[12] | 1 | /**CFile*********************************************************************** |
---|
| 2 | |
---|
| 3 | FileName [AigNode.c] |
---|
| 4 | |
---|
| 5 | PackageName [Aig] |
---|
| 6 | |
---|
| 7 | Synopsis [Routines to access node data structure of the And/Inverter |
---|
| 8 | graph.] |
---|
| 9 | |
---|
| 10 | Author [Mohammad Awedh, HoonSang Jin] |
---|
| 11 | |
---|
| 12 | Copyright [ This file was created at the University of Colorado at |
---|
| 13 | Boulder. The University of Colorado at Boulder makes no warranty |
---|
| 14 | about the suitability of this software for any purpose. It is |
---|
| 15 | presented on an AS IS basis.] |
---|
| 16 | |
---|
| 17 | |
---|
| 18 | ******************************************************************************/ |
---|
| 19 | |
---|
| 20 | #include "aig.h" |
---|
| 21 | #include "aigInt.h" |
---|
| 22 | |
---|
| 23 | static char rcsid[] UNUSED = "$Id: aigNode.c,v 1.2 2009-04-10 16:33:36 hhkim Exp $"; |
---|
| 24 | |
---|
| 25 | /*---------------------------------------------------------------------------*/ |
---|
| 26 | /* Constant declarations */ |
---|
| 27 | /*---------------------------------------------------------------------------*/ |
---|
| 28 | |
---|
| 29 | /**AutomaticStart*************************************************************/ |
---|
| 30 | |
---|
| 31 | /*---------------------------------------------------------------------------*/ |
---|
| 32 | /* Static function prototypes */ |
---|
| 33 | /*---------------------------------------------------------------------------*/ |
---|
| 34 | |
---|
| 35 | static void connectOutput(Aig_Manager_t *bm, AigEdge_t from, AigEdge_t to, int inputIndex); |
---|
| 36 | static AigEdge_t HashTableLookup(Aig_Manager_t *bm, AigEdge_t node1, AigEdge_t node2); |
---|
| 37 | static int HashTableAdd(Aig_Manager_t *bm, AigEdge_t nodeIndexParent, AigEdge_t nodeIndex1, AigEdge_t nodeIndex2); |
---|
| 38 | /* static int HashTableDelete(Aig_Manager_t *bm, AigEdge_t node); */ |
---|
| 39 | |
---|
| 40 | /**AutomaticEnd***************************************************************/ |
---|
| 41 | |
---|
| 42 | |
---|
| 43 | /*---------------------------------------------------------------------------*/ |
---|
| 44 | /* Definition of exported functions */ |
---|
| 45 | /*---------------------------------------------------------------------------*/ |
---|
| 46 | |
---|
| 47 | |
---|
| 48 | /**Function******************************************************************** |
---|
| 49 | |
---|
| 50 | Synopsis [Read Node's name.] |
---|
| 51 | |
---|
| 52 | Description [Read the name of a node given its index.] |
---|
| 53 | |
---|
| 54 | SideEffects [] |
---|
| 55 | |
---|
| 56 | SeeAlso [] |
---|
| 57 | |
---|
| 58 | ******************************************************************************/ |
---|
| 59 | nameType_t * |
---|
| 60 | Aig_NodeReadName( |
---|
| 61 | Aig_Manager_t *bm, |
---|
| 62 | AigEdge_t node) |
---|
| 63 | { |
---|
| 64 | return bm->nameList[AigNodeID(node)]; |
---|
| 65 | } |
---|
| 66 | |
---|
| 67 | /**Function******************************************************************** |
---|
| 68 | |
---|
| 69 | Synopsis [Set Node's name.] |
---|
| 70 | |
---|
| 71 | Description [Set the name of node in Symbol table and name List] |
---|
| 72 | |
---|
| 73 | SideEffects [] |
---|
| 74 | |
---|
| 75 | SeeAlso [] |
---|
| 76 | |
---|
| 77 | ******************************************************************************/ |
---|
| 78 | void |
---|
| 79 | Aig_NodeSetName( |
---|
| 80 | Aig_Manager_t *bm, |
---|
| 81 | AigEdge_t node, |
---|
| 82 | nameType_t *name) |
---|
| 83 | { |
---|
| 84 | nameType_t *tmpName = bm->nameList[AigNodeID(node)]; |
---|
| 85 | FREE(tmpName); |
---|
| 86 | st_insert(bm->SymbolTable, name, (char*) (long) node); |
---|
| 87 | bm->nameList[AigNodeID(node)] = name; |
---|
| 88 | } |
---|
| 89 | |
---|
| 90 | /**Function******************************************************************** |
---|
| 91 | |
---|
| 92 | Synopsis [Returns the index of the right node.] |
---|
| 93 | |
---|
| 94 | Description [] |
---|
| 95 | |
---|
| 96 | SideEffects [] |
---|
| 97 | |
---|
| 98 | SeeAlso [] |
---|
| 99 | |
---|
| 100 | ******************************************************************************/ |
---|
| 101 | int |
---|
| 102 | Aig_NodeReadIndexOfRightChild( |
---|
| 103 | Aig_Manager_t *bm, |
---|
| 104 | AigEdge_t nodeIndex) |
---|
| 105 | { |
---|
| 106 | return rightChild(nodeIndex); |
---|
| 107 | } |
---|
| 108 | |
---|
| 109 | /**Function******************************************************************** |
---|
| 110 | |
---|
| 111 | Synopsis [Returns the index of the left node.] |
---|
| 112 | |
---|
| 113 | Description [] |
---|
| 114 | |
---|
| 115 | SideEffects [] |
---|
| 116 | |
---|
| 117 | SeeAlso [] |
---|
| 118 | |
---|
| 119 | ******************************************************************************/ |
---|
| 120 | AigEdge_t |
---|
| 121 | Aig_NodeReadIndexOfLeftChild( |
---|
| 122 | Aig_Manager_t *bm, |
---|
| 123 | AigEdge_t nodeIndex) |
---|
| 124 | { |
---|
| 125 | return leftChild(nodeIndex); |
---|
| 126 | } |
---|
| 127 | |
---|
| 128 | /**Function******************************************************************** |
---|
| 129 | |
---|
| 130 | Synopsis [Get canonical node of given node.] |
---|
| 131 | |
---|
| 132 | Description [This function find node index that is functionally equivalent with given node index.] |
---|
| 133 | |
---|
| 134 | SideEffects [] |
---|
| 135 | |
---|
| 136 | SeeAlso [] |
---|
| 137 | |
---|
| 138 | ******************************************************************************/ |
---|
| 139 | #if 1 |
---|
| 140 | AigEdge_t |
---|
| 141 | Aig_GetCanonical( |
---|
| 142 | Aig_Manager_t *bm, |
---|
| 143 | AigEdge_t nodeIndex) |
---|
| 144 | { |
---|
| 145 | AigEdge_t next; |
---|
| 146 | |
---|
| 147 | /* Bing */ |
---|
| 148 | |
---|
| 149 | if(nodeIndex == Aig_NULL|| |
---|
| 150 | nodeIndex == Aig_One || |
---|
| 151 | nodeIndex == Aig_Zero) |
---|
| 152 | return(nodeIndex); |
---|
| 153 | |
---|
| 154 | |
---|
| 155 | while(AigGetPassFlag(bm, nodeIndex)) { |
---|
| 156 | next = canonical(nodeIndex); |
---|
| 157 | if(Aig_IsInverted(nodeIndex)) next = Aig_Not(next); |
---|
| 158 | nodeIndex = next; |
---|
| 159 | } |
---|
| 160 | return(nodeIndex); |
---|
| 161 | } |
---|
| 162 | #endif |
---|
| 163 | |
---|
| 164 | /**Function******************************************************************** |
---|
| 165 | |
---|
| 166 | Synopsis [Merge two functionally equivalent node.] |
---|
| 167 | |
---|
| 168 | Description [This function merges the equivalent two nodes. ] |
---|
| 169 | |
---|
| 170 | SideEffects [] |
---|
| 171 | |
---|
| 172 | SeeAlso [] |
---|
| 173 | |
---|
| 174 | ******************************************************************************/ |
---|
| 175 | /** |
---|
| 176 | int |
---|
| 177 | Aig_Merge( |
---|
| 178 | Aig_Manager_t *bm, |
---|
| 179 | AigEdge_t nodeIndex1, |
---|
| 180 | AigEdge_t nodeIndex2) |
---|
| 181 | { |
---|
| 182 | AigEdge_t newNodeIndex, nodeIndex, tnodeIndex; |
---|
| 183 | AigEdge_t leftIndex, rightIndex; |
---|
| 184 | AigEdge_t outIndex, *pfan; |
---|
| 185 | int id1, id2; |
---|
| 186 | AigEdge_t cur; |
---|
| 187 | bdd_t **bddArray; |
---|
| 188 | array_t *nodeArray; |
---|
| 189 | int i, ii, iii; |
---|
| 190 | long *ManagerNodesArray; |
---|
| 191 | |
---|
| 192 | nodeIndex1 = Aig_GetCanonical(bm, nodeIndex1); |
---|
| 193 | nodeIndex2 = Aig_GetCanonical(bm, nodeIndex2); |
---|
| 194 | |
---|
| 195 | if(nodeIndex1 == nodeIndex2) return(nodeIndex1); |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | ManagerNodesArray = bm->NodesArray; |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | newNodeIndex = nodeIndex1; |
---|
| 202 | if (Aig_NonInvertedEdge(nodeIndex1) > Aig_NonInvertedEdge(nodeIndex2)){ |
---|
| 203 | nodeIndex1 = nodeIndex2; |
---|
| 204 | nodeIndex2 = newNodeIndex; |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | if(Aig_IsInverted(nodeIndex2)) { |
---|
| 208 | nodeIndex1 = Aig_Not(nodeIndex1); |
---|
| 209 | nodeIndex2 = Aig_Not(nodeIndex2); |
---|
| 210 | } |
---|
| 211 | |
---|
| 212 | nodeArray = array_alloc(AigEdge_t, 0); |
---|
| 213 | nodeIndex = nodeIndex2; |
---|
| 214 | array_insert_last(AigEdge_t, nodeArray, nodeIndex); |
---|
| 215 | while(Aig_NonInvertedEdge(canonical(nodeIndex)) != Aig_NonInvertedEdge(nodeIndex2)){ |
---|
| 216 | if(Aig_IsInverted(nodeIndex)) |
---|
| 217 | nodeIndex = Aig_Not(canonical(nodeIndex)); |
---|
| 218 | else |
---|
| 219 | nodeIndex = canonical(nodeIndex); |
---|
| 220 | array_insert_last(AigEdge_t, nodeArray, nodeIndex); |
---|
| 221 | } |
---|
| 222 | |
---|
| 223 | AigSetPassFlag(bm, nodeIndex2); |
---|
| 224 | nodeIndex = nodeIndex1; |
---|
| 225 | while(Aig_NonInvertedEdge(canonical(nodeIndex)) != Aig_NonInvertedEdge(nodeIndex1)) { |
---|
| 226 | if(Aig_IsInverted(nodeIndex)) |
---|
| 227 | nodeIndex = Aig_Not(canonical(nodeIndex)); |
---|
| 228 | else |
---|
| 229 | nodeIndex = canonical(nodeIndex); |
---|
| 230 | } |
---|
| 231 | |
---|
| 232 | for(i=0; i<array_n(nodeArray); i++) { |
---|
| 233 | tnodeIndex = array_fetch(AigEdge_t, nodeArray, i); |
---|
| 234 | if(Aig_IsInverted(nodeIndex)) |
---|
| 235 | canonical(nodeIndex) = Aig_Not(tnodeIndex); |
---|
| 236 | else |
---|
| 237 | canonical(nodeIndex) = tnodeIndex; |
---|
| 238 | |
---|
| 239 | if(Aig_IsInverted(nodeIndex)) |
---|
| 240 | nodeIndex = Aig_Not(canonical(nodeIndex)); |
---|
| 241 | else |
---|
| 242 | nodeIndex = canonical(nodeIndex); |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | if(Aig_IsInverted(nodeIndex)) { |
---|
| 246 | canonical(nodeIndex) = Aig_Not(nodeIndex1); |
---|
| 247 | } |
---|
| 248 | else { |
---|
| 249 | canonical(nodeIndex) = nodeIndex1; |
---|
| 250 | } |
---|
| 251 | array_free(nodeArray); |
---|
| 252 | |
---|
| 253 | nodeArray = array_alloc(AigEdge_t, 0); |
---|
| 254 | AigEdgeForEachFanout(bm, nodeIndex2, cur, ii, iii, pfan) { |
---|
| 255 | cur = cur >> 1; |
---|
| 256 | cur = Aig_NonInvertedEdge(cur); |
---|
| 257 | array_insert_last(AigEdge_t, nodeArray, cur); |
---|
| 258 | } |
---|
| 259 | |
---|
| 260 | for(i=0; i<array_n(nodeArray); i++) { |
---|
| 261 | outIndex = array_fetch(AigEdge_t, nodeArray, i); |
---|
| 262 | leftIndex = leftChild(outIndex); |
---|
| 263 | rightIndex = rightChild(outIndex); |
---|
| 264 | |
---|
| 265 | HashTableDelete(bm, outIndex); |
---|
| 266 | |
---|
| 267 | newNodeIndex = Aig_And(bm, leftIndex, rightIndex); |
---|
| 268 | |
---|
| 269 | Aig_Merge(bm, newNodeIndex, outIndex); |
---|
| 270 | |
---|
| 271 | } |
---|
| 272 | array_free(nodeArray); |
---|
| 273 | |
---|
| 274 | bddArray = bm->bddArray; |
---|
| 275 | id1 = AigNodeID(nodeIndex1); |
---|
| 276 | id2 = AigNodeID(nodeIndex2); |
---|
| 277 | if(bddArray[id1] == 0 && bddArray[id2]){ |
---|
| 278 | if(Aig_IsInverted(nodeIndex2)) { |
---|
| 279 | if(Aig_IsInverted(nodeIndex1)) { |
---|
| 280 | bddArray[id1] = bdd_dup(bddArray[id2]); |
---|
| 281 | } |
---|
| 282 | else { |
---|
| 283 | bddArray[id1] = bdd_not(bddArray[id2]); |
---|
| 284 | } |
---|
| 285 | } |
---|
| 286 | else { |
---|
| 287 | if(Aig_IsInverted(nodeIndex1)) { |
---|
| 288 | bddArray[id1] = bdd_not(bddArray[id2]); |
---|
| 289 | } |
---|
| 290 | else { |
---|
| 291 | bddArray[id1] = bdd_dup(bddArray[id2]); |
---|
| 292 | } |
---|
| 293 | } |
---|
| 294 | } |
---|
| 295 | return(nodeIndex1); |
---|
| 296 | } |
---|
| 297 | **/ |
---|
| 298 | |
---|
| 299 | |
---|
| 300 | /**Function******************************************************************** |
---|
| 301 | |
---|
| 302 | Synopsis [Print node information.] |
---|
| 303 | |
---|
| 304 | Description [Print node information.] |
---|
| 305 | |
---|
| 306 | SideEffects [] |
---|
| 307 | |
---|
| 308 | SeeAlso [] |
---|
| 309 | |
---|
| 310 | ******************************************************************************/ |
---|
| 311 | |
---|
| 312 | void |
---|
| 313 | Aig_PrintNode( |
---|
| 314 | Aig_Manager_t *bm, |
---|
| 315 | AigEdge_t i) |
---|
| 316 | { |
---|
| 317 | int j, size; |
---|
| 318 | long cur, *pfan; |
---|
| 319 | |
---|
| 320 | fprintf(stdout, "nodeIndex : %ld (%ld)\n", i, AigNodeID(i)); |
---|
| 321 | fprintf(stdout, "child : %ld%c, %ld%c\n", |
---|
| 322 | Aig_NonInvertedEdge(leftChild(i)), Aig_IsInverted(leftChild(i)) ? '\'' : ' ', |
---|
| 323 | Aig_NonInvertedEdge(rightChild(i)), Aig_IsInverted(rightChild(i)) ? '\'' : ' '); |
---|
| 324 | |
---|
| 325 | fprintf(stdout, "refCount : %ld\n", nFanout(i)); |
---|
| 326 | fprintf(stdout, " : "); |
---|
| 327 | size = nFanout(i); |
---|
| 328 | for(j=0, pfan = (AigEdge_t *)fanout(i); j<size; j++) { |
---|
| 329 | cur = pfan[j]; |
---|
| 330 | cur = cur >> 1; |
---|
| 331 | fprintf(stdout, " %ld", cur); |
---|
| 332 | } |
---|
| 333 | fprintf(stdout, "\n"); |
---|
| 334 | |
---|
| 335 | fprintf(stdout, "next : %ld\n", aig_next(i)); |
---|
| 336 | fflush(stdout); |
---|
| 337 | } |
---|
| 338 | |
---|
| 339 | |
---|
| 340 | /**Function******************************************************************** |
---|
| 341 | |
---|
| 342 | Synopsis [Performs the Logical AND of two nodes.] |
---|
| 343 | |
---|
| 344 | Description [This function performs the Logical AND of two nodes. The inputs |
---|
| 345 | are the indices of the two nodes. This function returns the index |
---|
| 346 | of the result node.] |
---|
| 347 | |
---|
| 348 | SideEffects [] |
---|
| 349 | |
---|
| 350 | SeeAlso [] |
---|
| 351 | |
---|
| 352 | ******************************************************************************/ |
---|
| 353 | AigEdge_t |
---|
| 354 | Aig_And( |
---|
| 355 | Aig_Manager_t *bm, |
---|
| 356 | AigEdge_t nodeIndex1, |
---|
| 357 | AigEdge_t nodeIndex2) |
---|
| 358 | { |
---|
| 359 | |
---|
| 360 | AigEdge_t newNodeIndex; |
---|
| 361 | |
---|
| 362 | nodeIndex1 = Aig_GetCanonical(bm, nodeIndex1); |
---|
| 363 | nodeIndex2 = Aig_GetCanonical(bm, nodeIndex2); |
---|
| 364 | |
---|
| 365 | newNodeIndex = nodeIndex1; /* The left node has the smallest index */ |
---|
| 366 | if (Aig_NonInvertedEdge(nodeIndex1) > Aig_NonInvertedEdge(nodeIndex2)){ |
---|
| 367 | nodeIndex1 = nodeIndex2; |
---|
| 368 | nodeIndex2 = newNodeIndex; |
---|
| 369 | } |
---|
| 370 | |
---|
| 371 | if ( nodeIndex2 == Aig_Zero ) { |
---|
| 372 | return Aig_Zero; |
---|
| 373 | } |
---|
| 374 | if ( nodeIndex1 == Aig_Zero ) { |
---|
| 375 | return Aig_Zero; |
---|
| 376 | } |
---|
| 377 | if ( nodeIndex2 == Aig_One ) { |
---|
| 378 | return nodeIndex1; |
---|
| 379 | } |
---|
| 380 | if ( nodeIndex1 == Aig_One ) { |
---|
| 381 | return nodeIndex2; |
---|
| 382 | } |
---|
| 383 | if ( nodeIndex1 == nodeIndex2 ) { |
---|
| 384 | return nodeIndex1; |
---|
| 385 | } |
---|
| 386 | if ( nodeIndex1 == Aig_Not(nodeIndex2) ) { |
---|
| 387 | return Aig_Zero; |
---|
| 388 | } |
---|
| 389 | |
---|
| 390 | /* Look for the new node in the Hash table */ |
---|
| 391 | newNodeIndex = HashTableLookup(bm, nodeIndex1, nodeIndex2); |
---|
| 392 | |
---|
| 393 | if (newNodeIndex == Aig_NULL){ |
---|
| 394 | if(AigIsVar(bm, nodeIndex1) && AigIsVar(bm, nodeIndex2)) |
---|
| 395 | newNodeIndex = Aig_And2(bm, nodeIndex1, nodeIndex2); |
---|
| 396 | else if(AigIsVar(bm, nodeIndex1)) |
---|
| 397 | newNodeIndex = Aig_And3(bm, nodeIndex1, nodeIndex2); |
---|
| 398 | else if(AigIsVar(bm, nodeIndex2)) |
---|
| 399 | newNodeIndex = Aig_And3(bm, nodeIndex2, nodeIndex1); |
---|
| 400 | else { |
---|
| 401 | newNodeIndex = Aig_And4(bm, nodeIndex1, nodeIndex2); |
---|
| 402 | } |
---|
| 403 | } |
---|
| 404 | |
---|
| 405 | return newNodeIndex; |
---|
| 406 | |
---|
| 407 | } |
---|
| 408 | |
---|
| 409 | /**Function******************************************************************** |
---|
| 410 | |
---|
| 411 | Synopsis [Structural hashing for and2] |
---|
| 412 | |
---|
| 413 | Description [Structural hashing for and2] |
---|
| 414 | |
---|
| 415 | SideEffects [] |
---|
| 416 | |
---|
| 417 | SeeAlso [] |
---|
| 418 | |
---|
| 419 | ******************************************************************************/ |
---|
| 420 | AigEdge_t |
---|
| 421 | Aig_And2( |
---|
| 422 | Aig_Manager_t *bm, |
---|
| 423 | AigEdge_t nodeIndex1, |
---|
| 424 | AigEdge_t nodeIndex2) |
---|
| 425 | { |
---|
| 426 | AigEdge_t newNodeIndex; |
---|
| 427 | |
---|
| 428 | nodeIndex1 = Aig_GetCanonical(bm, nodeIndex1); |
---|
| 429 | nodeIndex2 = Aig_GetCanonical(bm, nodeIndex2); |
---|
| 430 | |
---|
| 431 | newNodeIndex = nodeIndex1; /* The left node has the smallest index */ |
---|
| 432 | if (Aig_NonInvertedEdge(nodeIndex1) > Aig_NonInvertedEdge(nodeIndex2)){ |
---|
| 433 | nodeIndex1 = nodeIndex2; |
---|
| 434 | nodeIndex2 = newNodeIndex; |
---|
| 435 | } |
---|
| 436 | if ( nodeIndex2 == Aig_Zero ) { |
---|
| 437 | return Aig_Zero; |
---|
| 438 | } |
---|
| 439 | if ( nodeIndex1 == Aig_Zero ) { |
---|
| 440 | return Aig_Zero; |
---|
| 441 | } |
---|
| 442 | if ( nodeIndex2 == Aig_One ) { |
---|
| 443 | return nodeIndex1; |
---|
| 444 | } |
---|
| 445 | if ( nodeIndex1 == Aig_One ) { |
---|
| 446 | return nodeIndex2; |
---|
| 447 | } |
---|
| 448 | if ( nodeIndex1 == nodeIndex2 ) { |
---|
| 449 | return nodeIndex1; |
---|
| 450 | } |
---|
| 451 | if ( nodeIndex1 == Aig_Not(nodeIndex2) ) { |
---|
| 452 | return Aig_Zero; |
---|
| 453 | } |
---|
| 454 | newNodeIndex = HashTableLookup(bm, nodeIndex1, nodeIndex2); |
---|
| 455 | |
---|
| 456 | if (newNodeIndex == Aig_NULL){ |
---|
| 457 | newNodeIndex = AigCreateAndNode(bm, nodeIndex1, nodeIndex2) ; |
---|
| 458 | |
---|
| 459 | HashTableAdd(bm, newNodeIndex, nodeIndex1, nodeIndex2); |
---|
| 460 | connectOutput(bm, nodeIndex1, newNodeIndex, 0); |
---|
| 461 | connectOutput(bm, nodeIndex2, newNodeIndex, 1); |
---|
| 462 | |
---|
| 463 | #if 0 |
---|
| 464 | #ifdef LEARNING_ |
---|
| 465 | tNodeIndex = HashTableLookup(bm, Aig_Not(nodeIndex1), nodeIndex2); |
---|
| 466 | if(tNodeIndex) Aig_Learn(bm, nodeIndex1, nodeIndex2); |
---|
| 467 | |
---|
| 468 | tNodeIndex = HashTableLookup(bm, nodeIndex1, Aig_Not(nodeIndex2)); |
---|
| 469 | if(tNodeIndex) Aig_Learn(bm, nodeIndex2, nodeIndex1); |
---|
| 470 | #endif |
---|
| 471 | #endif |
---|
| 472 | } |
---|
| 473 | return newNodeIndex; |
---|
| 474 | |
---|
| 475 | } |
---|
| 476 | |
---|
| 477 | /**Function******************************************************************** |
---|
| 478 | |
---|
| 479 | Synopsis [Performs the Logical AND of multiple nodes.] |
---|
| 480 | |
---|
| 481 | Description [This function performs the Logical AND of multiple nodes. The input |
---|
| 482 | is the array of the node indices. This function returns the index |
---|
| 483 | of the result node.] |
---|
| 484 | |
---|
| 485 | SideEffects [] |
---|
| 486 | |
---|
| 487 | SeeAlso [] |
---|
| 488 | |
---|
| 489 | ******************************************************************************/ |
---|
| 490 | AigEdge_t |
---|
| 491 | Aig_AndsInBFSManner( |
---|
| 492 | Aig_Manager_t *bm, |
---|
| 493 | array_t * nodeIndexArray) |
---|
| 494 | { |
---|
| 495 | AigEdge_t nodeIndex1, nodeIndex2, nodeIndex3, newNodeIndex; |
---|
| 496 | array_t * tmpNodeIndexArray; |
---|
| 497 | int i; |
---|
| 498 | |
---|
| 499 | nodeIndex1 = 0; |
---|
| 500 | nodeIndex2 = 0; |
---|
| 501 | nodeIndex3 = 0; |
---|
| 502 | newNodeIndex = 0; |
---|
| 503 | |
---|
| 504 | tmpNodeIndexArray = array_alloc(AigEdge_t, nodeIndexArray->num/2 + 1); |
---|
| 505 | |
---|
| 506 | if (nodeIndexArray->num == 1) { |
---|
| 507 | newNodeIndex = array_fetch(AigEdge_t, nodeIndexArray, 0); |
---|
| 508 | array_free(tmpNodeIndexArray); |
---|
| 509 | return newNodeIndex; |
---|
| 510 | } |
---|
| 511 | else if (nodeIndexArray->num == 0) { |
---|
| 512 | array_free(tmpNodeIndexArray); |
---|
| 513 | return Aig_NULL; |
---|
| 514 | } |
---|
| 515 | |
---|
| 516 | for(i = 0; i < nodeIndexArray->num; i=i+2) { |
---|
| 517 | nodeIndex1 = array_fetch(AigEdge_t, nodeIndexArray, i); |
---|
| 518 | if (i < nodeIndexArray->num-1) { |
---|
| 519 | nodeIndex2 = array_fetch(AigEdge_t, nodeIndexArray, i+1); |
---|
| 520 | nodeIndex3 = Aig_And(bm, nodeIndex1, nodeIndex2); |
---|
| 521 | } else |
---|
| 522 | nodeIndex3 = nodeIndex1; |
---|
| 523 | |
---|
| 524 | array_insert_last(AigEdge_t, tmpNodeIndexArray, nodeIndex3); |
---|
| 525 | } |
---|
| 526 | |
---|
| 527 | if (tmpNodeIndexArray->num > 1) |
---|
| 528 | newNodeIndex = Aig_AndsInBFSManner(bm, tmpNodeIndexArray); |
---|
| 529 | else |
---|
| 530 | newNodeIndex = nodeIndex3; |
---|
| 531 | |
---|
| 532 | array_free(tmpNodeIndexArray); |
---|
| 533 | |
---|
| 534 | return newNodeIndex; |
---|
| 535 | |
---|
| 536 | } |
---|
| 537 | |
---|
| 538 | /**Function******************************************************************** |
---|
| 539 | |
---|
| 540 | Synopsis [Performs the Logical OR of two nodes.] |
---|
| 541 | |
---|
| 542 | Description [This function performs the Logical OR of two nodes. The inputs |
---|
| 543 | are the indices of the two nodes. This function returns the index |
---|
| 544 | of the result node.] |
---|
| 545 | |
---|
| 546 | SideEffects [] |
---|
| 547 | |
---|
| 548 | SeeAlso [] |
---|
| 549 | |
---|
| 550 | ******************************************************************************/ |
---|
| 551 | AigEdge_t |
---|
| 552 | Aig_Or( |
---|
| 553 | Aig_Manager_t *bm, |
---|
| 554 | AigEdge_t nodeIndex1, |
---|
| 555 | AigEdge_t nodeIndex2) |
---|
| 556 | { |
---|
| 557 | AigEdge_t NotNodeIndex1; |
---|
| 558 | AigEdge_t NotNodeIndex2; |
---|
| 559 | AigEdge_t AndNodeIndex; |
---|
| 560 | AigEdge_t NotNodeIndex; |
---|
| 561 | |
---|
| 562 | NotNodeIndex1 = Aig_Not(nodeIndex1); |
---|
| 563 | NotNodeIndex2 = Aig_Not(nodeIndex2); |
---|
| 564 | AndNodeIndex = Aig_And(bm, NotNodeIndex1, NotNodeIndex2); |
---|
| 565 | NotNodeIndex = Aig_Not(AndNodeIndex); |
---|
| 566 | |
---|
| 567 | return NotNodeIndex; |
---|
| 568 | |
---|
| 569 | } |
---|
| 570 | |
---|
| 571 | /**Function******************************************************************** |
---|
| 572 | |
---|
| 573 | Synopsis [Performs the Logical OR of multiple nodes.] |
---|
| 574 | |
---|
| 575 | Description [This function performs the Logical OR of multiple nodes. The input |
---|
| 576 | is the array of the node indices. This function returns the index |
---|
| 577 | of the result node.] |
---|
| 578 | |
---|
| 579 | SideEffects [] |
---|
| 580 | |
---|
| 581 | SeeAlso [] |
---|
| 582 | |
---|
| 583 | ******************************************************************************/ |
---|
| 584 | AigEdge_t |
---|
| 585 | Aig_OrsInBFSManner( |
---|
| 586 | Aig_Manager_t *bm, |
---|
| 587 | array_t * nodeIndexArray) |
---|
| 588 | { |
---|
| 589 | int i; |
---|
| 590 | AigEdge_t nodeIndex1, nodeIndex2, nodeIndex3, newNodeIndex; |
---|
| 591 | array_t * tmpNodeIndexArray; |
---|
| 592 | |
---|
| 593 | nodeIndex1 = 0; |
---|
| 594 | nodeIndex2 = 0; |
---|
| 595 | nodeIndex3 = 0; |
---|
| 596 | newNodeIndex = 0; |
---|
| 597 | |
---|
| 598 | tmpNodeIndexArray = array_alloc(AigEdge_t, nodeIndexArray->num/2 + 1); |
---|
| 599 | |
---|
| 600 | if (nodeIndexArray->num == 1) { |
---|
| 601 | newNodeIndex = array_fetch(AigEdge_t, nodeIndexArray, 0); |
---|
| 602 | array_free(tmpNodeIndexArray); |
---|
| 603 | return newNodeIndex; |
---|
| 604 | } |
---|
| 605 | else if (nodeIndexArray->num == 0) { |
---|
| 606 | array_free(tmpNodeIndexArray); |
---|
| 607 | return Aig_NULL; |
---|
| 608 | } |
---|
| 609 | |
---|
| 610 | for(i = 0; i < nodeIndexArray->num; i=i+2) { |
---|
| 611 | nodeIndex1 = array_fetch(AigEdge_t, nodeIndexArray, i); |
---|
| 612 | if (i < nodeIndexArray->num-1) { |
---|
| 613 | nodeIndex2 = array_fetch(AigEdge_t, nodeIndexArray, i+1); |
---|
| 614 | nodeIndex3 = Aig_Or(bm, nodeIndex1, nodeIndex2); |
---|
| 615 | } else |
---|
| 616 | nodeIndex3 = nodeIndex1; |
---|
| 617 | |
---|
| 618 | array_insert_last(AigEdge_t, tmpNodeIndexArray, nodeIndex3); |
---|
| 619 | } |
---|
| 620 | |
---|
| 621 | if (tmpNodeIndexArray->num > 1) |
---|
| 622 | newNodeIndex = Aig_OrsInBFSManner(bm, tmpNodeIndexArray); |
---|
| 623 | else |
---|
| 624 | newNodeIndex = nodeIndex3; |
---|
| 625 | |
---|
| 626 | array_free(tmpNodeIndexArray); |
---|
| 627 | |
---|
| 628 | return newNodeIndex; |
---|
| 629 | |
---|
| 630 | } |
---|
| 631 | |
---|
| 632 | /**Function******************************************************************** |
---|
| 633 | |
---|
| 634 | Synopsis [Performs the Logical XOR of two nodes.] |
---|
| 635 | |
---|
| 636 | Description [This function performs the Logical XOR of two nodes. The inputs |
---|
| 637 | are the indices of the two nodes. This function returns the index |
---|
| 638 | of the result node.] |
---|
| 639 | |
---|
| 640 | SideEffects [] |
---|
| 641 | |
---|
| 642 | SeeAlso [] |
---|
| 643 | |
---|
| 644 | ******************************************************************************/ |
---|
| 645 | AigEdge_t |
---|
| 646 | Aig_Xor( |
---|
| 647 | Aig_Manager_t *bm, |
---|
| 648 | AigEdge_t nodeIndex1, |
---|
| 649 | AigEdge_t nodeIndex2) |
---|
| 650 | { |
---|
| 651 | AigEdge_t NotNodeIndex1; |
---|
| 652 | AigEdge_t NotNodeIndex2; |
---|
| 653 | AigEdge_t AndNodeIndex1; |
---|
| 654 | AigEdge_t AndNodeIndex2; |
---|
| 655 | AigEdge_t OrNodeIndex; |
---|
| 656 | |
---|
| 657 | NotNodeIndex1 = Aig_Not(nodeIndex1); |
---|
| 658 | NotNodeIndex2 = Aig_Not(nodeIndex2); |
---|
| 659 | AndNodeIndex1 = Aig_And(bm, nodeIndex1, NotNodeIndex2); |
---|
| 660 | AndNodeIndex2 = Aig_And(bm, NotNodeIndex1, nodeIndex2); |
---|
| 661 | |
---|
| 662 | OrNodeIndex = Aig_Or(bm, AndNodeIndex1, AndNodeIndex2); |
---|
| 663 | |
---|
| 664 | return OrNodeIndex; |
---|
| 665 | } |
---|
| 666 | |
---|
| 667 | /**Function******************************************************************** |
---|
| 668 | |
---|
| 669 | Synopsis [Performs the Logical Equal ( <--> XNOR) of two nodes.] |
---|
| 670 | |
---|
| 671 | Description [This function performs the Logical XNOR of two nodes. The inputs |
---|
| 672 | are the indices of the two nodes. This function returns the index |
---|
| 673 | of the result node.] |
---|
| 674 | |
---|
| 675 | SideEffects [] |
---|
| 676 | |
---|
| 677 | SeeAlso [] |
---|
| 678 | |
---|
| 679 | ******************************************************************************/ |
---|
| 680 | AigEdge_t |
---|
| 681 | Aig_Eq( |
---|
| 682 | Aig_Manager_t *bm, |
---|
| 683 | AigEdge_t nodeIndex1, |
---|
| 684 | AigEdge_t nodeIndex2) |
---|
| 685 | { |
---|
| 686 | return Aig_Not( |
---|
| 687 | Aig_Xor(bm, nodeIndex1, nodeIndex2) |
---|
| 688 | ); |
---|
| 689 | } |
---|
| 690 | |
---|
| 691 | /**Function******************************************************************** |
---|
| 692 | |
---|
| 693 | Synopsis [Performs the Logical Then (--> Implies) of two nodes.] |
---|
| 694 | |
---|
| 695 | Description [This function performs the Logical Implies of two nodes. The inputs |
---|
| 696 | are the indices of the two nodes. This function returns the index |
---|
| 697 | of the result node.] |
---|
| 698 | |
---|
| 699 | SideEffects [] |
---|
| 700 | |
---|
| 701 | SeeAlso [] |
---|
| 702 | |
---|
| 703 | ******************************************************************************/ |
---|
| 704 | AigEdge_t |
---|
| 705 | Aig_Then( |
---|
| 706 | Aig_Manager_t *bm, |
---|
| 707 | AigEdge_t nodeIndex1, |
---|
| 708 | AigEdge_t nodeIndex2) |
---|
| 709 | { |
---|
| 710 | return Aig_Or(bm, |
---|
| 711 | Aig_Not(nodeIndex1), |
---|
| 712 | nodeIndex2); |
---|
| 713 | } |
---|
| 714 | |
---|
| 715 | /**Function******************************************************************** |
---|
| 716 | |
---|
| 717 | Synopsis [Performs the Logical nand of two nodes.] |
---|
| 718 | |
---|
| 719 | Description [This function performs the Logical NAND of two nodes. The inputs |
---|
| 720 | are the indices of the two nodes. This function returns the index |
---|
| 721 | of the result node.] |
---|
| 722 | |
---|
| 723 | SideEffects [] |
---|
| 724 | |
---|
| 725 | SeeAlso [] |
---|
| 726 | |
---|
| 727 | ******************************************************************************/ |
---|
| 728 | AigEdge_t |
---|
| 729 | Aig_Nand( |
---|
| 730 | Aig_Manager_t *bm, |
---|
| 731 | AigEdge_t nodeIndex1, |
---|
| 732 | AigEdge_t nodeIndex2) |
---|
| 733 | { |
---|
| 734 | return Aig_Not( |
---|
| 735 | Aig_And(bm, nodeIndex1, nodeIndex2) |
---|
| 736 | ); |
---|
| 737 | } |
---|
| 738 | |
---|
| 739 | /**Function******************************************************************** |
---|
| 740 | |
---|
| 741 | Synopsis [Performs the Logical ITE of three nodes.] |
---|
| 742 | |
---|
| 743 | Description [This function performs the Logical ITE of three nodes. The inputs |
---|
| 744 | are the indices of the three nodes. This function returns the index |
---|
| 745 | of the result node.] |
---|
| 746 | |
---|
| 747 | SideEffects [] |
---|
| 748 | |
---|
| 749 | SeeAlso [] |
---|
| 750 | |
---|
| 751 | ******************************************************************************/ |
---|
| 752 | AigEdge_t |
---|
| 753 | Aig_Ite( |
---|
| 754 | Aig_Manager_t *bm, |
---|
| 755 | AigEdge_t nodeIndex1, |
---|
| 756 | AigEdge_t nodeIndex2, |
---|
| 757 | AigEdge_t nodeIndex3) |
---|
| 758 | { |
---|
| 759 | AigEdge_t rIndex, nodeIndex4, nodeIndex5; |
---|
| 760 | |
---|
| 761 | nodeIndex4 = Aig_Then(bm, nodeIndex1, nodeIndex2); |
---|
| 762 | nodeIndex5 = Aig_Or(bm, nodeIndex1, nodeIndex3); |
---|
| 763 | |
---|
| 764 | rIndex = Aig_And(bm, nodeIndex4, nodeIndex5); |
---|
| 765 | return rIndex; |
---|
| 766 | } |
---|
| 767 | |
---|
| 768 | |
---|
| 769 | /**Function******************************************************************** |
---|
| 770 | |
---|
| 771 | Synopsis [Generates a Aig for the function x - y ≥ c.] |
---|
| 772 | |
---|
| 773 | Description [This function generates a Aig for the function x -y ≥ c. |
---|
| 774 | Both x and y are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\] and |
---|
| 775 | y\[0\] y\[1\] ... y\[N-1\], with 0 the most significant bit. |
---|
| 776 | The BDD is built bottom-up. |
---|
| 777 | It has a linear number of nodes if the variables are ordered as follows: |
---|
| 778 | x\[0\] y\[0\] x\[1\] y\[1\] ... x\[N-1\] y\[N-1\].] |
---|
| 779 | |
---|
| 780 | SideEffects [None] |
---|
| 781 | |
---|
| 782 | SeeAlso [] |
---|
| 783 | |
---|
| 784 | ******************************************************************************/ |
---|
| 785 | #if 0 |
---|
| 786 | AigEdge_t |
---|
| 787 | Aig_Inequality( |
---|
| 788 | Aig_Manager_t *bm, |
---|
| 789 | int N /* number of x and y variables */, |
---|
| 790 | int c /* right-hand side constant */, |
---|
| 791 | AigEdge_t *x /* array of x variables */, |
---|
| 792 | AigEdge_t *y /* array of y variables */) |
---|
| 793 | { |
---|
| 794 | /* The nodes at level i represent values of the difference that are |
---|
| 795 | ** multiples of 2^i. We use variables with names starting with k |
---|
| 796 | ** to denote the multipliers of 2^i in such multiples. */ |
---|
| 797 | int kTrue = c; |
---|
| 798 | int kFalse = c - 1; |
---|
| 799 | /* Mask used to compute the ceiling function. Since we divide by 2^i, |
---|
| 800 | ** we want to know whether the dividend is a multiple of 2^i. If it is, |
---|
| 801 | ** then ceiling and floor coincide; otherwise, they differ by one. */ |
---|
| 802 | int mask = 1; |
---|
| 803 | int i; |
---|
| 804 | |
---|
| 805 | AigEdge_t f = Aig_NULL; /* the eventual result */ |
---|
| 806 | |
---|
| 807 | /* Two x-labeled nodes are created at most at each iteration. They are |
---|
| 808 | ** stored, along with their k values, in these variables. At each level, |
---|
| 809 | ** the old nodes are freed and the new nodes are copied into the old map. |
---|
| 810 | */ |
---|
| 811 | AigEdge_t map[2]; |
---|
| 812 | int invalidIndex = (1 << N)-1; |
---|
| 813 | int index[2] = {invalidIndex, invalidIndex}; |
---|
| 814 | |
---|
| 815 | /* This should never happen. */ |
---|
| 816 | if (N < 0) return(Aig_NULL); |
---|
| 817 | |
---|
| 818 | /* If there are no bits, both operands are 0. The result depends on c. */ |
---|
| 819 | if (N == 0) { |
---|
| 820 | if (c >= 0) return(Aig_One); |
---|
| 821 | else return(Aig_Zero); |
---|
| 822 | } |
---|
| 823 | |
---|
| 824 | /* The maximum or the minimum difference comparing to c can generate the terminal case */ |
---|
| 825 | if ((1 << N) - 1 < c) return(Aig_Zero); |
---|
| 826 | else if ((-(1 << N) + 1) >= c) return(Aig_One); |
---|
| 827 | |
---|
| 828 | /* Build the result bottom up. */ |
---|
| 829 | for (i = 1; i <= N; i++) { |
---|
| 830 | int kTrueLower, kFalseLower; |
---|
| 831 | int leftChild, middleChild, rightChild; |
---|
| 832 | AigEdge_t g0, g1, fplus, fequal, fminus; |
---|
| 833 | int j; |
---|
| 834 | AigEdge_t newMap[2]; |
---|
| 835 | int newIndex[2]; |
---|
| 836 | |
---|
| 837 | kTrueLower = kTrue; /** 2, **/ |
---|
| 838 | kFalseLower = kFalse; /** 1, **/ |
---|
| 839 | /* kTrue = ceiling((c-1)/2^i) + 1 */ |
---|
| 840 | kTrue = ((c-1) >> i) + ((c & mask) != 1) + 1; /** 2, **/ |
---|
| 841 | mask = (mask << 1) | 1; /** 0x11, **/ |
---|
| 842 | /* kFalse = floor(c/2^i) - 1 */ |
---|
| 843 | kFalse = (c >> i) - 1; /** 0, **/ |
---|
| 844 | newIndex[0] = invalidIndex; |
---|
| 845 | newIndex[1] = invalidIndex; |
---|
| 846 | |
---|
| 847 | for (j = kFalse + 1; j < kTrue; j++) { |
---|
| 848 | /* Skip if node is not reachable from top of AIG. */ |
---|
| 849 | if ((j >= (1 << (N - i))) || (j <= -(1 << (N -i)))) continue; |
---|
| 850 | |
---|
| 851 | /* Find f- */ |
---|
| 852 | leftChild = (j << 1) - 1; |
---|
| 853 | if (leftChild >= kTrueLower) { |
---|
| 854 | fminus = Aig_One; |
---|
| 855 | } else if (leftChild <= kFalseLower) { |
---|
| 856 | fminus = Aig_Zero; |
---|
| 857 | } else { |
---|
| 858 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
| 859 | if (leftChild == index[0]) { |
---|
| 860 | fminus = map[0]; |
---|
| 861 | } else { |
---|
| 862 | fminus = map[1]; |
---|
| 863 | } |
---|
| 864 | } |
---|
| 865 | |
---|
| 866 | /* Find f= */ |
---|
| 867 | middleChild = j << 1; |
---|
| 868 | if (middleChild >= kTrueLower) { |
---|
| 869 | fequal = Aig_One; |
---|
| 870 | } else if (middleChild <= kFalseLower) { |
---|
| 871 | fequal = Aig_Zero; |
---|
| 872 | } else { |
---|
| 873 | assert(middleChild == index[0] || middleChild == index[1]); |
---|
| 874 | if (middleChild == index[0]) { |
---|
| 875 | fequal = map[0]; |
---|
| 876 | } else { |
---|
| 877 | fequal = map[1]; |
---|
| 878 | } |
---|
| 879 | } |
---|
| 880 | |
---|
| 881 | /* Find f+ */ |
---|
| 882 | rightChild = (j << 1) + 1; |
---|
| 883 | if (rightChild >= kTrueLower) { |
---|
| 884 | fplus = Aig_One; |
---|
| 885 | } else if (rightChild <= kFalseLower) { |
---|
| 886 | fplus = Aig_Zero; |
---|
| 887 | } else { |
---|
| 888 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
| 889 | if (rightChild == index[0]) { |
---|
| 890 | fplus = map[0]; |
---|
| 891 | } else { |
---|
| 892 | fplus = map[1]; |
---|
| 893 | } |
---|
| 894 | } |
---|
| 895 | |
---|
| 896 | /* Build new nodes. */ |
---|
| 897 | g1 = Aig_Ite(bm, y[N - i], fequal, fplus); |
---|
| 898 | if (g1 == Aig_NULL) return(Aig_NULL); |
---|
| 899 | g0 = Aig_Ite(bm, y[N - i], fminus, fequal); |
---|
| 900 | if (g0 == Aig_NULL) return(Aig_NULL); |
---|
| 901 | f = Aig_Ite(bm, x[N - i], g1, g0); |
---|
| 902 | if (f == Aig_NULL) return(Aig_NULL); |
---|
| 903 | |
---|
| 904 | /* Save newly computed node in map. */ |
---|
| 905 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
| 906 | if (newIndex[0] == invalidIndex) { |
---|
| 907 | newIndex[0] = j; |
---|
| 908 | newMap[0] = f; |
---|
| 909 | } else { |
---|
| 910 | newIndex[1] = j; |
---|
| 911 | newMap[1] = f; |
---|
| 912 | } |
---|
| 913 | } |
---|
| 914 | |
---|
| 915 | /* Copy new map to map. */ |
---|
| 916 | map[0] = newMap[0]; |
---|
| 917 | map[1] = newMap[1]; |
---|
| 918 | index[0] = newIndex[0]; |
---|
| 919 | index[1] = newIndex[1]; |
---|
| 920 | } |
---|
| 921 | |
---|
| 922 | return(f); |
---|
| 923 | |
---|
| 924 | } /* end of Aig_Inequality */ |
---|
| 925 | #endif |
---|
| 926 | |
---|
| 927 | AigEdge_t |
---|
| 928 | Aig_Inequality( |
---|
| 929 | Aig_Manager_t *bm, |
---|
| 930 | int N /* number of x and y variables */, |
---|
| 931 | int nx /* number of x variables */, |
---|
| 932 | int ny /* number of y variables */, |
---|
| 933 | int c /* right-hand side constant */, |
---|
| 934 | AigEdge_t *x /* array of x variables */, |
---|
| 935 | AigEdge_t *y /* array of y variables */) |
---|
| 936 | { |
---|
| 937 | /* The nodes at level i represent values of the difference that are |
---|
| 938 | ** multiples of 2^i. We use variables with names starting with k |
---|
| 939 | ** to denote the multipliers of 2^i in such multiples. */ |
---|
| 940 | int kTrue = c; |
---|
| 941 | int kFalse = c - 1; |
---|
| 942 | /* Mask used to compute the ceiling function. Since we divide by 2^i, |
---|
| 943 | ** we want to know whether the dividend is a multiple of 2^i. If it is, |
---|
| 944 | ** then ceiling and floor coincide; otherwise, they differ by one. */ |
---|
| 945 | int mask = 1; |
---|
| 946 | int i; |
---|
| 947 | |
---|
| 948 | AigEdge_t f = Aig_NULL; /* the eventual result */ |
---|
| 949 | |
---|
| 950 | /* Two x-labeled nodes are created at most at each iteration. They are |
---|
| 951 | ** stored, along with their k values, in these variables. At each level, |
---|
| 952 | ** the old nodes are freed and the new nodes are copied into the old map. |
---|
| 953 | */ |
---|
| 954 | AigEdge_t map[2]; |
---|
| 955 | int invalidIndex = (1 << N)-1; |
---|
| 956 | int index[2] = {invalidIndex, invalidIndex}; |
---|
| 957 | int kTrueLower, kFalseLower; |
---|
| 958 | int leftChild, middleChild, rightChild; |
---|
| 959 | AigEdge_t g0, g1, fplus, fequal, fminus; |
---|
| 960 | int j; |
---|
| 961 | AigEdge_t newMap[2]; |
---|
| 962 | int newIndex[2]; |
---|
| 963 | |
---|
| 964 | map[0] = 0; |
---|
| 965 | map[1] = 0; |
---|
| 966 | newMap[0] = 0; |
---|
| 967 | newMap[1] = 0; |
---|
| 968 | |
---|
| 969 | /* This should never happen. */ |
---|
| 970 | if (N < 0) return(Aig_NULL); |
---|
| 971 | |
---|
| 972 | /* If there are no bits, both operands are 0. The result depends on c. */ |
---|
| 973 | if (N == 0) { |
---|
| 974 | if (c >= 0) return(Aig_One); |
---|
| 975 | else return(Aig_Zero); |
---|
| 976 | } |
---|
| 977 | |
---|
| 978 | /* The maximum or the minimum difference comparing to c can generate the terminal case */ |
---|
| 979 | if ((1 << N) - 1 < c) return(Aig_Zero); |
---|
| 980 | else if ((-(1 << N) + 1) >= c) return(Aig_One); |
---|
| 981 | |
---|
| 982 | /* Build the result bottom up. */ |
---|
| 983 | for (i = 1; i <= N; i++) { |
---|
| 984 | kTrueLower = kTrue; /** 2, **/ |
---|
| 985 | kFalseLower = kFalse; /** 1, **/ |
---|
| 986 | /* kTrue = ceiling((c-1)/2^i) + 1 */ |
---|
| 987 | kTrue = ((c-1) >> i) + ((c & mask) != 1) + 1; /** 2, **/ |
---|
| 988 | mask = (mask << 1) | 1; /** 0x11, **/ |
---|
| 989 | /* kFalse = floor(c/2^i) - 1 */ |
---|
| 990 | kFalse = (c >> i) - 1; /** 0, **/ |
---|
| 991 | newIndex[0] = invalidIndex; |
---|
| 992 | newIndex[1] = invalidIndex; |
---|
| 993 | |
---|
| 994 | for (j = kFalse + 1; j < kTrue; j++) { |
---|
| 995 | /* Skip if node is not reachable from top of AIG. */ |
---|
| 996 | if ((j >= (1 << (N - i))) || (j <= -(1 << (N -i)))) continue; |
---|
| 997 | |
---|
| 998 | /* Find f- */ |
---|
| 999 | leftChild = (j << 1) - 1; |
---|
| 1000 | if (leftChild >= kTrueLower) { |
---|
| 1001 | fminus = Aig_One; |
---|
| 1002 | } else if (leftChild <= kFalseLower) { |
---|
| 1003 | fminus = Aig_Zero; |
---|
| 1004 | } else { |
---|
| 1005 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
| 1006 | if (leftChild == index[0]) { |
---|
| 1007 | fminus = map[0]; |
---|
| 1008 | } else { |
---|
| 1009 | fminus = map[1]; |
---|
| 1010 | } |
---|
| 1011 | } |
---|
| 1012 | |
---|
| 1013 | /* Find f= */ |
---|
| 1014 | middleChild = j << 1; |
---|
| 1015 | if (middleChild >= kTrueLower) { |
---|
| 1016 | fequal = Aig_One; |
---|
| 1017 | } else if (middleChild <= kFalseLower) { |
---|
| 1018 | fequal = Aig_Zero; |
---|
| 1019 | } else { |
---|
| 1020 | assert(middleChild == index[0] || middleChild == index[1]); |
---|
| 1021 | if (middleChild == index[0]) { |
---|
| 1022 | fequal = map[0]; |
---|
| 1023 | } else { |
---|
| 1024 | fequal = map[1]; |
---|
| 1025 | } |
---|
| 1026 | } |
---|
| 1027 | |
---|
| 1028 | /* Find f+ */ |
---|
| 1029 | rightChild = (j << 1) + 1; |
---|
| 1030 | if (rightChild >= kTrueLower) { |
---|
| 1031 | fplus = Aig_One; |
---|
| 1032 | } else if (rightChild <= kFalseLower) { |
---|
| 1033 | fplus = Aig_Zero; |
---|
| 1034 | } else { |
---|
| 1035 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
| 1036 | if (rightChild == index[0]) { |
---|
| 1037 | fplus = map[0]; |
---|
| 1038 | } else { |
---|
| 1039 | fplus = map[1]; |
---|
| 1040 | } |
---|
| 1041 | } |
---|
| 1042 | |
---|
| 1043 | /* Build new nodes. */ |
---|
| 1044 | if (i > ny) |
---|
| 1045 | g1 = fplus; |
---|
| 1046 | else |
---|
| 1047 | g1 = Aig_Ite(bm, y[i-1], fequal, fplus); |
---|
| 1048 | |
---|
| 1049 | if (g1 == Aig_NULL) return(Aig_NULL); |
---|
| 1050 | |
---|
| 1051 | if (i > ny) |
---|
| 1052 | g0 = fequal; |
---|
| 1053 | else |
---|
| 1054 | g0 = Aig_Ite(bm, y[i-1], fminus, fequal); |
---|
| 1055 | |
---|
| 1056 | if (g0 == Aig_NULL) return(Aig_NULL); |
---|
| 1057 | |
---|
| 1058 | if (i > nx) |
---|
| 1059 | f = g0; |
---|
| 1060 | else |
---|
| 1061 | f = Aig_Ite(bm, x[i-1], g1, g0); |
---|
| 1062 | |
---|
| 1063 | if (f == Aig_NULL) return(Aig_NULL); |
---|
| 1064 | |
---|
| 1065 | /* Save newly computed node in map. */ |
---|
| 1066 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
| 1067 | if (newIndex[0] == invalidIndex) { |
---|
| 1068 | newIndex[0] = j; |
---|
| 1069 | newMap[0] = f; |
---|
| 1070 | } else { |
---|
| 1071 | newIndex[1] = j; |
---|
| 1072 | newMap[1] = f; |
---|
| 1073 | } |
---|
| 1074 | } |
---|
| 1075 | |
---|
| 1076 | /* Copy new map to map. */ |
---|
| 1077 | map[0] = newMap[0]; |
---|
| 1078 | map[1] = newMap[1]; |
---|
| 1079 | index[0] = newIndex[0]; |
---|
| 1080 | index[1] = newIndex[1]; |
---|
| 1081 | } |
---|
| 1082 | |
---|
| 1083 | return(f); |
---|
| 1084 | |
---|
| 1085 | } /* end of Aig_Inequality */ |
---|
| 1086 | |
---|
| 1087 | |
---|
| 1088 | /**Function******************************************************************** |
---|
| 1089 | |
---|
| 1090 | Synopsis [Generates a AIG for the function x - y = c.] |
---|
| 1091 | |
---|
| 1092 | Description [This function generates a AIG for the function x -y = c. |
---|
| 1093 | Both x and y are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\] and |
---|
| 1094 | y\[0\] y\[1\] ... y\[N-1\], with 0 the most significant bit. |
---|
| 1095 | The AIG is built bottom-up. |
---|
| 1096 | It has a linear number of nodes if the variables are ordered as follows: |
---|
| 1097 | x\[0\] y\[0\] x\[1\] y\[1\] ... x\[N-1\] y\[N-1\].] |
---|
| 1098 | |
---|
| 1099 | SideEffects [None] |
---|
| 1100 | |
---|
| 1101 | SeeAlso [] |
---|
| 1102 | |
---|
| 1103 | ******************************************************************************/ |
---|
| 1104 | AigEdge_t |
---|
| 1105 | Aig_Equality( |
---|
| 1106 | Aig_Manager_t *bm, |
---|
| 1107 | int N /* number of max variables */, |
---|
| 1108 | int nx /* number of x variables */, |
---|
| 1109 | int ny /* number of y variables */, |
---|
| 1110 | int c /* right-hand side constant */, |
---|
| 1111 | AigEdge_t *x /* array of x variables */, |
---|
| 1112 | AigEdge_t *y /* array of y variables */) |
---|
| 1113 | { |
---|
| 1114 | /* The nodes at level i represent values of the difference that are |
---|
| 1115 | ** multiples of 2^i. We use variables with names starting with k |
---|
| 1116 | ** to denote the multipliers of 2^i in such multiples. */ |
---|
| 1117 | int kTrueLb = c + 1; |
---|
| 1118 | int kTrueUb = c - 1; |
---|
| 1119 | int kTrue = c; |
---|
| 1120 | /* Mask used to compute the ceiling function. Since we divide by 2^i, |
---|
| 1121 | ** we want to know whether the dividend is a multiple of 2^i. If it is, |
---|
| 1122 | ** then ceiling and floor coincide; otherwise, they differ by one. */ |
---|
| 1123 | int mask = 1; |
---|
| 1124 | int i; |
---|
| 1125 | |
---|
| 1126 | AigEdge_t f = Aig_NULL; /* the eventual result */ |
---|
| 1127 | |
---|
| 1128 | /* Two x-labeled nodes are created at most at each iteration. They are |
---|
| 1129 | ** stored, along with their k values, in these variables. At each level, |
---|
| 1130 | ** the old nodes are freed and the new nodes are copied into the old map. |
---|
| 1131 | */ |
---|
| 1132 | AigEdge_t map[2]; |
---|
| 1133 | int invalidIndex = (1 << N)-1; |
---|
| 1134 | int index[2] = {invalidIndex, invalidIndex}; |
---|
| 1135 | |
---|
| 1136 | int kTrueLbLower, kTrueUbLower; |
---|
| 1137 | int leftChild, middleChild, rightChild; |
---|
| 1138 | AigEdge_t g0, g1, fplus, fequal, fminus; |
---|
| 1139 | int j; |
---|
| 1140 | AigEdge_t newMap[2]; |
---|
| 1141 | int newIndex[2]; |
---|
| 1142 | |
---|
| 1143 | map[0] = 0; |
---|
| 1144 | map[1] = 0; |
---|
| 1145 | newMap[0] = 0; |
---|
| 1146 | newMap[1] = 0; |
---|
| 1147 | |
---|
| 1148 | /* This should never happen. */ |
---|
| 1149 | if (N < 0) return(Aig_NULL); |
---|
| 1150 | |
---|
| 1151 | /* If there are no bits, both operands are 0. The result depends on c. */ |
---|
| 1152 | if (N == 0) { |
---|
| 1153 | if (c != 0) return(Aig_Zero); |
---|
| 1154 | else return(Aig_One); |
---|
| 1155 | } |
---|
| 1156 | |
---|
| 1157 | /* The maximum or the minimum difference comparing to c can generate the terminal case */ |
---|
| 1158 | if ((1 << N) - 1 < c || (-(1 << N) + 1) > c) return(Aig_Zero); |
---|
| 1159 | |
---|
| 1160 | /* Build the result bottom up. */ |
---|
| 1161 | for (i = 1; i <= N; i++) { |
---|
| 1162 | |
---|
| 1163 | kTrueLbLower = kTrueLb; |
---|
| 1164 | kTrueUbLower = kTrueUb; |
---|
| 1165 | /* kTrueLb = floor((c-1)/2^i) + 2 */ |
---|
| 1166 | kTrueLb = ((c-1) >> i) + 2; |
---|
| 1167 | /* kTrueUb = ceiling((c+1)/2^i) - 2 */ |
---|
| 1168 | kTrueUb = ((c+1) >> i) + (((c+2) & mask) != 1) - 2; |
---|
| 1169 | mask = (mask << 1) | 1; |
---|
| 1170 | newIndex[0] = invalidIndex; |
---|
| 1171 | newIndex[1] = invalidIndex; |
---|
| 1172 | |
---|
| 1173 | for (j = kTrueUb + 1; j < kTrueLb; j++) { |
---|
| 1174 | /* Skip if node is not reachable from top of AIG. */ |
---|
| 1175 | if ((j >= (1 << (N - i))) || (j <= -(1 << (N -i)))) continue; |
---|
| 1176 | |
---|
| 1177 | /* Find f- */ |
---|
| 1178 | leftChild = (j << 1) - 1; |
---|
| 1179 | if (leftChild >= kTrueLbLower || leftChild <= kTrueUbLower) { |
---|
| 1180 | fminus = Aig_Zero; |
---|
| 1181 | } else if (i == 1 && leftChild == kTrue) { |
---|
| 1182 | fminus = Aig_One; |
---|
| 1183 | } else { |
---|
| 1184 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
| 1185 | if (leftChild == index[0]) { |
---|
| 1186 | fminus = map[0]; |
---|
| 1187 | } else { |
---|
| 1188 | fminus = map[1]; |
---|
| 1189 | } |
---|
| 1190 | } |
---|
| 1191 | |
---|
| 1192 | /* Find f= */ |
---|
| 1193 | middleChild = j << 1; |
---|
| 1194 | if (middleChild >= kTrueLbLower || middleChild <= kTrueUbLower) { |
---|
| 1195 | fequal = Aig_Zero; |
---|
| 1196 | } else if (i == 1 && middleChild == kTrue) { |
---|
| 1197 | fequal = Aig_One; |
---|
| 1198 | } else { |
---|
| 1199 | assert(middleChild == index[0] || middleChild == index[1]); |
---|
| 1200 | if (middleChild == index[0]) { |
---|
| 1201 | fequal = map[0]; |
---|
| 1202 | } else { |
---|
| 1203 | fequal = map[1]; |
---|
| 1204 | } |
---|
| 1205 | } |
---|
| 1206 | |
---|
| 1207 | /* Find f+ */ |
---|
| 1208 | rightChild = (j << 1) + 1; |
---|
| 1209 | if (rightChild >= kTrueLbLower || rightChild <= kTrueUbLower) { |
---|
| 1210 | fplus = Aig_Zero; |
---|
| 1211 | } else if (i == 1 && rightChild == kTrue) { |
---|
| 1212 | fplus = Aig_One; |
---|
| 1213 | } else { |
---|
| 1214 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
| 1215 | if (rightChild == index[0]) { |
---|
| 1216 | fplus = map[0]; |
---|
| 1217 | } else { |
---|
| 1218 | fplus = map[1]; |
---|
| 1219 | } |
---|
| 1220 | } |
---|
| 1221 | |
---|
| 1222 | /* Build new nodes. */ |
---|
| 1223 | if (i > ny) |
---|
| 1224 | g1 = fplus; |
---|
| 1225 | else { |
---|
| 1226 | g1 = Aig_Ite(bm, y[i-1], fequal, fplus); |
---|
| 1227 | } |
---|
| 1228 | |
---|
| 1229 | if (g1 == Aig_NULL) return(Aig_NULL); |
---|
| 1230 | |
---|
| 1231 | if (i > ny) |
---|
| 1232 | g0 = fequal; |
---|
| 1233 | else { |
---|
| 1234 | g0 = Aig_Ite(bm, y[i-1], fminus, fequal); |
---|
| 1235 | } |
---|
| 1236 | |
---|
| 1237 | if (g0 == Aig_NULL) return(Aig_NULL); |
---|
| 1238 | |
---|
| 1239 | if (i > nx) /* number of bits in x is less than N */ |
---|
| 1240 | f = g0; /* x[N - i] is false */ |
---|
| 1241 | else { |
---|
| 1242 | f = Aig_Ite(bm, x[i-1], g1, g0); |
---|
| 1243 | } |
---|
| 1244 | |
---|
| 1245 | if (f == Aig_NULL) return(Aig_NULL); |
---|
| 1246 | |
---|
| 1247 | /* Save newly computed node in map. */ |
---|
| 1248 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
| 1249 | if (newIndex[0] == invalidIndex) { |
---|
| 1250 | newIndex[0] = j; |
---|
| 1251 | newMap[0] = f; |
---|
| 1252 | } else { |
---|
| 1253 | newIndex[1] = j; |
---|
| 1254 | newMap[1] = f; |
---|
| 1255 | } |
---|
| 1256 | } |
---|
| 1257 | |
---|
| 1258 | /* Copy new map to map. */ |
---|
| 1259 | map[0] = newMap[0]; |
---|
| 1260 | map[1] = newMap[1]; |
---|
| 1261 | index[0] = newIndex[0]; |
---|
| 1262 | index[1] = newIndex[1]; |
---|
| 1263 | } |
---|
| 1264 | |
---|
| 1265 | return(f); |
---|
| 1266 | |
---|
| 1267 | } /* end of Aig_Equality */ |
---|
| 1268 | |
---|
| 1269 | /**Function******************************************************************** |
---|
| 1270 | |
---|
| 1271 | Synopsis [Generates a AIG for the function x - y != c.] |
---|
| 1272 | |
---|
| 1273 | Description [This function generates a AIG for the function x -y != c. |
---|
| 1274 | Both x and y are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\] and |
---|
| 1275 | y\[0\] y\[1\] ... y\[N-1\], with 0 the most significant bit. |
---|
| 1276 | The BDD is built bottom-up. |
---|
| 1277 | It has a linear number of nodes if the variables are ordered as follows: |
---|
| 1278 | x\[0\] y\[0\] x\[1\] y\[1\] ... x\[N-1\] y\[N-1\].] |
---|
| 1279 | |
---|
| 1280 | SideEffects [None] |
---|
| 1281 | |
---|
| 1282 | SeeAlso [] |
---|
| 1283 | |
---|
| 1284 | ******************************************************************************/ |
---|
| 1285 | AigEdge_t |
---|
| 1286 | Aig_Disequality( |
---|
| 1287 | Aig_Manager_t *bm, |
---|
| 1288 | int N /* number of x and y variables */, |
---|
| 1289 | int c /* right-hand side constant */, |
---|
| 1290 | AigEdge_t *x /* array of x variables */, |
---|
| 1291 | AigEdge_t *y /* array of y variables */) |
---|
| 1292 | { |
---|
| 1293 | /* The nodes at level i represent values of the difference that are |
---|
| 1294 | ** multiples of 2^i. We use variables with names starting with k |
---|
| 1295 | ** to denote the multipliers of 2^i in such multiples. */ |
---|
| 1296 | int kTrueLb = c + 1; |
---|
| 1297 | int kTrueUb = c - 1; |
---|
| 1298 | int kFalse = c; |
---|
| 1299 | /* Mask used to compute the ceiling function. Since we divide by 2^i, |
---|
| 1300 | ** we want to know whether the dividend is a multiple of 2^i. If it is, |
---|
| 1301 | ** then ceiling and floor coincide; otherwise, they differ by one. */ |
---|
| 1302 | int mask = 1; |
---|
| 1303 | int i; |
---|
| 1304 | |
---|
| 1305 | AigEdge_t f = Aig_NULL; /* the eventual result */ |
---|
| 1306 | |
---|
| 1307 | /* Two x-labeled nodes are created at most at each iteration. They are |
---|
| 1308 | ** stored, along with their k values, in these variables. At each level, |
---|
| 1309 | ** the old nodes are freed and the new nodes are copied into the old map. |
---|
| 1310 | */ |
---|
| 1311 | AigEdge_t map[2]; |
---|
| 1312 | int invalidIndex = (1 << N)-1; |
---|
| 1313 | int index[2] = {invalidIndex, invalidIndex}; |
---|
| 1314 | |
---|
| 1315 | int kTrueLbLower, kTrueUbLower; |
---|
| 1316 | int leftChild, middleChild, rightChild; |
---|
| 1317 | AigEdge_t g0, g1, fplus, fequal, fminus; |
---|
| 1318 | int j; |
---|
| 1319 | AigEdge_t newMap[2]; |
---|
| 1320 | int newIndex[2]; |
---|
| 1321 | |
---|
| 1322 | map[0] = 0; |
---|
| 1323 | map[1] = 0; |
---|
| 1324 | newMap[0] = 0; |
---|
| 1325 | newMap[1] = 0; |
---|
| 1326 | |
---|
| 1327 | /* This should never happen. */ |
---|
| 1328 | if (N < 0) return(Aig_NULL); |
---|
| 1329 | |
---|
| 1330 | /* If there are no bits, both operands are 0. The result depends on c. */ |
---|
| 1331 | if (N == 0) { |
---|
| 1332 | if (c != 0) return(Aig_One); |
---|
| 1333 | else return(Aig_Zero); |
---|
| 1334 | } |
---|
| 1335 | |
---|
| 1336 | /* The maximum or the minimum difference comparing to c can generate the terminal case */ |
---|
| 1337 | if ((1 << N) - 1 < c || (-(1 << N) + 1) > c) return(Aig_One); |
---|
| 1338 | |
---|
| 1339 | /* Build the result bottom up. */ |
---|
| 1340 | for (i = 1; i <= N; i++) { |
---|
| 1341 | kTrueLbLower = kTrueLb; |
---|
| 1342 | kTrueUbLower = kTrueUb; |
---|
| 1343 | /* kTrueLb = floor((c-1)/2^i) + 2 */ |
---|
| 1344 | kTrueLb = ((c-1) >> i) + 2; |
---|
| 1345 | /* kTrueUb = ceiling((c+1)/2^i) - 2 */ |
---|
| 1346 | kTrueUb = ((c+1) >> i) + (((c+2) & mask) != 1) - 2; |
---|
| 1347 | mask = (mask << 1) | 1; |
---|
| 1348 | newIndex[0] = invalidIndex; |
---|
| 1349 | newIndex[1] = invalidIndex; |
---|
| 1350 | |
---|
| 1351 | for (j = kTrueUb + 1; j < kTrueLb; j++) { |
---|
| 1352 | /* Skip if node is not reachable from top of AIG. */ |
---|
| 1353 | if ((j >= (1 << (N - i))) || (j <= -(1 << (N -i)))) continue; |
---|
| 1354 | |
---|
| 1355 | /* Find f- */ |
---|
| 1356 | leftChild = (j << 1) - 1; |
---|
| 1357 | if (leftChild >= kTrueLbLower || leftChild <= kTrueUbLower) { |
---|
| 1358 | fminus = Aig_One; |
---|
| 1359 | } else if (i == 1 && leftChild == kFalse) { |
---|
| 1360 | fminus = Aig_Zero; |
---|
| 1361 | } else { |
---|
| 1362 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
| 1363 | if (leftChild == index[0]) { |
---|
| 1364 | fminus = map[0]; |
---|
| 1365 | } else { |
---|
| 1366 | fminus = map[1]; |
---|
| 1367 | } |
---|
| 1368 | } |
---|
| 1369 | |
---|
| 1370 | /* Find f= */ |
---|
| 1371 | middleChild = j << 1; |
---|
| 1372 | if (middleChild >= kTrueLbLower || middleChild <= kTrueUbLower) { |
---|
| 1373 | fequal = Aig_One; |
---|
| 1374 | } else if (i == 1 && middleChild == kFalse) { |
---|
| 1375 | fequal = Aig_Zero; |
---|
| 1376 | } else { |
---|
| 1377 | assert(middleChild == index[0] || middleChild == index[1]); |
---|
| 1378 | if (middleChild == index[0]) { |
---|
| 1379 | fequal = map[0]; |
---|
| 1380 | } else { |
---|
| 1381 | fequal = map[1]; |
---|
| 1382 | } |
---|
| 1383 | } |
---|
| 1384 | |
---|
| 1385 | /* Find f+ */ |
---|
| 1386 | rightChild = (j << 1) + 1; |
---|
| 1387 | if (rightChild >= kTrueLbLower || rightChild <= kTrueUbLower) { |
---|
| 1388 | fplus = Aig_One; |
---|
| 1389 | } else if (i == 1 && rightChild == kFalse) { |
---|
| 1390 | fplus = Aig_Zero; |
---|
| 1391 | } else { |
---|
| 1392 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
| 1393 | if (rightChild == index[0]) { |
---|
| 1394 | fplus = map[0]; |
---|
| 1395 | } else { |
---|
| 1396 | fplus = map[1]; |
---|
| 1397 | } |
---|
| 1398 | } |
---|
| 1399 | |
---|
| 1400 | /* Build new nodes. */ |
---|
| 1401 | g1 = Aig_Ite(bm, y[N - i], fequal, fplus); |
---|
| 1402 | if (g1 == Aig_NULL) return(Aig_NULL); |
---|
| 1403 | g0 = Aig_Ite(bm, y[N - i], fminus, fequal); |
---|
| 1404 | if (g0 == Aig_NULL) return(Aig_NULL); |
---|
| 1405 | f = Aig_Ite(bm, x[N - i], g1, g0); |
---|
| 1406 | if (f == Aig_NULL) return(Aig_NULL); |
---|
| 1407 | |
---|
| 1408 | /* Save newly computed node in map. */ |
---|
| 1409 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
| 1410 | if (newIndex[0] == invalidIndex) { |
---|
| 1411 | newIndex[0] = j; |
---|
| 1412 | newMap[0] = f; |
---|
| 1413 | } else { |
---|
| 1414 | newIndex[1] = j; |
---|
| 1415 | newMap[1] = f; |
---|
| 1416 | } |
---|
| 1417 | } |
---|
| 1418 | |
---|
| 1419 | /* Copy new map to map. */ |
---|
| 1420 | map[0] = newMap[0]; |
---|
| 1421 | map[1] = newMap[1]; |
---|
| 1422 | index[0] = newIndex[0]; |
---|
| 1423 | index[1] = newIndex[1]; |
---|
| 1424 | } |
---|
| 1425 | |
---|
| 1426 | return(f); |
---|
| 1427 | |
---|
| 1428 | } /* end of Aig_Disequality */ |
---|
| 1429 | |
---|
| 1430 | |
---|
| 1431 | /**Function******************************************************************** |
---|
| 1432 | |
---|
| 1433 | Synopsis [Generates a Aig for the function lb ≤ x ≥ ub.] |
---|
| 1434 | |
---|
| 1435 | Description [This function generates a Aig for the function lb ≤ x ≥ ub. |
---|
| 1436 | x is N-bit number, x\[0\] x\[1\] ... x\[N-1\] and with 0 the most significant |
---|
| 1437 | bit. The BDD is built bottom-up. |
---|
| 1438 | It has a linear number of nodes if the variables are ordered as follows: |
---|
| 1439 | x\[0\] x\[1\] ... x\[N-1\].] |
---|
| 1440 | |
---|
| 1441 | SideEffects [None] |
---|
| 1442 | |
---|
| 1443 | SeeAlso [] |
---|
| 1444 | |
---|
| 1445 | ******************************************************************************/ |
---|
| 1446 | AigEdge_t |
---|
| 1447 | Aig_Bound( |
---|
| 1448 | Aig_Manager_t *bm, |
---|
| 1449 | int N /* number of x variables */, |
---|
| 1450 | int lb /* lower bound */, |
---|
| 1451 | int ub /* upper bound */, |
---|
| 1452 | AigEdge_t *x /* array of x variables */) |
---|
| 1453 | { |
---|
| 1454 | /* The nodes at level i represent values of the difference that are |
---|
| 1455 | ** multiples of 2^i. We use variables with names starting with k |
---|
| 1456 | ** to denote the multipliers of 2^i in such multiples. */ |
---|
| 1457 | int kTrueLb = lb; |
---|
| 1458 | int kTrueUb = ub; |
---|
| 1459 | int kFalseLb = ub + 1; |
---|
| 1460 | int kFalseUb = lb - 1; |
---|
| 1461 | /* Mask used to compute the ceiling function. Since we divide by 2^i, |
---|
| 1462 | ** we want to know whether the dividend is a multiple of 2^i. If it is, |
---|
| 1463 | ** then ceiling and floor coincide; otherwise, they differ by one. */ |
---|
| 1464 | int mask = 1; |
---|
| 1465 | int i; |
---|
| 1466 | |
---|
| 1467 | AigEdge_t f = Aig_NULL; /* the eventual result */ |
---|
| 1468 | |
---|
| 1469 | /* Two x-labeled nodes are created at most at each iteration. They are |
---|
| 1470 | ** stored, along with their k values, in these variables. At each level, |
---|
| 1471 | ** the old nodes are freed and the new nodes are copied into the old map. |
---|
| 1472 | */ |
---|
| 1473 | AigEdge_t map[2]; |
---|
| 1474 | int invalidIndex = (1 << N)-1; |
---|
| 1475 | /** int invalidValue = (1 << N)-1; **/ |
---|
| 1476 | int index[2] = {invalidIndex, invalidIndex}; |
---|
| 1477 | |
---|
| 1478 | int max, min; |
---|
| 1479 | int kTrueLbLower, kTrueUbLower, kFalseLbLower, kFalseUbLower; |
---|
| 1480 | int leftChild, rightChild; |
---|
| 1481 | AigEdge_t f1, f0; |
---|
| 1482 | int j; |
---|
| 1483 | AigEdge_t newMap[2]; |
---|
| 1484 | int newIndex[2]; |
---|
| 1485 | |
---|
| 1486 | map[0] = 0; |
---|
| 1487 | map[1] = 0; |
---|
| 1488 | newMap[0] = 0; |
---|
| 1489 | newMap[1] = 0; |
---|
| 1490 | |
---|
| 1491 | /* This should never happen. */ |
---|
| 1492 | if (N < 0) return(Aig_NULL); |
---|
| 1493 | |
---|
| 1494 | /* If there are no bits, both operands are 0. The result depends on c. */ |
---|
| 1495 | if (N == 0) { |
---|
| 1496 | if (lb <= 0 && ub >= 0) return(Aig_One); |
---|
| 1497 | else return(Aig_Zero); |
---|
| 1498 | } |
---|
| 1499 | |
---|
| 1500 | /* The maximum or the minimum difference comparing to c generates the terminal case */ |
---|
| 1501 | { |
---|
| 1502 | max = (1 << N) - 1; |
---|
| 1503 | min = 0; |
---|
| 1504 | |
---|
| 1505 | if (max < lb || min > ub) return(Aig_Zero); |
---|
| 1506 | else if (max <= ub && min >= lb) return(Aig_One); |
---|
| 1507 | |
---|
| 1508 | /* Build the result bottom up. */ |
---|
| 1509 | for (i = 1; i <= N; i++) { |
---|
| 1510 | |
---|
| 1511 | kTrueLbLower = kTrueLb; |
---|
| 1512 | kTrueUbLower = kTrueUb; |
---|
| 1513 | kFalseLbLower = kFalseLb; |
---|
| 1514 | kFalseUbLower = kFalseUb; |
---|
| 1515 | /* kTrueLb = ceiling(lb/2^i) */ |
---|
| 1516 | kTrueLb = (lb >> i) + (((lb+1) & mask) != 1); |
---|
| 1517 | /* kTrueUb = floor((ub+1)/2^i) - 1 */ |
---|
| 1518 | kTrueUb = ((ub+1) >> i) - 1; |
---|
| 1519 | /* kFalseLb = ceiling((ub+1)/2^i) */ |
---|
| 1520 | kFalseLb = ((ub+1) >> i) + (((ub+2) & mask) != 1); |
---|
| 1521 | /* kFalseUb = floor(lb/2^i) - 1 */ |
---|
| 1522 | kFalseUb = (lb >> i) - 1; |
---|
| 1523 | mask = (mask << 1) | 1; |
---|
| 1524 | newIndex[0] = invalidIndex; |
---|
| 1525 | newIndex[1] = invalidIndex; |
---|
| 1526 | |
---|
| 1527 | j = kTrueUb + 1; |
---|
| 1528 | if (j >= 0 && j < (1 << (N - i)) && j < kFalseLb) { |
---|
| 1529 | /* Find f1 */ |
---|
| 1530 | leftChild = (j << 1) + 1; |
---|
| 1531 | if (leftChild >= kTrueLbLower && leftChild <= kTrueUbLower) { |
---|
| 1532 | f1 = Aig_One; |
---|
| 1533 | } else if (leftChild <= kFalseUbLower || leftChild >= kFalseLbLower) { |
---|
| 1534 | f1 = Aig_Zero; |
---|
| 1535 | } else { |
---|
| 1536 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
| 1537 | if (leftChild == index[0]) { |
---|
| 1538 | f1 = map[0]; |
---|
| 1539 | } else { |
---|
| 1540 | f1 = map[1]; |
---|
| 1541 | } |
---|
| 1542 | } |
---|
| 1543 | |
---|
| 1544 | /* Find f0 */ |
---|
| 1545 | rightChild = j << 1; |
---|
| 1546 | if (rightChild >= kTrueLbLower && rightChild <= kTrueUbLower) { |
---|
| 1547 | f0 = Aig_One; |
---|
| 1548 | } else if (rightChild <= kFalseUbLower || rightChild >= kFalseLbLower) { |
---|
| 1549 | f0 = Aig_Zero; |
---|
| 1550 | } else { |
---|
| 1551 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
| 1552 | if (rightChild == index[0]) { |
---|
| 1553 | f0 = map[0]; |
---|
| 1554 | } else { |
---|
| 1555 | f0 = map[1]; |
---|
| 1556 | } |
---|
| 1557 | } |
---|
| 1558 | |
---|
| 1559 | /* Build new nodes. */ |
---|
| 1560 | f = Aig_Ite(bm, x[i-1], f1, f0); |
---|
| 1561 | |
---|
| 1562 | if (f == Aig_NULL) return(Aig_NULL); |
---|
| 1563 | |
---|
| 1564 | /* Save newly computed node in map. */ |
---|
| 1565 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
| 1566 | if (newIndex[0] == invalidIndex) { |
---|
| 1567 | newIndex[0] = j; |
---|
| 1568 | newMap[0] = f; |
---|
| 1569 | } else { |
---|
| 1570 | newIndex[1] = j; |
---|
| 1571 | newMap[1] = f; |
---|
| 1572 | } |
---|
| 1573 | } |
---|
| 1574 | |
---|
| 1575 | j = kFalseUb + 1; |
---|
| 1576 | if (kTrueUb != kFalseUb && j >= 0 && j < (1 << (N - i)) && j < kTrueLb) { |
---|
| 1577 | /* Find f1 */ |
---|
| 1578 | leftChild = (j << 1) + 1; |
---|
| 1579 | if (leftChild >= kTrueLbLower && leftChild <= kTrueUbLower) { |
---|
| 1580 | f1 = Aig_One; |
---|
| 1581 | } else if (leftChild <= kFalseUbLower || leftChild >= kFalseLbLower) { |
---|
| 1582 | f1 = Aig_Zero; |
---|
| 1583 | } else { |
---|
| 1584 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
| 1585 | if (leftChild == index[0]) { |
---|
| 1586 | f1 = map[0]; |
---|
| 1587 | } else { |
---|
| 1588 | f1 = map[1]; |
---|
| 1589 | } |
---|
| 1590 | } |
---|
| 1591 | |
---|
| 1592 | /* Find f0 */ |
---|
| 1593 | rightChild = j << 1; |
---|
| 1594 | if (rightChild >= kTrueLbLower && rightChild <= kTrueUbLower) { |
---|
| 1595 | f0 = Aig_One; |
---|
| 1596 | } else if (rightChild <= kFalseUbLower || rightChild >= kFalseLbLower) { |
---|
| 1597 | f0 = Aig_Zero; |
---|
| 1598 | } else { |
---|
| 1599 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
| 1600 | if (rightChild == index[0]) { |
---|
| 1601 | f0 = map[0]; |
---|
| 1602 | } else { |
---|
| 1603 | f0 = map[1]; |
---|
| 1604 | } |
---|
| 1605 | } |
---|
| 1606 | |
---|
| 1607 | /* Build new nodes. */ |
---|
| 1608 | f = Aig_Ite(bm, x[i-1], f1, f0); |
---|
| 1609 | if (f == Aig_NULL) return(Aig_NULL); |
---|
| 1610 | |
---|
| 1611 | /* Save newly computed node in map. */ |
---|
| 1612 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
| 1613 | if (newIndex[0] == invalidIndex) { |
---|
| 1614 | newIndex[0] = j; |
---|
| 1615 | newMap[0] = f; |
---|
| 1616 | } else { |
---|
| 1617 | newIndex[1] = j; |
---|
| 1618 | newMap[1] = f; |
---|
| 1619 | } |
---|
| 1620 | } |
---|
| 1621 | |
---|
| 1622 | /* Copy new map to map. */ |
---|
| 1623 | map[0] = newMap[0]; |
---|
| 1624 | map[1] = newMap[1]; |
---|
| 1625 | index[0] = newIndex[0]; |
---|
| 1626 | index[1] = newIndex[1]; |
---|
| 1627 | } |
---|
| 1628 | } |
---|
| 1629 | |
---|
| 1630 | return(f); |
---|
| 1631 | |
---|
| 1632 | } /* end of Aig_Inequality */ |
---|
| 1633 | |
---|
| 1634 | /**Function******************************************************************** |
---|
| 1635 | |
---|
| 1636 | Synopsis [create new node] |
---|
| 1637 | |
---|
| 1638 | Description [] |
---|
| 1639 | |
---|
| 1640 | SideEffects [] |
---|
| 1641 | |
---|
| 1642 | SeeAlso [] |
---|
| 1643 | |
---|
| 1644 | ******************************************************************************/ |
---|
| 1645 | AigEdge_t |
---|
| 1646 | Aig_CreateNode( |
---|
| 1647 | Aig_Manager_t *bm, |
---|
| 1648 | AigEdge_t nodeIndex1, |
---|
| 1649 | AigEdge_t nodeIndex2) |
---|
| 1650 | { |
---|
| 1651 | |
---|
| 1652 | AigEdge_t newNode = bm->nodesArraySize; |
---|
| 1653 | |
---|
| 1654 | if (bm->nodesArraySize >= bm->maxNodesArraySize ){ |
---|
| 1655 | bm->maxNodesArraySize = 2* bm->maxNodesArraySize; |
---|
| 1656 | bm->NodesArray = REALLOC(AigEdge_t, bm->NodesArray, bm->maxNodesArraySize); |
---|
| 1657 | bm->nameList = REALLOC(char *, bm->nameList , bm->maxNodesArraySize/AigNodeSize); |
---|
| 1658 | } |
---|
| 1659 | bm->NodesArray[Aig_NonInvertedEdge(newNode)+AigRight] = nodeIndex2; |
---|
| 1660 | bm->NodesArray[Aig_NonInvertedEdge(newNode)+AigLeft] = nodeIndex1; |
---|
| 1661 | |
---|
| 1662 | aig_next(newNode) = Aig_NULL; |
---|
| 1663 | fanout(newNode) = 0; |
---|
| 1664 | canonical(newNode) = newNode; |
---|
| 1665 | flags(newNode) = 0; |
---|
| 1666 | nFanout(newNode) = 0; |
---|
| 1667 | |
---|
| 1668 | bm->nodesArraySize +=AigNodeSize; |
---|
| 1669 | |
---|
| 1670 | return(newNode); |
---|
| 1671 | } |
---|
| 1672 | |
---|
| 1673 | |
---|
| 1674 | /**Function******************************************************************** |
---|
| 1675 | |
---|
| 1676 | Synopsis [Return the Aig node given its name.] |
---|
| 1677 | |
---|
| 1678 | SideEffects [] |
---|
| 1679 | |
---|
| 1680 | ******************************************************************************/ |
---|
| 1681 | AigEdge_t |
---|
| 1682 | Aig_FindNodeByName( |
---|
| 1683 | Aig_Manager_t *bm, |
---|
| 1684 | nameType_t *name) |
---|
| 1685 | { |
---|
| 1686 | |
---|
| 1687 | AigEdge_t node; |
---|
| 1688 | |
---|
| 1689 | if (!st_lookup(bm->SymbolTable, name, &node)){ |
---|
| 1690 | node = Aig_NULL; |
---|
| 1691 | } |
---|
| 1692 | |
---|
| 1693 | return Aig_GetCanonical(bm, node); |
---|
| 1694 | } |
---|
| 1695 | |
---|
| 1696 | |
---|
| 1697 | /**Function******************************************************************** |
---|
| 1698 | |
---|
| 1699 | Synopsis [create var node ] |
---|
| 1700 | |
---|
| 1701 | Description [] |
---|
| 1702 | |
---|
| 1703 | SideEffects [] |
---|
| 1704 | |
---|
| 1705 | SeeAlso [] |
---|
| 1706 | |
---|
| 1707 | ******************************************************************************/ |
---|
| 1708 | AigEdge_t |
---|
| 1709 | Aig_CreateVarNode( |
---|
| 1710 | Aig_Manager_t *bm, |
---|
| 1711 | nameType_t *name) |
---|
| 1712 | { |
---|
| 1713 | |
---|
| 1714 | AigEdge_t varIndex; |
---|
| 1715 | |
---|
| 1716 | |
---|
| 1717 | if (!st_lookup(bm->SymbolTable, name, &varIndex)){ |
---|
| 1718 | varIndex = Aig_CreateNode(bm, Aig_NULL, Aig_NULL); |
---|
| 1719 | if (varIndex == Aig_NULL){ |
---|
| 1720 | return (varIndex); |
---|
| 1721 | } |
---|
| 1722 | /* Insert the varaible in the Symbol Table */ |
---|
| 1723 | st_insert(bm->SymbolTable, name, (char*) (long) varIndex); |
---|
| 1724 | bm->nameList[AigNodeID(varIndex)] = name; |
---|
| 1725 | return(varIndex); |
---|
| 1726 | } |
---|
| 1727 | else { |
---|
| 1728 | return (varIndex); |
---|
| 1729 | } |
---|
| 1730 | } |
---|
| 1731 | |
---|
| 1732 | /**Function******************************************************************** |
---|
| 1733 | |
---|
| 1734 | Synopsis [Return True if this node is Variable node] |
---|
| 1735 | |
---|
| 1736 | SideEffects [] |
---|
| 1737 | |
---|
| 1738 | ******************************************************************************/ |
---|
| 1739 | int |
---|
| 1740 | Aig_isVarNode( |
---|
| 1741 | Aig_Manager_t *bm, |
---|
| 1742 | AigEdge_t node) |
---|
| 1743 | { |
---|
| 1744 | if((rightChild(node) == Aig_NULL) && (leftChild(node) == Aig_NULL)) { |
---|
| 1745 | return 1; |
---|
| 1746 | } |
---|
| 1747 | return 0; |
---|
| 1748 | } |
---|
| 1749 | |
---|
| 1750 | |
---|
| 1751 | |
---|
| 1752 | /**Function******************************************************************** |
---|
| 1753 | |
---|
| 1754 | Synopsis [Build the binary AND/INVERTER graph for a given bdd function] |
---|
| 1755 | |
---|
| 1756 | SideEffects [Build the binary AND/INVERTER graph for a given bdd function. |
---|
| 1757 | We assume that the return bdd nodes from the foreach_bdd_node are |
---|
| 1758 | in the order from childeren to parent. i.e all the childeren |
---|
| 1759 | nodes are returned before the parent node.] |
---|
| 1760 | |
---|
| 1761 | SideEffects [] |
---|
| 1762 | |
---|
| 1763 | SeeAlso [] |
---|
| 1764 | |
---|
| 1765 | ******************************************************************************/ |
---|
| 1766 | #if 0 |
---|
| 1767 | AigEdge_t |
---|
| 1768 | Aig_bddToAig( |
---|
| 1769 | Aig_Manager_t *AigManager, |
---|
| 1770 | bdd_t *fn) |
---|
| 1771 | { |
---|
| 1772 | bdd_gen *gen; |
---|
| 1773 | bdd_node *node, *thenNode, *elseNode, *funcNode; |
---|
| 1774 | bdd_manager *bddManager = bdd_get_manager(fn); |
---|
| 1775 | /* |
---|
| 1776 | Used to read the variable name of a bdd node. |
---|
| 1777 | */ |
---|
| 1778 | array_t *mvar_list = mdd_ret_mvar_list(bddManager); |
---|
| 1779 | array_t *bvar_list = mdd_ret_bvar_list(bddManager); |
---|
| 1780 | bvar_type bv; |
---|
| 1781 | mvar_type mv; |
---|
| 1782 | |
---|
| 1783 | bdd_node *one = bdd_read_one(bddManager); |
---|
| 1784 | int is_complemented; |
---|
| 1785 | int flag; |
---|
| 1786 | AigEdge_t var, left, right, result; |
---|
| 1787 | |
---|
| 1788 | char name[100]; |
---|
| 1789 | st_table *bddTOAigTable; |
---|
| 1790 | |
---|
| 1791 | if (fn == NULL){ |
---|
| 1792 | return Aig_NULL; |
---|
| 1793 | } |
---|
| 1794 | funcNode = bdd_get_node(fn, &is_complemented); |
---|
| 1795 | if (bdd_is_constant(funcNode)){ |
---|
| 1796 | return (is_complemented?Aig_Zero:Aig_One); |
---|
| 1797 | } |
---|
| 1798 | bddTOAigTable = st_init_table(st_numcmp, st_numhash); |
---|
| 1799 | st_insert(bddTOAigTable, (char *) (long) bdd_regular(one), (char *) Aig_One); |
---|
| 1800 | |
---|
| 1801 | foreach_bdd_node(fn, gen, node){ |
---|
| 1802 | int nodeIndex = bdd_node_read_index(node); |
---|
| 1803 | int index, rtnNodeIndex; |
---|
| 1804 | |
---|
| 1805 | if (bdd_is_constant(node)){ |
---|
| 1806 | continue; |
---|
| 1807 | } |
---|
| 1808 | |
---|
| 1809 | bv = array_fetch(bvar_type, bvar_list, nodeIndex); |
---|
| 1810 | /* |
---|
| 1811 | get the multi-valued varaible. |
---|
| 1812 | */ |
---|
| 1813 | mv = array_fetch(mvar_type, mvar_list, bv.mvar_id); |
---|
| 1814 | arrayForEachItem(int, mv.bvars, index, rtnNodeIndex) { |
---|
| 1815 | if (nodeIndex == rtnNodeIndex){ |
---|
| 1816 | break; |
---|
| 1817 | } |
---|
| 1818 | } |
---|
| 1819 | assert(index < mv.encode_length); |
---|
| 1820 | /* |
---|
| 1821 | printf("Name of bdd node %s %d\n", mv.name, index); |
---|
| 1822 | */ |
---|
| 1823 | sprintf(name, "%s_%d", mv.name, index); |
---|
| 1824 | /* |
---|
| 1825 | Create or Retrieve the AigEdge_t w.r.t. 'name' |
---|
| 1826 | */ |
---|
| 1827 | var = Aig_CreateVarNode(AigManager, util_strsav(name)); |
---|
| 1828 | |
---|
| 1829 | thenNode = bdd_bdd_T(node); |
---|
| 1830 | flag = st_lookup(bddTOAigTable, (char *) (long) bdd_regular(thenNode), |
---|
| 1831 | &left); |
---|
| 1832 | assert(flag); |
---|
| 1833 | |
---|
| 1834 | elseNode = bdd_bdd_E(node); |
---|
| 1835 | flag = st_lookup(bddTOAigTable, (char *) (long) bdd_regular(elseNode), |
---|
| 1836 | &right); |
---|
| 1837 | assert(flag); |
---|
| 1838 | /* |
---|
| 1839 | test if the elseNode is complemented arc? |
---|
| 1840 | */ |
---|
| 1841 | if (bdd_is_complement(elseNode)){ |
---|
| 1842 | right = Aig_Not(right); |
---|
| 1843 | } |
---|
| 1844 | if (right == Aig_Zero){ /* result = var*then */ |
---|
| 1845 | result = Aig_And(AigManager, var, left); |
---|
| 1846 | } else if (right == Aig_One){ /* result = then + not(var) */ |
---|
| 1847 | result = Aig_Or(AigManager, left, Aig_Not(var)); |
---|
| 1848 | } else if (left == Aig_One) { /* result = var + else */ |
---|
| 1849 | result = Aig_Or(AigManager, var, right); |
---|
| 1850 | } else { /* result = var * then + not(var)*else */ |
---|
| 1851 | result = Aig_Or(AigManager, Aig_And(AigManager, var, left), |
---|
| 1852 | Aig_And(AigManager, Aig_Not(var), right)); |
---|
| 1853 | } |
---|
| 1854 | st_insert(bddTOAigTable, (char *) (long) bdd_regular(node), |
---|
| 1855 | (char *) (long) result); |
---|
| 1856 | } |
---|
| 1857 | flag = st_lookup(bddTOAigTable, (char *) (long) bdd_regular(funcNode), |
---|
| 1858 | &result); |
---|
| 1859 | assert(flag); |
---|
| 1860 | st_free_table(bddTOAigTable); |
---|
| 1861 | |
---|
| 1862 | if (is_complemented){ |
---|
| 1863 | return Aig_Not(result); |
---|
| 1864 | } else { |
---|
| 1865 | return result; |
---|
| 1866 | } |
---|
| 1867 | } /* end of Aig_bddtoAig() */ |
---|
| 1868 | #endif |
---|
| 1869 | |
---|
| 1870 | /**Function******************************************************************** |
---|
| 1871 | |
---|
| 1872 | Synopsis [Print dot file for AIG nodes] |
---|
| 1873 | |
---|
| 1874 | SideEffects [] |
---|
| 1875 | |
---|
| 1876 | ******************************************************************************/ |
---|
| 1877 | int |
---|
| 1878 | Aig_PrintDot( |
---|
| 1879 | FILE *fp, |
---|
| 1880 | Aig_Manager_t *bm) |
---|
| 1881 | { |
---|
| 1882 | long i; |
---|
| 1883 | |
---|
| 1884 | /* |
---|
| 1885 | * Write out the header for the output file. |
---|
| 1886 | */ |
---|
| 1887 | (void) fprintf(fp, "digraph \"AndInv\" {\n rotate=90;\n"); |
---|
| 1888 | (void) fprintf(fp, " margin=0.5;\n label=\"AndInv\";\n"); |
---|
| 1889 | (void) fprintf(fp, " size=\"10,7.5\";\n ratio=\"fill\";\n"); |
---|
| 1890 | |
---|
| 1891 | |
---|
| 1892 | for (i=AigFirstNodeIndex ; i<bm->nodesArraySize ; i+=AigNodeSize){ |
---|
| 1893 | (void) fprintf(fp,"Node%ld [label=\"%s \"];\n",i,Aig_NodeReadName(bm, i)); |
---|
| 1894 | } |
---|
| 1895 | for (i=AigFirstNodeIndex ; i< bm->nodesArraySize ; i+=AigNodeSize){ |
---|
| 1896 | if (rightChild(i) != Aig_NULL){ |
---|
| 1897 | if (Aig_IsInverted(rightChild(i))){ |
---|
| 1898 | (void) fprintf(fp,"Node%ld -> Node%ld [color = red];\n",Aig_NonInvertedEdge(rightChild(i)), i); |
---|
| 1899 | } |
---|
| 1900 | else{ |
---|
| 1901 | (void) fprintf(fp,"Node%ld -> Node%ld;\n",Aig_NonInvertedEdge(rightChild(i)), i); |
---|
| 1902 | } |
---|
| 1903 | if (Aig_IsInverted(leftChild(i))){ |
---|
| 1904 | (void) fprintf(fp,"Node%ld -> Node%ld [color = red];\n",Aig_NonInvertedEdge(leftChild(i)), i); |
---|
| 1905 | } |
---|
| 1906 | else{ |
---|
| 1907 | (void) fprintf(fp,"Node%ld -> Node%ld;\n",Aig_NonInvertedEdge(leftChild(i)), i); |
---|
| 1908 | } |
---|
| 1909 | }/* if */ |
---|
| 1910 | }/*for */ |
---|
| 1911 | |
---|
| 1912 | (void) fprintf(fp, "}\n"); |
---|
| 1913 | |
---|
| 1914 | return 1; |
---|
| 1915 | } |
---|
| 1916 | |
---|
| 1917 | |
---|
| 1918 | |
---|
| 1919 | /**Function******************************************************************** |
---|
| 1920 | |
---|
| 1921 | Synopsis [Print dot file for AIG nodes] |
---|
| 1922 | |
---|
| 1923 | SideEffects [] |
---|
| 1924 | |
---|
| 1925 | ******************************************************************************/ |
---|
| 1926 | int |
---|
| 1927 | Aig_PrintAIG(Aig_Manager_t *bm, AigEdge_t object, char *fileName) |
---|
| 1928 | { |
---|
| 1929 | FILE *fp; |
---|
| 1930 | long nInput, nAnd; |
---|
| 1931 | long i; |
---|
| 1932 | char *str; |
---|
| 1933 | |
---|
| 1934 | str = util_strcat3(fileName, ".aag", ""); |
---|
| 1935 | |
---|
| 1936 | fp = fopen(str, "w"); |
---|
| 1937 | |
---|
| 1938 | free(str); |
---|
| 1939 | |
---|
| 1940 | /* count # of inputs & # of and gates */ |
---|
| 1941 | for (i=AigFirstNodeIndex, nInput=0, nAnd=0; i<bm->nodesArraySize ; i+=AigNodeSize){ |
---|
| 1942 | if (leftChild(i)==Aig_NULL && rightChild(i)==Aig_NULL) |
---|
| 1943 | nInput++; |
---|
| 1944 | else |
---|
| 1945 | nAnd++; |
---|
| 1946 | } |
---|
| 1947 | |
---|
| 1948 | /* |
---|
| 1949 | * Write out the header for the output file: |
---|
| 1950 | * # of nodes, # of inputs, # of latches, # of outputs, # of AND gates |
---|
| 1951 | */ |
---|
| 1952 | (void) fprintf(fp, "aag %ld %ld 0 1 %ld\n", nInput+nAnd, nInput, nAnd); |
---|
| 1953 | |
---|
| 1954 | /* Input */ |
---|
| 1955 | for (i=AigFirstNodeIndex ; i<bm->nodesArraySize ; i+=AigNodeSize){ |
---|
| 1956 | if (leftChild(i)==Aig_NULL && rightChild(i)==Aig_NULL) |
---|
| 1957 | fprintf(fp,"%ld\n",i/4); |
---|
| 1958 | } |
---|
| 1959 | /* Output */ |
---|
| 1960 | if (Aig_IsInverted(object)) |
---|
| 1961 | fprintf(fp, "%ld\n", (Aig_NonInvertedEdge(object)/4)+1); |
---|
| 1962 | else |
---|
| 1963 | fprintf(fp, "%ld\n", (Aig_NonInvertedEdge(object)/4)); |
---|
| 1964 | |
---|
| 1965 | /* AND gates */ |
---|
| 1966 | for (i=AigFirstNodeIndex ; i< bm->nodesArraySize ; i+=AigNodeSize){ |
---|
| 1967 | if (leftChild(i)!=Aig_NULL || rightChild(i)!=Aig_NULL) { |
---|
| 1968 | fprintf(fp, "%ld ", i/4); |
---|
| 1969 | if (rightChild(i) != Aig_NULL) { |
---|
| 1970 | if (Aig_IsInverted(rightChild(i))) |
---|
| 1971 | fprintf(fp,"%ld ", (Aig_NonInvertedEdge(rightChild(i))/4)+1); |
---|
| 1972 | else |
---|
| 1973 | fprintf(fp,"%ld ", Aig_NonInvertedEdge(rightChild(i))/4); |
---|
| 1974 | } |
---|
| 1975 | if (leftChild(i) != Aig_NULL) { |
---|
| 1976 | if (Aig_IsInverted(leftChild(i))) |
---|
| 1977 | fprintf(fp,"%ld", (Aig_NonInvertedEdge(leftChild(i))/4)+1); |
---|
| 1978 | else |
---|
| 1979 | fprintf(fp,"%ld", Aig_NonInvertedEdge(leftChild(i))/4); |
---|
| 1980 | } |
---|
| 1981 | fprintf(fp, "\n"); |
---|
| 1982 | } |
---|
| 1983 | } |
---|
| 1984 | |
---|
| 1985 | fclose(fp); |
---|
| 1986 | |
---|
| 1987 | return 1; |
---|
| 1988 | } |
---|
| 1989 | |
---|
| 1990 | |
---|
| 1991 | |
---|
| 1992 | /**Function******************************************************************** |
---|
| 1993 | |
---|
| 1994 | Synopsis [Set pass flag for node] |
---|
| 1995 | |
---|
| 1996 | Description [] |
---|
| 1997 | |
---|
| 1998 | SideEffects [] |
---|
| 1999 | |
---|
| 2000 | SeeAlso [] |
---|
| 2001 | |
---|
| 2002 | ******************************************************************************/ |
---|
| 2003 | |
---|
| 2004 | void |
---|
| 2005 | AigSetPassFlag( |
---|
| 2006 | Aig_Manager_t *bm, |
---|
| 2007 | AigEdge_t node) |
---|
| 2008 | { |
---|
| 2009 | |
---|
| 2010 | flags(node) |= CanonicalBitMask; |
---|
| 2011 | } |
---|
| 2012 | |
---|
| 2013 | /**Function******************************************************************** |
---|
| 2014 | |
---|
| 2015 | Synopsis [Reset pass flag for node] |
---|
| 2016 | |
---|
| 2017 | Description [] |
---|
| 2018 | |
---|
| 2019 | SideEffects [] |
---|
| 2020 | |
---|
| 2021 | SeeAlso [] |
---|
| 2022 | |
---|
| 2023 | ******************************************************************************/ |
---|
| 2024 | |
---|
| 2025 | void |
---|
| 2026 | AigResetPassFlag( |
---|
| 2027 | Aig_Manager_t *bm, |
---|
| 2028 | AigEdge_t node) |
---|
| 2029 | { |
---|
| 2030 | |
---|
| 2031 | flags(node) &= ResetCanonicalBitMask; |
---|
| 2032 | } |
---|
| 2033 | |
---|
| 2034 | /**Function******************************************************************** |
---|
| 2035 | |
---|
| 2036 | Synopsis [Get pass flag for node] |
---|
| 2037 | |
---|
| 2038 | Description [] |
---|
| 2039 | |
---|
| 2040 | SideEffects [] |
---|
| 2041 | |
---|
| 2042 | SeeAlso [] |
---|
| 2043 | |
---|
| 2044 | ******************************************************************************/ |
---|
| 2045 | |
---|
| 2046 | int |
---|
| 2047 | AigGetPassFlag( |
---|
| 2048 | Aig_Manager_t *bm, |
---|
| 2049 | AigEdge_t node) |
---|
| 2050 | |
---|
| 2051 | { |
---|
| 2052 | return((flags(node) & CanonicalBitMask) != 0); |
---|
| 2053 | } |
---|
| 2054 | |
---|
| 2055 | /**Function******************************************************************** |
---|
| 2056 | |
---|
| 2057 | Synopsis [Create AND node and assign name to it ] |
---|
| 2058 | |
---|
| 2059 | Description [] |
---|
| 2060 | |
---|
| 2061 | SideEffects [] |
---|
| 2062 | |
---|
| 2063 | SeeAlso [] |
---|
| 2064 | |
---|
| 2065 | ******************************************************************************/ |
---|
| 2066 | AigEdge_t |
---|
| 2067 | AigCreateAndNode( |
---|
| 2068 | Aig_Manager_t *bm, |
---|
| 2069 | AigEdge_t node1, |
---|
| 2070 | AigEdge_t node2) |
---|
| 2071 | { |
---|
| 2072 | |
---|
| 2073 | AigEdge_t varIndex; |
---|
| 2074 | char *name = NIL(char); |
---|
| 2075 | char *node1Str = util_inttostr(node1); |
---|
| 2076 | char *node2Str = util_inttostr(node2); |
---|
| 2077 | |
---|
| 2078 | name = util_strcat4("Nd", node1Str,"_", node2Str); |
---|
| 2079 | while (st_lookup(bm->SymbolTable, name, &varIndex)){ |
---|
| 2080 | printf("Find redundant node at %ld %ld\n", node1, node2); |
---|
| 2081 | name = util_strcat3(name, node1Str, node2Str); |
---|
| 2082 | } |
---|
| 2083 | FREE(node1Str); |
---|
| 2084 | FREE(node2Str); |
---|
| 2085 | varIndex = Aig_CreateNode(bm, node1, node2); |
---|
| 2086 | if (varIndex == Aig_NULL){ |
---|
| 2087 | FREE(name); |
---|
| 2088 | return (varIndex); |
---|
| 2089 | } |
---|
| 2090 | /* Insert the varaible in the Symbol Table */ |
---|
| 2091 | st_insert(bm->SymbolTable, name, (char*) (long) varIndex); |
---|
| 2092 | bm->nameList[AigNodeID(varIndex)] = name; |
---|
| 2093 | |
---|
| 2094 | return(varIndex); |
---|
| 2095 | |
---|
| 2096 | } |
---|
| 2097 | |
---|
| 2098 | /*---------------------------------------------------------------------------*/ |
---|
| 2099 | /* Definition of static functions */ |
---|
| 2100 | /*---------------------------------------------------------------------------*/ |
---|
| 2101 | |
---|
| 2102 | /**Function******************************************************************** |
---|
| 2103 | |
---|
| 2104 | Synopsis [Connect fanin fanout of two AIG nodes] |
---|
| 2105 | |
---|
| 2106 | Description [] |
---|
| 2107 | |
---|
| 2108 | SideEffects [] |
---|
| 2109 | |
---|
| 2110 | SeeAlso [] |
---|
| 2111 | |
---|
| 2112 | ******************************************************************************/ |
---|
| 2113 | static void |
---|
| 2114 | connectOutput( |
---|
| 2115 | Aig_Manager_t *bm, |
---|
| 2116 | AigEdge_t from, |
---|
| 2117 | AigEdge_t to, |
---|
| 2118 | int inputIndex) |
---|
| 2119 | { |
---|
| 2120 | AigEdge_t *pfan; |
---|
| 2121 | int nfan; |
---|
| 2122 | |
---|
| 2123 | to = Aig_NonInvertedEdge(to); |
---|
| 2124 | pfan = (AigEdge_t *)fanout(from); |
---|
| 2125 | nfan = nFanout(from); |
---|
| 2126 | if(nfan == 0) pfan = ALLOC(AigEdge_t, 2); |
---|
| 2127 | else pfan = REALLOC(AigEdge_t, pfan, nfan+2); |
---|
| 2128 | to += Aig_IsInverted(from); |
---|
| 2129 | to = to << 1; |
---|
| 2130 | to += inputIndex; |
---|
| 2131 | pfan[nfan++] = to; |
---|
| 2132 | pfan[nfan] = 0; |
---|
| 2133 | fanout(from) = (long)pfan; |
---|
| 2134 | nFanout(from) = nfan; |
---|
| 2135 | } |
---|
| 2136 | |
---|
| 2137 | |
---|
| 2138 | /**Function******************************************************************** |
---|
| 2139 | |
---|
| 2140 | Synopsis [disconnect fanin fanout of two AIG nodes] |
---|
| 2141 | |
---|
| 2142 | Description [] |
---|
| 2143 | |
---|
| 2144 | SideEffects [] |
---|
| 2145 | |
---|
| 2146 | SeeAlso [] |
---|
| 2147 | |
---|
| 2148 | static void |
---|
| 2149 | unconnectOutput( |
---|
| 2150 | Aig_Manager_t *bm, |
---|
| 2151 | AigEdge_t from, |
---|
| 2152 | AigEdge_t to) |
---|
| 2153 | { |
---|
| 2154 | AigEdge_t cur, *pfan, *newfan; |
---|
| 2155 | int i, nfan; |
---|
| 2156 | |
---|
| 2157 | from = Aig_NonInvertedEdge(from); |
---|
| 2158 | to = Aig_NonInvertedEdge(to); |
---|
| 2159 | |
---|
| 2160 | pfan = (AigEdge_t *)fanout(from); |
---|
| 2161 | nfan = nFanout(from); |
---|
| 2162 | newfan = (AigEdge_t *)malloc(sizeof(AigEdge_t)*(nfan)); |
---|
| 2163 | for(i=0; i<nfan; i++) { |
---|
| 2164 | cur = pfan[i]; |
---|
| 2165 | cur = cur >> 1; |
---|
| 2166 | cur = Aig_NonInvertedEdge(cur); |
---|
| 2167 | if(cur == to) { |
---|
| 2168 | memcpy(newfan, pfan, sizeof(AigEdge_t)*i); |
---|
| 2169 | memcpy(&(newfan[i]), &(pfan[i+1]), sizeof(AigEdge_t)*(nfan-i-1)); |
---|
| 2170 | newfan[nfan-1] = 0; |
---|
| 2171 | fanout(from) = (int)newfan; |
---|
| 2172 | free(pfan); |
---|
| 2173 | nFanout(from) = nfan-1; |
---|
| 2174 | break; |
---|
| 2175 | } |
---|
| 2176 | } |
---|
| 2177 | } |
---|
| 2178 | ******************************************************************************/ |
---|
| 2179 | |
---|
| 2180 | |
---|
| 2181 | /**Function******************************************************************** |
---|
| 2182 | |
---|
| 2183 | Synopsis [Look for the node in the Hash Table.] |
---|
| 2184 | |
---|
| 2185 | Description [.] |
---|
| 2186 | |
---|
| 2187 | SideEffects [] |
---|
| 2188 | |
---|
| 2189 | SeeAlso [] |
---|
| 2190 | |
---|
| 2191 | ******************************************************************************/ |
---|
| 2192 | static AigEdge_t |
---|
| 2193 | HashTableLookup( |
---|
| 2194 | Aig_Manager_t *bm, |
---|
| 2195 | AigEdge_t node1, |
---|
| 2196 | AigEdge_t node2) |
---|
| 2197 | { |
---|
| 2198 | AigEdge_t key = HashTableFunction(node1, node2); |
---|
| 2199 | AigEdge_t node; |
---|
| 2200 | |
---|
| 2201 | node = bm->HashTable[key]; |
---|
| 2202 | if (node == Aig_NULL) { |
---|
| 2203 | return Aig_NULL; |
---|
| 2204 | } |
---|
| 2205 | else{ |
---|
| 2206 | while ( (rightChild(Aig_NonInvertedEdge(node)) != node2) || |
---|
| 2207 | (leftChild(Aig_NonInvertedEdge(node)) != node1)) { |
---|
| 2208 | |
---|
| 2209 | if (aig_next(Aig_NonInvertedEdge(node)) == Aig_NULL){ |
---|
| 2210 | return(Aig_NULL); |
---|
| 2211 | } |
---|
| 2212 | node = aig_next(Aig_NonInvertedEdge(node)); /* Get the next Node */ |
---|
| 2213 | } /* While loop */ |
---|
| 2214 | return(node); |
---|
| 2215 | |
---|
| 2216 | } /* If Then Else */ |
---|
| 2217 | |
---|
| 2218 | } /* End of HashTableLookup() */ |
---|
| 2219 | |
---|
| 2220 | /**Function******************************************************************** |
---|
| 2221 | |
---|
| 2222 | Synopsis [Add a node in the Hash Table.] |
---|
| 2223 | |
---|
| 2224 | Description [] |
---|
| 2225 | |
---|
| 2226 | SideEffects [] |
---|
| 2227 | |
---|
| 2228 | SeeAlso [] |
---|
| 2229 | |
---|
| 2230 | ******************************************************************************/ |
---|
| 2231 | static int |
---|
| 2232 | HashTableAdd( |
---|
| 2233 | Aig_Manager_t *bm, |
---|
| 2234 | AigEdge_t nodeIndexParent, |
---|
| 2235 | AigEdge_t nodeIndex1, |
---|
| 2236 | AigEdge_t nodeIndex2) |
---|
| 2237 | { |
---|
| 2238 | AigEdge_t key = HashTableFunction(nodeIndex1, nodeIndex2); |
---|
| 2239 | AigEdge_t nodeIndex; |
---|
| 2240 | AigEdge_t node; |
---|
| 2241 | |
---|
| 2242 | nodeIndex = bm->HashTable[key]; |
---|
| 2243 | if (nodeIndex == Aig_NULL) { |
---|
| 2244 | bm->HashTable[key] = nodeIndexParent; |
---|
| 2245 | return TRUE; |
---|
| 2246 | } |
---|
| 2247 | else{ |
---|
| 2248 | node = nodeIndex; |
---|
| 2249 | nodeIndex = aig_next(Aig_NonInvertedEdge(nodeIndex)); /* Get the Node */ |
---|
| 2250 | while (nodeIndex != Aig_NULL) { |
---|
| 2251 | node = nodeIndex; |
---|
| 2252 | nodeIndex = aig_next(Aig_NonInvertedEdge(nodeIndex)); |
---|
| 2253 | } |
---|
| 2254 | aig_next(Aig_NonInvertedEdge(node)) = nodeIndexParent; |
---|
| 2255 | return TRUE; |
---|
| 2256 | } |
---|
| 2257 | |
---|
| 2258 | } /* End of HashTableAdd() */ |
---|
| 2259 | |
---|
| 2260 | |
---|
| 2261 | /**Function******************************************************************** |
---|
| 2262 | |
---|
| 2263 | Synopsis [Hash table delete] |
---|
| 2264 | |
---|
| 2265 | Description [Hash table delete] |
---|
| 2266 | |
---|
| 2267 | SideEffects [] |
---|
| 2268 | |
---|
| 2269 | SeeAlso [] |
---|
| 2270 | |
---|
| 2271 | ******************************************************************************/ |
---|
| 2272 | #if 0 |
---|
| 2273 | static int |
---|
| 2274 | HashTableDelete( |
---|
| 2275 | Aig_Manager_t *bm, |
---|
| 2276 | AigEdge_t node) |
---|
| 2277 | { |
---|
| 2278 | AigEdge_t key = HashTableFunction(leftChild(node), rightChild(node)); |
---|
| 2279 | AigEdge_t nodeIndex; |
---|
| 2280 | |
---|
| 2281 | nodeIndex = bm->HashTable[key]; |
---|
| 2282 | if (nodeIndex == node) { |
---|
| 2283 | bm->HashTable[key] = aig_next(node); |
---|
| 2284 | return TRUE; |
---|
| 2285 | } |
---|
| 2286 | else{ |
---|
| 2287 | while(nodeIndex && aig_next(Aig_NonInvertedEdge(nodeIndex)) != node) |
---|
| 2288 | nodeIndex = aig_next(Aig_NonInvertedEdge(nodeIndex)); |
---|
| 2289 | |
---|
| 2290 | aig_next(Aig_NonInvertedEdge(nodeIndex)) = |
---|
| 2291 | aig_next(Aig_NonInvertedEdge(aig_next(Aig_NonInvertedEdge(nodeIndex)))); |
---|
| 2292 | return TRUE; |
---|
| 2293 | } |
---|
| 2294 | |
---|
| 2295 | } /* End of HashTableAdd() */ |
---|
| 2296 | #endif |
---|
| 2297 | |
---|
| 2298 | /**Function******************************************************************** |
---|
| 2299 | |
---|
| 2300 | Synopsis [Structural hasing for and4] |
---|
| 2301 | |
---|
| 2302 | Description [Structural hasing for and4] |
---|
| 2303 | |
---|
| 2304 | SideEffects [] |
---|
| 2305 | |
---|
| 2306 | SeeAlso [] |
---|
| 2307 | |
---|
| 2308 | ******************************************************************************/ |
---|
| 2309 | |
---|
| 2310 | AigEdge_t |
---|
| 2311 | Aig_And4( |
---|
| 2312 | Aig_Manager_t *bm, |
---|
| 2313 | AigEdge_t l, |
---|
| 2314 | AigEdge_t r) |
---|
| 2315 | { |
---|
| 2316 | int caseIndex, caseSig; |
---|
| 2317 | AigEdge_t ll, lr, rl, rr; |
---|
| 2318 | AigEdge_t t1, t2; |
---|
| 2319 | |
---|
| 2320 | ll = leftChild(l); |
---|
| 2321 | lr = rightChild(l); |
---|
| 2322 | rl = leftChild(r); |
---|
| 2323 | rr = rightChild(r); |
---|
| 2324 | |
---|
| 2325 | if(AigCompareNode(l, rl) || |
---|
| 2326 | AigCompareNode(l, rr)) { |
---|
| 2327 | return(Aig_And3(bm, l, r)); |
---|
| 2328 | } |
---|
| 2329 | else if(AigCompareNode(r, ll) || |
---|
| 2330 | AigCompareNode(r, lr)) { |
---|
| 2331 | return(Aig_And3(bm, r, l)); |
---|
| 2332 | } |
---|
| 2333 | |
---|
| 2334 | if(ll > lr+1) AigSwap(ll, lr); |
---|
| 2335 | if(rl > rr+1) AigSwap(rl, rr); |
---|
| 2336 | |
---|
| 2337 | caseIndex = 0; /* (a b)(c d) */ |
---|
| 2338 | if(AigCompareNode(ll, rl)) { |
---|
| 2339 | if(AigCompareNode(lr, rr)) { |
---|
| 2340 | caseIndex = 4; /* (a b) (a b) */ |
---|
| 2341 | } |
---|
| 2342 | else { |
---|
| 2343 | caseIndex = 1; /* (a b) (a c) */ |
---|
| 2344 | if(lr > rr+1) { |
---|
| 2345 | AigSwap(ll, rl); |
---|
| 2346 | AigSwap(lr, rr); |
---|
| 2347 | AigSwap(l, r); |
---|
| 2348 | } |
---|
| 2349 | } |
---|
| 2350 | } |
---|
| 2351 | else if(AigCompareNode(lr, rl)) { |
---|
| 2352 | caseIndex = 2; /* (b a)(a c) */ |
---|
| 2353 | } |
---|
| 2354 | else if(AigCompareNode(lr, rr)) { |
---|
| 2355 | caseIndex = 3; /* (b a)(c a) */ |
---|
| 2356 | if(ll > rl+1) { |
---|
| 2357 | AigSwap(ll, rl); |
---|
| 2358 | AigSwap(lr, rr); |
---|
| 2359 | AigSwap(l, r); |
---|
| 2360 | } |
---|
| 2361 | } |
---|
| 2362 | else if(AigCompareNode(ll, rr)) { |
---|
| 2363 | /* (a b)(c a) */ |
---|
| 2364 | AigSwap(ll, rl); |
---|
| 2365 | AigSwap(lr, rr); |
---|
| 2366 | AigSwap(l, r); |
---|
| 2367 | caseIndex = 2; /* (c a )(a b) because of c < b */ |
---|
| 2368 | } |
---|
| 2369 | |
---|
| 2370 | caseSig = 0; |
---|
| 2371 | if(Aig_IsInverted(ll)) caseSig += 32; |
---|
| 2372 | if(Aig_IsInverted(lr)) caseSig += 16; |
---|
| 2373 | if(Aig_IsInverted(l)) caseSig += 8; |
---|
| 2374 | if(Aig_IsInverted(rl)) caseSig += 4; |
---|
| 2375 | if(Aig_IsInverted(rr)) caseSig += 2; |
---|
| 2376 | if(Aig_IsInverted(r)) caseSig += 1; |
---|
| 2377 | /** |
---|
| 2378 | fprintf(stdout, "Index: %d Sig: %2d (%5d%c %5d%c)%c (%5d%c %5d%c)%c (%5d, %5d)\n", |
---|
| 2379 | caseIndex, caseSig, |
---|
| 2380 | Aig_NonInvertedEdge(ll), Aig_IsInverted(ll) ? '\'' : ' ', |
---|
| 2381 | Aig_NonInvertedEdge(lr), Aig_IsInverted(lr) ? '\'' : ' ', |
---|
| 2382 | Aig_IsInverted(l) ? '\'' : ' ', |
---|
| 2383 | Aig_NonInvertedEdge(rl), Aig_IsInverted(rl) ? '\'' : ' ', |
---|
| 2384 | Aig_NonInvertedEdge(rr), Aig_IsInverted(rr) ? '\'' : ' ', |
---|
| 2385 | Aig_IsInverted(r) ? '\'' : ' ', |
---|
| 2386 | Aig_NonInvertedEdge(l), Aig_NonInvertedEdge(r) |
---|
| 2387 | ); |
---|
| 2388 | **/ |
---|
| 2389 | if(caseIndex == 0) { |
---|
| 2390 | return(Aig_And2(bm, l, r)); |
---|
| 2391 | } |
---|
| 2392 | else if(caseIndex == 1) { |
---|
| 2393 | switch(caseSig) { |
---|
| 2394 | case 19 : |
---|
| 2395 | case 17 : |
---|
| 2396 | case 3 : |
---|
| 2397 | case 1 : |
---|
| 2398 | case 55 : |
---|
| 2399 | case 53 : |
---|
| 2400 | case 39 : |
---|
| 2401 | case 37 : |
---|
| 2402 | t1 = Aig_And(bm, lr, Aig_Not(rr)); |
---|
| 2403 | t2 = Aig_And(bm, ll, t1); |
---|
| 2404 | return(t2); |
---|
| 2405 | case 18 : |
---|
| 2406 | case 16 : |
---|
| 2407 | case 2 : |
---|
| 2408 | case 0 : |
---|
| 2409 | case 54 : |
---|
| 2410 | case 52 : |
---|
| 2411 | case 38 : |
---|
| 2412 | case 36 : |
---|
| 2413 | t1 = Aig_And(bm, lr, rr); |
---|
| 2414 | t2 = Aig_And(bm, ll, t1); |
---|
| 2415 | return(t2); |
---|
| 2416 | case 26 : |
---|
| 2417 | case 24 : |
---|
| 2418 | case 10 : |
---|
| 2419 | case 8 : |
---|
| 2420 | case 62 : |
---|
| 2421 | case 60 : |
---|
| 2422 | case 46 : |
---|
| 2423 | case 44 : |
---|
| 2424 | t1 = Aig_And(bm, Aig_Not(lr), rr); |
---|
| 2425 | t2 = Aig_And(bm, ll, t1); |
---|
| 2426 | return(t2); |
---|
| 2427 | case 61 : |
---|
| 2428 | case 27 : |
---|
| 2429 | case 25 : |
---|
| 2430 | case 11 : |
---|
| 2431 | case 63 : |
---|
| 2432 | case 47 : |
---|
| 2433 | case 9 : |
---|
| 2434 | case 45 : |
---|
| 2435 | t1 = Aig_And(bm, Aig_Not(lr), Aig_Not(rr)); |
---|
| 2436 | t2 = Aig_Or(bm, Aig_Not(ll), t1); |
---|
| 2437 | return(t2); |
---|
| 2438 | case 23 : |
---|
| 2439 | case 21 : |
---|
| 2440 | case 7 : |
---|
| 2441 | case 5 : |
---|
| 2442 | case 51 : |
---|
| 2443 | case 49 : |
---|
| 2444 | case 35 : |
---|
| 2445 | case 33 : |
---|
| 2446 | return(l); |
---|
| 2447 | case 30 : |
---|
| 2448 | case 28 : |
---|
| 2449 | case 14 : |
---|
| 2450 | case 12 : |
---|
| 2451 | case 58 : |
---|
| 2452 | case 56 : |
---|
| 2453 | case 42 : |
---|
| 2454 | case 40 : |
---|
| 2455 | return(r); |
---|
| 2456 | case 22 : |
---|
| 2457 | case 20 : |
---|
| 2458 | case 6 : |
---|
| 2459 | case 4 : |
---|
| 2460 | case 50 : |
---|
| 2461 | case 48 : |
---|
| 2462 | case 34 : |
---|
| 2463 | case 32 : |
---|
| 2464 | return(Aig_Zero); |
---|
| 2465 | case 31 : |
---|
| 2466 | case 29 : |
---|
| 2467 | case 15 : |
---|
| 2468 | case 13 : |
---|
| 2469 | case 59 : |
---|
| 2470 | case 57 : |
---|
| 2471 | case 43 : |
---|
| 2472 | case 41 : |
---|
| 2473 | t1 = Aig_And2(bm, l, r); |
---|
| 2474 | return(t1); |
---|
| 2475 | } |
---|
| 2476 | } |
---|
| 2477 | else if(caseIndex == 2) { |
---|
| 2478 | switch(caseSig) { |
---|
| 2479 | case 35 : |
---|
| 2480 | case 33 : |
---|
| 2481 | case 3 : |
---|
| 2482 | case 1 : |
---|
| 2483 | case 55 : |
---|
| 2484 | case 53 : |
---|
| 2485 | case 23 : |
---|
| 2486 | case 21 : |
---|
| 2487 | t1 = Aig_And(bm, lr, Aig_Not(rr)); |
---|
| 2488 | t2 = Aig_And(bm, ll, t1); |
---|
| 2489 | return(t2); |
---|
| 2490 | case 34 : |
---|
| 2491 | case 32 : |
---|
| 2492 | case 2 : |
---|
| 2493 | case 0 : |
---|
| 2494 | case 54 : |
---|
| 2495 | case 52 : |
---|
| 2496 | case 22 : |
---|
| 2497 | case 20 : |
---|
| 2498 | t1 = Aig_And(bm, lr, rr); |
---|
| 2499 | t2 = Aig_And(bm, ll, t1); |
---|
| 2500 | return(t2); |
---|
| 2501 | case 42 : |
---|
| 2502 | case 40 : |
---|
| 2503 | case 10 : |
---|
| 2504 | case 8 : |
---|
| 2505 | case 62 : |
---|
| 2506 | case 60 : |
---|
| 2507 | case 30 : |
---|
| 2508 | case 28 : |
---|
| 2509 | t1 = Aig_And(bm, lr, rr); |
---|
| 2510 | t2 = Aig_And(bm, Aig_Not(ll), t1); |
---|
| 2511 | return(t2); |
---|
| 2512 | case 43 : |
---|
| 2513 | case 41 : |
---|
| 2514 | case 11 : |
---|
| 2515 | case 9 : |
---|
| 2516 | case 63 : |
---|
| 2517 | case 61 : |
---|
| 2518 | case 31 : |
---|
| 2519 | case 29 : |
---|
| 2520 | t1 = Aig_And(bm, Aig_Not(ll), Aig_Not(rr)); |
---|
| 2521 | t2 = Aig_Or(bm, Aig_Not(lr), t1); |
---|
| 2522 | return(t2); |
---|
| 2523 | case 39 : |
---|
| 2524 | case 37 : |
---|
| 2525 | case 7 : |
---|
| 2526 | case 5 : |
---|
| 2527 | case 51 : |
---|
| 2528 | case 49 : |
---|
| 2529 | case 19 : |
---|
| 2530 | case 17 : |
---|
| 2531 | return(l); |
---|
| 2532 | case 46 : |
---|
| 2533 | case 44 : |
---|
| 2534 | case 14 : |
---|
| 2535 | case 12 : |
---|
| 2536 | case 58 : |
---|
| 2537 | case 56 : |
---|
| 2538 | case 26 : |
---|
| 2539 | case 24 : |
---|
| 2540 | return(r); |
---|
| 2541 | case 38 : |
---|
| 2542 | case 36 : |
---|
| 2543 | case 6 : |
---|
| 2544 | case 4 : |
---|
| 2545 | case 50 : |
---|
| 2546 | case 48 : |
---|
| 2547 | case 18 : |
---|
| 2548 | case 16 : |
---|
| 2549 | return(Aig_Zero); |
---|
| 2550 | case 45 : |
---|
| 2551 | case 15 : |
---|
| 2552 | case 13 : |
---|
| 2553 | case 59 : |
---|
| 2554 | case 57 : |
---|
| 2555 | case 47 : |
---|
| 2556 | case 27 : |
---|
| 2557 | case 25 : |
---|
| 2558 | t1 = Aig_And2(bm, l, r); |
---|
| 2559 | return(t1); |
---|
| 2560 | } |
---|
| 2561 | } |
---|
| 2562 | else if(caseIndex == 3) { |
---|
| 2563 | switch(caseSig) { |
---|
| 2564 | case 37 : |
---|
| 2565 | case 33 : |
---|
| 2566 | case 5 : |
---|
| 2567 | case 1 : |
---|
| 2568 | case 55 : |
---|
| 2569 | case 51 : |
---|
| 2570 | case 23 : |
---|
| 2571 | case 19 : |
---|
| 2572 | t1 = Aig_And(bm, Aig_Not(rl), lr); |
---|
| 2573 | t2 = Aig_And(bm, ll, t1); |
---|
| 2574 | return(t2); |
---|
| 2575 | case 36 : |
---|
| 2576 | case 32 : |
---|
| 2577 | case 4 : |
---|
| 2578 | case 0 : |
---|
| 2579 | case 54 : |
---|
| 2580 | case 50 : |
---|
| 2581 | case 22 : |
---|
| 2582 | case 18 : |
---|
| 2583 | t1 = Aig_And(bm, rl, lr); |
---|
| 2584 | t2 = Aig_And(bm, ll, t1); |
---|
| 2585 | return(t2); |
---|
| 2586 | case 44 : |
---|
| 2587 | case 40 : |
---|
| 2588 | case 12 : |
---|
| 2589 | case 8 : |
---|
| 2590 | case 62 : |
---|
| 2591 | case 58 : |
---|
| 2592 | case 30 : |
---|
| 2593 | case 26 : |
---|
| 2594 | t1 = Aig_And(bm, rl, lr); |
---|
| 2595 | t2 = Aig_And(bm, Aig_Not(ll), t1); |
---|
| 2596 | return(t2); |
---|
| 2597 | case 45 : |
---|
| 2598 | case 41 : |
---|
| 2599 | case 13 : |
---|
| 2600 | case 9 : |
---|
| 2601 | case 63 : |
---|
| 2602 | case 59 : |
---|
| 2603 | case 31 : |
---|
| 2604 | case 27 : |
---|
| 2605 | t1 = Aig_And(bm, Aig_Not(ll), Aig_Not(rl)); |
---|
| 2606 | t2 = Aig_Or(bm, Aig_Not(lr), t1); |
---|
| 2607 | return(t2); |
---|
| 2608 | case 39 : |
---|
| 2609 | case 35 : |
---|
| 2610 | case 7 : |
---|
| 2611 | case 3 : |
---|
| 2612 | case 53 : |
---|
| 2613 | case 49 : |
---|
| 2614 | case 21 : |
---|
| 2615 | case 17 : |
---|
| 2616 | return(l); |
---|
| 2617 | case 46 : |
---|
| 2618 | case 42 : |
---|
| 2619 | case 14 : |
---|
| 2620 | case 10 : |
---|
| 2621 | case 60 : |
---|
| 2622 | case 56 : |
---|
| 2623 | case 28 : |
---|
| 2624 | case 24 : |
---|
| 2625 | return(r); |
---|
| 2626 | case 38 : |
---|
| 2627 | case 34 : |
---|
| 2628 | case 6 : |
---|
| 2629 | case 2 : |
---|
| 2630 | case 52 : |
---|
| 2631 | case 48 : |
---|
| 2632 | case 20 : |
---|
| 2633 | case 16 : |
---|
| 2634 | return(Aig_Zero); |
---|
| 2635 | case 47 : |
---|
| 2636 | case 43 : |
---|
| 2637 | case 15 : |
---|
| 2638 | case 11 : |
---|
| 2639 | case 61 : |
---|
| 2640 | case 57 : |
---|
| 2641 | case 29 : |
---|
| 2642 | case 25 : |
---|
| 2643 | t1 = Aig_And2(bm, l, r); |
---|
| 2644 | return(t1); |
---|
| 2645 | } |
---|
| 2646 | } |
---|
| 2647 | else if(caseIndex == 4) { |
---|
| 2648 | switch(caseSig) { |
---|
| 2649 | case 22 : |
---|
| 2650 | case 20 : |
---|
| 2651 | case 6 : |
---|
| 2652 | case 4 : |
---|
| 2653 | case 50 : |
---|
| 2654 | case 48 : |
---|
| 2655 | case 34 : |
---|
| 2656 | case 32 : |
---|
| 2657 | case 2 : |
---|
| 2658 | case 16 : |
---|
| 2659 | case 52 : |
---|
| 2660 | case 1 : |
---|
| 2661 | case 8 : |
---|
| 2662 | case 19 : |
---|
| 2663 | case 26 : |
---|
| 2664 | case 37 : |
---|
| 2665 | case 44 : |
---|
| 2666 | case 38 : |
---|
| 2667 | case 55 : |
---|
| 2668 | case 62 : |
---|
| 2669 | return(Aig_Zero); |
---|
| 2670 | case 0 : |
---|
| 2671 | case 18 : |
---|
| 2672 | case 36 : |
---|
| 2673 | case 54 : |
---|
| 2674 | case 9 : |
---|
| 2675 | case 27 : |
---|
| 2676 | case 45 : |
---|
| 2677 | case 63 : |
---|
| 2678 | case 5 : |
---|
| 2679 | case 23 : |
---|
| 2680 | case 33 : |
---|
| 2681 | case 51 : |
---|
| 2682 | case 3 : |
---|
| 2683 | case 17 : |
---|
| 2684 | case 49 : |
---|
| 2685 | case 7 : |
---|
| 2686 | case 35 : |
---|
| 2687 | case 21 : |
---|
| 2688 | case 39 : |
---|
| 2689 | case 53 : |
---|
| 2690 | return(l); |
---|
| 2691 | case 40 : |
---|
| 2692 | case 58 : |
---|
| 2693 | case 12 : |
---|
| 2694 | case 30 : |
---|
| 2695 | case 24 : |
---|
| 2696 | case 10 : |
---|
| 2697 | case 14 : |
---|
| 2698 | case 56 : |
---|
| 2699 | case 28 : |
---|
| 2700 | case 42 : |
---|
| 2701 | case 60 : |
---|
| 2702 | case 46 : |
---|
| 2703 | return(r); |
---|
| 2704 | case 11 : |
---|
| 2705 | case 47 : |
---|
| 2706 | case 25 : |
---|
| 2707 | case 61 : |
---|
| 2708 | return(Aig_Not(ll)); |
---|
| 2709 | case 41 : |
---|
| 2710 | case 59 : |
---|
| 2711 | case 13 : |
---|
| 2712 | case 31 : |
---|
| 2713 | return(Aig_Not(lr)); |
---|
| 2714 | case 15 : |
---|
| 2715 | t1 = Aig_And(bm, ll, Aig_Not(lr)); |
---|
| 2716 | t2 = Aig_And(bm, Aig_Not(ll), lr); |
---|
| 2717 | return(Aig_Not(Aig_And2(bm, Aig_Not(t1), Aig_Not(t2)))); |
---|
| 2718 | case 57 : |
---|
| 2719 | t1 = Aig_And(bm, rl, Aig_Not(rr)); |
---|
| 2720 | t2 = Aig_And(bm, Aig_Not(rl), rr); |
---|
| 2721 | return(Aig_Not(Aig_And2(bm, Aig_Not(t1), Aig_Not(t2)))); |
---|
| 2722 | case 29 : |
---|
| 2723 | t1 = Aig_And(bm, ll, lr); |
---|
| 2724 | t2 = Aig_And(bm, Aig_Not(ll), Aig_Not(lr)); |
---|
| 2725 | return((Aig_And2(bm, Aig_Not(t1), Aig_Not(t2)))); |
---|
| 2726 | case 43 : |
---|
| 2727 | t1 = Aig_And(bm, rl, rr); |
---|
| 2728 | t2 = Aig_And(bm, Aig_Not(rl), Aig_Not(rr)); |
---|
| 2729 | return((Aig_And2(bm, Aig_Not(t1), Aig_Not(t2)))); |
---|
| 2730 | } |
---|
| 2731 | } |
---|
| 2732 | return(0); |
---|
| 2733 | } |
---|
| 2734 | |
---|
| 2735 | |
---|
| 2736 | /**Function******************************************************************** |
---|
| 2737 | |
---|
| 2738 | Synopsis [Structural hasing for and3] |
---|
| 2739 | |
---|
| 2740 | Description [Structural hasing for and3] |
---|
| 2741 | |
---|
| 2742 | SideEffects [] |
---|
| 2743 | |
---|
| 2744 | SeeAlso [] |
---|
| 2745 | |
---|
| 2746 | ******************************************************************************/ |
---|
| 2747 | AigEdge_t |
---|
| 2748 | Aig_And3( |
---|
| 2749 | Aig_Manager_t *bm, |
---|
| 2750 | AigEdge_t l, |
---|
| 2751 | AigEdge_t r) |
---|
| 2752 | { |
---|
| 2753 | int caseIndex, caseSig; |
---|
| 2754 | AigEdge_t rl, rr; |
---|
| 2755 | |
---|
| 2756 | rl = leftChild(r); |
---|
| 2757 | rr = rightChild(r); |
---|
| 2758 | |
---|
| 2759 | caseIndex = 0; /* (a)(b c) */ |
---|
| 2760 | if(AigCompareNode(l, rl)) { |
---|
| 2761 | caseIndex = 1; /* (a)(a b) */ |
---|
| 2762 | } |
---|
| 2763 | else if(AigCompareNode(l, rr)) { |
---|
| 2764 | caseIndex = 2; /* (a)(b a) */ |
---|
| 2765 | } |
---|
| 2766 | |
---|
| 2767 | caseSig = 0; |
---|
| 2768 | if(Aig_IsInverted(l)) caseSig += 8; |
---|
| 2769 | if(Aig_IsInverted(rl)) caseSig += 4; |
---|
| 2770 | if(Aig_IsInverted(rr)) caseSig += 2; |
---|
| 2771 | if(Aig_IsInverted(r)) caseSig += 1; |
---|
| 2772 | if(caseIndex == 0) { |
---|
| 2773 | return(Aig_And2(bm, l, r)); |
---|
| 2774 | } |
---|
| 2775 | else if(caseIndex == 1) { |
---|
| 2776 | switch(caseSig) { |
---|
| 2777 | case 2 : |
---|
| 2778 | case 0 : |
---|
| 2779 | case 14 : |
---|
| 2780 | case 12 : |
---|
| 2781 | return(r); |
---|
| 2782 | case 10 : |
---|
| 2783 | case 8 : |
---|
| 2784 | case 6 : |
---|
| 2785 | case 4 : |
---|
| 2786 | return(Aig_Zero); |
---|
| 2787 | case 3 : |
---|
| 2788 | case 1 : |
---|
| 2789 | case 15 : |
---|
| 2790 | case 13 : |
---|
| 2791 | return(Aig_And(bm, rl, Aig_Not(rr))); |
---|
| 2792 | case 11 : |
---|
| 2793 | case 9 : |
---|
| 2794 | case 7 : |
---|
| 2795 | case 5 : |
---|
| 2796 | return(l); |
---|
| 2797 | } |
---|
| 2798 | } |
---|
| 2799 | else if(caseIndex == 2) { |
---|
| 2800 | switch(caseSig) { |
---|
| 2801 | case 4 : |
---|
| 2802 | case 0 : |
---|
| 2803 | case 14 : |
---|
| 2804 | case 10 : |
---|
| 2805 | return(r); |
---|
| 2806 | case 12 : |
---|
| 2807 | case 8 : |
---|
| 2808 | case 6 : |
---|
| 2809 | case 2 : |
---|
| 2810 | return(Aig_Zero); |
---|
| 2811 | case 5 : |
---|
| 2812 | case 1 : |
---|
| 2813 | case 15 : |
---|
| 2814 | case 11 : |
---|
| 2815 | return(Aig_And(bm, Aig_Not(rl), rr)); |
---|
| 2816 | case 13 : |
---|
| 2817 | case 9 : |
---|
| 2818 | case 7 : |
---|
| 2819 | case 3 : |
---|
| 2820 | return(l); |
---|
| 2821 | } |
---|
| 2822 | } |
---|
| 2823 | return(0); |
---|
| 2824 | } |
---|
| 2825 | |
---|
| 2826 | /**Function******************************************************************** |
---|
| 2827 | |
---|
| 2828 | Synopsis [Set mask for transitive fanin nodes] |
---|
| 2829 | |
---|
| 2830 | Description [Set mask for transitive fanin nodes] |
---|
| 2831 | |
---|
| 2832 | SideEffects [] |
---|
| 2833 | |
---|
| 2834 | SeeAlso [] |
---|
| 2835 | |
---|
| 2836 | ******************************************************************************/ |
---|
| 2837 | void |
---|
| 2838 | Aig_SetMaskTransitiveFanin( |
---|
| 2839 | Aig_Manager_t *bm, |
---|
| 2840 | int v, |
---|
| 2841 | unsigned int mask) |
---|
| 2842 | { |
---|
| 2843 | if(v == 2) return; |
---|
| 2844 | |
---|
| 2845 | |
---|
| 2846 | if(flags(v) & mask) return; |
---|
| 2847 | |
---|
| 2848 | flags(v) |= mask; |
---|
| 2849 | |
---|
| 2850 | Aig_SetMaskTransitiveFanin(bm, leftChild(v), mask); |
---|
| 2851 | Aig_SetMaskTransitiveFanin(bm, rightChild(v), mask); |
---|
| 2852 | } |
---|
| 2853 | |
---|
| 2854 | /**Function******************************************************************** |
---|
| 2855 | |
---|
| 2856 | Synopsis [Reset mask for transitive fanin nodes] |
---|
| 2857 | |
---|
| 2858 | Description [Reset mask for transitive fanin nodes] |
---|
| 2859 | |
---|
| 2860 | SideEffects [] |
---|
| 2861 | |
---|
| 2862 | SeeAlso [] |
---|
| 2863 | |
---|
| 2864 | ******************************************************************************/ |
---|
| 2865 | void |
---|
| 2866 | Aig_ResetMaskTransitiveFanin( |
---|
| 2867 | Aig_Manager_t *bm, |
---|
| 2868 | int v, |
---|
| 2869 | unsigned int mask, |
---|
| 2870 | unsigned int resetMask) |
---|
| 2871 | { |
---|
| 2872 | if(v == 2) return; |
---|
| 2873 | |
---|
| 2874 | |
---|
| 2875 | if(!(flags(v) & mask)) return; |
---|
| 2876 | |
---|
| 2877 | flags(v) &= resetMask; |
---|
| 2878 | Aig_ResetMaskTransitiveFanin(bm, leftChild(v), mask, resetMask); |
---|
| 2879 | Aig_ResetMaskTransitiveFanin(bm, rightChild(v), mask, resetMask); |
---|
| 2880 | } |
---|
| 2881 | |
---|
| 2882 | |
---|
| 2883 | /**Function******************************************************************** |
---|
| 2884 | |
---|
| 2885 | Synopsis [Get value of aig node.] |
---|
| 2886 | |
---|
| 2887 | Description [The default falue is 2, which is same as UNKNOWN. This calue can be assigned from SAT solver.] |
---|
| 2888 | |
---|
| 2889 | SideEffects [] |
---|
| 2890 | |
---|
| 2891 | SeeAlso [] |
---|
| 2892 | |
---|
| 2893 | ******************************************************************************/ |
---|
| 2894 | |
---|
| 2895 | int |
---|
| 2896 | Aig_GetValueOfNode(Aig_Manager_t *bm, AigEdge_t v) |
---|
| 2897 | { |
---|
| 2898 | unsigned int value, lvalue, rvalue; |
---|
| 2899 | AigEdge_t left, right; |
---|
| 2900 | |
---|
| 2901 | |
---|
| 2902 | /* |
---|
| 2903 | if(!(flags(v) & CoiMask)) return(2); |
---|
| 2904 | **/ |
---|
| 2905 | if(v == 2) return(2); |
---|
| 2906 | |
---|
| 2907 | value = aig_value(v); |
---|
| 2908 | if(value == 3) return(2); |
---|
| 2909 | if(value == 2) { |
---|
| 2910 | left = Aig_GetCanonical(bm, leftChild(v)); |
---|
| 2911 | lvalue = Aig_GetValueOfNode(bm, left); |
---|
| 2912 | if(lvalue == 0) { |
---|
| 2913 | value = 0; |
---|
| 2914 | } |
---|
| 2915 | else { |
---|
| 2916 | right = Aig_GetCanonical(bm, rightChild(v)); |
---|
| 2917 | rvalue = Aig_GetValueOfNode(bm, right); |
---|
| 2918 | if(rvalue == 0) { |
---|
| 2919 | value = 0; |
---|
| 2920 | } |
---|
| 2921 | else if(rvalue == 1 && lvalue == 1) { |
---|
| 2922 | value = 1; |
---|
| 2923 | } |
---|
| 2924 | else { |
---|
| 2925 | value = 2; |
---|
| 2926 | } |
---|
| 2927 | } |
---|
| 2928 | } |
---|
| 2929 | |
---|
| 2930 | if(value == 2) { |
---|
| 2931 | aig_value(v) = 3; |
---|
| 2932 | return(value); |
---|
| 2933 | } |
---|
| 2934 | else { |
---|
| 2935 | aig_value(v) = value; |
---|
| 2936 | return(value ^ Aig_IsInverted(v)); |
---|
| 2937 | } |
---|
| 2938 | } |
---|
| 2939 | |
---|