source: papers/FDL2012/exp_results.tex @ 99

Last change on this file since 99 was 93, checked in by syed, 13 years ago

/papers/FDL2012/

File size: 7.4 KB
Line 
1We have conducted preliminary experiments to test and compare the performance
2of our strategy with existing techniques available in
3VIS. There are several abstraction-refinement techniques implemented in VIS
4accessible via \emph{approximate\_model\_check},
5\emph{iterative\_model\_check}, \emph{check\_invariant} and
6\emph{incremental\_ctl\_verification} commands. However, among the available
7techniques, \emph{incremental\_ctl\_verification} is the only one that supports CTL formulas and fairness constraints which are necessary in our test platforms. It is an automatic abstraction refinement algorithm which generates an initial conservative abstraction principally by reducing the size of the latches by a constant factor. If the initial abstraction is not conclusive, a \emph{goal set} will then be computed in order to guide the refinement process \cite{PardoHachtel98incremCTLMC} \cite{PardoHachtel97autoAbsMC}.
8
9
10We have executed and compared the execution time and the number of refinement iterations for two examples: VCI-PI platform consisting of Virtual Component Interface (VCI), a PI-Bus and VCI-PI protocol converter and a simplified version of a CAN bus platform consisting of 3 nodes on a CAN bus. Table \ref{StatsPlatform} gives the size and the statistics concerning the VCI-PI platform and CAN bus platform verified. All the values are obtained using the \emph{compute\_reach} command with option \emph{-v 1} in VIS except the number of BDD variables, computed using the \emph{print\_bdd\_stats} command. The experiments have been executed on a PC with an AMD Athlon dual-core processor 4450e and 1.8GB of RAM memory.
11
12
13\begin{table*} [ht]
14\hspace*{15mm}
15\small
16\begin{tabular}{cclcccc}
17
18\toprule 
19\multicolumn{3}{l}{\textbf{Experiment}}   & \emph{Number of}      & \emph{BDD}  & \emph{Number of }       & \emph{Analysis}\\ 
20\multicolumn{3}{l}{\textbf{Platform}}     &\emph{BDD Variables}   & \emph{Size} & \emph{Reachable States} & \emph{Time (s)} \\
21\midrule
22\midrule
23                        &               & 1 Master-1 Slave   & 304  & 7207     & 4.711e+3    & 6.36 \\
24                        & Concrete      & 2 Masters-1 Slave  & 445  & 24406    & 7.71723e+06 & 35.2 \\
25                        &  Model        & 4 Masters-1 Slave  & 721  & 84118    & 3.17332e+12 & 2818.3 \\
26                        &               & 4 Masters-2 Slaves & 895  & 238990   & 5.708e+15   & 68882.3\footnotemark[1] \\
27\cline{2-7} 
28\cline{2-7}
29                        & Final         & 1 Master-1 Slave   & 197  &  76   &  5.03316e+07  & 0.01 \\
30VCI-PI  & Abstract      & 2 Masters-1 Slave  & 301  &  99   &  4.12317e+11  & 0.02 \\
31                        & Model         & 4 Masters-1 Slave  & 501  & 147   &  3.45876e+18  & 0.03\\
32                        & for $\phi_1$  & 4 Masters-2 Slaves & 589  & 167   &  7.08355e+21  & 0.04 \\
33\cline{2-7}
34                        & Final         & 1 Master-1 Slave   & 194  & 50    &  2.62144e+07  & 0 \\
35                        & Abstract      & 2 Masters-1 Slave  & 298  & 73    &  2.14748e+11  & 0.01 \\
36                        & Model         & 4 Masters-1 Slave  & 498  & 121   &  1.80144e+18  & 0.02 \\
37                        & for $\phi_2$  & 4 Masters-2 Slaves & 586  & 141   &  3.68935e+21  & 0.02 \\ 
38% \midrule
39 \midrule
40                        &\multicolumn{2}{c}{Concrete Model}                                          & 822     & 161730      & 3.7354e+07     & 300.12 \\     
41\cline{2-7}
42\cline{2-7}
43CAN Bus  &\multicolumn{2}{c}{Final Abstract Model for $\phi_3$}  & 425   & 187   &  1.66005e+12       & 0.03 \\
44\cline{2-7}
45                        &\multicolumn{2}{c}{Final Abstract Model for $\phi_4$}  & 425   & 187   &  1.66005e+12       & 0.04 \\
46\bottomrule 
47%\bottomrule
48
49\end{tabular}
50
51\caption{\label{StatsPlatform} Statistics on the VCI-PI and CAN Bus platform}
52\end{table*}
53
54%\footnotetext[1]{Computed on a calculation server.}
55
56
57\begin{table} [h]
58%\hspace*{-8mm}
59\small
60\addtolength{\tabcolsep}{-1pt}
61\begin{tabular}{ccccc}
62\toprule 
63\emph{Experim.}     &\emph{Global}   &\emph{Verification} & \emph{Refine.}  & \emph{Verif.}  \\
64\emph{Platform}         &\emph{Property} & \emph{Technique}  & \emph{Iter.}  & \emph{Time (s)}      \\ 
65\midrule
66\midrule
67%\multicolumn{4}{l}{\textbf{\underline{1 Master - 1 Slave :}}} \\
68                                &                 & Prop. Select.   & 1    &    2.2     \\
69VCI-PI:         & $\phi_1$   & Incremental       & 0    &    6.3        \\
701 Master                &            & Standard MC       & -    &    6.06     \\
71\cline{2-5}
72-                               &                 & Prop. Select.   & 0    &     1.0     \\
731 Slave         & $\phi_2$   & Incremental       & 562  &   200.9         \\
74                                &                 & Standard MC       & -    &    6.13      \\
75\midrule   
76%\midrule
77                                &                 & Prop. Select.   & 1    &    2.0     \\
78VCI-PI:                 & $\phi_1$   & Incremental       & 0    &   20.4        \\
792 Masters       &            & Standard MC       & -    &   37.9     \\
80\cline{2-5}
81-                               &                 & Prop. Select.   & 0    &    1.0    \\
821 Slave         & $\phi_2$   & Incremental       & 74   &  786.3        \\
83                                &                 & Standard MC       & -    &   39.4    \\
84\midrule
85%\midrule 
86
87                                &                 & Prop. Select.   &  1   &    2.1     \\
88VCI-PI:         & $\phi_1$   & Incremental       &  0   &  261.6      \\
894 Masters       &            & Standard MC       &  -   &  >1 day     \\
90\cline{2-5}
91-                  &              & Prop. Select.   &  0   &   1.0    \\
921 Slave         & $\phi_2$   & Incremental       &  0   &   263.5     \\
93                                &                 & Standard MC       &  -   &   >1 day   \\
94\midrule 
95%\midrule
96
97                                &                                & Prop. Select.   & 1          &  2.2     \\
98VCI-PI:     & $\phi_1$   & Incremental       & N/A      &  >1 day    \\
994 Masters       &            & Standard MC       & -    &  >1 day   \\
100\cline{2-5}
101  -                &            & Prop. Select.   & 0           &  1.1\\
1022 Slaves                & $\phi_2$   & Incremental       & N/A  &  >1 day    \\
103                                &            & Standard MC       & -    &  >1 day\\
104\midrule 
105%\midrule
106                &                 & Prop. Select.   &  0     &  1.02     \\
107                                &$\phi_3$    & Incremental       & N/A    &  >1 day   \\
108CAN                     &                 & Standard MC       & -       &  2645.4    \\
109\cline{2-5}
110Bus                     &                 & Prop. Select.   &  0     &   1.01     \\
111                                &$\phi_4$    & Incremental       & N/A    &  >1 day    \\
112                                &                 & Standard MC       & -      &   1678.1    \\   
113
114\bottomrule       
115%\bottomrule
116
117\end{tabular}
118
119\caption{\label{TabVerif} Verification Results  }
120\end{table}
121
122
123In Table \ref{TabVerif}, we compare the execution time and the number of refinement
124between our technique (Prop. Select.), \emph{incremental\_ctl\_verification}
125(Incremental) and the standard model checking (Standard MC) computed using the
126\emph{model\_check} command in VIS (Note: Dynamic variable ordering has been
127enabled with sift method). For the VCI-PI platform, the global property
128$\phi_1$ is the type $AF((p=1)*AF(q=1))$ and $\phi_2$ is actually a stronger
129version of the same formula with $AG(AF((p=1)*AF(q=1)))$. We have a total of
13026 verifed components properties to be selected in VCI-PI platform.
131In comparison to $\phi_2$, we can see that, a better set of properties available will result in a better abstraction and less refinement iterations. 
132
133
134In the case of the CAN bus platform, the global property $\phi_3$ is the type
135$AG(((p'=1)*(q'=1)*AF(r_1=1)) \rightarrow AF((s_1=1)*AF(t_1=1)))$ and $\phi_4
136= AG(((p'=1)*(q'=1)*AG(r_2=0)) \rightarrow AG((s_2=0)*(t_2=0)))$. We have at
137our disposal 103 verified component properties and after the selection process
138for the initial abstraction, 3 selected component properties were sufficient
139to verify both global properties without refinement.
140
141Globally, we can see that our technique systematically computes faster than the other two methods and interestingly in the case where the size of the platform increases by adding  more connected components, in contrary to the other two methods, our computation time remains stable.
142
143
144
145%\medskip
146
147
Note: See TracBrowser for help on using the repository browser.