source: papers/FDL2012/exp_results.tex @ 77

Last change on this file since 77 was 75, checked in by syed, 13 years ago

/papers/FDL2012/

File size: 7.3 KB
RevLine 
[73]1We have conducted preliminary experiments to tests and compare the performance of our strategy with existing abstraction-refinement technique available in VIS. As our test platforms requires fairness constraints, we have chosen the \emph{incremental\_ctl\_verification} abstraction refinement technique as it supports CTL formulas and fairness constraints \cite{PardoHachtel98incremCTLMC} \cite{PardoHachtel97autoAbsMC}. It is an automatic abstraction refinement algorithm which generates an initial conservative abstraction principally by reducing the size of the latches by a constant factor. If the initial abstraction is not conclusive, a \emph{goal set} will then be computed in order to guide the refinement process.
[64]2
[73]3We have executed and compared the execution time and the number of refinement iterations for two examples: VCI-PI platform consisting of Virtual Component Interface (VCI), a PI-Bus and VCI-PI protocol converter and a simplified version of a CAN bus platform consisting of 3 nodes on a CAN bus. Table \ref{StatsVCI_PI} and Table \ref{StatsCAN_Bus} give the size and the statistics concerning the VCI-PI platform and CAN bus platform respectively. All the values are obtained using the \emph{compute\_reach} command with option \emph{-v 1} in VIS except the number of BDD variables, computed using the \emph{print\_bdd\_stats} command. The experiments have been executed on a PC with an AMD Athlon dual-core processor 4450e and 1.8GB of RAM memory.
[66]4
[71]5\begin{table*} [ht]
6\hspace*{10mm}
7\begin{tabular}{clccccc}
[66]8
[71]9\toprule 
10\multicolumn{2}{c}{\textbf{VCI-PI}}   & \emph{Number of}      & \emph{FSM}    & \emph{BDD}  & \emph{Number of }       & \emph{Analysis}\\ 
11\multicolumn{2}{c}{\textbf{Platform}} &\emph{BDD Variables}  & \emph{Depth}  & \emph{Size} & \emph{Reachable States} & \emph{Time (s)} \\
12\midrule
13\midrule
14               & 1 Master-1 Slave   & 308 & 599 & 33 442   & 3.64116e+06 & 41.49 \\
[72]15 Concrete      & 2 Masters-1 Slave  & 439 & 186 & 75 210   & 7.3282e+04  & 14.36 \\
[71]16  Model        & 4 Masters-1 Slave  & 709 & 408 & 156 657  & 2.15076e+07 & 414.38 \\
17               & 4 Masters-2 Slaves & 883 & 597 & 217 797  & 3.22215e+10 & 4064.09 \\
18 \midrule 
19 \midrule
20 Final         & 1 Master-1 Slave   & 197 & 2   &  76   &  5.03316e+07  & 0.01 \\
21 Abstract      & 2 Masters-1 Slave  & 301 & 2   &  99   &  4.12317e+11  & 0.02 \\
22 Model         & 4 Masters-1 Slave  & 501 & 2   & 147   &  3.45876e+18  & 0.03\\
[75]23 for $\phi_1$  & 4 Masters-2 Slaves & 589 & 2   & 167   &  7.08355e+21  & 0.04 \\
[71]24\midrule 
25 Final         & 1 Master-1 Slave   & 194 & 1   & 50    &  2.62144e+07  & 0 \\
26 Abstract      & 2 Masters-1 Slave  & 298 & 1   & 73    &  2.14748e+11  & 0.01 \\
27 Model         & 4 Masters-1 Slave  & 498 & 1   & 121   &  1.80144e+18  & 0.02 \\
[75]28 for $\phi_2$  & 4 Masters-2 Slaves & 586 & 1   & 141   &  3.68935e+21  & 0.02 \\ 
[71]29\bottomrule 
30\bottomrule
31\end{tabular}
32 
33\caption{\label{StatsVCI_PI} Statistics on the VCI-PI platform}
34\end{table*}
35%\medskip
36
37
38\begin{table*} [ht]
39\hspace*{12mm}
40\begin{tabular}{cccccc}
41
42\toprule 
43\textbf{CAN Bus}      & \emph{Number of}      & \emph{FSM}    & \emph{BDD}  & \emph{Number of }       & \emph{Analysis}\\ 
44\textbf{Platform}     &\emph{BDD Variables}  & \emph{Depth}  & \emph{Size} & \emph{Reachable States} & \emph{Time (s)} \\
45\midrule
46\midrule
47 Concrete Model   & 838     & 182     & 212550    & 2.87296e+08      & 167.9 \\     
48 \midrule 
49 \midrule
50 Final Abstract Model for $\phi_1$  & xx  & 2   & xxx   &  xxx       & xxxx \\
51\midrule 
52 Final Abstract Model for $\phi_2$  & xx  & 2   & xxx   &  xxx       & xxxx \\
53\bottomrule 
54\bottomrule
55\end{tabular}
56 
57\caption{\label{StatsCAN_Bus} Statistics on the CAN Bus platform}
58\end{table*}
59
60
[66]61\begin{table} [h]
62%\hspace*{-8mm}
63\begin{tabular}{cccc}
64
65\toprule 
[71]66\emph{Global}   &\emph{Verification} & \emph{Refinement}  & \emph{Verif.}  \\
67\emph{Property} & \emph{Technique}  & \emph{Iteration}  & \emph{Time (s)}      \\ 
[66]68\midrule
69\midrule
[71]70\multicolumn{4}{l}{\textbf{\underline{1 Master - 1 Slave :}}} \\
71                 & Prop. Selection   & 1    &    2.2     \\
72 $\phi_1$   & Incremental       & 0    &   18.1        \\
73            & Standard MC       & -    &   14.9     \\
[66]74\midrule
[71]75                 & Prop. Selection   & 0    &     1.0     \\
76 $\phi_2$   & Incremental       & 467  &   168.0         \\
77                 & Standard MC       & -    &    14.9      \\
78\midrule   
79\midrule
80\multicolumn{4}{l}{\textbf{\underline{2 Masters - 1 Slave :}}}   \\   
81                 & Prop. Selection   & 1    &    2.0     \\
82 $\phi_1$   & Incremental       & 0    &    1.3        \\
83            & Standard MC       & -    &    1.5     \\
84\midrule
85                 & Prop. Selection   & 0    &    1.0    \\
86 $\phi_2$   & Incremental       & 0    &   15.3       \\
87                 & Standard MC       & -    &   14.6    \\
88\midrule
89\midrule 
90\multicolumn{4}{l}{\textbf{\underline{4 Masters - 1 Slave :}}}   \\ 
91                 & Prop. Selection   & 1    &    2.1     \\
92 $\phi_1$   & Incremental       & 0    &    6.8        \\
93            & Standard MC       & -    &  175.5     \\
94\midrule
95                 & Prop. Selection   &  0    &   1.0 \\
96 $\phi_2$   & Incremental       &  0    &   7.5    \\
97                 & Standard MC       &  -    & 195.1 \\
98\midrule 
99\midrule
100\multicolumn{4}{l}{\textbf{\underline{4 Masters - 2 Slaves :}}}  \\ 
[75]101                                & Prop. Selection   & 1   &  2.2     \\
102 $\phi_1$   & Incremental       & N/A &  >1 day    \\
[71]103            & Standard MC       & -   &  2231.3    \\
104\midrule
[75]105            & Prop. Selection   & 0   &  1.1\\
[71]106 $\phi_2$   & Incremental       & N/A &  >1 day    \\
107            & Standard MC       & -   &  12814.1 \\
108\bottomrule       
[66]109\bottomrule
110
111\end{tabular}
112 
[71]113\caption{\label{TabVCI_PI} Results on the VCI-PI platform }
[66]114\end{table}
115
116%\medskip
117
[72]118
[66]119\begin{table} [h]
120%\hspace*{-8mm}
[71]121\begin{tabular}{lcccc}
[66]122
123\toprule 
[71]124\emph{Global}  & \emph{Verification} & \emph{Refinement} & \emph{Verif.}   \\ 
125\emph{Property}  & \emph{Technique}  & \emph{Iteration}  & \emph{Time (s)}       \\
[66]126\midrule
127\midrule
[71]128                 & Prop. Selection  &  xxx        &  xxx     \\
129 $\phi_3$   & Incremental      & N/A            &  >1 day \\
130                 & Standard MC      & -                         &  51.9    \\
[66]131\midrule
[71]132                 & Prop. Selection   &  xxx       &  xxx \\
133 $\phi_4$   & Incremental       & 0          &   57.3     \\
134                 & Standard MC       & -          &    2.2    \\
[66]135\bottomrule
136
137\end{tabular}
138 
[71]139\caption{\label{TabCANBus} Results on the CAN Bus platform }
[66]140\end{table}
141
142
143
[75]144In the following tables: Table \ref{TabVCI_PI} and Table \ref{TabCANBus}, we compare the execution time between our technique (Prop. Selection), incremental\_ctl\_verification (Incremental) and the standard model checking (Standard MC) computed using the \emph{model\_check} command in VIS (Note: Dynamic variable ordering has been enabled with sift method). For the VCI-PI platform, the global property $\phi_1$ is the type $AF((p=1)*AF(q=1))$ and $\phi_2$ is actually a stronger version of the same formula with $AG(AF((p=1)*AF(q=1)))$ whereas for the CAN bus platform, the global property $\phi_3$ is the type $AG(((p'=1)*(q'=1)) -> AF((s = 1)*(r = 1))$ and $\phi_4 = AG(((p'=1)*(q'=1)) -> AG(r' = 0))$. We can see that our technique systematically computes faster than the other two methods and interestingly in the case where the size of the platform increases by adding the more connected components, in contrary to the other two methods, our computation time remains stable.
145
146
147
148%\medskip
149
150
Note: See TracBrowser for help on using the repository browser.