. |
---|
| 772 | // - offset : offset (in bytes) in the frame buffer |
---|
| 773 | // - buffer : base address of the memory buffer |
---|
| 774 | // - length : number of bytes to be transfered |
---|
| 775 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 776 | in_drivers int _fb_write(size_t offset, void* buffer, size_t length) |
---|
| 777 | { |
---|
| 778 | int* dma_address; |
---|
| 779 | unsigned int base = (unsigned int)&seg_dma_base; |
---|
| 780 | unsigned int increment = _segment_increment(DMA_SPAN*4); |
---|
| 781 | char* fb = (char*)&seg_fb_base + offset; |
---|
| 782 | unsigned int delay = (_proctime() & 0xF) << 4; |
---|
| 783 | unsigned int pid = _procid(); |
---|
| 784 | unsigned int i; |
---|
| 785 | |
---|
| 786 | |
---|
| 787 | // checking buffer boundaries (bytes) |
---|
| 788 | // if( ( (size_t)buffer + length ) >= 0x80000000 ) return -1; |
---|
| 789 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 790 | |
---|
| 791 | // waiting until DMA device is available |
---|
| 792 | while (_dma_busy[pid] != 0) |
---|
| 793 | { |
---|
| 794 | for( i=0 ; i<delay ; i++) // busy waiting |
---|
| 795 | { // with a pseudo random |
---|
| 796 | asm volatile("nop"); // delay between bus accesses |
---|
| 797 | } |
---|
| 798 | } |
---|
| 799 | _dma_busy[pid] = 1; |
---|
| 800 | |
---|
| 801 | dma_address = (int*)(base + increment); |
---|
| 802 | |
---|
| 803 | // DMA configuration |
---|
| 804 | dma_address[DMA_IRQ_DISABLE] = 0; |
---|
| 805 | dma_address[DMA_SRC] = (int)buffer; |
---|
| 806 | dma_address[DMA_DST] = (int)fb; |
---|
| 807 | dma_address[DMA_LEN] = (int)length; |
---|
| 808 | return 0; |
---|
| 809 | } |
---|
| 810 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 811 | // _fb_read() |
---|
| 812 | // Transfer data from the frame_buffer device to an user buffer using DMA. |
---|
| 813 | // - offset : offset (in bytes) in the frame buffer |
---|
| 814 | // - buffer : base address of the memory buffer |
---|
| 815 | // - length : number of bytes to be transfered |
---|
| 816 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 817 | in_drivers int _fb_read(size_t offset, void* buffer, size_t length) |
---|
| 818 | { |
---|
| 819 | int* dma_address; |
---|
| 820 | unsigned int base = (unsigned int)&seg_dma_base; |
---|
| 821 | unsigned int increment = _segment_increment(DMA_SPAN*4); |
---|
| 822 | char* fb = (char*)&seg_fb_base + offset; |
---|
| 823 | unsigned int delay = (_proctime() & 0xF) << 4; |
---|
| 824 | unsigned int pid = _procid(); |
---|
| 825 | unsigned int i; |
---|
| 826 | |
---|
| 827 | // checking buffer boundaries (bytes) |
---|
| 828 | // if( ( (size_t)buffer + length ) >= 0x80000000 ) return -1; |
---|
| 829 | // if( ( (size_t)buffer ) >= 0x80000000 ) return -1; |
---|
| 830 | |
---|
| 831 | // waiting until DMA device is available |
---|
| 832 | while (_dma_busy[pid] != 0) |
---|
| 833 | { |
---|
| 834 | for( i=0 ; i<delay ; i++) // busy waiting |
---|
| 835 | { // with a pseudo random |
---|
| 836 | asm volatile("nop"); // delay between bus accesses |
---|
| 837 | } |
---|
| 838 | } |
---|
| 839 | _dma_busy[pid] = 1; |
---|
| 840 | |
---|
| 841 | dma_address = (int*)(base + increment); |
---|
| 842 | |
---|
| 843 | // DMA configuration |
---|
| 844 | dma_address[DMA_IRQ_DISABLE] = 0; |
---|
| 845 | dma_address[DMA_SRC] = (int)fb; |
---|
| 846 | dma_address[DMA_DST] = (int)buffer; |
---|
| 847 | dma_address[DMA_LEN] = (int)length; |
---|
| 848 | return 0; |
---|
| 849 | } |
---|
| 850 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 851 | // _fb_completed() |
---|
| 852 | // This blocking function cheks completion of a DMA transfer to or fom the frame buffer. |
---|
| 853 | // The MIPS32 wait instruction stall the processor until the next interrupt. |
---|
| 854 | // It returns 0 if the transfer is successfully completed |
---|
| 855 | // It returns -1 if an error has been reported. |
---|
| 856 | /////////////////////////////////////////////////////////////////////////////////////// |
---|
| 857 | in_drivers int _fb_completed() |
---|
| 858 | { |
---|
| 859 | unsigned int pid = _procid(); |
---|
| 860 | |
---|
| 861 | while (_dma_busy[pid] != 0) |
---|
| 862 | { |
---|
| 863 | asm volatile("nop"); |
---|
| 864 | } |
---|
| 865 | if(_dma_status[pid] == DMA_SUCCESS) return 0; |
---|
| 866 | else return _dma_status[pid]; |
---|
| 867 | } |
---|
| 868 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 869 | // _barrier_init() |
---|
| 870 | // This function makes a cooperative initialisation of the barrier: |
---|
[173] | 871 | // - barrier_count[index] <= N |
---|
| 872 | // - barrier_lock[index] <= 0 |
---|
| 873 | // All tasks try to initialize the barrier, but the initialisation |
---|
[158] | 874 | // is done by only one task, using LL/SC instructions. |
---|
[173] | 875 | // This cooperative initialisation is questionnable, |
---|
| 876 | // bcause the barrier can ony be initialised once... |
---|
[158] | 877 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 878 | in_drivers int _barrier_init(unsigned int index, unsigned int value) |
---|
| 879 | { |
---|
| 880 | |
---|
| 881 | register int* pinit = (int*)&_barrier_initial_value[index]; |
---|
| 882 | register int* pcount = (int*)&_barrier_count[index]; |
---|
[173] | 883 | register int* plock = (int*)&_barrier_lock[index]; |
---|
[158] | 884 | |
---|
| 885 | if ( index > 7 ) return 1; |
---|
| 886 | |
---|
| 887 | // parallel initialisation using atomic instructions LL/SC |
---|
| 888 | asm volatile ("_barrier_init_test: \n" |
---|
[173] | 889 | "ll $2, 0(%0) \n" // read barrier_inital_value |
---|
[158] | 890 | "bnez $2, _barrier_init_done \n" |
---|
[173] | 891 | "move $3, %3 \n" |
---|
| 892 | "sc $3, 0(%0) \n" // try to write barrier_initial_value |
---|
[158] | 893 | "beqz $3, _barrier_init_test \n" |
---|
[173] | 894 | "move $3, %3 \n" |
---|
| 895 | "sw $3, 0(%1) \n" // barrier_count <= barrier_initial_value |
---|
| 896 | "move $3, $0 \n" // |
---|
| 897 | "sw $3, 0(%2) \n" // barrier_lock <= 0 |
---|
[158] | 898 | "_barrier_init_done: \n" |
---|
[173] | 899 | ::"r"(pinit),"r"(pcount),"r"(plock),"r"(value):"$2","$3"); |
---|
[158] | 900 | return 0 ; |
---|
| 901 | } |
---|
| 902 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 903 | // _barrier_wait() |
---|
[173] | 904 | // This blocking function uses a busy_wait technics (on the barrier_lock value), |
---|
[158] | 905 | // because the GIET does not support dynamic scheduling/descheduling of tasks. |
---|
[173] | 906 | // The barrier state is actually defined by two variables: |
---|
| 907 | // _barrier_count[index] define the number of particpants that are waiting |
---|
| 908 | // _barrier_lock[index] define the bool variable whose value is polled |
---|
| 909 | // The last participant change the value of _barrier_lock[index] to release the barrier... |
---|
| 910 | // There is at most 16 independant barriers, and an error is returned |
---|
| 911 | // if the barrier index is larger than 15. |
---|
[158] | 912 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 913 | in_drivers int _barrier_wait(unsigned int index) |
---|
| 914 | { |
---|
| 915 | register int* pcount = (int*)&_barrier_count[index]; |
---|
| 916 | register int count; |
---|
| 917 | |
---|
[173] | 918 | int lock = _barrier_lock[index]; |
---|
[158] | 919 | |
---|
[173] | 920 | if ( index > 15 ) return 1; |
---|
| 921 | |
---|
| 922 | // parallel decrement _barrier_count[index] using atomic instructions LL/SC |
---|
| 923 | // input : pointer on _barrier_count[index] |
---|
| 924 | // output : count = _barrier_count[index] (before decrementation) |
---|
[158] | 925 | asm volatile ("_barrier_decrement: \n" |
---|
[176] | 926 | "or $2, %1, $0 \n" |
---|
| 927 | "ll %0, 0($2) \n" |
---|
[158] | 928 | "addi $3, %0, -1 \n" |
---|
[176] | 929 | "sc $3, 0($2) \n" |
---|
[158] | 930 | "beqz $3, _barrier_decrement \n" |
---|
| 931 | :"=r"(count):"r"(pcount):"$2","$3"); |
---|
| 932 | |
---|
[173] | 933 | // the last task re-initializes the barrier_ count variable |
---|
| 934 | // and the barrier_lock variable, waking up all other waiting tasks |
---|
[158] | 935 | |
---|
| 936 | if ( count == 1 ) // last task |
---|
| 937 | { |
---|
[173] | 938 | _barrier_count[index] = _barrier_initial_value[index]; |
---|
| 939 | asm volatile( "sync" ); |
---|
| 940 | _barrier_lock[index] = (lock == 0) ? 1 : 0; |
---|
| 941 | return 0 ; |
---|
[158] | 942 | } |
---|
| 943 | else // other tasks |
---|
| 944 | { |
---|
[173] | 945 | while ( lock == _barrier_lock[index] ) { } // busy waiting |
---|
[158] | 946 | return 0 ; |
---|
| 947 | } |
---|
| 948 | } |
---|
| 949 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
| 950 | |
---|
| 951 | |
---|
| 952 | // Local Variables: |
---|
| 953 | // tab-width: 4; |
---|
| 954 | // c-basic-offset: 4; |
---|
| 955 | // c-file-offsets:((innamespace . 0)(inline-open . 0)); |
---|
| 956 | // indent-tabs-mode: nil; |
---|
| 957 | // End: |
---|
| 958 | // |
---|
| 959 | // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
| 960 | |
---|