1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [AigNode.c] |
---|
4 | |
---|
5 | PackageName [Aig] |
---|
6 | |
---|
7 | Synopsis [Routines to access node data structure of the And/Inverter |
---|
8 | graph.] |
---|
9 | |
---|
10 | Author [Mohammad Awedh, HoonSang Jin] |
---|
11 | |
---|
12 | Copyright [ This file was created at the University of Colorado at |
---|
13 | Boulder. The University of Colorado at Boulder makes no warranty |
---|
14 | about the suitability of this software for any purpose. It is |
---|
15 | presented on an AS IS basis.] |
---|
16 | |
---|
17 | |
---|
18 | ******************************************************************************/ |
---|
19 | |
---|
20 | #include "aig.h" |
---|
21 | #include "aigInt.h" |
---|
22 | |
---|
23 | static char rcsid[] UNUSED = "$Id: aigNode.c,v 1.2 2009-04-10 16:33:36 hhkim Exp $"; |
---|
24 | |
---|
25 | /*---------------------------------------------------------------------------*/ |
---|
26 | /* Constant declarations */ |
---|
27 | /*---------------------------------------------------------------------------*/ |
---|
28 | |
---|
29 | /**AutomaticStart*************************************************************/ |
---|
30 | |
---|
31 | /*---------------------------------------------------------------------------*/ |
---|
32 | /* Static function prototypes */ |
---|
33 | /*---------------------------------------------------------------------------*/ |
---|
34 | |
---|
35 | static void connectOutput(Aig_Manager_t *bm, AigEdge_t from, AigEdge_t to, int inputIndex); |
---|
36 | static AigEdge_t HashTableLookup(Aig_Manager_t *bm, AigEdge_t node1, AigEdge_t node2); |
---|
37 | static int HashTableAdd(Aig_Manager_t *bm, AigEdge_t nodeIndexParent, AigEdge_t nodeIndex1, AigEdge_t nodeIndex2); |
---|
38 | /* static int HashTableDelete(Aig_Manager_t *bm, AigEdge_t node); */ |
---|
39 | |
---|
40 | /**AutomaticEnd***************************************************************/ |
---|
41 | |
---|
42 | |
---|
43 | /*---------------------------------------------------------------------------*/ |
---|
44 | /* Definition of exported functions */ |
---|
45 | /*---------------------------------------------------------------------------*/ |
---|
46 | |
---|
47 | |
---|
48 | /**Function******************************************************************** |
---|
49 | |
---|
50 | Synopsis [Read Node's name.] |
---|
51 | |
---|
52 | Description [Read the name of a node given its index.] |
---|
53 | |
---|
54 | SideEffects [] |
---|
55 | |
---|
56 | SeeAlso [] |
---|
57 | |
---|
58 | ******************************************************************************/ |
---|
59 | nameType_t * |
---|
60 | Aig_NodeReadName( |
---|
61 | Aig_Manager_t *bm, |
---|
62 | AigEdge_t node) |
---|
63 | { |
---|
64 | return bm->nameList[AigNodeID(node)]; |
---|
65 | } |
---|
66 | |
---|
67 | /**Function******************************************************************** |
---|
68 | |
---|
69 | Synopsis [Set Node's name.] |
---|
70 | |
---|
71 | Description [Set the name of node in Symbol table and name List] |
---|
72 | |
---|
73 | SideEffects [] |
---|
74 | |
---|
75 | SeeAlso [] |
---|
76 | |
---|
77 | ******************************************************************************/ |
---|
78 | void |
---|
79 | Aig_NodeSetName( |
---|
80 | Aig_Manager_t *bm, |
---|
81 | AigEdge_t node, |
---|
82 | nameType_t *name) |
---|
83 | { |
---|
84 | nameType_t *tmpName = bm->nameList[AigNodeID(node)]; |
---|
85 | FREE(tmpName); |
---|
86 | st_insert(bm->SymbolTable, name, (char*) (long) node); |
---|
87 | bm->nameList[AigNodeID(node)] = name; |
---|
88 | } |
---|
89 | |
---|
90 | /**Function******************************************************************** |
---|
91 | |
---|
92 | Synopsis [Returns the index of the right node.] |
---|
93 | |
---|
94 | Description [] |
---|
95 | |
---|
96 | SideEffects [] |
---|
97 | |
---|
98 | SeeAlso [] |
---|
99 | |
---|
100 | ******************************************************************************/ |
---|
101 | int |
---|
102 | Aig_NodeReadIndexOfRightChild( |
---|
103 | Aig_Manager_t *bm, |
---|
104 | AigEdge_t nodeIndex) |
---|
105 | { |
---|
106 | return rightChild(nodeIndex); |
---|
107 | } |
---|
108 | |
---|
109 | /**Function******************************************************************** |
---|
110 | |
---|
111 | Synopsis [Returns the index of the left node.] |
---|
112 | |
---|
113 | Description [] |
---|
114 | |
---|
115 | SideEffects [] |
---|
116 | |
---|
117 | SeeAlso [] |
---|
118 | |
---|
119 | ******************************************************************************/ |
---|
120 | AigEdge_t |
---|
121 | Aig_NodeReadIndexOfLeftChild( |
---|
122 | Aig_Manager_t *bm, |
---|
123 | AigEdge_t nodeIndex) |
---|
124 | { |
---|
125 | return leftChild(nodeIndex); |
---|
126 | } |
---|
127 | |
---|
128 | /**Function******************************************************************** |
---|
129 | |
---|
130 | Synopsis [Get canonical node of given node.] |
---|
131 | |
---|
132 | Description [This function find node index that is functionally equivalent with given node index.] |
---|
133 | |
---|
134 | SideEffects [] |
---|
135 | |
---|
136 | SeeAlso [] |
---|
137 | |
---|
138 | ******************************************************************************/ |
---|
139 | #if 1 |
---|
140 | AigEdge_t |
---|
141 | Aig_GetCanonical( |
---|
142 | Aig_Manager_t *bm, |
---|
143 | AigEdge_t nodeIndex) |
---|
144 | { |
---|
145 | AigEdge_t next; |
---|
146 | |
---|
147 | /* Bing */ |
---|
148 | |
---|
149 | if(nodeIndex == Aig_NULL|| |
---|
150 | nodeIndex == Aig_One || |
---|
151 | nodeIndex == Aig_Zero) |
---|
152 | return(nodeIndex); |
---|
153 | |
---|
154 | |
---|
155 | while(AigGetPassFlag(bm, nodeIndex)) { |
---|
156 | next = canonical(nodeIndex); |
---|
157 | if(Aig_IsInverted(nodeIndex)) next = Aig_Not(next); |
---|
158 | nodeIndex = next; |
---|
159 | } |
---|
160 | return(nodeIndex); |
---|
161 | } |
---|
162 | #endif |
---|
163 | |
---|
164 | /**Function******************************************************************** |
---|
165 | |
---|
166 | Synopsis [Merge two functionally equivalent node.] |
---|
167 | |
---|
168 | Description [This function merges the equivalent two nodes. ] |
---|
169 | |
---|
170 | SideEffects [] |
---|
171 | |
---|
172 | SeeAlso [] |
---|
173 | |
---|
174 | ******************************************************************************/ |
---|
175 | /** |
---|
176 | int |
---|
177 | Aig_Merge( |
---|
178 | Aig_Manager_t *bm, |
---|
179 | AigEdge_t nodeIndex1, |
---|
180 | AigEdge_t nodeIndex2) |
---|
181 | { |
---|
182 | AigEdge_t newNodeIndex, nodeIndex, tnodeIndex; |
---|
183 | AigEdge_t leftIndex, rightIndex; |
---|
184 | AigEdge_t outIndex, *pfan; |
---|
185 | int id1, id2; |
---|
186 | AigEdge_t cur; |
---|
187 | bdd_t **bddArray; |
---|
188 | array_t *nodeArray; |
---|
189 | int i, ii, iii; |
---|
190 | long *ManagerNodesArray; |
---|
191 | |
---|
192 | nodeIndex1 = Aig_GetCanonical(bm, nodeIndex1); |
---|
193 | nodeIndex2 = Aig_GetCanonical(bm, nodeIndex2); |
---|
194 | |
---|
195 | if(nodeIndex1 == nodeIndex2) return(nodeIndex1); |
---|
196 | |
---|
197 | |
---|
198 | ManagerNodesArray = bm->NodesArray; |
---|
199 | |
---|
200 | |
---|
201 | newNodeIndex = nodeIndex1; |
---|
202 | if (Aig_NonInvertedEdge(nodeIndex1) > Aig_NonInvertedEdge(nodeIndex2)){ |
---|
203 | nodeIndex1 = nodeIndex2; |
---|
204 | nodeIndex2 = newNodeIndex; |
---|
205 | } |
---|
206 | |
---|
207 | if(Aig_IsInverted(nodeIndex2)) { |
---|
208 | nodeIndex1 = Aig_Not(nodeIndex1); |
---|
209 | nodeIndex2 = Aig_Not(nodeIndex2); |
---|
210 | } |
---|
211 | |
---|
212 | nodeArray = array_alloc(AigEdge_t, 0); |
---|
213 | nodeIndex = nodeIndex2; |
---|
214 | array_insert_last(AigEdge_t, nodeArray, nodeIndex); |
---|
215 | while(Aig_NonInvertedEdge(canonical(nodeIndex)) != Aig_NonInvertedEdge(nodeIndex2)){ |
---|
216 | if(Aig_IsInverted(nodeIndex)) |
---|
217 | nodeIndex = Aig_Not(canonical(nodeIndex)); |
---|
218 | else |
---|
219 | nodeIndex = canonical(nodeIndex); |
---|
220 | array_insert_last(AigEdge_t, nodeArray, nodeIndex); |
---|
221 | } |
---|
222 | |
---|
223 | AigSetPassFlag(bm, nodeIndex2); |
---|
224 | nodeIndex = nodeIndex1; |
---|
225 | while(Aig_NonInvertedEdge(canonical(nodeIndex)) != Aig_NonInvertedEdge(nodeIndex1)) { |
---|
226 | if(Aig_IsInverted(nodeIndex)) |
---|
227 | nodeIndex = Aig_Not(canonical(nodeIndex)); |
---|
228 | else |
---|
229 | nodeIndex = canonical(nodeIndex); |
---|
230 | } |
---|
231 | |
---|
232 | for(i=0; i<array_n(nodeArray); i++) { |
---|
233 | tnodeIndex = array_fetch(AigEdge_t, nodeArray, i); |
---|
234 | if(Aig_IsInverted(nodeIndex)) |
---|
235 | canonical(nodeIndex) = Aig_Not(tnodeIndex); |
---|
236 | else |
---|
237 | canonical(nodeIndex) = tnodeIndex; |
---|
238 | |
---|
239 | if(Aig_IsInverted(nodeIndex)) |
---|
240 | nodeIndex = Aig_Not(canonical(nodeIndex)); |
---|
241 | else |
---|
242 | nodeIndex = canonical(nodeIndex); |
---|
243 | } |
---|
244 | |
---|
245 | if(Aig_IsInverted(nodeIndex)) { |
---|
246 | canonical(nodeIndex) = Aig_Not(nodeIndex1); |
---|
247 | } |
---|
248 | else { |
---|
249 | canonical(nodeIndex) = nodeIndex1; |
---|
250 | } |
---|
251 | array_free(nodeArray); |
---|
252 | |
---|
253 | nodeArray = array_alloc(AigEdge_t, 0); |
---|
254 | AigEdgeForEachFanout(bm, nodeIndex2, cur, ii, iii, pfan) { |
---|
255 | cur = cur >> 1; |
---|
256 | cur = Aig_NonInvertedEdge(cur); |
---|
257 | array_insert_last(AigEdge_t, nodeArray, cur); |
---|
258 | } |
---|
259 | |
---|
260 | for(i=0; i<array_n(nodeArray); i++) { |
---|
261 | outIndex = array_fetch(AigEdge_t, nodeArray, i); |
---|
262 | leftIndex = leftChild(outIndex); |
---|
263 | rightIndex = rightChild(outIndex); |
---|
264 | |
---|
265 | HashTableDelete(bm, outIndex); |
---|
266 | |
---|
267 | newNodeIndex = Aig_And(bm, leftIndex, rightIndex); |
---|
268 | |
---|
269 | Aig_Merge(bm, newNodeIndex, outIndex); |
---|
270 | |
---|
271 | } |
---|
272 | array_free(nodeArray); |
---|
273 | |
---|
274 | bddArray = bm->bddArray; |
---|
275 | id1 = AigNodeID(nodeIndex1); |
---|
276 | id2 = AigNodeID(nodeIndex2); |
---|
277 | if(bddArray[id1] == 0 && bddArray[id2]){ |
---|
278 | if(Aig_IsInverted(nodeIndex2)) { |
---|
279 | if(Aig_IsInverted(nodeIndex1)) { |
---|
280 | bddArray[id1] = bdd_dup(bddArray[id2]); |
---|
281 | } |
---|
282 | else { |
---|
283 | bddArray[id1] = bdd_not(bddArray[id2]); |
---|
284 | } |
---|
285 | } |
---|
286 | else { |
---|
287 | if(Aig_IsInverted(nodeIndex1)) { |
---|
288 | bddArray[id1] = bdd_not(bddArray[id2]); |
---|
289 | } |
---|
290 | else { |
---|
291 | bddArray[id1] = bdd_dup(bddArray[id2]); |
---|
292 | } |
---|
293 | } |
---|
294 | } |
---|
295 | return(nodeIndex1); |
---|
296 | } |
---|
297 | **/ |
---|
298 | |
---|
299 | |
---|
300 | /**Function******************************************************************** |
---|
301 | |
---|
302 | Synopsis [Print node information.] |
---|
303 | |
---|
304 | Description [Print node information.] |
---|
305 | |
---|
306 | SideEffects [] |
---|
307 | |
---|
308 | SeeAlso [] |
---|
309 | |
---|
310 | ******************************************************************************/ |
---|
311 | |
---|
312 | void |
---|
313 | Aig_PrintNode( |
---|
314 | Aig_Manager_t *bm, |
---|
315 | AigEdge_t i) |
---|
316 | { |
---|
317 | int j, size; |
---|
318 | long cur, *pfan; |
---|
319 | |
---|
320 | fprintf(stdout, "nodeIndex : %ld (%ld)\n", i, AigNodeID(i)); |
---|
321 | fprintf(stdout, "child : %ld%c, %ld%c\n", |
---|
322 | Aig_NonInvertedEdge(leftChild(i)), Aig_IsInverted(leftChild(i)) ? '\'' : ' ', |
---|
323 | Aig_NonInvertedEdge(rightChild(i)), Aig_IsInverted(rightChild(i)) ? '\'' : ' '); |
---|
324 | |
---|
325 | fprintf(stdout, "refCount : %ld\n", nFanout(i)); |
---|
326 | fprintf(stdout, " : "); |
---|
327 | size = nFanout(i); |
---|
328 | for(j=0, pfan = (AigEdge_t *)fanout(i); j<size; j++) { |
---|
329 | cur = pfan[j]; |
---|
330 | cur = cur >> 1; |
---|
331 | fprintf(stdout, " %ld", cur); |
---|
332 | } |
---|
333 | fprintf(stdout, "\n"); |
---|
334 | |
---|
335 | fprintf(stdout, "next : %ld\n", aig_next(i)); |
---|
336 | fflush(stdout); |
---|
337 | } |
---|
338 | |
---|
339 | |
---|
340 | /**Function******************************************************************** |
---|
341 | |
---|
342 | Synopsis [Performs the Logical AND of two nodes.] |
---|
343 | |
---|
344 | Description [This function performs the Logical AND of two nodes. The inputs |
---|
345 | are the indices of the two nodes. This function returns the index |
---|
346 | of the result node.] |
---|
347 | |
---|
348 | SideEffects [] |
---|
349 | |
---|
350 | SeeAlso [] |
---|
351 | |
---|
352 | ******************************************************************************/ |
---|
353 | AigEdge_t |
---|
354 | Aig_And( |
---|
355 | Aig_Manager_t *bm, |
---|
356 | AigEdge_t nodeIndex1, |
---|
357 | AigEdge_t nodeIndex2) |
---|
358 | { |
---|
359 | |
---|
360 | AigEdge_t newNodeIndex; |
---|
361 | |
---|
362 | nodeIndex1 = Aig_GetCanonical(bm, nodeIndex1); |
---|
363 | nodeIndex2 = Aig_GetCanonical(bm, nodeIndex2); |
---|
364 | |
---|
365 | newNodeIndex = nodeIndex1; /* The left node has the smallest index */ |
---|
366 | if (Aig_NonInvertedEdge(nodeIndex1) > Aig_NonInvertedEdge(nodeIndex2)){ |
---|
367 | nodeIndex1 = nodeIndex2; |
---|
368 | nodeIndex2 = newNodeIndex; |
---|
369 | } |
---|
370 | |
---|
371 | if ( nodeIndex2 == Aig_Zero ) { |
---|
372 | return Aig_Zero; |
---|
373 | } |
---|
374 | if ( nodeIndex1 == Aig_Zero ) { |
---|
375 | return Aig_Zero; |
---|
376 | } |
---|
377 | if ( nodeIndex2 == Aig_One ) { |
---|
378 | return nodeIndex1; |
---|
379 | } |
---|
380 | if ( nodeIndex1 == Aig_One ) { |
---|
381 | return nodeIndex2; |
---|
382 | } |
---|
383 | if ( nodeIndex1 == nodeIndex2 ) { |
---|
384 | return nodeIndex1; |
---|
385 | } |
---|
386 | if ( nodeIndex1 == Aig_Not(nodeIndex2) ) { |
---|
387 | return Aig_Zero; |
---|
388 | } |
---|
389 | |
---|
390 | /* Look for the new node in the Hash table */ |
---|
391 | newNodeIndex = HashTableLookup(bm, nodeIndex1, nodeIndex2); |
---|
392 | |
---|
393 | if (newNodeIndex == Aig_NULL){ |
---|
394 | if(AigIsVar(bm, nodeIndex1) && AigIsVar(bm, nodeIndex2)) |
---|
395 | newNodeIndex = Aig_And2(bm, nodeIndex1, nodeIndex2); |
---|
396 | else if(AigIsVar(bm, nodeIndex1)) |
---|
397 | newNodeIndex = Aig_And3(bm, nodeIndex1, nodeIndex2); |
---|
398 | else if(AigIsVar(bm, nodeIndex2)) |
---|
399 | newNodeIndex = Aig_And3(bm, nodeIndex2, nodeIndex1); |
---|
400 | else { |
---|
401 | newNodeIndex = Aig_And4(bm, nodeIndex1, nodeIndex2); |
---|
402 | } |
---|
403 | } |
---|
404 | |
---|
405 | return newNodeIndex; |
---|
406 | |
---|
407 | } |
---|
408 | |
---|
409 | /**Function******************************************************************** |
---|
410 | |
---|
411 | Synopsis [Structural hashing for and2] |
---|
412 | |
---|
413 | Description [Structural hashing for and2] |
---|
414 | |
---|
415 | SideEffects [] |
---|
416 | |
---|
417 | SeeAlso [] |
---|
418 | |
---|
419 | ******************************************************************************/ |
---|
420 | AigEdge_t |
---|
421 | Aig_And2( |
---|
422 | Aig_Manager_t *bm, |
---|
423 | AigEdge_t nodeIndex1, |
---|
424 | AigEdge_t nodeIndex2) |
---|
425 | { |
---|
426 | AigEdge_t newNodeIndex; |
---|
427 | |
---|
428 | nodeIndex1 = Aig_GetCanonical(bm, nodeIndex1); |
---|
429 | nodeIndex2 = Aig_GetCanonical(bm, nodeIndex2); |
---|
430 | |
---|
431 | newNodeIndex = nodeIndex1; /* The left node has the smallest index */ |
---|
432 | if (Aig_NonInvertedEdge(nodeIndex1) > Aig_NonInvertedEdge(nodeIndex2)){ |
---|
433 | nodeIndex1 = nodeIndex2; |
---|
434 | nodeIndex2 = newNodeIndex; |
---|
435 | } |
---|
436 | if ( nodeIndex2 == Aig_Zero ) { |
---|
437 | return Aig_Zero; |
---|
438 | } |
---|
439 | if ( nodeIndex1 == Aig_Zero ) { |
---|
440 | return Aig_Zero; |
---|
441 | } |
---|
442 | if ( nodeIndex2 == Aig_One ) { |
---|
443 | return nodeIndex1; |
---|
444 | } |
---|
445 | if ( nodeIndex1 == Aig_One ) { |
---|
446 | return nodeIndex2; |
---|
447 | } |
---|
448 | if ( nodeIndex1 == nodeIndex2 ) { |
---|
449 | return nodeIndex1; |
---|
450 | } |
---|
451 | if ( nodeIndex1 == Aig_Not(nodeIndex2) ) { |
---|
452 | return Aig_Zero; |
---|
453 | } |
---|
454 | newNodeIndex = HashTableLookup(bm, nodeIndex1, nodeIndex2); |
---|
455 | |
---|
456 | if (newNodeIndex == Aig_NULL){ |
---|
457 | newNodeIndex = AigCreateAndNode(bm, nodeIndex1, nodeIndex2) ; |
---|
458 | |
---|
459 | HashTableAdd(bm, newNodeIndex, nodeIndex1, nodeIndex2); |
---|
460 | connectOutput(bm, nodeIndex1, newNodeIndex, 0); |
---|
461 | connectOutput(bm, nodeIndex2, newNodeIndex, 1); |
---|
462 | |
---|
463 | #if 0 |
---|
464 | #ifdef LEARNING_ |
---|
465 | tNodeIndex = HashTableLookup(bm, Aig_Not(nodeIndex1), nodeIndex2); |
---|
466 | if(tNodeIndex) Aig_Learn(bm, nodeIndex1, nodeIndex2); |
---|
467 | |
---|
468 | tNodeIndex = HashTableLookup(bm, nodeIndex1, Aig_Not(nodeIndex2)); |
---|
469 | if(tNodeIndex) Aig_Learn(bm, nodeIndex2, nodeIndex1); |
---|
470 | #endif |
---|
471 | #endif |
---|
472 | } |
---|
473 | return newNodeIndex; |
---|
474 | |
---|
475 | } |
---|
476 | |
---|
477 | /**Function******************************************************************** |
---|
478 | |
---|
479 | Synopsis [Performs the Logical AND of multiple nodes.] |
---|
480 | |
---|
481 | Description [This function performs the Logical AND of multiple nodes. The input |
---|
482 | is the array of the node indices. This function returns the index |
---|
483 | of the result node.] |
---|
484 | |
---|
485 | SideEffects [] |
---|
486 | |
---|
487 | SeeAlso [] |
---|
488 | |
---|
489 | ******************************************************************************/ |
---|
490 | AigEdge_t |
---|
491 | Aig_AndsInBFSManner( |
---|
492 | Aig_Manager_t *bm, |
---|
493 | array_t * nodeIndexArray) |
---|
494 | { |
---|
495 | AigEdge_t nodeIndex1, nodeIndex2, nodeIndex3, newNodeIndex; |
---|
496 | array_t * tmpNodeIndexArray; |
---|
497 | int i; |
---|
498 | |
---|
499 | nodeIndex1 = 0; |
---|
500 | nodeIndex2 = 0; |
---|
501 | nodeIndex3 = 0; |
---|
502 | newNodeIndex = 0; |
---|
503 | |
---|
504 | tmpNodeIndexArray = array_alloc(AigEdge_t, nodeIndexArray->num/2 + 1); |
---|
505 | |
---|
506 | if (nodeIndexArray->num == 1) { |
---|
507 | newNodeIndex = array_fetch(AigEdge_t, nodeIndexArray, 0); |
---|
508 | array_free(tmpNodeIndexArray); |
---|
509 | return newNodeIndex; |
---|
510 | } |
---|
511 | else if (nodeIndexArray->num == 0) { |
---|
512 | array_free(tmpNodeIndexArray); |
---|
513 | return Aig_NULL; |
---|
514 | } |
---|
515 | |
---|
516 | for(i = 0; i < nodeIndexArray->num; i=i+2) { |
---|
517 | nodeIndex1 = array_fetch(AigEdge_t, nodeIndexArray, i); |
---|
518 | if (i < nodeIndexArray->num-1) { |
---|
519 | nodeIndex2 = array_fetch(AigEdge_t, nodeIndexArray, i+1); |
---|
520 | nodeIndex3 = Aig_And(bm, nodeIndex1, nodeIndex2); |
---|
521 | } else |
---|
522 | nodeIndex3 = nodeIndex1; |
---|
523 | |
---|
524 | array_insert_last(AigEdge_t, tmpNodeIndexArray, nodeIndex3); |
---|
525 | } |
---|
526 | |
---|
527 | if (tmpNodeIndexArray->num > 1) |
---|
528 | newNodeIndex = Aig_AndsInBFSManner(bm, tmpNodeIndexArray); |
---|
529 | else |
---|
530 | newNodeIndex = nodeIndex3; |
---|
531 | |
---|
532 | array_free(tmpNodeIndexArray); |
---|
533 | |
---|
534 | return newNodeIndex; |
---|
535 | |
---|
536 | } |
---|
537 | |
---|
538 | /**Function******************************************************************** |
---|
539 | |
---|
540 | Synopsis [Performs the Logical OR of two nodes.] |
---|
541 | |
---|
542 | Description [This function performs the Logical OR of two nodes. The inputs |
---|
543 | are the indices of the two nodes. This function returns the index |
---|
544 | of the result node.] |
---|
545 | |
---|
546 | SideEffects [] |
---|
547 | |
---|
548 | SeeAlso [] |
---|
549 | |
---|
550 | ******************************************************************************/ |
---|
551 | AigEdge_t |
---|
552 | Aig_Or( |
---|
553 | Aig_Manager_t *bm, |
---|
554 | AigEdge_t nodeIndex1, |
---|
555 | AigEdge_t nodeIndex2) |
---|
556 | { |
---|
557 | AigEdge_t NotNodeIndex1; |
---|
558 | AigEdge_t NotNodeIndex2; |
---|
559 | AigEdge_t AndNodeIndex; |
---|
560 | AigEdge_t NotNodeIndex; |
---|
561 | |
---|
562 | NotNodeIndex1 = Aig_Not(nodeIndex1); |
---|
563 | NotNodeIndex2 = Aig_Not(nodeIndex2); |
---|
564 | AndNodeIndex = Aig_And(bm, NotNodeIndex1, NotNodeIndex2); |
---|
565 | NotNodeIndex = Aig_Not(AndNodeIndex); |
---|
566 | |
---|
567 | return NotNodeIndex; |
---|
568 | |
---|
569 | } |
---|
570 | |
---|
571 | /**Function******************************************************************** |
---|
572 | |
---|
573 | Synopsis [Performs the Logical OR of multiple nodes.] |
---|
574 | |
---|
575 | Description [This function performs the Logical OR of multiple nodes. The input |
---|
576 | is the array of the node indices. This function returns the index |
---|
577 | of the result node.] |
---|
578 | |
---|
579 | SideEffects [] |
---|
580 | |
---|
581 | SeeAlso [] |
---|
582 | |
---|
583 | ******************************************************************************/ |
---|
584 | AigEdge_t |
---|
585 | Aig_OrsInBFSManner( |
---|
586 | Aig_Manager_t *bm, |
---|
587 | array_t * nodeIndexArray) |
---|
588 | { |
---|
589 | int i; |
---|
590 | AigEdge_t nodeIndex1, nodeIndex2, nodeIndex3, newNodeIndex; |
---|
591 | array_t * tmpNodeIndexArray; |
---|
592 | |
---|
593 | nodeIndex1 = 0; |
---|
594 | nodeIndex2 = 0; |
---|
595 | nodeIndex3 = 0; |
---|
596 | newNodeIndex = 0; |
---|
597 | |
---|
598 | tmpNodeIndexArray = array_alloc(AigEdge_t, nodeIndexArray->num/2 + 1); |
---|
599 | |
---|
600 | if (nodeIndexArray->num == 1) { |
---|
601 | newNodeIndex = array_fetch(AigEdge_t, nodeIndexArray, 0); |
---|
602 | array_free(tmpNodeIndexArray); |
---|
603 | return newNodeIndex; |
---|
604 | } |
---|
605 | else if (nodeIndexArray->num == 0) { |
---|
606 | array_free(tmpNodeIndexArray); |
---|
607 | return Aig_NULL; |
---|
608 | } |
---|
609 | |
---|
610 | for(i = 0; i < nodeIndexArray->num; i=i+2) { |
---|
611 | nodeIndex1 = array_fetch(AigEdge_t, nodeIndexArray, i); |
---|
612 | if (i < nodeIndexArray->num-1) { |
---|
613 | nodeIndex2 = array_fetch(AigEdge_t, nodeIndexArray, i+1); |
---|
614 | nodeIndex3 = Aig_Or(bm, nodeIndex1, nodeIndex2); |
---|
615 | } else |
---|
616 | nodeIndex3 = nodeIndex1; |
---|
617 | |
---|
618 | array_insert_last(AigEdge_t, tmpNodeIndexArray, nodeIndex3); |
---|
619 | } |
---|
620 | |
---|
621 | if (tmpNodeIndexArray->num > 1) |
---|
622 | newNodeIndex = Aig_OrsInBFSManner(bm, tmpNodeIndexArray); |
---|
623 | else |
---|
624 | newNodeIndex = nodeIndex3; |
---|
625 | |
---|
626 | array_free(tmpNodeIndexArray); |
---|
627 | |
---|
628 | return newNodeIndex; |
---|
629 | |
---|
630 | } |
---|
631 | |
---|
632 | /**Function******************************************************************** |
---|
633 | |
---|
634 | Synopsis [Performs the Logical XOR of two nodes.] |
---|
635 | |
---|
636 | Description [This function performs the Logical XOR of two nodes. The inputs |
---|
637 | are the indices of the two nodes. This function returns the index |
---|
638 | of the result node.] |
---|
639 | |
---|
640 | SideEffects [] |
---|
641 | |
---|
642 | SeeAlso [] |
---|
643 | |
---|
644 | ******************************************************************************/ |
---|
645 | AigEdge_t |
---|
646 | Aig_Xor( |
---|
647 | Aig_Manager_t *bm, |
---|
648 | AigEdge_t nodeIndex1, |
---|
649 | AigEdge_t nodeIndex2) |
---|
650 | { |
---|
651 | AigEdge_t NotNodeIndex1; |
---|
652 | AigEdge_t NotNodeIndex2; |
---|
653 | AigEdge_t AndNodeIndex1; |
---|
654 | AigEdge_t AndNodeIndex2; |
---|
655 | AigEdge_t OrNodeIndex; |
---|
656 | |
---|
657 | NotNodeIndex1 = Aig_Not(nodeIndex1); |
---|
658 | NotNodeIndex2 = Aig_Not(nodeIndex2); |
---|
659 | AndNodeIndex1 = Aig_And(bm, nodeIndex1, NotNodeIndex2); |
---|
660 | AndNodeIndex2 = Aig_And(bm, NotNodeIndex1, nodeIndex2); |
---|
661 | |
---|
662 | OrNodeIndex = Aig_Or(bm, AndNodeIndex1, AndNodeIndex2); |
---|
663 | |
---|
664 | return OrNodeIndex; |
---|
665 | } |
---|
666 | |
---|
667 | /**Function******************************************************************** |
---|
668 | |
---|
669 | Synopsis [Performs the Logical Equal ( <--> XNOR) of two nodes.] |
---|
670 | |
---|
671 | Description [This function performs the Logical XNOR of two nodes. The inputs |
---|
672 | are the indices of the two nodes. This function returns the index |
---|
673 | of the result node.] |
---|
674 | |
---|
675 | SideEffects [] |
---|
676 | |
---|
677 | SeeAlso [] |
---|
678 | |
---|
679 | ******************************************************************************/ |
---|
680 | AigEdge_t |
---|
681 | Aig_Eq( |
---|
682 | Aig_Manager_t *bm, |
---|
683 | AigEdge_t nodeIndex1, |
---|
684 | AigEdge_t nodeIndex2) |
---|
685 | { |
---|
686 | return Aig_Not( |
---|
687 | Aig_Xor(bm, nodeIndex1, nodeIndex2) |
---|
688 | ); |
---|
689 | } |
---|
690 | |
---|
691 | /**Function******************************************************************** |
---|
692 | |
---|
693 | Synopsis [Performs the Logical Then (--> Implies) of two nodes.] |
---|
694 | |
---|
695 | Description [This function performs the Logical Implies of two nodes. The inputs |
---|
696 | are the indices of the two nodes. This function returns the index |
---|
697 | of the result node.] |
---|
698 | |
---|
699 | SideEffects [] |
---|
700 | |
---|
701 | SeeAlso [] |
---|
702 | |
---|
703 | ******************************************************************************/ |
---|
704 | AigEdge_t |
---|
705 | Aig_Then( |
---|
706 | Aig_Manager_t *bm, |
---|
707 | AigEdge_t nodeIndex1, |
---|
708 | AigEdge_t nodeIndex2) |
---|
709 | { |
---|
710 | return Aig_Or(bm, |
---|
711 | Aig_Not(nodeIndex1), |
---|
712 | nodeIndex2); |
---|
713 | } |
---|
714 | |
---|
715 | /**Function******************************************************************** |
---|
716 | |
---|
717 | Synopsis [Performs the Logical nand of two nodes.] |
---|
718 | |
---|
719 | Description [This function performs the Logical NAND of two nodes. The inputs |
---|
720 | are the indices of the two nodes. This function returns the index |
---|
721 | of the result node.] |
---|
722 | |
---|
723 | SideEffects [] |
---|
724 | |
---|
725 | SeeAlso [] |
---|
726 | |
---|
727 | ******************************************************************************/ |
---|
728 | AigEdge_t |
---|
729 | Aig_Nand( |
---|
730 | Aig_Manager_t *bm, |
---|
731 | AigEdge_t nodeIndex1, |
---|
732 | AigEdge_t nodeIndex2) |
---|
733 | { |
---|
734 | return Aig_Not( |
---|
735 | Aig_And(bm, nodeIndex1, nodeIndex2) |
---|
736 | ); |
---|
737 | } |
---|
738 | |
---|
739 | /**Function******************************************************************** |
---|
740 | |
---|
741 | Synopsis [Performs the Logical ITE of three nodes.] |
---|
742 | |
---|
743 | Description [This function performs the Logical ITE of three nodes. The inputs |
---|
744 | are the indices of the three nodes. This function returns the index |
---|
745 | of the result node.] |
---|
746 | |
---|
747 | SideEffects [] |
---|
748 | |
---|
749 | SeeAlso [] |
---|
750 | |
---|
751 | ******************************************************************************/ |
---|
752 | AigEdge_t |
---|
753 | Aig_Ite( |
---|
754 | Aig_Manager_t *bm, |
---|
755 | AigEdge_t nodeIndex1, |
---|
756 | AigEdge_t nodeIndex2, |
---|
757 | AigEdge_t nodeIndex3) |
---|
758 | { |
---|
759 | AigEdge_t rIndex, nodeIndex4, nodeIndex5; |
---|
760 | |
---|
761 | nodeIndex4 = Aig_Then(bm, nodeIndex1, nodeIndex2); |
---|
762 | nodeIndex5 = Aig_Or(bm, nodeIndex1, nodeIndex3); |
---|
763 | |
---|
764 | rIndex = Aig_And(bm, nodeIndex4, nodeIndex5); |
---|
765 | return rIndex; |
---|
766 | } |
---|
767 | |
---|
768 | |
---|
769 | /**Function******************************************************************** |
---|
770 | |
---|
771 | Synopsis [Generates a Aig for the function x - y ≥ c.] |
---|
772 | |
---|
773 | Description [This function generates a Aig for the function x -y ≥ c. |
---|
774 | Both x and y are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\] and |
---|
775 | y\[0\] y\[1\] ... y\[N-1\], with 0 the most significant bit. |
---|
776 | The BDD is built bottom-up. |
---|
777 | It has a linear number of nodes if the variables are ordered as follows: |
---|
778 | x\[0\] y\[0\] x\[1\] y\[1\] ... x\[N-1\] y\[N-1\].] |
---|
779 | |
---|
780 | SideEffects [None] |
---|
781 | |
---|
782 | SeeAlso [] |
---|
783 | |
---|
784 | ******************************************************************************/ |
---|
785 | #if 0 |
---|
786 | AigEdge_t |
---|
787 | Aig_Inequality( |
---|
788 | Aig_Manager_t *bm, |
---|
789 | int N /* number of x and y variables */, |
---|
790 | int c /* right-hand side constant */, |
---|
791 | AigEdge_t *x /* array of x variables */, |
---|
792 | AigEdge_t *y /* array of y variables */) |
---|
793 | { |
---|
794 | /* The nodes at level i represent values of the difference that are |
---|
795 | ** multiples of 2^i. We use variables with names starting with k |
---|
796 | ** to denote the multipliers of 2^i in such multiples. */ |
---|
797 | int kTrue = c; |
---|
798 | int kFalse = c - 1; |
---|
799 | /* Mask used to compute the ceiling function. Since we divide by 2^i, |
---|
800 | ** we want to know whether the dividend is a multiple of 2^i. If it is, |
---|
801 | ** then ceiling and floor coincide; otherwise, they differ by one. */ |
---|
802 | int mask = 1; |
---|
803 | int i; |
---|
804 | |
---|
805 | AigEdge_t f = Aig_NULL; /* the eventual result */ |
---|
806 | |
---|
807 | /* Two x-labeled nodes are created at most at each iteration. They are |
---|
808 | ** stored, along with their k values, in these variables. At each level, |
---|
809 | ** the old nodes are freed and the new nodes are copied into the old map. |
---|
810 | */ |
---|
811 | AigEdge_t map[2]; |
---|
812 | int invalidIndex = (1 << N)-1; |
---|
813 | int index[2] = {invalidIndex, invalidIndex}; |
---|
814 | |
---|
815 | /* This should never happen. */ |
---|
816 | if (N < 0) return(Aig_NULL); |
---|
817 | |
---|
818 | /* If there are no bits, both operands are 0. The result depends on c. */ |
---|
819 | if (N == 0) { |
---|
820 | if (c >= 0) return(Aig_One); |
---|
821 | else return(Aig_Zero); |
---|
822 | } |
---|
823 | |
---|
824 | /* The maximum or the minimum difference comparing to c can generate the terminal case */ |
---|
825 | if ((1 << N) - 1 < c) return(Aig_Zero); |
---|
826 | else if ((-(1 << N) + 1) >= c) return(Aig_One); |
---|
827 | |
---|
828 | /* Build the result bottom up. */ |
---|
829 | for (i = 1; i <= N; i++) { |
---|
830 | int kTrueLower, kFalseLower; |
---|
831 | int leftChild, middleChild, rightChild; |
---|
832 | AigEdge_t g0, g1, fplus, fequal, fminus; |
---|
833 | int j; |
---|
834 | AigEdge_t newMap[2]; |
---|
835 | int newIndex[2]; |
---|
836 | |
---|
837 | kTrueLower = kTrue; /** 2, **/ |
---|
838 | kFalseLower = kFalse; /** 1, **/ |
---|
839 | /* kTrue = ceiling((c-1)/2^i) + 1 */ |
---|
840 | kTrue = ((c-1) >> i) + ((c & mask) != 1) + 1; /** 2, **/ |
---|
841 | mask = (mask << 1) | 1; /** 0x11, **/ |
---|
842 | /* kFalse = floor(c/2^i) - 1 */ |
---|
843 | kFalse = (c >> i) - 1; /** 0, **/ |
---|
844 | newIndex[0] = invalidIndex; |
---|
845 | newIndex[1] = invalidIndex; |
---|
846 | |
---|
847 | for (j = kFalse + 1; j < kTrue; j++) { |
---|
848 | /* Skip if node is not reachable from top of AIG. */ |
---|
849 | if ((j >= (1 << (N - i))) || (j <= -(1 << (N -i)))) continue; |
---|
850 | |
---|
851 | /* Find f- */ |
---|
852 | leftChild = (j << 1) - 1; |
---|
853 | if (leftChild >= kTrueLower) { |
---|
854 | fminus = Aig_One; |
---|
855 | } else if (leftChild <= kFalseLower) { |
---|
856 | fminus = Aig_Zero; |
---|
857 | } else { |
---|
858 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
859 | if (leftChild == index[0]) { |
---|
860 | fminus = map[0]; |
---|
861 | } else { |
---|
862 | fminus = map[1]; |
---|
863 | } |
---|
864 | } |
---|
865 | |
---|
866 | /* Find f= */ |
---|
867 | middleChild = j << 1; |
---|
868 | if (middleChild >= kTrueLower) { |
---|
869 | fequal = Aig_One; |
---|
870 | } else if (middleChild <= kFalseLower) { |
---|
871 | fequal = Aig_Zero; |
---|
872 | } else { |
---|
873 | assert(middleChild == index[0] || middleChild == index[1]); |
---|
874 | if (middleChild == index[0]) { |
---|
875 | fequal = map[0]; |
---|
876 | } else { |
---|
877 | fequal = map[1]; |
---|
878 | } |
---|
879 | } |
---|
880 | |
---|
881 | /* Find f+ */ |
---|
882 | rightChild = (j << 1) + 1; |
---|
883 | if (rightChild >= kTrueLower) { |
---|
884 | fplus = Aig_One; |
---|
885 | } else if (rightChild <= kFalseLower) { |
---|
886 | fplus = Aig_Zero; |
---|
887 | } else { |
---|
888 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
889 | if (rightChild == index[0]) { |
---|
890 | fplus = map[0]; |
---|
891 | } else { |
---|
892 | fplus = map[1]; |
---|
893 | } |
---|
894 | } |
---|
895 | |
---|
896 | /* Build new nodes. */ |
---|
897 | g1 = Aig_Ite(bm, y[N - i], fequal, fplus); |
---|
898 | if (g1 == Aig_NULL) return(Aig_NULL); |
---|
899 | g0 = Aig_Ite(bm, y[N - i], fminus, fequal); |
---|
900 | if (g0 == Aig_NULL) return(Aig_NULL); |
---|
901 | f = Aig_Ite(bm, x[N - i], g1, g0); |
---|
902 | if (f == Aig_NULL) return(Aig_NULL); |
---|
903 | |
---|
904 | /* Save newly computed node in map. */ |
---|
905 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
906 | if (newIndex[0] == invalidIndex) { |
---|
907 | newIndex[0] = j; |
---|
908 | newMap[0] = f; |
---|
909 | } else { |
---|
910 | newIndex[1] = j; |
---|
911 | newMap[1] = f; |
---|
912 | } |
---|
913 | } |
---|
914 | |
---|
915 | /* Copy new map to map. */ |
---|
916 | map[0] = newMap[0]; |
---|
917 | map[1] = newMap[1]; |
---|
918 | index[0] = newIndex[0]; |
---|
919 | index[1] = newIndex[1]; |
---|
920 | } |
---|
921 | |
---|
922 | return(f); |
---|
923 | |
---|
924 | } /* end of Aig_Inequality */ |
---|
925 | #endif |
---|
926 | |
---|
927 | AigEdge_t |
---|
928 | Aig_Inequality( |
---|
929 | Aig_Manager_t *bm, |
---|
930 | int N /* number of x and y variables */, |
---|
931 | int nx /* number of x variables */, |
---|
932 | int ny /* number of y variables */, |
---|
933 | int c /* right-hand side constant */, |
---|
934 | AigEdge_t *x /* array of x variables */, |
---|
935 | AigEdge_t *y /* array of y variables */) |
---|
936 | { |
---|
937 | /* The nodes at level i represent values of the difference that are |
---|
938 | ** multiples of 2^i. We use variables with names starting with k |
---|
939 | ** to denote the multipliers of 2^i in such multiples. */ |
---|
940 | int kTrue = c; |
---|
941 | int kFalse = c - 1; |
---|
942 | /* Mask used to compute the ceiling function. Since we divide by 2^i, |
---|
943 | ** we want to know whether the dividend is a multiple of 2^i. If it is, |
---|
944 | ** then ceiling and floor coincide; otherwise, they differ by one. */ |
---|
945 | int mask = 1; |
---|
946 | int i; |
---|
947 | |
---|
948 | AigEdge_t f = Aig_NULL; /* the eventual result */ |
---|
949 | |
---|
950 | /* Two x-labeled nodes are created at most at each iteration. They are |
---|
951 | ** stored, along with their k values, in these variables. At each level, |
---|
952 | ** the old nodes are freed and the new nodes are copied into the old map. |
---|
953 | */ |
---|
954 | AigEdge_t map[2]; |
---|
955 | int invalidIndex = (1 << N)-1; |
---|
956 | int index[2] = {invalidIndex, invalidIndex}; |
---|
957 | int kTrueLower, kFalseLower; |
---|
958 | int leftChild, middleChild, rightChild; |
---|
959 | AigEdge_t g0, g1, fplus, fequal, fminus; |
---|
960 | int j; |
---|
961 | AigEdge_t newMap[2]; |
---|
962 | int newIndex[2]; |
---|
963 | |
---|
964 | map[0] = 0; |
---|
965 | map[1] = 0; |
---|
966 | newMap[0] = 0; |
---|
967 | newMap[1] = 0; |
---|
968 | |
---|
969 | /* This should never happen. */ |
---|
970 | if (N < 0) return(Aig_NULL); |
---|
971 | |
---|
972 | /* If there are no bits, both operands are 0. The result depends on c. */ |
---|
973 | if (N == 0) { |
---|
974 | if (c >= 0) return(Aig_One); |
---|
975 | else return(Aig_Zero); |
---|
976 | } |
---|
977 | |
---|
978 | /* The maximum or the minimum difference comparing to c can generate the terminal case */ |
---|
979 | if ((1 << N) - 1 < c) return(Aig_Zero); |
---|
980 | else if ((-(1 << N) + 1) >= c) return(Aig_One); |
---|
981 | |
---|
982 | /* Build the result bottom up. */ |
---|
983 | for (i = 1; i <= N; i++) { |
---|
984 | kTrueLower = kTrue; /** 2, **/ |
---|
985 | kFalseLower = kFalse; /** 1, **/ |
---|
986 | /* kTrue = ceiling((c-1)/2^i) + 1 */ |
---|
987 | kTrue = ((c-1) >> i) + ((c & mask) != 1) + 1; /** 2, **/ |
---|
988 | mask = (mask << 1) | 1; /** 0x11, **/ |
---|
989 | /* kFalse = floor(c/2^i) - 1 */ |
---|
990 | kFalse = (c >> i) - 1; /** 0, **/ |
---|
991 | newIndex[0] = invalidIndex; |
---|
992 | newIndex[1] = invalidIndex; |
---|
993 | |
---|
994 | for (j = kFalse + 1; j < kTrue; j++) { |
---|
995 | /* Skip if node is not reachable from top of AIG. */ |
---|
996 | if ((j >= (1 << (N - i))) || (j <= -(1 << (N -i)))) continue; |
---|
997 | |
---|
998 | /* Find f- */ |
---|
999 | leftChild = (j << 1) - 1; |
---|
1000 | if (leftChild >= kTrueLower) { |
---|
1001 | fminus = Aig_One; |
---|
1002 | } else if (leftChild <= kFalseLower) { |
---|
1003 | fminus = Aig_Zero; |
---|
1004 | } else { |
---|
1005 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
1006 | if (leftChild == index[0]) { |
---|
1007 | fminus = map[0]; |
---|
1008 | } else { |
---|
1009 | fminus = map[1]; |
---|
1010 | } |
---|
1011 | } |
---|
1012 | |
---|
1013 | /* Find f= */ |
---|
1014 | middleChild = j << 1; |
---|
1015 | if (middleChild >= kTrueLower) { |
---|
1016 | fequal = Aig_One; |
---|
1017 | } else if (middleChild <= kFalseLower) { |
---|
1018 | fequal = Aig_Zero; |
---|
1019 | } else { |
---|
1020 | assert(middleChild == index[0] || middleChild == index[1]); |
---|
1021 | if (middleChild == index[0]) { |
---|
1022 | fequal = map[0]; |
---|
1023 | } else { |
---|
1024 | fequal = map[1]; |
---|
1025 | } |
---|
1026 | } |
---|
1027 | |
---|
1028 | /* Find f+ */ |
---|
1029 | rightChild = (j << 1) + 1; |
---|
1030 | if (rightChild >= kTrueLower) { |
---|
1031 | fplus = Aig_One; |
---|
1032 | } else if (rightChild <= kFalseLower) { |
---|
1033 | fplus = Aig_Zero; |
---|
1034 | } else { |
---|
1035 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
1036 | if (rightChild == index[0]) { |
---|
1037 | fplus = map[0]; |
---|
1038 | } else { |
---|
1039 | fplus = map[1]; |
---|
1040 | } |
---|
1041 | } |
---|
1042 | |
---|
1043 | /* Build new nodes. */ |
---|
1044 | if (i > ny) |
---|
1045 | g1 = fplus; |
---|
1046 | else |
---|
1047 | g1 = Aig_Ite(bm, y[i-1], fequal, fplus); |
---|
1048 | |
---|
1049 | if (g1 == Aig_NULL) return(Aig_NULL); |
---|
1050 | |
---|
1051 | if (i > ny) |
---|
1052 | g0 = fequal; |
---|
1053 | else |
---|
1054 | g0 = Aig_Ite(bm, y[i-1], fminus, fequal); |
---|
1055 | |
---|
1056 | if (g0 == Aig_NULL) return(Aig_NULL); |
---|
1057 | |
---|
1058 | if (i > nx) |
---|
1059 | f = g0; |
---|
1060 | else |
---|
1061 | f = Aig_Ite(bm, x[i-1], g1, g0); |
---|
1062 | |
---|
1063 | if (f == Aig_NULL) return(Aig_NULL); |
---|
1064 | |
---|
1065 | /* Save newly computed node in map. */ |
---|
1066 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
1067 | if (newIndex[0] == invalidIndex) { |
---|
1068 | newIndex[0] = j; |
---|
1069 | newMap[0] = f; |
---|
1070 | } else { |
---|
1071 | newIndex[1] = j; |
---|
1072 | newMap[1] = f; |
---|
1073 | } |
---|
1074 | } |
---|
1075 | |
---|
1076 | /* Copy new map to map. */ |
---|
1077 | map[0] = newMap[0]; |
---|
1078 | map[1] = newMap[1]; |
---|
1079 | index[0] = newIndex[0]; |
---|
1080 | index[1] = newIndex[1]; |
---|
1081 | } |
---|
1082 | |
---|
1083 | return(f); |
---|
1084 | |
---|
1085 | } /* end of Aig_Inequality */ |
---|
1086 | |
---|
1087 | |
---|
1088 | /**Function******************************************************************** |
---|
1089 | |
---|
1090 | Synopsis [Generates a AIG for the function x - y = c.] |
---|
1091 | |
---|
1092 | Description [This function generates a AIG for the function x -y = c. |
---|
1093 | Both x and y are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\] and |
---|
1094 | y\[0\] y\[1\] ... y\[N-1\], with 0 the most significant bit. |
---|
1095 | The AIG is built bottom-up. |
---|
1096 | It has a linear number of nodes if the variables are ordered as follows: |
---|
1097 | x\[0\] y\[0\] x\[1\] y\[1\] ... x\[N-1\] y\[N-1\].] |
---|
1098 | |
---|
1099 | SideEffects [None] |
---|
1100 | |
---|
1101 | SeeAlso [] |
---|
1102 | |
---|
1103 | ******************************************************************************/ |
---|
1104 | AigEdge_t |
---|
1105 | Aig_Equality( |
---|
1106 | Aig_Manager_t *bm, |
---|
1107 | int N /* number of max variables */, |
---|
1108 | int nx /* number of x variables */, |
---|
1109 | int ny /* number of y variables */, |
---|
1110 | int c /* right-hand side constant */, |
---|
1111 | AigEdge_t *x /* array of x variables */, |
---|
1112 | AigEdge_t *y /* array of y variables */) |
---|
1113 | { |
---|
1114 | /* The nodes at level i represent values of the difference that are |
---|
1115 | ** multiples of 2^i. We use variables with names starting with k |
---|
1116 | ** to denote the multipliers of 2^i in such multiples. */ |
---|
1117 | int kTrueLb = c + 1; |
---|
1118 | int kTrueUb = c - 1; |
---|
1119 | int kTrue = c; |
---|
1120 | /* Mask used to compute the ceiling function. Since we divide by 2^i, |
---|
1121 | ** we want to know whether the dividend is a multiple of 2^i. If it is, |
---|
1122 | ** then ceiling and floor coincide; otherwise, they differ by one. */ |
---|
1123 | int mask = 1; |
---|
1124 | int i; |
---|
1125 | |
---|
1126 | AigEdge_t f = Aig_NULL; /* the eventual result */ |
---|
1127 | |
---|
1128 | /* Two x-labeled nodes are created at most at each iteration. They are |
---|
1129 | ** stored, along with their k values, in these variables. At each level, |
---|
1130 | ** the old nodes are freed and the new nodes are copied into the old map. |
---|
1131 | */ |
---|
1132 | AigEdge_t map[2]; |
---|
1133 | int invalidIndex = (1 << N)-1; |
---|
1134 | int index[2] = {invalidIndex, invalidIndex}; |
---|
1135 | |
---|
1136 | int kTrueLbLower, kTrueUbLower; |
---|
1137 | int leftChild, middleChild, rightChild; |
---|
1138 | AigEdge_t g0, g1, fplus, fequal, fminus; |
---|
1139 | int j; |
---|
1140 | AigEdge_t newMap[2]; |
---|
1141 | int newIndex[2]; |
---|
1142 | |
---|
1143 | map[0] = 0; |
---|
1144 | map[1] = 0; |
---|
1145 | newMap[0] = 0; |
---|
1146 | newMap[1] = 0; |
---|
1147 | |
---|
1148 | /* This should never happen. */ |
---|
1149 | if (N < 0) return(Aig_NULL); |
---|
1150 | |
---|
1151 | /* If there are no bits, both operands are 0. The result depends on c. */ |
---|
1152 | if (N == 0) { |
---|
1153 | if (c != 0) return(Aig_Zero); |
---|
1154 | else return(Aig_One); |
---|
1155 | } |
---|
1156 | |
---|
1157 | /* The maximum or the minimum difference comparing to c can generate the terminal case */ |
---|
1158 | if ((1 << N) - 1 < c || (-(1 << N) + 1) > c) return(Aig_Zero); |
---|
1159 | |
---|
1160 | /* Build the result bottom up. */ |
---|
1161 | for (i = 1; i <= N; i++) { |
---|
1162 | |
---|
1163 | kTrueLbLower = kTrueLb; |
---|
1164 | kTrueUbLower = kTrueUb; |
---|
1165 | /* kTrueLb = floor((c-1)/2^i) + 2 */ |
---|
1166 | kTrueLb = ((c-1) >> i) + 2; |
---|
1167 | /* kTrueUb = ceiling((c+1)/2^i) - 2 */ |
---|
1168 | kTrueUb = ((c+1) >> i) + (((c+2) & mask) != 1) - 2; |
---|
1169 | mask = (mask << 1) | 1; |
---|
1170 | newIndex[0] = invalidIndex; |
---|
1171 | newIndex[1] = invalidIndex; |
---|
1172 | |
---|
1173 | for (j = kTrueUb + 1; j < kTrueLb; j++) { |
---|
1174 | /* Skip if node is not reachable from top of AIG. */ |
---|
1175 | if ((j >= (1 << (N - i))) || (j <= -(1 << (N -i)))) continue; |
---|
1176 | |
---|
1177 | /* Find f- */ |
---|
1178 | leftChild = (j << 1) - 1; |
---|
1179 | if (leftChild >= kTrueLbLower || leftChild <= kTrueUbLower) { |
---|
1180 | fminus = Aig_Zero; |
---|
1181 | } else if (i == 1 && leftChild == kTrue) { |
---|
1182 | fminus = Aig_One; |
---|
1183 | } else { |
---|
1184 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
1185 | if (leftChild == index[0]) { |
---|
1186 | fminus = map[0]; |
---|
1187 | } else { |
---|
1188 | fminus = map[1]; |
---|
1189 | } |
---|
1190 | } |
---|
1191 | |
---|
1192 | /* Find f= */ |
---|
1193 | middleChild = j << 1; |
---|
1194 | if (middleChild >= kTrueLbLower || middleChild <= kTrueUbLower) { |
---|
1195 | fequal = Aig_Zero; |
---|
1196 | } else if (i == 1 && middleChild == kTrue) { |
---|
1197 | fequal = Aig_One; |
---|
1198 | } else { |
---|
1199 | assert(middleChild == index[0] || middleChild == index[1]); |
---|
1200 | if (middleChild == index[0]) { |
---|
1201 | fequal = map[0]; |
---|
1202 | } else { |
---|
1203 | fequal = map[1]; |
---|
1204 | } |
---|
1205 | } |
---|
1206 | |
---|
1207 | /* Find f+ */ |
---|
1208 | rightChild = (j << 1) + 1; |
---|
1209 | if (rightChild >= kTrueLbLower || rightChild <= kTrueUbLower) { |
---|
1210 | fplus = Aig_Zero; |
---|
1211 | } else if (i == 1 && rightChild == kTrue) { |
---|
1212 | fplus = Aig_One; |
---|
1213 | } else { |
---|
1214 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
1215 | if (rightChild == index[0]) { |
---|
1216 | fplus = map[0]; |
---|
1217 | } else { |
---|
1218 | fplus = map[1]; |
---|
1219 | } |
---|
1220 | } |
---|
1221 | |
---|
1222 | /* Build new nodes. */ |
---|
1223 | if (i > ny) |
---|
1224 | g1 = fplus; |
---|
1225 | else { |
---|
1226 | g1 = Aig_Ite(bm, y[i-1], fequal, fplus); |
---|
1227 | } |
---|
1228 | |
---|
1229 | if (g1 == Aig_NULL) return(Aig_NULL); |
---|
1230 | |
---|
1231 | if (i > ny) |
---|
1232 | g0 = fequal; |
---|
1233 | else { |
---|
1234 | g0 = Aig_Ite(bm, y[i-1], fminus, fequal); |
---|
1235 | } |
---|
1236 | |
---|
1237 | if (g0 == Aig_NULL) return(Aig_NULL); |
---|
1238 | |
---|
1239 | if (i > nx) /* number of bits in x is less than N */ |
---|
1240 | f = g0; /* x[N - i] is false */ |
---|
1241 | else { |
---|
1242 | f = Aig_Ite(bm, x[i-1], g1, g0); |
---|
1243 | } |
---|
1244 | |
---|
1245 | if (f == Aig_NULL) return(Aig_NULL); |
---|
1246 | |
---|
1247 | /* Save newly computed node in map. */ |
---|
1248 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
1249 | if (newIndex[0] == invalidIndex) { |
---|
1250 | newIndex[0] = j; |
---|
1251 | newMap[0] = f; |
---|
1252 | } else { |
---|
1253 | newIndex[1] = j; |
---|
1254 | newMap[1] = f; |
---|
1255 | } |
---|
1256 | } |
---|
1257 | |
---|
1258 | /* Copy new map to map. */ |
---|
1259 | map[0] = newMap[0]; |
---|
1260 | map[1] = newMap[1]; |
---|
1261 | index[0] = newIndex[0]; |
---|
1262 | index[1] = newIndex[1]; |
---|
1263 | } |
---|
1264 | |
---|
1265 | return(f); |
---|
1266 | |
---|
1267 | } /* end of Aig_Equality */ |
---|
1268 | |
---|
1269 | /**Function******************************************************************** |
---|
1270 | |
---|
1271 | Synopsis [Generates a AIG for the function x - y != c.] |
---|
1272 | |
---|
1273 | Description [This function generates a AIG for the function x -y != c. |
---|
1274 | Both x and y are N-bit numbers, x\[0\] x\[1\] ... x\[N-1\] and |
---|
1275 | y\[0\] y\[1\] ... y\[N-1\], with 0 the most significant bit. |
---|
1276 | The BDD is built bottom-up. |
---|
1277 | It has a linear number of nodes if the variables are ordered as follows: |
---|
1278 | x\[0\] y\[0\] x\[1\] y\[1\] ... x\[N-1\] y\[N-1\].] |
---|
1279 | |
---|
1280 | SideEffects [None] |
---|
1281 | |
---|
1282 | SeeAlso [] |
---|
1283 | |
---|
1284 | ******************************************************************************/ |
---|
1285 | AigEdge_t |
---|
1286 | Aig_Disequality( |
---|
1287 | Aig_Manager_t *bm, |
---|
1288 | int N /* number of x and y variables */, |
---|
1289 | int c /* right-hand side constant */, |
---|
1290 | AigEdge_t *x /* array of x variables */, |
---|
1291 | AigEdge_t *y /* array of y variables */) |
---|
1292 | { |
---|
1293 | /* The nodes at level i represent values of the difference that are |
---|
1294 | ** multiples of 2^i. We use variables with names starting with k |
---|
1295 | ** to denote the multipliers of 2^i in such multiples. */ |
---|
1296 | int kTrueLb = c + 1; |
---|
1297 | int kTrueUb = c - 1; |
---|
1298 | int kFalse = c; |
---|
1299 | /* Mask used to compute the ceiling function. Since we divide by 2^i, |
---|
1300 | ** we want to know whether the dividend is a multiple of 2^i. If it is, |
---|
1301 | ** then ceiling and floor coincide; otherwise, they differ by one. */ |
---|
1302 | int mask = 1; |
---|
1303 | int i; |
---|
1304 | |
---|
1305 | AigEdge_t f = Aig_NULL; /* the eventual result */ |
---|
1306 | |
---|
1307 | /* Two x-labeled nodes are created at most at each iteration. They are |
---|
1308 | ** stored, along with their k values, in these variables. At each level, |
---|
1309 | ** the old nodes are freed and the new nodes are copied into the old map. |
---|
1310 | */ |
---|
1311 | AigEdge_t map[2]; |
---|
1312 | int invalidIndex = (1 << N)-1; |
---|
1313 | int index[2] = {invalidIndex, invalidIndex}; |
---|
1314 | |
---|
1315 | int kTrueLbLower, kTrueUbLower; |
---|
1316 | int leftChild, middleChild, rightChild; |
---|
1317 | AigEdge_t g0, g1, fplus, fequal, fminus; |
---|
1318 | int j; |
---|
1319 | AigEdge_t newMap[2]; |
---|
1320 | int newIndex[2]; |
---|
1321 | |
---|
1322 | map[0] = 0; |
---|
1323 | map[1] = 0; |
---|
1324 | newMap[0] = 0; |
---|
1325 | newMap[1] = 0; |
---|
1326 | |
---|
1327 | /* This should never happen. */ |
---|
1328 | if (N < 0) return(Aig_NULL); |
---|
1329 | |
---|
1330 | /* If there are no bits, both operands are 0. The result depends on c. */ |
---|
1331 | if (N == 0) { |
---|
1332 | if (c != 0) return(Aig_One); |
---|
1333 | else return(Aig_Zero); |
---|
1334 | } |
---|
1335 | |
---|
1336 | /* The maximum or the minimum difference comparing to c can generate the terminal case */ |
---|
1337 | if ((1 << N) - 1 < c || (-(1 << N) + 1) > c) return(Aig_One); |
---|
1338 | |
---|
1339 | /* Build the result bottom up. */ |
---|
1340 | for (i = 1; i <= N; i++) { |
---|
1341 | kTrueLbLower = kTrueLb; |
---|
1342 | kTrueUbLower = kTrueUb; |
---|
1343 | /* kTrueLb = floor((c-1)/2^i) + 2 */ |
---|
1344 | kTrueLb = ((c-1) >> i) + 2; |
---|
1345 | /* kTrueUb = ceiling((c+1)/2^i) - 2 */ |
---|
1346 | kTrueUb = ((c+1) >> i) + (((c+2) & mask) != 1) - 2; |
---|
1347 | mask = (mask << 1) | 1; |
---|
1348 | newIndex[0] = invalidIndex; |
---|
1349 | newIndex[1] = invalidIndex; |
---|
1350 | |
---|
1351 | for (j = kTrueUb + 1; j < kTrueLb; j++) { |
---|
1352 | /* Skip if node is not reachable from top of AIG. */ |
---|
1353 | if ((j >= (1 << (N - i))) || (j <= -(1 << (N -i)))) continue; |
---|
1354 | |
---|
1355 | /* Find f- */ |
---|
1356 | leftChild = (j << 1) - 1; |
---|
1357 | if (leftChild >= kTrueLbLower || leftChild <= kTrueUbLower) { |
---|
1358 | fminus = Aig_One; |
---|
1359 | } else if (i == 1 && leftChild == kFalse) { |
---|
1360 | fminus = Aig_Zero; |
---|
1361 | } else { |
---|
1362 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
1363 | if (leftChild == index[0]) { |
---|
1364 | fminus = map[0]; |
---|
1365 | } else { |
---|
1366 | fminus = map[1]; |
---|
1367 | } |
---|
1368 | } |
---|
1369 | |
---|
1370 | /* Find f= */ |
---|
1371 | middleChild = j << 1; |
---|
1372 | if (middleChild >= kTrueLbLower || middleChild <= kTrueUbLower) { |
---|
1373 | fequal = Aig_One; |
---|
1374 | } else if (i == 1 && middleChild == kFalse) { |
---|
1375 | fequal = Aig_Zero; |
---|
1376 | } else { |
---|
1377 | assert(middleChild == index[0] || middleChild == index[1]); |
---|
1378 | if (middleChild == index[0]) { |
---|
1379 | fequal = map[0]; |
---|
1380 | } else { |
---|
1381 | fequal = map[1]; |
---|
1382 | } |
---|
1383 | } |
---|
1384 | |
---|
1385 | /* Find f+ */ |
---|
1386 | rightChild = (j << 1) + 1; |
---|
1387 | if (rightChild >= kTrueLbLower || rightChild <= kTrueUbLower) { |
---|
1388 | fplus = Aig_One; |
---|
1389 | } else if (i == 1 && rightChild == kFalse) { |
---|
1390 | fplus = Aig_Zero; |
---|
1391 | } else { |
---|
1392 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
1393 | if (rightChild == index[0]) { |
---|
1394 | fplus = map[0]; |
---|
1395 | } else { |
---|
1396 | fplus = map[1]; |
---|
1397 | } |
---|
1398 | } |
---|
1399 | |
---|
1400 | /* Build new nodes. */ |
---|
1401 | g1 = Aig_Ite(bm, y[N - i], fequal, fplus); |
---|
1402 | if (g1 == Aig_NULL) return(Aig_NULL); |
---|
1403 | g0 = Aig_Ite(bm, y[N - i], fminus, fequal); |
---|
1404 | if (g0 == Aig_NULL) return(Aig_NULL); |
---|
1405 | f = Aig_Ite(bm, x[N - i], g1, g0); |
---|
1406 | if (f == Aig_NULL) return(Aig_NULL); |
---|
1407 | |
---|
1408 | /* Save newly computed node in map. */ |
---|
1409 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
1410 | if (newIndex[0] == invalidIndex) { |
---|
1411 | newIndex[0] = j; |
---|
1412 | newMap[0] = f; |
---|
1413 | } else { |
---|
1414 | newIndex[1] = j; |
---|
1415 | newMap[1] = f; |
---|
1416 | } |
---|
1417 | } |
---|
1418 | |
---|
1419 | /* Copy new map to map. */ |
---|
1420 | map[0] = newMap[0]; |
---|
1421 | map[1] = newMap[1]; |
---|
1422 | index[0] = newIndex[0]; |
---|
1423 | index[1] = newIndex[1]; |
---|
1424 | } |
---|
1425 | |
---|
1426 | return(f); |
---|
1427 | |
---|
1428 | } /* end of Aig_Disequality */ |
---|
1429 | |
---|
1430 | |
---|
1431 | /**Function******************************************************************** |
---|
1432 | |
---|
1433 | Synopsis [Generates a Aig for the function lb ≤ x ≥ ub.] |
---|
1434 | |
---|
1435 | Description [This function generates a Aig for the function lb ≤ x ≥ ub. |
---|
1436 | x is N-bit number, x\[0\] x\[1\] ... x\[N-1\] and with 0 the most significant |
---|
1437 | bit. The BDD is built bottom-up. |
---|
1438 | It has a linear number of nodes if the variables are ordered as follows: |
---|
1439 | x\[0\] x\[1\] ... x\[N-1\].] |
---|
1440 | |
---|
1441 | SideEffects [None] |
---|
1442 | |
---|
1443 | SeeAlso [] |
---|
1444 | |
---|
1445 | ******************************************************************************/ |
---|
1446 | AigEdge_t |
---|
1447 | Aig_Bound( |
---|
1448 | Aig_Manager_t *bm, |
---|
1449 | int N /* number of x variables */, |
---|
1450 | int lb /* lower bound */, |
---|
1451 | int ub /* upper bound */, |
---|
1452 | AigEdge_t *x /* array of x variables */) |
---|
1453 | { |
---|
1454 | /* The nodes at level i represent values of the difference that are |
---|
1455 | ** multiples of 2^i. We use variables with names starting with k |
---|
1456 | ** to denote the multipliers of 2^i in such multiples. */ |
---|
1457 | int kTrueLb = lb; |
---|
1458 | int kTrueUb = ub; |
---|
1459 | int kFalseLb = ub + 1; |
---|
1460 | int kFalseUb = lb - 1; |
---|
1461 | /* Mask used to compute the ceiling function. Since we divide by 2^i, |
---|
1462 | ** we want to know whether the dividend is a multiple of 2^i. If it is, |
---|
1463 | ** then ceiling and floor coincide; otherwise, they differ by one. */ |
---|
1464 | int mask = 1; |
---|
1465 | int i; |
---|
1466 | |
---|
1467 | AigEdge_t f = Aig_NULL; /* the eventual result */ |
---|
1468 | |
---|
1469 | /* Two x-labeled nodes are created at most at each iteration. They are |
---|
1470 | ** stored, along with their k values, in these variables. At each level, |
---|
1471 | ** the old nodes are freed and the new nodes are copied into the old map. |
---|
1472 | */ |
---|
1473 | AigEdge_t map[2]; |
---|
1474 | int invalidIndex = (1 << N)-1; |
---|
1475 | /** int invalidValue = (1 << N)-1; **/ |
---|
1476 | int index[2] = {invalidIndex, invalidIndex}; |
---|
1477 | |
---|
1478 | int max, min; |
---|
1479 | int kTrueLbLower, kTrueUbLower, kFalseLbLower, kFalseUbLower; |
---|
1480 | int leftChild, rightChild; |
---|
1481 | AigEdge_t f1, f0; |
---|
1482 | int j; |
---|
1483 | AigEdge_t newMap[2]; |
---|
1484 | int newIndex[2]; |
---|
1485 | |
---|
1486 | map[0] = 0; |
---|
1487 | map[1] = 0; |
---|
1488 | newMap[0] = 0; |
---|
1489 | newMap[1] = 0; |
---|
1490 | |
---|
1491 | /* This should never happen. */ |
---|
1492 | if (N < 0) return(Aig_NULL); |
---|
1493 | |
---|
1494 | /* If there are no bits, both operands are 0. The result depends on c. */ |
---|
1495 | if (N == 0) { |
---|
1496 | if (lb <= 0 && ub >= 0) return(Aig_One); |
---|
1497 | else return(Aig_Zero); |
---|
1498 | } |
---|
1499 | |
---|
1500 | /* The maximum or the minimum difference comparing to c generates the terminal case */ |
---|
1501 | { |
---|
1502 | max = (1 << N) - 1; |
---|
1503 | min = 0; |
---|
1504 | |
---|
1505 | if (max < lb || min > ub) return(Aig_Zero); |
---|
1506 | else if (max <= ub && min >= lb) return(Aig_One); |
---|
1507 | |
---|
1508 | /* Build the result bottom up. */ |
---|
1509 | for (i = 1; i <= N; i++) { |
---|
1510 | |
---|
1511 | kTrueLbLower = kTrueLb; |
---|
1512 | kTrueUbLower = kTrueUb; |
---|
1513 | kFalseLbLower = kFalseLb; |
---|
1514 | kFalseUbLower = kFalseUb; |
---|
1515 | /* kTrueLb = ceiling(lb/2^i) */ |
---|
1516 | kTrueLb = (lb >> i) + (((lb+1) & mask) != 1); |
---|
1517 | /* kTrueUb = floor((ub+1)/2^i) - 1 */ |
---|
1518 | kTrueUb = ((ub+1) >> i) - 1; |
---|
1519 | /* kFalseLb = ceiling((ub+1)/2^i) */ |
---|
1520 | kFalseLb = ((ub+1) >> i) + (((ub+2) & mask) != 1); |
---|
1521 | /* kFalseUb = floor(lb/2^i) - 1 */ |
---|
1522 | kFalseUb = (lb >> i) - 1; |
---|
1523 | mask = (mask << 1) | 1; |
---|
1524 | newIndex[0] = invalidIndex; |
---|
1525 | newIndex[1] = invalidIndex; |
---|
1526 | |
---|
1527 | j = kTrueUb + 1; |
---|
1528 | if (j >= 0 && j < (1 << (N - i)) && j < kFalseLb) { |
---|
1529 | /* Find f1 */ |
---|
1530 | leftChild = (j << 1) + 1; |
---|
1531 | if (leftChild >= kTrueLbLower && leftChild <= kTrueUbLower) { |
---|
1532 | f1 = Aig_One; |
---|
1533 | } else if (leftChild <= kFalseUbLower || leftChild >= kFalseLbLower) { |
---|
1534 | f1 = Aig_Zero; |
---|
1535 | } else { |
---|
1536 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
1537 | if (leftChild == index[0]) { |
---|
1538 | f1 = map[0]; |
---|
1539 | } else { |
---|
1540 | f1 = map[1]; |
---|
1541 | } |
---|
1542 | } |
---|
1543 | |
---|
1544 | /* Find f0 */ |
---|
1545 | rightChild = j << 1; |
---|
1546 | if (rightChild >= kTrueLbLower && rightChild <= kTrueUbLower) { |
---|
1547 | f0 = Aig_One; |
---|
1548 | } else if (rightChild <= kFalseUbLower || rightChild >= kFalseLbLower) { |
---|
1549 | f0 = Aig_Zero; |
---|
1550 | } else { |
---|
1551 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
1552 | if (rightChild == index[0]) { |
---|
1553 | f0 = map[0]; |
---|
1554 | } else { |
---|
1555 | f0 = map[1]; |
---|
1556 | } |
---|
1557 | } |
---|
1558 | |
---|
1559 | /* Build new nodes. */ |
---|
1560 | f = Aig_Ite(bm, x[i-1], f1, f0); |
---|
1561 | |
---|
1562 | if (f == Aig_NULL) return(Aig_NULL); |
---|
1563 | |
---|
1564 | /* Save newly computed node in map. */ |
---|
1565 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
1566 | if (newIndex[0] == invalidIndex) { |
---|
1567 | newIndex[0] = j; |
---|
1568 | newMap[0] = f; |
---|
1569 | } else { |
---|
1570 | newIndex[1] = j; |
---|
1571 | newMap[1] = f; |
---|
1572 | } |
---|
1573 | } |
---|
1574 | |
---|
1575 | j = kFalseUb + 1; |
---|
1576 | if (kTrueUb != kFalseUb && j >= 0 && j < (1 << (N - i)) && j < kTrueLb) { |
---|
1577 | /* Find f1 */ |
---|
1578 | leftChild = (j << 1) + 1; |
---|
1579 | if (leftChild >= kTrueLbLower && leftChild <= kTrueUbLower) { |
---|
1580 | f1 = Aig_One; |
---|
1581 | } else if (leftChild <= kFalseUbLower || leftChild >= kFalseLbLower) { |
---|
1582 | f1 = Aig_Zero; |
---|
1583 | } else { |
---|
1584 | assert(leftChild == index[0] || leftChild == index[1]); |
---|
1585 | if (leftChild == index[0]) { |
---|
1586 | f1 = map[0]; |
---|
1587 | } else { |
---|
1588 | f1 = map[1]; |
---|
1589 | } |
---|
1590 | } |
---|
1591 | |
---|
1592 | /* Find f0 */ |
---|
1593 | rightChild = j << 1; |
---|
1594 | if (rightChild >= kTrueLbLower && rightChild <= kTrueUbLower) { |
---|
1595 | f0 = Aig_One; |
---|
1596 | } else if (rightChild <= kFalseUbLower || rightChild >= kFalseLbLower) { |
---|
1597 | f0 = Aig_Zero; |
---|
1598 | } else { |
---|
1599 | assert(rightChild == index[0] || rightChild == index[1]); |
---|
1600 | if (rightChild == index[0]) { |
---|
1601 | f0 = map[0]; |
---|
1602 | } else { |
---|
1603 | f0 = map[1]; |
---|
1604 | } |
---|
1605 | } |
---|
1606 | |
---|
1607 | /* Build new nodes. */ |
---|
1608 | f = Aig_Ite(bm, x[i-1], f1, f0); |
---|
1609 | if (f == Aig_NULL) return(Aig_NULL); |
---|
1610 | |
---|
1611 | /* Save newly computed node in map. */ |
---|
1612 | assert(newIndex[0] == invalidIndex || newIndex[1] == invalidIndex); |
---|
1613 | if (newIndex[0] == invalidIndex) { |
---|
1614 | newIndex[0] = j; |
---|
1615 | newMap[0] = f; |
---|
1616 | } else { |
---|
1617 | newIndex[1] = j; |
---|
1618 | newMap[1] = f; |
---|
1619 | } |
---|
1620 | } |
---|
1621 | |
---|
1622 | /* Copy new map to map. */ |
---|
1623 | map[0] = newMap[0]; |
---|
1624 | map[1] = newMap[1]; |
---|
1625 | index[0] = newIndex[0]; |
---|
1626 | index[1] = newIndex[1]; |
---|
1627 | } |
---|
1628 | } |
---|
1629 | |
---|
1630 | return(f); |
---|
1631 | |
---|
1632 | } /* end of Aig_Inequality */ |
---|
1633 | |
---|
1634 | /**Function******************************************************************** |
---|
1635 | |
---|
1636 | Synopsis [create new node] |
---|
1637 | |
---|
1638 | Description [] |
---|
1639 | |
---|
1640 | SideEffects [] |
---|
1641 | |
---|
1642 | SeeAlso [] |
---|
1643 | |
---|
1644 | ******************************************************************************/ |
---|
1645 | AigEdge_t |
---|
1646 | Aig_CreateNode( |
---|
1647 | Aig_Manager_t *bm, |
---|
1648 | AigEdge_t nodeIndex1, |
---|
1649 | AigEdge_t nodeIndex2) |
---|
1650 | { |
---|
1651 | |
---|
1652 | AigEdge_t newNode = bm->nodesArraySize; |
---|
1653 | |
---|
1654 | if (bm->nodesArraySize >= bm->maxNodesArraySize ){ |
---|
1655 | bm->maxNodesArraySize = 2* bm->maxNodesArraySize; |
---|
1656 | bm->NodesArray = REALLOC(AigEdge_t, bm->NodesArray, bm->maxNodesArraySize); |
---|
1657 | bm->nameList = REALLOC(char *, bm->nameList , bm->maxNodesArraySize/AigNodeSize); |
---|
1658 | } |
---|
1659 | bm->NodesArray[Aig_NonInvertedEdge(newNode)+AigRight] = nodeIndex2; |
---|
1660 | bm->NodesArray[Aig_NonInvertedEdge(newNode)+AigLeft] = nodeIndex1; |
---|
1661 | |
---|
1662 | aig_next(newNode) = Aig_NULL; |
---|
1663 | fanout(newNode) = 0; |
---|
1664 | canonical(newNode) = newNode; |
---|
1665 | flags(newNode) = 0; |
---|
1666 | nFanout(newNode) = 0; |
---|
1667 | |
---|
1668 | bm->nodesArraySize +=AigNodeSize; |
---|
1669 | |
---|
1670 | return(newNode); |
---|
1671 | } |
---|
1672 | |
---|
1673 | |
---|
1674 | /**Function******************************************************************** |
---|
1675 | |
---|
1676 | Synopsis [Return the Aig node given its name.] |
---|
1677 | |
---|
1678 | SideEffects [] |
---|
1679 | |
---|
1680 | ******************************************************************************/ |
---|
1681 | AigEdge_t |
---|
1682 | Aig_FindNodeByName( |
---|
1683 | Aig_Manager_t *bm, |
---|
1684 | nameType_t *name) |
---|
1685 | { |
---|
1686 | |
---|
1687 | AigEdge_t node; |
---|
1688 | |
---|
1689 | if (!st_lookup(bm->SymbolTable, name, &node)){ |
---|
1690 | node = Aig_NULL; |
---|
1691 | } |
---|
1692 | |
---|
1693 | return Aig_GetCanonical(bm, node); |
---|
1694 | } |
---|
1695 | |
---|
1696 | |
---|
1697 | /**Function******************************************************************** |
---|
1698 | |
---|
1699 | Synopsis [create var node ] |
---|
1700 | |
---|
1701 | Description [] |
---|
1702 | |
---|
1703 | SideEffects [] |
---|
1704 | |
---|
1705 | SeeAlso [] |
---|
1706 | |
---|
1707 | ******************************************************************************/ |
---|
1708 | AigEdge_t |
---|
1709 | Aig_CreateVarNode( |
---|
1710 | Aig_Manager_t *bm, |
---|
1711 | nameType_t *name) |
---|
1712 | { |
---|
1713 | |
---|
1714 | AigEdge_t varIndex; |
---|
1715 | |
---|
1716 | |
---|
1717 | if (!st_lookup(bm->SymbolTable, name, &varIndex)){ |
---|
1718 | varIndex = Aig_CreateNode(bm, Aig_NULL, Aig_NULL); |
---|
1719 | if (varIndex == Aig_NULL){ |
---|
1720 | return (varIndex); |
---|
1721 | } |
---|
1722 | /* Insert the varaible in the Symbol Table */ |
---|
1723 | st_insert(bm->SymbolTable, name, (char*) (long) varIndex); |
---|
1724 | bm->nameList[AigNodeID(varIndex)] = name; |
---|
1725 | return(varIndex); |
---|
1726 | } |
---|
1727 | else { |
---|
1728 | return (varIndex); |
---|
1729 | } |
---|
1730 | } |
---|
1731 | |
---|
1732 | /**Function******************************************************************** |
---|
1733 | |
---|
1734 | Synopsis [Return True if this node is Variable node] |
---|
1735 | |
---|
1736 | SideEffects [] |
---|
1737 | |
---|
1738 | ******************************************************************************/ |
---|
1739 | int |
---|
1740 | Aig_isVarNode( |
---|
1741 | Aig_Manager_t *bm, |
---|
1742 | AigEdge_t node) |
---|
1743 | { |
---|
1744 | if((rightChild(node) == Aig_NULL) && (leftChild(node) == Aig_NULL)) { |
---|
1745 | return 1; |
---|
1746 | } |
---|
1747 | return 0; |
---|
1748 | } |
---|
1749 | |
---|
1750 | |
---|
1751 | |
---|
1752 | /**Function******************************************************************** |
---|
1753 | |
---|
1754 | Synopsis [Build the binary AND/INVERTER graph for a given bdd function] |
---|
1755 | |
---|
1756 | SideEffects [Build the binary AND/INVERTER graph for a given bdd function. |
---|
1757 | We assume that the return bdd nodes from the foreach_bdd_node are |
---|
1758 | in the order from childeren to parent. i.e all the childeren |
---|
1759 | nodes are returned before the parent node.] |
---|
1760 | |
---|
1761 | SideEffects [] |
---|
1762 | |
---|
1763 | SeeAlso [] |
---|
1764 | |
---|
1765 | ******************************************************************************/ |
---|
1766 | #if 0 |
---|
1767 | AigEdge_t |
---|
1768 | Aig_bddToAig( |
---|
1769 | Aig_Manager_t *AigManager, |
---|
1770 | bdd_t *fn) |
---|
1771 | { |
---|
1772 | bdd_gen *gen; |
---|
1773 | bdd_node *node, *thenNode, *elseNode, *funcNode; |
---|
1774 | bdd_manager *bddManager = bdd_get_manager(fn); |
---|
1775 | /* |
---|
1776 | Used to read the variable name of a bdd node. |
---|
1777 | */ |
---|
1778 | array_t *mvar_list = mdd_ret_mvar_list(bddManager); |
---|
1779 | array_t *bvar_list = mdd_ret_bvar_list(bddManager); |
---|
1780 | bvar_type bv; |
---|
1781 | mvar_type mv; |
---|
1782 | |
---|
1783 | bdd_node *one = bdd_read_one(bddManager); |
---|
1784 | int is_complemented; |
---|
1785 | int flag; |
---|
1786 | AigEdge_t var, left, right, result; |
---|
1787 | |
---|
1788 | char name[100]; |
---|
1789 | st_table *bddTOAigTable; |
---|
1790 | |
---|
1791 | if (fn == NULL){ |
---|
1792 | return Aig_NULL; |
---|
1793 | } |
---|
1794 | funcNode = bdd_get_node(fn, &is_complemented); |
---|
1795 | if (bdd_is_constant(funcNode)){ |
---|
1796 | return (is_complemented?Aig_Zero:Aig_One); |
---|
1797 | } |
---|
1798 | bddTOAigTable = st_init_table(st_numcmp, st_numhash); |
---|
1799 | st_insert(bddTOAigTable, (char *) (long) bdd_regular(one), (char *) Aig_One); |
---|
1800 | |
---|
1801 | foreach_bdd_node(fn, gen, node){ |
---|
1802 | int nodeIndex = bdd_node_read_index(node); |
---|
1803 | int index, rtnNodeIndex; |
---|
1804 | |
---|
1805 | if (bdd_is_constant(node)){ |
---|
1806 | continue; |
---|
1807 | } |
---|
1808 | |
---|
1809 | bv = array_fetch(bvar_type, bvar_list, nodeIndex); |
---|
1810 | /* |
---|
1811 | get the multi-valued varaible. |
---|
1812 | */ |
---|
1813 | mv = array_fetch(mvar_type, mvar_list, bv.mvar_id); |
---|
1814 | arrayForEachItem(int, mv.bvars, index, rtnNodeIndex) { |
---|
1815 | if (nodeIndex == rtnNodeIndex){ |
---|
1816 | break; |
---|
1817 | } |
---|
1818 | } |
---|
1819 | assert(index < mv.encode_length); |
---|
1820 | /* |
---|
1821 | printf("Name of bdd node %s %d\n", mv.name, index); |
---|
1822 | */ |
---|
1823 | sprintf(name, "%s_%d", mv.name, index); |
---|
1824 | /* |
---|
1825 | Create or Retrieve the AigEdge_t w.r.t. 'name' |
---|
1826 | */ |
---|
1827 | var = Aig_CreateVarNode(AigManager, util_strsav(name)); |
---|
1828 | |
---|
1829 | thenNode = bdd_bdd_T(node); |
---|
1830 | flag = st_lookup(bddTOAigTable, (char *) (long) bdd_regular(thenNode), |
---|
1831 | &left); |
---|
1832 | assert(flag); |
---|
1833 | |
---|
1834 | elseNode = bdd_bdd_E(node); |
---|
1835 | flag = st_lookup(bddTOAigTable, (char *) (long) bdd_regular(elseNode), |
---|
1836 | &right); |
---|
1837 | assert(flag); |
---|
1838 | /* |
---|
1839 | test if the elseNode is complemented arc? |
---|
1840 | */ |
---|
1841 | if (bdd_is_complement(elseNode)){ |
---|
1842 | right = Aig_Not(right); |
---|
1843 | } |
---|
1844 | if (right == Aig_Zero){ /* result = var*then */ |
---|
1845 | result = Aig_And(AigManager, var, left); |
---|
1846 | } else if (right == Aig_One){ /* result = then + not(var) */ |
---|
1847 | result = Aig_Or(AigManager, left, Aig_Not(var)); |
---|
1848 | } else if (left == Aig_One) { /* result = var + else */ |
---|
1849 | result = Aig_Or(AigManager, var, right); |
---|
1850 | } else { /* result = var * then + not(var)*else */ |
---|
1851 | result = Aig_Or(AigManager, Aig_And(AigManager, var, left), |
---|
1852 | Aig_And(AigManager, Aig_Not(var), right)); |
---|
1853 | } |
---|
1854 | st_insert(bddTOAigTable, (char *) (long) bdd_regular(node), |
---|
1855 | (char *) (long) result); |
---|
1856 | } |
---|
1857 | flag = st_lookup(bddTOAigTable, (char *) (long) bdd_regular(funcNode), |
---|
1858 | &result); |
---|
1859 | assert(flag); |
---|
1860 | st_free_table(bddTOAigTable); |
---|
1861 | |
---|
1862 | if (is_complemented){ |
---|
1863 | return Aig_Not(result); |
---|
1864 | } else { |
---|
1865 | return result; |
---|
1866 | } |
---|
1867 | } /* end of Aig_bddtoAig() */ |
---|
1868 | #endif |
---|
1869 | |
---|
1870 | /**Function******************************************************************** |
---|
1871 | |
---|
1872 | Synopsis [Print dot file for AIG nodes] |
---|
1873 | |
---|
1874 | SideEffects [] |
---|
1875 | |
---|
1876 | ******************************************************************************/ |
---|
1877 | int |
---|
1878 | Aig_PrintDot( |
---|
1879 | FILE *fp, |
---|
1880 | Aig_Manager_t *bm) |
---|
1881 | { |
---|
1882 | long i; |
---|
1883 | |
---|
1884 | /* |
---|
1885 | * Write out the header for the output file. |
---|
1886 | */ |
---|
1887 | (void) fprintf(fp, "digraph \"AndInv\" {\n rotate=90;\n"); |
---|
1888 | (void) fprintf(fp, " margin=0.5;\n label=\"AndInv\";\n"); |
---|
1889 | (void) fprintf(fp, " size=\"10,7.5\";\n ratio=\"fill\";\n"); |
---|
1890 | |
---|
1891 | |
---|
1892 | for (i=AigFirstNodeIndex ; i<bm->nodesArraySize ; i+=AigNodeSize){ |
---|
1893 | (void) fprintf(fp,"Node%ld [label=\"%s \"];\n",i,Aig_NodeReadName(bm, i)); |
---|
1894 | } |
---|
1895 | for (i=AigFirstNodeIndex ; i< bm->nodesArraySize ; i+=AigNodeSize){ |
---|
1896 | if (rightChild(i) != Aig_NULL){ |
---|
1897 | if (Aig_IsInverted(rightChild(i))){ |
---|
1898 | (void) fprintf(fp,"Node%ld -> Node%ld [color = red];\n",Aig_NonInvertedEdge(rightChild(i)), i); |
---|
1899 | } |
---|
1900 | else{ |
---|
1901 | (void) fprintf(fp,"Node%ld -> Node%ld;\n",Aig_NonInvertedEdge(rightChild(i)), i); |
---|
1902 | } |
---|
1903 | if (Aig_IsInverted(leftChild(i))){ |
---|
1904 | (void) fprintf(fp,"Node%ld -> Node%ld [color = red];\n",Aig_NonInvertedEdge(leftChild(i)), i); |
---|
1905 | } |
---|
1906 | else{ |
---|
1907 | (void) fprintf(fp,"Node%ld -> Node%ld;\n",Aig_NonInvertedEdge(leftChild(i)), i); |
---|
1908 | } |
---|
1909 | }/* if */ |
---|
1910 | }/*for */ |
---|
1911 | |
---|
1912 | (void) fprintf(fp, "}\n"); |
---|
1913 | |
---|
1914 | return 1; |
---|
1915 | } |
---|
1916 | |
---|
1917 | |
---|
1918 | |
---|
1919 | /**Function******************************************************************** |
---|
1920 | |
---|
1921 | Synopsis [Print dot file for AIG nodes] |
---|
1922 | |
---|
1923 | SideEffects [] |
---|
1924 | |
---|
1925 | ******************************************************************************/ |
---|
1926 | int |
---|
1927 | Aig_PrintAIG(Aig_Manager_t *bm, AigEdge_t object, char *fileName) |
---|
1928 | { |
---|
1929 | FILE *fp; |
---|
1930 | long nInput, nAnd; |
---|
1931 | long i; |
---|
1932 | char *str; |
---|
1933 | |
---|
1934 | str = util_strcat3(fileName, ".aag", ""); |
---|
1935 | |
---|
1936 | fp = fopen(str, "w"); |
---|
1937 | |
---|
1938 | free(str); |
---|
1939 | |
---|
1940 | /* count # of inputs & # of and gates */ |
---|
1941 | for (i=AigFirstNodeIndex, nInput=0, nAnd=0; i<bm->nodesArraySize ; i+=AigNodeSize){ |
---|
1942 | if (leftChild(i)==Aig_NULL && rightChild(i)==Aig_NULL) |
---|
1943 | nInput++; |
---|
1944 | else |
---|
1945 | nAnd++; |
---|
1946 | } |
---|
1947 | |
---|
1948 | /* |
---|
1949 | * Write out the header for the output file: |
---|
1950 | * # of nodes, # of inputs, # of latches, # of outputs, # of AND gates |
---|
1951 | */ |
---|
1952 | (void) fprintf(fp, "aag %ld %ld 0 1 %ld\n", nInput+nAnd, nInput, nAnd); |
---|
1953 | |
---|
1954 | /* Input */ |
---|
1955 | for (i=AigFirstNodeIndex ; i<bm->nodesArraySize ; i+=AigNodeSize){ |
---|
1956 | if (leftChild(i)==Aig_NULL && rightChild(i)==Aig_NULL) |
---|
1957 | fprintf(fp,"%ld\n",i/4); |
---|
1958 | } |
---|
1959 | /* Output */ |
---|
1960 | if (Aig_IsInverted(object)) |
---|
1961 | fprintf(fp, "%ld\n", (Aig_NonInvertedEdge(object)/4)+1); |
---|
1962 | else |
---|
1963 | fprintf(fp, "%ld\n", (Aig_NonInvertedEdge(object)/4)); |
---|
1964 | |
---|
1965 | /* AND gates */ |
---|
1966 | for (i=AigFirstNodeIndex ; i< bm->nodesArraySize ; i+=AigNodeSize){ |
---|
1967 | if (leftChild(i)!=Aig_NULL || rightChild(i)!=Aig_NULL) { |
---|
1968 | fprintf(fp, "%ld ", i/4); |
---|
1969 | if (rightChild(i) != Aig_NULL) { |
---|
1970 | if (Aig_IsInverted(rightChild(i))) |
---|
1971 | fprintf(fp,"%ld ", (Aig_NonInvertedEdge(rightChild(i))/4)+1); |
---|
1972 | else |
---|
1973 | fprintf(fp,"%ld ", Aig_NonInvertedEdge(rightChild(i))/4); |
---|
1974 | } |
---|
1975 | if (leftChild(i) != Aig_NULL) { |
---|
1976 | if (Aig_IsInverted(leftChild(i))) |
---|
1977 | fprintf(fp,"%ld", (Aig_NonInvertedEdge(leftChild(i))/4)+1); |
---|
1978 | else |
---|
1979 | fprintf(fp,"%ld", Aig_NonInvertedEdge(leftChild(i))/4); |
---|
1980 | } |
---|
1981 | fprintf(fp, "\n"); |
---|
1982 | } |
---|
1983 | } |
---|
1984 | |
---|
1985 | fclose(fp); |
---|
1986 | |
---|
1987 | return 1; |
---|
1988 | } |
---|
1989 | |
---|
1990 | |
---|
1991 | |
---|
1992 | /**Function******************************************************************** |
---|
1993 | |
---|
1994 | Synopsis [Set pass flag for node] |
---|
1995 | |
---|
1996 | Description [] |
---|
1997 | |
---|
1998 | SideEffects [] |
---|
1999 | |
---|
2000 | SeeAlso [] |
---|
2001 | |
---|
2002 | ******************************************************************************/ |
---|
2003 | |
---|
2004 | void |
---|
2005 | AigSetPassFlag( |
---|
2006 | Aig_Manager_t *bm, |
---|
2007 | AigEdge_t node) |
---|
2008 | { |
---|
2009 | |
---|
2010 | flags(node) |= CanonicalBitMask; |
---|
2011 | } |
---|
2012 | |
---|
2013 | /**Function******************************************************************** |
---|
2014 | |
---|
2015 | Synopsis [Reset pass flag for node] |
---|
2016 | |
---|
2017 | Description [] |
---|
2018 | |
---|
2019 | SideEffects [] |
---|
2020 | |
---|
2021 | SeeAlso [] |
---|
2022 | |
---|
2023 | ******************************************************************************/ |
---|
2024 | |
---|
2025 | void |
---|
2026 | AigResetPassFlag( |
---|
2027 | Aig_Manager_t *bm, |
---|
2028 | AigEdge_t node) |
---|
2029 | { |
---|
2030 | |
---|
2031 | flags(node) &= ResetCanonicalBitMask; |
---|
2032 | } |
---|
2033 | |
---|
2034 | /**Function******************************************************************** |
---|
2035 | |
---|
2036 | Synopsis [Get pass flag for node] |
---|
2037 | |
---|
2038 | Description [] |
---|
2039 | |
---|
2040 | SideEffects [] |
---|
2041 | |
---|
2042 | SeeAlso [] |
---|
2043 | |
---|
2044 | ******************************************************************************/ |
---|
2045 | |
---|
2046 | int |
---|
2047 | AigGetPassFlag( |
---|
2048 | Aig_Manager_t *bm, |
---|
2049 | AigEdge_t node) |
---|
2050 | |
---|
2051 | { |
---|
2052 | return((flags(node) & CanonicalBitMask) != 0); |
---|
2053 | } |
---|
2054 | |
---|
2055 | /**Function******************************************************************** |
---|
2056 | |
---|
2057 | Synopsis [Create AND node and assign name to it ] |
---|
2058 | |
---|
2059 | Description [] |
---|
2060 | |
---|
2061 | SideEffects [] |
---|
2062 | |
---|
2063 | SeeAlso [] |
---|
2064 | |
---|
2065 | ******************************************************************************/ |
---|
2066 | AigEdge_t |
---|
2067 | AigCreateAndNode( |
---|
2068 | Aig_Manager_t *bm, |
---|
2069 | AigEdge_t node1, |
---|
2070 | AigEdge_t node2) |
---|
2071 | { |
---|
2072 | |
---|
2073 | AigEdge_t varIndex; |
---|
2074 | char *name = NIL(char); |
---|
2075 | char *node1Str = util_inttostr(node1); |
---|
2076 | char *node2Str = util_inttostr(node2); |
---|
2077 | |
---|
2078 | name = util_strcat4("Nd", node1Str,"_", node2Str); |
---|
2079 | while (st_lookup(bm->SymbolTable, name, &varIndex)){ |
---|
2080 | printf("Find redundant node at %ld %ld\n", node1, node2); |
---|
2081 | name = util_strcat3(name, node1Str, node2Str); |
---|
2082 | } |
---|
2083 | FREE(node1Str); |
---|
2084 | FREE(node2Str); |
---|
2085 | varIndex = Aig_CreateNode(bm, node1, node2); |
---|
2086 | if (varIndex == Aig_NULL){ |
---|
2087 | FREE(name); |
---|
2088 | return (varIndex); |
---|
2089 | } |
---|
2090 | /* Insert the varaible in the Symbol Table */ |
---|
2091 | st_insert(bm->SymbolTable, name, (char*) (long) varIndex); |
---|
2092 | bm->nameList[AigNodeID(varIndex)] = name; |
---|
2093 | |
---|
2094 | return(varIndex); |
---|
2095 | |
---|
2096 | } |
---|
2097 | |
---|
2098 | /*---------------------------------------------------------------------------*/ |
---|
2099 | /* Definition of static functions */ |
---|
2100 | /*---------------------------------------------------------------------------*/ |
---|
2101 | |
---|
2102 | /**Function******************************************************************** |
---|
2103 | |
---|
2104 | Synopsis [Connect fanin fanout of two AIG nodes] |
---|
2105 | |
---|
2106 | Description [] |
---|
2107 | |
---|
2108 | SideEffects [] |
---|
2109 | |
---|
2110 | SeeAlso [] |
---|
2111 | |
---|
2112 | ******************************************************************************/ |
---|
2113 | static void |
---|
2114 | connectOutput( |
---|
2115 | Aig_Manager_t *bm, |
---|
2116 | AigEdge_t from, |
---|
2117 | AigEdge_t to, |
---|
2118 | int inputIndex) |
---|
2119 | { |
---|
2120 | AigEdge_t *pfan; |
---|
2121 | int nfan; |
---|
2122 | |
---|
2123 | to = Aig_NonInvertedEdge(to); |
---|
2124 | pfan = (AigEdge_t *)fanout(from); |
---|
2125 | nfan = nFanout(from); |
---|
2126 | if(nfan == 0) pfan = ALLOC(AigEdge_t, 2); |
---|
2127 | else pfan = REALLOC(AigEdge_t, pfan, nfan+2); |
---|
2128 | to += Aig_IsInverted(from); |
---|
2129 | to = to << 1; |
---|
2130 | to += inputIndex; |
---|
2131 | pfan[nfan++] = to; |
---|
2132 | pfan[nfan] = 0; |
---|
2133 | fanout(from) = (long)pfan; |
---|
2134 | nFanout(from) = nfan; |
---|
2135 | } |
---|
2136 | |
---|
2137 | |
---|
2138 | /**Function******************************************************************** |
---|
2139 | |
---|
2140 | Synopsis [disconnect fanin fanout of two AIG nodes] |
---|
2141 | |
---|
2142 | Description [] |
---|
2143 | |
---|
2144 | SideEffects [] |
---|
2145 | |
---|
2146 | SeeAlso [] |
---|
2147 | |
---|
2148 | static void |
---|
2149 | unconnectOutput( |
---|
2150 | Aig_Manager_t *bm, |
---|
2151 | AigEdge_t from, |
---|
2152 | AigEdge_t to) |
---|
2153 | { |
---|
2154 | AigEdge_t cur, *pfan, *newfan; |
---|
2155 | int i, nfan; |
---|
2156 | |
---|
2157 | from = Aig_NonInvertedEdge(from); |
---|
2158 | to = Aig_NonInvertedEdge(to); |
---|
2159 | |
---|
2160 | pfan = (AigEdge_t *)fanout(from); |
---|
2161 | nfan = nFanout(from); |
---|
2162 | newfan = (AigEdge_t *)malloc(sizeof(AigEdge_t)*(nfan)); |
---|
2163 | for(i=0; i<nfan; i++) { |
---|
2164 | cur = pfan[i]; |
---|
2165 | cur = cur >> 1; |
---|
2166 | cur = Aig_NonInvertedEdge(cur); |
---|
2167 | if(cur == to) { |
---|
2168 | memcpy(newfan, pfan, sizeof(AigEdge_t)*i); |
---|
2169 | memcpy(&(newfan[i]), &(pfan[i+1]), sizeof(AigEdge_t)*(nfan-i-1)); |
---|
2170 | newfan[nfan-1] = 0; |
---|
2171 | fanout(from) = (int)newfan; |
---|
2172 | free(pfan); |
---|
2173 | nFanout(from) = nfan-1; |
---|
2174 | break; |
---|
2175 | } |
---|
2176 | } |
---|
2177 | } |
---|
2178 | ******************************************************************************/ |
---|
2179 | |
---|
2180 | |
---|
2181 | /**Function******************************************************************** |
---|
2182 | |
---|
2183 | Synopsis [Look for the node in the Hash Table.] |
---|
2184 | |
---|
2185 | Description [.] |
---|
2186 | |
---|
2187 | SideEffects [] |
---|
2188 | |
---|
2189 | SeeAlso [] |
---|
2190 | |
---|
2191 | ******************************************************************************/ |
---|
2192 | static AigEdge_t |
---|
2193 | HashTableLookup( |
---|
2194 | Aig_Manager_t *bm, |
---|
2195 | AigEdge_t node1, |
---|
2196 | AigEdge_t node2) |
---|
2197 | { |
---|
2198 | AigEdge_t key = HashTableFunction(node1, node2); |
---|
2199 | AigEdge_t node; |
---|
2200 | |
---|
2201 | node = bm->HashTable[key]; |
---|
2202 | if (node == Aig_NULL) { |
---|
2203 | return Aig_NULL; |
---|
2204 | } |
---|
2205 | else{ |
---|
2206 | while ( (rightChild(Aig_NonInvertedEdge(node)) != node2) || |
---|
2207 | (leftChild(Aig_NonInvertedEdge(node)) != node1)) { |
---|
2208 | |
---|
2209 | if (aig_next(Aig_NonInvertedEdge(node)) == Aig_NULL){ |
---|
2210 | return(Aig_NULL); |
---|
2211 | } |
---|
2212 | node = aig_next(Aig_NonInvertedEdge(node)); /* Get the next Node */ |
---|
2213 | } /* While loop */ |
---|
2214 | return(node); |
---|
2215 | |
---|
2216 | } /* If Then Else */ |
---|
2217 | |
---|
2218 | } /* End of HashTableLookup() */ |
---|
2219 | |
---|
2220 | /**Function******************************************************************** |
---|
2221 | |
---|
2222 | Synopsis [Add a node in the Hash Table.] |
---|
2223 | |
---|
2224 | Description [] |
---|
2225 | |
---|
2226 | SideEffects [] |
---|
2227 | |
---|
2228 | SeeAlso [] |
---|
2229 | |
---|
2230 | ******************************************************************************/ |
---|
2231 | static int |
---|
2232 | HashTableAdd( |
---|
2233 | Aig_Manager_t *bm, |
---|
2234 | AigEdge_t nodeIndexParent, |
---|
2235 | AigEdge_t nodeIndex1, |
---|
2236 | AigEdge_t nodeIndex2) |
---|
2237 | { |
---|
2238 | AigEdge_t key = HashTableFunction(nodeIndex1, nodeIndex2); |
---|
2239 | AigEdge_t nodeIndex; |
---|
2240 | AigEdge_t node; |
---|
2241 | |
---|
2242 | nodeIndex = bm->HashTable[key]; |
---|
2243 | if (nodeIndex == Aig_NULL) { |
---|
2244 | bm->HashTable[key] = nodeIndexParent; |
---|
2245 | return TRUE; |
---|
2246 | } |
---|
2247 | else{ |
---|
2248 | node = nodeIndex; |
---|
2249 | nodeIndex = aig_next(Aig_NonInvertedEdge(nodeIndex)); /* Get the Node */ |
---|
2250 | while (nodeIndex != Aig_NULL) { |
---|
2251 | node = nodeIndex; |
---|
2252 | nodeIndex = aig_next(Aig_NonInvertedEdge(nodeIndex)); |
---|
2253 | } |
---|
2254 | aig_next(Aig_NonInvertedEdge(node)) = nodeIndexParent; |
---|
2255 | return TRUE; |
---|
2256 | } |
---|
2257 | |
---|
2258 | } /* End of HashTableAdd() */ |
---|
2259 | |
---|
2260 | |
---|
2261 | /**Function******************************************************************** |
---|
2262 | |
---|
2263 | Synopsis [Hash table delete] |
---|
2264 | |
---|
2265 | Description [Hash table delete] |
---|
2266 | |
---|
2267 | SideEffects [] |
---|
2268 | |
---|
2269 | SeeAlso [] |
---|
2270 | |
---|
2271 | ******************************************************************************/ |
---|
2272 | #if 0 |
---|
2273 | static int |
---|
2274 | HashTableDelete( |
---|
2275 | Aig_Manager_t *bm, |
---|
2276 | AigEdge_t node) |
---|
2277 | { |
---|
2278 | AigEdge_t key = HashTableFunction(leftChild(node), rightChild(node)); |
---|
2279 | AigEdge_t nodeIndex; |
---|
2280 | |
---|
2281 | nodeIndex = bm->HashTable[key]; |
---|
2282 | if (nodeIndex == node) { |
---|
2283 | bm->HashTable[key] = aig_next(node); |
---|
2284 | return TRUE; |
---|
2285 | } |
---|
2286 | else{ |
---|
2287 | while(nodeIndex && aig_next(Aig_NonInvertedEdge(nodeIndex)) != node) |
---|
2288 | nodeIndex = aig_next(Aig_NonInvertedEdge(nodeIndex)); |
---|
2289 | |
---|
2290 | aig_next(Aig_NonInvertedEdge(nodeIndex)) = |
---|
2291 | aig_next(Aig_NonInvertedEdge(aig_next(Aig_NonInvertedEdge(nodeIndex)))); |
---|
2292 | return TRUE; |
---|
2293 | } |
---|
2294 | |
---|
2295 | } /* End of HashTableAdd() */ |
---|
2296 | #endif |
---|
2297 | |
---|
2298 | /**Function******************************************************************** |
---|
2299 | |
---|
2300 | Synopsis [Structural hasing for and4] |
---|
2301 | |
---|
2302 | Description [Structural hasing for and4] |
---|
2303 | |
---|
2304 | SideEffects [] |
---|
2305 | |
---|
2306 | SeeAlso [] |
---|
2307 | |
---|
2308 | ******************************************************************************/ |
---|
2309 | |
---|
2310 | AigEdge_t |
---|
2311 | Aig_And4( |
---|
2312 | Aig_Manager_t *bm, |
---|
2313 | AigEdge_t l, |
---|
2314 | AigEdge_t r) |
---|
2315 | { |
---|
2316 | int caseIndex, caseSig; |
---|
2317 | AigEdge_t ll, lr, rl, rr; |
---|
2318 | AigEdge_t t1, t2; |
---|
2319 | |
---|
2320 | ll = leftChild(l); |
---|
2321 | lr = rightChild(l); |
---|
2322 | rl = leftChild(r); |
---|
2323 | rr = rightChild(r); |
---|
2324 | |
---|
2325 | if(AigCompareNode(l, rl) || |
---|
2326 | AigCompareNode(l, rr)) { |
---|
2327 | return(Aig_And3(bm, l, r)); |
---|
2328 | } |
---|
2329 | else if(AigCompareNode(r, ll) || |
---|
2330 | AigCompareNode(r, lr)) { |
---|
2331 | return(Aig_And3(bm, r, l)); |
---|
2332 | } |
---|
2333 | |
---|
2334 | if(ll > lr+1) AigSwap(ll, lr); |
---|
2335 | if(rl > rr+1) AigSwap(rl, rr); |
---|
2336 | |
---|
2337 | caseIndex = 0; /* (a b)(c d) */ |
---|
2338 | if(AigCompareNode(ll, rl)) { |
---|
2339 | if(AigCompareNode(lr, rr)) { |
---|
2340 | caseIndex = 4; /* (a b) (a b) */ |
---|
2341 | } |
---|
2342 | else { |
---|
2343 | caseIndex = 1; /* (a b) (a c) */ |
---|
2344 | if(lr > rr+1) { |
---|
2345 | AigSwap(ll, rl); |
---|
2346 | AigSwap(lr, rr); |
---|
2347 | AigSwap(l, r); |
---|
2348 | } |
---|
2349 | } |
---|
2350 | } |
---|
2351 | else if(AigCompareNode(lr, rl)) { |
---|
2352 | caseIndex = 2; /* (b a)(a c) */ |
---|
2353 | } |
---|
2354 | else if(AigCompareNode(lr, rr)) { |
---|
2355 | caseIndex = 3; /* (b a)(c a) */ |
---|
2356 | if(ll > rl+1) { |
---|
2357 | AigSwap(ll, rl); |
---|
2358 | AigSwap(lr, rr); |
---|
2359 | AigSwap(l, r); |
---|
2360 | } |
---|
2361 | } |
---|
2362 | else if(AigCompareNode(ll, rr)) { |
---|
2363 | /* (a b)(c a) */ |
---|
2364 | AigSwap(ll, rl); |
---|
2365 | AigSwap(lr, rr); |
---|
2366 | AigSwap(l, r); |
---|
2367 | caseIndex = 2; /* (c a )(a b) because of c < b */ |
---|
2368 | } |
---|
2369 | |
---|
2370 | caseSig = 0; |
---|
2371 | if(Aig_IsInverted(ll)) caseSig += 32; |
---|
2372 | if(Aig_IsInverted(lr)) caseSig += 16; |
---|
2373 | if(Aig_IsInverted(l)) caseSig += 8; |
---|
2374 | if(Aig_IsInverted(rl)) caseSig += 4; |
---|
2375 | if(Aig_IsInverted(rr)) caseSig += 2; |
---|
2376 | if(Aig_IsInverted(r)) caseSig += 1; |
---|
2377 | /** |
---|
2378 | fprintf(stdout, "Index: %d Sig: %2d (%5d%c %5d%c)%c (%5d%c %5d%c)%c (%5d, %5d)\n", |
---|
2379 | caseIndex, caseSig, |
---|
2380 | Aig_NonInvertedEdge(ll), Aig_IsInverted(ll) ? '\'' : ' ', |
---|
2381 | Aig_NonInvertedEdge(lr), Aig_IsInverted(lr) ? '\'' : ' ', |
---|
2382 | Aig_IsInverted(l) ? '\'' : ' ', |
---|
2383 | Aig_NonInvertedEdge(rl), Aig_IsInverted(rl) ? '\'' : ' ', |
---|
2384 | Aig_NonInvertedEdge(rr), Aig_IsInverted(rr) ? '\'' : ' ', |
---|
2385 | Aig_IsInverted(r) ? '\'' : ' ', |
---|
2386 | Aig_NonInvertedEdge(l), Aig_NonInvertedEdge(r) |
---|
2387 | ); |
---|
2388 | **/ |
---|
2389 | if(caseIndex == 0) { |
---|
2390 | return(Aig_And2(bm, l, r)); |
---|
2391 | } |
---|
2392 | else if(caseIndex == 1) { |
---|
2393 | switch(caseSig) { |
---|
2394 | case 19 : |
---|
2395 | case 17 : |
---|
2396 | case 3 : |
---|
2397 | case 1 : |
---|
2398 | case 55 : |
---|
2399 | case 53 : |
---|
2400 | case 39 : |
---|
2401 | case 37 : |
---|
2402 | t1 = Aig_And(bm, lr, Aig_Not(rr)); |
---|
2403 | t2 = Aig_And(bm, ll, t1); |
---|
2404 | return(t2); |
---|
2405 | case 18 : |
---|
2406 | case 16 : |
---|
2407 | case 2 : |
---|
2408 | case 0 : |
---|
2409 | case 54 : |
---|
2410 | case 52 : |
---|
2411 | case 38 : |
---|
2412 | case 36 : |
---|
2413 | t1 = Aig_And(bm, lr, rr); |
---|
2414 | t2 = Aig_And(bm, ll, t1); |
---|
2415 | return(t2); |
---|
2416 | case 26 : |
---|
2417 | case 24 : |
---|
2418 | case 10 : |
---|
2419 | case 8 : |
---|
2420 | case 62 : |
---|
2421 | case 60 : |
---|
2422 | case 46 : |
---|
2423 | case 44 : |
---|
2424 | t1 = Aig_And(bm, Aig_Not(lr), rr); |
---|
2425 | t2 = Aig_And(bm, ll, t1); |
---|
2426 | return(t2); |
---|
2427 | case 61 : |
---|
2428 | case 27 : |
---|
2429 | case 25 : |
---|
2430 | case 11 : |
---|
2431 | case 63 : |
---|
2432 | case 47 : |
---|
2433 | case 9 : |
---|
2434 | case 45 : |
---|
2435 | t1 = Aig_And(bm, Aig_Not(lr), Aig_Not(rr)); |
---|
2436 | t2 = Aig_Or(bm, Aig_Not(ll), t1); |
---|
2437 | return(t2); |
---|
2438 | case 23 : |
---|
2439 | case 21 : |
---|
2440 | case 7 : |
---|
2441 | case 5 : |
---|
2442 | case 51 : |
---|
2443 | case 49 : |
---|
2444 | case 35 : |
---|
2445 | case 33 : |
---|
2446 | return(l); |
---|
2447 | case 30 : |
---|
2448 | case 28 : |
---|
2449 | case 14 : |
---|
2450 | case 12 : |
---|
2451 | case 58 : |
---|
2452 | case 56 : |
---|
2453 | case 42 : |
---|
2454 | case 40 : |
---|
2455 | return(r); |
---|
2456 | case 22 : |
---|
2457 | case 20 : |
---|
2458 | case 6 : |
---|
2459 | case 4 : |
---|
2460 | case 50 : |
---|
2461 | case 48 : |
---|
2462 | case 34 : |
---|
2463 | case 32 : |
---|
2464 | return(Aig_Zero); |
---|
2465 | case 31 : |
---|
2466 | case 29 : |
---|
2467 | case 15 : |
---|
2468 | case 13 : |
---|
2469 | case 59 : |
---|
2470 | case 57 : |
---|
2471 | case 43 : |
---|
2472 | case 41 : |
---|
2473 | t1 = Aig_And2(bm, l, r); |
---|
2474 | return(t1); |
---|
2475 | } |
---|
2476 | } |
---|
2477 | else if(caseIndex == 2) { |
---|
2478 | switch(caseSig) { |
---|
2479 | case 35 : |
---|
2480 | case 33 : |
---|
2481 | case 3 : |
---|
2482 | case 1 : |
---|
2483 | case 55 : |
---|
2484 | case 53 : |
---|
2485 | case 23 : |
---|
2486 | case 21 : |
---|
2487 | t1 = Aig_And(bm, lr, Aig_Not(rr)); |
---|
2488 | t2 = Aig_And(bm, ll, t1); |
---|
2489 | return(t2); |
---|
2490 | case 34 : |
---|
2491 | case 32 : |
---|
2492 | case 2 : |
---|
2493 | case 0 : |
---|
2494 | case 54 : |
---|
2495 | case 52 : |
---|
2496 | case 22 : |
---|
2497 | case 20 : |
---|
2498 | t1 = Aig_And(bm, lr, rr); |
---|
2499 | t2 = Aig_And(bm, ll, t1); |
---|
2500 | return(t2); |
---|
2501 | case 42 : |
---|
2502 | case 40 : |
---|
2503 | case 10 : |
---|
2504 | case 8 : |
---|
2505 | case 62 : |
---|
2506 | case 60 : |
---|
2507 | case 30 : |
---|
2508 | case 28 : |
---|
2509 | t1 = Aig_And(bm, lr, rr); |
---|
2510 | t2 = Aig_And(bm, Aig_Not(ll), t1); |
---|
2511 | return(t2); |
---|
2512 | case 43 : |
---|
2513 | case 41 : |
---|
2514 | case 11 : |
---|
2515 | case 9 : |
---|
2516 | case 63 : |
---|
2517 | case 61 : |
---|
2518 | case 31 : |
---|
2519 | case 29 : |
---|
2520 | t1 = Aig_And(bm, Aig_Not(ll), Aig_Not(rr)); |
---|
2521 | t2 = Aig_Or(bm, Aig_Not(lr), t1); |
---|
2522 | return(t2); |
---|
2523 | case 39 : |
---|
2524 | case 37 : |
---|
2525 | case 7 : |
---|
2526 | case 5 : |
---|
2527 | case 51 : |
---|
2528 | case 49 : |
---|
2529 | case 19 : |
---|
2530 | case 17 : |
---|
2531 | return(l); |
---|
2532 | case 46 : |
---|
2533 | case 44 : |
---|
2534 | case 14 : |
---|
2535 | case 12 : |
---|
2536 | case 58 : |
---|
2537 | case 56 : |
---|
2538 | case 26 : |
---|
2539 | case 24 : |
---|
2540 | return(r); |
---|
2541 | case 38 : |
---|
2542 | case 36 : |
---|
2543 | case 6 : |
---|
2544 | case 4 : |
---|
2545 | case 50 : |
---|
2546 | case 48 : |
---|
2547 | case 18 : |
---|
2548 | case 16 : |
---|
2549 | return(Aig_Zero); |
---|
2550 | case 45 : |
---|
2551 | case 15 : |
---|
2552 | case 13 : |
---|
2553 | case 59 : |
---|
2554 | case 57 : |
---|
2555 | case 47 : |
---|
2556 | case 27 : |
---|
2557 | case 25 : |
---|
2558 | t1 = Aig_And2(bm, l, r); |
---|
2559 | return(t1); |
---|
2560 | } |
---|
2561 | } |
---|
2562 | else if(caseIndex == 3) { |
---|
2563 | switch(caseSig) { |
---|
2564 | case 37 : |
---|
2565 | case 33 : |
---|
2566 | case 5 : |
---|
2567 | case 1 : |
---|
2568 | case 55 : |
---|
2569 | case 51 : |
---|
2570 | case 23 : |
---|
2571 | case 19 : |
---|
2572 | t1 = Aig_And(bm, Aig_Not(rl), lr); |
---|
2573 | t2 = Aig_And(bm, ll, t1); |
---|
2574 | return(t2); |
---|
2575 | case 36 : |
---|
2576 | case 32 : |
---|
2577 | case 4 : |
---|
2578 | case 0 : |
---|
2579 | case 54 : |
---|
2580 | case 50 : |
---|
2581 | case 22 : |
---|
2582 | case 18 : |
---|
2583 | t1 = Aig_And(bm, rl, lr); |
---|
2584 | t2 = Aig_And(bm, ll, t1); |
---|
2585 | return(t2); |
---|
2586 | case 44 : |
---|
2587 | case 40 : |
---|
2588 | case 12 : |
---|
2589 | case 8 : |
---|
2590 | case 62 : |
---|
2591 | case 58 : |
---|
2592 | case 30 : |
---|
2593 | case 26 : |
---|
2594 | t1 = Aig_And(bm, rl, lr); |
---|
2595 | t2 = Aig_And(bm, Aig_Not(ll), t1); |
---|
2596 | return(t2); |
---|
2597 | case 45 : |
---|
2598 | case 41 : |
---|
2599 | case 13 : |
---|
2600 | case 9 : |
---|
2601 | case 63 : |
---|
2602 | case 59 : |
---|
2603 | case 31 : |
---|
2604 | case 27 : |
---|
2605 | t1 = Aig_And(bm, Aig_Not(ll), Aig_Not(rl)); |
---|
2606 | t2 = Aig_Or(bm, Aig_Not(lr), t1); |
---|
2607 | return(t2); |
---|
2608 | case 39 : |
---|
2609 | case 35 : |
---|
2610 | case 7 : |
---|
2611 | case 3 : |
---|
2612 | case 53 : |
---|
2613 | case 49 : |
---|
2614 | case 21 : |
---|
2615 | case 17 : |
---|
2616 | return(l); |
---|
2617 | case 46 : |
---|
2618 | case 42 : |
---|
2619 | case 14 : |
---|
2620 | case 10 : |
---|
2621 | case 60 : |
---|
2622 | case 56 : |
---|
2623 | case 28 : |
---|
2624 | case 24 : |
---|
2625 | return(r); |
---|
2626 | case 38 : |
---|
2627 | case 34 : |
---|
2628 | case 6 : |
---|
2629 | case 2 : |
---|
2630 | case 52 : |
---|
2631 | case 48 : |
---|
2632 | case 20 : |
---|
2633 | case 16 : |
---|
2634 | return(Aig_Zero); |
---|
2635 | case 47 : |
---|
2636 | case 43 : |
---|
2637 | case 15 : |
---|
2638 | case 11 : |
---|
2639 | case 61 : |
---|
2640 | case 57 : |
---|
2641 | case 29 : |
---|
2642 | case 25 : |
---|
2643 | t1 = Aig_And2(bm, l, r); |
---|
2644 | return(t1); |
---|
2645 | } |
---|
2646 | } |
---|
2647 | else if(caseIndex == 4) { |
---|
2648 | switch(caseSig) { |
---|
2649 | case 22 : |
---|
2650 | case 20 : |
---|
2651 | case 6 : |
---|
2652 | case 4 : |
---|
2653 | case 50 : |
---|
2654 | case 48 : |
---|
2655 | case 34 : |
---|
2656 | case 32 : |
---|
2657 | case 2 : |
---|
2658 | case 16 : |
---|
2659 | case 52 : |
---|
2660 | case 1 : |
---|
2661 | case 8 : |
---|
2662 | case 19 : |
---|
2663 | case 26 : |
---|
2664 | case 37 : |
---|
2665 | case 44 : |
---|
2666 | case 38 : |
---|
2667 | case 55 : |
---|
2668 | case 62 : |
---|
2669 | return(Aig_Zero); |
---|
2670 | case 0 : |
---|
2671 | case 18 : |
---|
2672 | case 36 : |
---|
2673 | case 54 : |
---|
2674 | case 9 : |
---|
2675 | case 27 : |
---|
2676 | case 45 : |
---|
2677 | case 63 : |
---|
2678 | case 5 : |
---|
2679 | case 23 : |
---|
2680 | case 33 : |
---|
2681 | case 51 : |
---|
2682 | case 3 : |
---|
2683 | case 17 : |
---|
2684 | case 49 : |
---|
2685 | case 7 : |
---|
2686 | case 35 : |
---|
2687 | case 21 : |
---|
2688 | case 39 : |
---|
2689 | case 53 : |
---|
2690 | return(l); |
---|
2691 | case 40 : |
---|
2692 | case 58 : |
---|
2693 | case 12 : |
---|
2694 | case 30 : |
---|
2695 | case 24 : |
---|
2696 | case 10 : |
---|
2697 | case 14 : |
---|
2698 | case 56 : |
---|
2699 | case 28 : |
---|
2700 | case 42 : |
---|
2701 | case 60 : |
---|
2702 | case 46 : |
---|
2703 | return(r); |
---|
2704 | case 11 : |
---|
2705 | case 47 : |
---|
2706 | case 25 : |
---|
2707 | case 61 : |
---|
2708 | return(Aig_Not(ll)); |
---|
2709 | case 41 : |
---|
2710 | case 59 : |
---|
2711 | case 13 : |
---|
2712 | case 31 : |
---|
2713 | return(Aig_Not(lr)); |
---|
2714 | case 15 : |
---|
2715 | t1 = Aig_And(bm, ll, Aig_Not(lr)); |
---|
2716 | t2 = Aig_And(bm, Aig_Not(ll), lr); |
---|
2717 | return(Aig_Not(Aig_And2(bm, Aig_Not(t1), Aig_Not(t2)))); |
---|
2718 | case 57 : |
---|
2719 | t1 = Aig_And(bm, rl, Aig_Not(rr)); |
---|
2720 | t2 = Aig_And(bm, Aig_Not(rl), rr); |
---|
2721 | return(Aig_Not(Aig_And2(bm, Aig_Not(t1), Aig_Not(t2)))); |
---|
2722 | case 29 : |
---|
2723 | t1 = Aig_And(bm, ll, lr); |
---|
2724 | t2 = Aig_And(bm, Aig_Not(ll), Aig_Not(lr)); |
---|
2725 | return((Aig_And2(bm, Aig_Not(t1), Aig_Not(t2)))); |
---|
2726 | case 43 : |
---|
2727 | t1 = Aig_And(bm, rl, rr); |
---|
2728 | t2 = Aig_And(bm, Aig_Not(rl), Aig_Not(rr)); |
---|
2729 | return((Aig_And2(bm, Aig_Not(t1), Aig_Not(t2)))); |
---|
2730 | } |
---|
2731 | } |
---|
2732 | return(0); |
---|
2733 | } |
---|
2734 | |
---|
2735 | |
---|
2736 | /**Function******************************************************************** |
---|
2737 | |
---|
2738 | Synopsis [Structural hasing for and3] |
---|
2739 | |
---|
2740 | Description [Structural hasing for and3] |
---|
2741 | |
---|
2742 | SideEffects [] |
---|
2743 | |
---|
2744 | SeeAlso [] |
---|
2745 | |
---|
2746 | ******************************************************************************/ |
---|
2747 | AigEdge_t |
---|
2748 | Aig_And3( |
---|
2749 | Aig_Manager_t *bm, |
---|
2750 | AigEdge_t l, |
---|
2751 | AigEdge_t r) |
---|
2752 | { |
---|
2753 | int caseIndex, caseSig; |
---|
2754 | AigEdge_t rl, rr; |
---|
2755 | |
---|
2756 | rl = leftChild(r); |
---|
2757 | rr = rightChild(r); |
---|
2758 | |
---|
2759 | caseIndex = 0; /* (a)(b c) */ |
---|
2760 | if(AigCompareNode(l, rl)) { |
---|
2761 | caseIndex = 1; /* (a)(a b) */ |
---|
2762 | } |
---|
2763 | else if(AigCompareNode(l, rr)) { |
---|
2764 | caseIndex = 2; /* (a)(b a) */ |
---|
2765 | } |
---|
2766 | |
---|
2767 | caseSig = 0; |
---|
2768 | if(Aig_IsInverted(l)) caseSig += 8; |
---|
2769 | if(Aig_IsInverted(rl)) caseSig += 4; |
---|
2770 | if(Aig_IsInverted(rr)) caseSig += 2; |
---|
2771 | if(Aig_IsInverted(r)) caseSig += 1; |
---|
2772 | if(caseIndex == 0) { |
---|
2773 | return(Aig_And2(bm, l, r)); |
---|
2774 | } |
---|
2775 | else if(caseIndex == 1) { |
---|
2776 | switch(caseSig) { |
---|
2777 | case 2 : |
---|
2778 | case 0 : |
---|
2779 | case 14 : |
---|
2780 | case 12 : |
---|
2781 | return(r); |
---|
2782 | case 10 : |
---|
2783 | case 8 : |
---|
2784 | case 6 : |
---|
2785 | case 4 : |
---|
2786 | return(Aig_Zero); |
---|
2787 | case 3 : |
---|
2788 | case 1 : |
---|
2789 | case 15 : |
---|
2790 | case 13 : |
---|
2791 | return(Aig_And(bm, rl, Aig_Not(rr))); |
---|
2792 | case 11 : |
---|
2793 | case 9 : |
---|
2794 | case 7 : |
---|
2795 | case 5 : |
---|
2796 | return(l); |
---|
2797 | } |
---|
2798 | } |
---|
2799 | else if(caseIndex == 2) { |
---|
2800 | switch(caseSig) { |
---|
2801 | case 4 : |
---|
2802 | case 0 : |
---|
2803 | case 14 : |
---|
2804 | case 10 : |
---|
2805 | return(r); |
---|
2806 | case 12 : |
---|
2807 | case 8 : |
---|
2808 | case 6 : |
---|
2809 | case 2 : |
---|
2810 | return(Aig_Zero); |
---|
2811 | case 5 : |
---|
2812 | case 1 : |
---|
2813 | case 15 : |
---|
2814 | case 11 : |
---|
2815 | return(Aig_And(bm, Aig_Not(rl), rr)); |
---|
2816 | case 13 : |
---|
2817 | case 9 : |
---|
2818 | case 7 : |
---|
2819 | case 3 : |
---|
2820 | return(l); |
---|
2821 | } |
---|
2822 | } |
---|
2823 | return(0); |
---|
2824 | } |
---|
2825 | |
---|
2826 | /**Function******************************************************************** |
---|
2827 | |
---|
2828 | Synopsis [Set mask for transitive fanin nodes] |
---|
2829 | |
---|
2830 | Description [Set mask for transitive fanin nodes] |
---|
2831 | |
---|
2832 | SideEffects [] |
---|
2833 | |
---|
2834 | SeeAlso [] |
---|
2835 | |
---|
2836 | ******************************************************************************/ |
---|
2837 | void |
---|
2838 | Aig_SetMaskTransitiveFanin( |
---|
2839 | Aig_Manager_t *bm, |
---|
2840 | int v, |
---|
2841 | unsigned int mask) |
---|
2842 | { |
---|
2843 | if(v == 2) return; |
---|
2844 | |
---|
2845 | |
---|
2846 | if(flags(v) & mask) return; |
---|
2847 | |
---|
2848 | flags(v) |= mask; |
---|
2849 | |
---|
2850 | Aig_SetMaskTransitiveFanin(bm, leftChild(v), mask); |
---|
2851 | Aig_SetMaskTransitiveFanin(bm, rightChild(v), mask); |
---|
2852 | } |
---|
2853 | |
---|
2854 | /**Function******************************************************************** |
---|
2855 | |
---|
2856 | Synopsis [Reset mask for transitive fanin nodes] |
---|
2857 | |
---|
2858 | Description [Reset mask for transitive fanin nodes] |
---|
2859 | |
---|
2860 | SideEffects [] |
---|
2861 | |
---|
2862 | SeeAlso [] |
---|
2863 | |
---|
2864 | ******************************************************************************/ |
---|
2865 | void |
---|
2866 | Aig_ResetMaskTransitiveFanin( |
---|
2867 | Aig_Manager_t *bm, |
---|
2868 | int v, |
---|
2869 | unsigned int mask, |
---|
2870 | unsigned int resetMask) |
---|
2871 | { |
---|
2872 | if(v == 2) return; |
---|
2873 | |
---|
2874 | |
---|
2875 | if(!(flags(v) & mask)) return; |
---|
2876 | |
---|
2877 | flags(v) &= resetMask; |
---|
2878 | Aig_ResetMaskTransitiveFanin(bm, leftChild(v), mask, resetMask); |
---|
2879 | Aig_ResetMaskTransitiveFanin(bm, rightChild(v), mask, resetMask); |
---|
2880 | } |
---|
2881 | |
---|
2882 | |
---|
2883 | /**Function******************************************************************** |
---|
2884 | |
---|
2885 | Synopsis [Get value of aig node.] |
---|
2886 | |
---|
2887 | Description [The default falue is 2, which is same as UNKNOWN. This calue can be assigned from SAT solver.] |
---|
2888 | |
---|
2889 | SideEffects [] |
---|
2890 | |
---|
2891 | SeeAlso [] |
---|
2892 | |
---|
2893 | ******************************************************************************/ |
---|
2894 | |
---|
2895 | int |
---|
2896 | Aig_GetValueOfNode(Aig_Manager_t *bm, AigEdge_t v) |
---|
2897 | { |
---|
2898 | unsigned int value, lvalue, rvalue; |
---|
2899 | AigEdge_t left, right; |
---|
2900 | |
---|
2901 | |
---|
2902 | /* |
---|
2903 | if(!(flags(v) & CoiMask)) return(2); |
---|
2904 | **/ |
---|
2905 | if(v == 2) return(2); |
---|
2906 | |
---|
2907 | value = aig_value(v); |
---|
2908 | if(value == 3) return(2); |
---|
2909 | if(value == 2) { |
---|
2910 | left = Aig_GetCanonical(bm, leftChild(v)); |
---|
2911 | lvalue = Aig_GetValueOfNode(bm, left); |
---|
2912 | if(lvalue == 0) { |
---|
2913 | value = 0; |
---|
2914 | } |
---|
2915 | else { |
---|
2916 | right = Aig_GetCanonical(bm, rightChild(v)); |
---|
2917 | rvalue = Aig_GetValueOfNode(bm, right); |
---|
2918 | if(rvalue == 0) { |
---|
2919 | value = 0; |
---|
2920 | } |
---|
2921 | else if(rvalue == 1 && lvalue == 1) { |
---|
2922 | value = 1; |
---|
2923 | } |
---|
2924 | else { |
---|
2925 | value = 2; |
---|
2926 | } |
---|
2927 | } |
---|
2928 | } |
---|
2929 | |
---|
2930 | if(value == 2) { |
---|
2931 | aig_value(v) = 3; |
---|
2932 | return(value); |
---|
2933 | } |
---|
2934 | else { |
---|
2935 | aig_value(v) = value; |
---|
2936 | return(value ^ Aig_IsInverted(v)); |
---|
2937 | } |
---|
2938 | } |
---|
2939 | |
---|