/**CFile*********************************************************************** FileName [smtDl.c] PackageName [smt] Synopsis [Routines for smt function.] Author [Hyondeuk Kim] Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the University of Colorado nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.] ******************************************************************************/ #ifdef HAVE_LIBGMP #include "smt.h" int smt_idl_theory_solve(smtManager_t * sm) { smt_bellman_ford_main(sm); if (!(sm->flag & SAT_MASK)) { return 2; /* theory unsat */ } else if (sm->litArr->size < sm->avarArr->size) { smt_dl_theory_propagation_main(sm); /* theory sat */ } if (sm->litArr->size == sm->avarArr->size) { smt_check_solution(sm); } if (sm->tplits->size) { return 1; /* theory prop exists */ } return 0; /* sat without theory prop */ } int smt_rdl_theory_solve(smtManager_t * sm) { smt_bellman_ford_main(sm); if (!(sm->flag & SAT_MASK)) { return 2; /* theory unsat */ } else if (sm->litArr->size < sm->avarArr->size) { smt_dl_theory_propagation_main(sm); /* theory sat */ } if (sm->litArr->size == sm->avarArr->size) { smt_check_solution(sm); } if (sm->tplits->size) { return 1; /* theory prop exists */ } return 0; /* sat without theory prop */ } void smt_bellman_ford_main(smtManager_t * sm) { sm->stats->num_bf_call++; smt_generate_constraint_graph(sm); smt_bellman_ford_algorithm(sm); } void smt_dl_theory_propagation_main(smtManager_t * sm) { smt_dl_simple_theory_propagation(sm); if ((int) sm->stats->num_bf_call%300 == 0) { smt_init_dl_theory_propagation(sm->cG); if (sm->flag & IDL_MASK) smt_idl_theory_propagation(sm); else if (sm->flag & RDL_MASK) smt_rdl_theory_propagation(sm); } } void smt_generate_constraint_graph(smtManager_t * sm) { smtGraph_t * G; smtVertex_t * src, * dest; smtEdge_t * e; smtAvar_t * avar; smtNvar_t * lnvar, *rnvar; satArray_t *cur_edges; double weight; int cur_index, lit, id; int vindex, eindex; int i; if (sm->cG == 0) smt_init_constraint_graph(sm); G = sm->cG; eindex = G->esize; cur_edges = G->cur_edges; cur_edges->size = 0; /* generate edges */ cur_index = sm->cur_index; for(i = cur_index; i < sm->litArr->size; i++) { lit = sm->litArr->space[i]; id = (lit>0) ? lit : -lit; avar = (smtAvar_t *) sm->id2var->space[id]; /* filter theory propagated avar */ if (avar->flag & TPROP_MASK) continue; assert(avar->type != EQ_c); if (sm->avalues[id] == 1) { lnvar = (smtNvar_t *) avar->nvars->space[0]; rnvar = (smtNvar_t *) avar->nvars->space[1]; weight = avar->constant; } else { assert(sm->avalues[id] == 0); lnvar = (smtNvar_t *) avar->nvars->space[1]; rnvar = (smtNvar_t *) avar->nvars->space[0]; weight = -avar->constant - sm->epsilon; } vindex = lnvar->id - 1; dest = &(G->vHead[vindex]); vindex = rnvar->id - 1; src = &(G->vHead[vindex]); e = smt_find_edge(src, dest); if (e) { if (weight < e->weight) { e->avar->flag |= IMPLIED_MASK; e->implied = sat_array_insert(e->implied, (long) e->avar); e->avar = avar; e->weight = weight; cur_edges = sat_array_insert(cur_edges, (long) e); } else { avar->flag |= IMPLIED_MASK; e->implied = sat_array_insert(e->implied, (long) avar); } } else { e = smt_add_edge(G, src, dest, avar, eindex++); e->weight = weight; cur_edges = sat_array_insert(cur_edges, (long) e); G->esize++; } } return; } void smt_init_constraint_graph(smtManager_t * sm) { smtGraph_t * G = sm->cG; int vindex, esize; int i; sm->cG = (smtGraph_t *) malloc(sizeof(smtGraph_t)); G = sm->cG; memset(G, 0, sizeof(smtGraph_t)); /* init vertex structure */ G->vsize = sm->nvarArr->size; G->vHead = (smtVertex_t *) malloc(sizeof(smtVertex_t) * G->vsize); memset(G->vHead, 0, sizeof(smtVertex_t) * G->vsize); G->nvarArr = sm->nvarArr; for(i = 0; i < G->nvarArr->size; i++) { /*nvar = (smtNvar_t *) G->nvarArr->space[i];*/ vindex = i; smt_add_vertex(G, vindex); } /* flag */ G->flags = (int *) malloc(sizeof(int) * G->vsize); memset(G->flags, 0, sizeof(int) * (G->vsize)); /* epsilonless */ G->epsilonless = sm->epsilonless; /* path */ G->paths = (smtVertex_t **) malloc(sizeof(smtVertex_t *) * G->vsize); memset(G->paths, 0, sizeof(smtVertex_t *) * G->vsize); G->bpaths = (smtVertex_t **) malloc(sizeof(smtVertex_t *) * G->vsize); memset(G->bpaths, 0, sizeof(smtVertex_t *) * G->vsize); G->fpaths = (smtVertex_t **) malloc(sizeof(smtVertex_t *) * G->vsize); memset(G->fpaths, 0, sizeof(smtVertex_t *) * G->vsize); /* dist */ smt_init_dists_in_constraint_graph(sm); /* bvArr & fvArr */ G->bvArr = sat_array_alloc(G->vsize); G->fvArr = sat_array_alloc(G->vsize); /* queue */ G->queue = smt_create_queue(G->vsize); /* init edge structure */ G->esize = 0; esize = sm->avarArr->size * 2; G->eHead = (smtEdge_t *) malloc(sizeof(smtEdge_t) * esize); memset(G->eHead, 0, sizeof(smtEdge_t) * esize); G->avarArr = sm->avarArr; G->cur_edges = sat_array_alloc(esize); G->neg_edges = sat_array_alloc(30); G->imp_edges = sat_array_alloc(esize); return; } void smt_init_dists_in_constraint_graph(smtManager_t * sm) { smtGraph_t * G = sm->cG; if (sm->flag & IDL_MASK) { G->idists = (int *) malloc(sizeof(int) * G->vsize); memset(G->idists, 0, sizeof(int) * (G->vsize)); G->bidists = (int *) malloc(sizeof(int) * G->vsize); G->fidists = (int *) malloc(sizeof(int) * G->vsize); G->rdists = 0; G->brdists = 0; G->frdists = 0; } else if (sm->flag & RDL_MASK) { G->rdists = (double *) malloc(sizeof(double) * G->vsize); memset(G->rdists, 0, sizeof(double) * G->vsize); G->brdists = (double *) malloc(sizeof(double) * G->vsize); G->frdists = (double *) malloc(sizeof(double) * G->vsize); G->idists = 0; G->bidists = 0; G->fidists = 0; } else { exit(0); } smt_init_theory_prop_dists(sm); } void smt_init_theory_prop_dists(smtManager_t * sm) { smtGraph_t * G = sm->cG; int i; if (sm->flag & IDL_MASK) { for(i = 0; i < G->vsize; i++) { G->bidists[i] = INT_MAX; G->fidists[i] = INT_MAX; } } else if (sm->flag & RDL_MASK) { for(i = 0; i < G->vsize; i++) { G->brdists[i] = HUGE_VAL; G->frdists[i] = HUGE_VAL; } } return; } void smt_free_constraint_graph(smtGraph_t * G) { if (G->idists) free(G->idists); if (G->rdists) free(G->rdists); if (G->bidists) free(G->bidists); if (G->fidists) free(G->fidists); if (G->brdists) free(G->brdists); if (G->frdists) free(G->frdists); smt_free_queue(G->queue); smt_free_vertex(G); smt_free_edge_implied(G->imp_edges); free(G->eHead); free(G->flags); free(G->paths); free(G->bpaths); free(G->fpaths); free(G->bvArr); free(G->fvArr); free(G->cur_edges); free(G->neg_edges); free(G); } void smt_free_vertex(smtGraph_t * G) { smtVertex_t * v; int i; for(i = 0; i < G->vsize; i++) { v = &(G->vHead[i]); free(v->ins); free(v->outs); free(v->targets); } free(G->vHead); return; } void smt_free_edge_implied(satArray_t * edgeArr) { smtEdge_t * e; satArray_t * implied; int i; for(i = 0; i < edgeArr->size; i++) { e = (smtEdge_t *) edgeArr->space[i]; implied = e->implied; free(implied); } free(edgeArr); return; } void smt_bellman_ford_algorithm(smtManager_t * sm) { smtGraph_t * G = sm->cG; smtVertex_t * v, * src = 0, * dest = 0, *parent = 0; smtEdge_t * e; smtQueue_t * Q; double new_dist = 0, cur_dist = 0, weight = 0; int i, qsize, cycleFound = 0; smt_init_bellman_ford_algorithm(sm); Q = G->queue; qsize = Q->size; while( (v = (smtVertex_t *) smt_dequeue(Q)) ) { G->flags[v->index] &= RESET_FRINGE_MASK; if (G->flags[v->index] & VISITED_MASK) continue; for(i = 0; i < v->outs->size; i++) { e = (smtEdge_t *) v->outs->space[i]; src = e->src; dest = e->dest; weight = e->weight; if (sm->flag & IDL_MASK) { new_dist = (double) G->idists[src->index] + weight; cur_dist = (double) G->idists[dest->index]; } else if (sm->flag & RDL_MASK) { #if 1 /* for rounding error case e.g. cur_dist = -5.0000010000000001 new_dist = -5.000001000000001 */ weight = weight + sm->epsilonless; #endif new_dist = G->rdists[src->index] + weight; cur_dist = G->rdists[dest->index]; } else exit(0); if (new_dist < cur_dist) { /* check if src is in the subtree of dest. if this is the case, the negative cycle is detected */ parent = G->paths[v->index]; while(1) { if (parent == 0) break; else if(parent == dest) { G->paths[dest->index] = v; G->flags[dest->index] &= RESET_VISITED_MASK; cycleFound = 1; break; } parent = G->paths[parent->index]; } if (cycleFound) break; smt_delete_subtree(G, dest); /* relaxation */ if (sm->flag & IDL_MASK) G->idists[dest->index] = (int) new_dist; else if (sm->flag & RDL_MASK) { new_dist = G->rdists[src->index] + e->weight; G->rdists[dest->index] = new_dist; } G->paths[dest->index] = src; G->flags[dest->index] &= RESET_VISITED_MASK; if (!(G->flags[dest->index] & FRINGE_MASK)) { G->flags[dest->index] |= FRINGE_MASK; smt_enqueue(Q, (long) dest); } } } if(cycleFound) break; } if(cycleFound) { sm->stats->num_bf_conf++; sm->flag &= RESET_SAT_MASK; smt_collect_edges_in_neg_cycle(G, dest); smt_get_lemma_from_neg_cycle(sm, G->neg_edges); smt_retrieve_previous_distance(sm); } else if (qsize) { smt_update_value_with_current_distance(sm); } return; } void smt_init_bellman_ford_algorithm(smtManager_t * sm) { smtGraph_t * G = sm->cG; smtVertex_t * src, * dest; smtEdge_t * e; smtQueue_t * Q; double new_dist = 0, cur_dist = 0, weight = 0; int i; memset(G->flags, 0, sizeof(int) * G->vsize); memset(G->paths, 0, sizeof(smtVertex_t *) * G->vsize); Q = G->queue; smt_init_queue(Q); for(i = 0; i < G->cur_edges->size; i++) { e = (smtEdge_t *) G->cur_edges->space[i]; src = e->src; dest = e->dest; weight = e->weight; if (sm->flag & IDL_MASK) { new_dist = (double) G->idists[src->index] + weight; cur_dist = (double) G->idists[dest->index]; } else if (sm->flag & RDL_MASK) { new_dist = G->rdists[src->index] + weight; cur_dist = G->rdists[dest->index]; } else { exit(0); } if(new_dist < cur_dist) { if(!(G->flags[src->index] & FRINGE_MASK)) { G->flags[src->index] |= FRINGE_MASK; /* not in queue */ smt_enqueue(Q, (long) src); } } } return; } void smt_delete_subtree(smtGraph_t * G, smtVertex_t * v) { smtEdge_t * e; int i; for(i = 0; i < v->outs->size; i++) { e = (smtEdge_t *) v->outs->space[i]; if(G->paths[e->dest->index] == v) { G->paths[e->dest->index] = 0; G->flags[e->dest->index] |= VISITED_MASK; smt_delete_subtree(G, e->dest); } } return; } void smt_collect_edges_in_neg_cycle(smtGraph_t * G, smtVertex_t * v) { smtVertex_t * src, * dest; smtEdge_t * e; dest = v; G->neg_edges->size = 0; while(1) { if (G->flags[dest->index] & VISITED_MASK) break; src = G->paths[dest->index]; e = smt_find_edge(src, dest); G->neg_edges = sat_array_insert(G->neg_edges, (long) e); G->flags[dest->index] |= VISITED_MASK; dest = src; } return; } void smt_get_lemma_from_neg_cycle(smtManager_t * sm, satArray_t * neg_edges) { satManager_t *cm = sm->cm; smtAvar_t * avar; smtEdge_t * e; int i, id, sign, value, lit = 0; for(i = 0; i < neg_edges->size; i++) { e = (smtEdge_t *) neg_edges->space[i]; avar = e->avar; value = sm->avalues[avar->id]; if (value == 1) lit = avar->id; else if (value == 0) lit = -avar->id; else exit(0); sm->lemma = sat_array_insert(sm->lemma, lit); sign = (lit>0) ? 1 : 0; id = avar->id; cm->explanation = sat_array_insert(cm->explanation, ((id<<1) + sign)); } return; } void smt_retrieve_previous_distance(smtManager_t * sm) { if (sm->flag & IDL_MASK) memcpy(sm->cG->idists, sm->ivalues, sizeof(int) * (sm->cG->vsize)); else if (sm->flag & RDL_MASK) memcpy(sm->cG->rdists, sm->rvalues, sizeof(double) * (sm->cG->vsize)); return; } void smt_update_value_with_current_distance(smtManager_t * sm) { if (sm->flag & IDL_MASK) memcpy(sm->ivalues, sm->cG->idists, sizeof(int) * (sm->cG->vsize)); else if (sm->flag & RDL_MASK) memcpy(sm->rvalues, sm->cG->rdists, sizeof(double) * (sm->cG->vsize)); return; } void smt_init_dl_theory_propagation(smtGraph_t * G) { memset(G->flags, 0, sizeof(int) * G->vsize); } void smt_idl_theory_propagation(smtManager_t * sm) { satManager_t * cm = sm->cm; smtGraph_t * G = sm->cG; smtAvar_t * avar; smtNvar_t * lnvar, * rnvar; smtVertex_t * src, * dest; int num_bavar, num_favar; int i, j, id, lit, level, vindex; level = cm->decisionStackSeperator->size; #if 1 if (level == 0) j = 1; else j = 3; #else j = 1; #endif for(i = sm->cur_index; ilitArr->size; i+=j) { lit = sm->litArr->space[i]; id = (lit>0) ? lit : -lit; avar = (smtAvar_t *) sm->id2var->space[id]; if (avar->flag & IMPLIED_MASK || avar->flag & TPROP_MASK) { if (i + j <= 0) { i = sm->cur_index; j = 3; } continue; } assert(avar->type != EQ_c); if (sm->avalues[id] == 1) { lnvar = (smtNvar_t *) avar->nvars->space[0]; rnvar = (smtNvar_t *) avar->nvars->space[1]; } else { assert(sm->avalues[id] == 0); lnvar = (smtNvar_t *) avar->nvars->space[1]; rnvar = (smtNvar_t *) avar->nvars->space[0]; } vindex = lnvar->id - 1; dest = &(G->vHead[vindex]); vindex = rnvar->id - 1; src = &(G->vHead[vindex]); G->bvArr->size = 0; G->fvArr->size = 0; num_bavar = 0; num_favar = 0; smt_idl_gather_backward_reachable_vertex_with_dfs(G, src, &num_bavar); smt_idl_gather_forward_reachable_vertex_with_dfs(G, dest, &num_favar); if (num_bavar > num_favar) { smt_idl_theory_propagation_with_bv_arr(sm, avar); } else { smt_idl_theory_propagation_with_fv_arr(sm, avar); } smt_idl_init_reachable_vertex(G); } return; } void smt_rdl_theory_propagation(smtManager_t * sm) { satManager_t * cm = sm->cm; smtGraph_t * G = sm->cG; smtAvar_t * avar; smtNvar_t * lnvar, * rnvar; smtVertex_t * src, * dest; int num_bavar, num_favar; int i, j, id, lit, level, vindex; level = (int) cm->decisionStackSeperator->size; #if 1 if (level == 0) j = 1; else j = 3; #else j = 1; #endif for(i = sm->cur_index; ilitArr->size; i+=j) { lit = sm->litArr->space[i]; id = (lit>0) ? lit : -lit; avar = (smtAvar_t *) sm->id2var->space[id]; if (avar->flag & IMPLIED_MASK || avar->flag & TPROP_MASK) { if (i + j <= 0) { i = sm->cur_index; j = 3; } continue; } if (sm->avalues[id] == 1) { lnvar = (smtNvar_t *) avar->nvars->space[0]; rnvar = (smtNvar_t *) avar->nvars->space[1]; } else { assert(sm->avalues[id] == 0); lnvar = (smtNvar_t *) avar->nvars->space[1]; rnvar = (smtNvar_t *) avar->nvars->space[0]; } vindex = lnvar->id - 1; dest = &(G->vHead[vindex]); vindex = rnvar->id - 1; src = &(G->vHead[vindex]); G->bvArr->size = 0; G->fvArr->size = 0; num_bavar = 0; num_favar = 0; smt_rdl_gather_backward_reachable_vertex_with_dfs(G, src, &num_bavar); smt_rdl_gather_forward_reachable_vertex_with_dfs(G, dest, &num_favar); if (num_bavar > num_favar) { smt_rdl_theory_propagation_with_bv_arr(sm, avar); } else { smt_rdl_theory_propagation_with_fv_arr(sm, avar); } smt_rdl_init_reachable_vertex(G); } } void smt_idl_gather_backward_reachable_vertex_with_dfs( smtGraph_t * G, smtVertex_t * v, int * num_avar) { int depth; G->bidists[v->index] = 0; G->bpaths[v->index] = 0; depth = 0; smt_idl_traverse_backward_with_dfs(G, v, num_avar, depth); } void smt_idl_gather_forward_reachable_vertex_with_dfs( smtGraph_t * G, smtVertex_t * v, int * num_avar) { int depth; G->fidists[v->index] = 0; G->fpaths[v->index] = 0; depth = 0; smt_idl_traverse_forward_with_dfs(G, v, num_avar, depth); } void smt_rdl_gather_backward_reachable_vertex_with_dfs( smtGraph_t * G, smtVertex_t * v, int * num_avar) { int depth; G->brdists[v->index] = 0; G->bpaths[v->index] = 0; depth = 0; smt_rdl_traverse_backward_with_dfs(G, v, num_avar, depth); } void smt_rdl_gather_forward_reachable_vertex_with_dfs( smtGraph_t * G, smtVertex_t * v, int * num_avar) { int depth; G->frdists[v->index] = 0; G->fpaths[v->index] = 0; depth = 0; smt_rdl_traverse_forward_with_dfs(G, v, num_avar, depth); } void smt_idl_traverse_backward_with_dfs( smtGraph_t * G, smtVertex_t * v, int * num_avar, int depth) { smtNvar_t * nvar; smtVertex_t * w; smtEdge_t * e; double weight; int i; #if 0 depth++; #endif G->flags[v->index] |= BVISITED_MASK; if (!(G->flags[v->index] & BFRINGE_MASK)) { G->bvArr = sat_array_insert(G->bvArr, (long) v); nvar = (smtNvar_t *) G->nvarArr->space[v->index]; *num_avar += nvar->avarArr->size; G->flags[v->index] |= BFRINGE_MASK; } for(i = 0; i < v->ins->size; i++) { e = (smtEdge_t *) v->ins->space[i]; w = e->src; weight = e->weight; if (!(G->flags[w->index] & BVISITED_MASK) || G->bidists[w->index] > G->bidists[v->index] + (int) weight) { G->bidists[w->index] = G->bidists[v->index] + (int) weight; G->bpaths[w->index] = v; smt_idl_traverse_backward_with_dfs(G, w, num_avar, depth); } } return; } void smt_idl_traverse_forward_with_dfs( smtGraph_t * G, smtVertex_t * v, int * num_avar, int depth) { smtNvar_t * nvar; smtVertex_t * w; smtEdge_t * e; double weight; int i; #if 0 depth++; #endif G->flags[v->index] |= FVISITED_MASK; if (!(G->flags[v->index] & FFRINGE_MASK)) { G->fvArr = sat_array_insert(G->fvArr, (long) v); nvar = (smtNvar_t *) G->nvarArr->space[v->index]; *num_avar += nvar->avarArr->size; G->flags[v->index] |= FFRINGE_MASK; } for(i = 0; i < v->outs->size; i++) { e = (smtEdge_t *) v->outs->space[i]; w = e->dest; weight = e->weight; if (!(G->flags[w->index] & FVISITED_MASK) || G->fidists[w->index] > G->fidists[v->index] + (int) weight) { G->fidists[w->index] = G->fidists[v->index] + (int) weight; G->fpaths[w->index] = v; smt_idl_traverse_forward_with_dfs(G, w, num_avar, depth); } } return; } void smt_rdl_traverse_backward_with_dfs( smtGraph_t * G, smtVertex_t * v, int * num_avar, int depth) { smtNvar_t * nvar; smtVertex_t * w; smtEdge_t * e; double weight; int i; #if 0 depth++; #endif G->flags[v->index] |= BVISITED_MASK; if (!(G->flags[v->index] & BFRINGE_MASK)) { G->bvArr = sat_array_insert(G->bvArr, (long) v); nvar = (smtNvar_t *) G->nvarArr->space[v->index]; *num_avar += nvar->avarArr->size; G->flags[v->index] |= BFRINGE_MASK; } for(i = 0; i < v->ins->size; i++) { e = (smtEdge_t *) v->ins->space[i]; w = e->src; weight = e->weight + G->epsilonless; if (!(G->flags[w->index] & BVISITED_MASK) || G->brdists[w->index] > G->brdists[v->index] + weight) { G->brdists[w->index] = G->brdists[v->index] + e->weight; G->bpaths[w->index] = v; smt_rdl_traverse_backward_with_dfs(G, w, num_avar, depth); } } return; } void smt_rdl_traverse_forward_with_dfs( smtGraph_t * G, smtVertex_t * v, int * num_avar, int depth) { smtNvar_t * nvar; smtVertex_t * w; smtEdge_t * e; double weight; int i; #if 0 depth++; #endif G->flags[v->index] |= FVISITED_MASK; if (!(G->flags[v->index] & FFRINGE_MASK)) { G->fvArr = sat_array_insert(G->fvArr, (long) v); nvar = (smtNvar_t *) G->nvarArr->space[v->index]; *num_avar += nvar->avarArr->size; G->flags[v->index] |= FFRINGE_MASK; } for(i = 0; i < v->outs->size; i++) { e = (smtEdge_t *) v->outs->space[i]; w = e->dest; weight = e->weight + G->epsilonless; if (!(G->flags[w->index] & FVISITED_MASK) || G->frdists[w->index] > G->frdists[v->index] + weight) { G->frdists[w->index] = G->frdists[v->index] + e->weight; G->fpaths[w->index] = v; smt_rdl_traverse_forward_with_dfs(G, w, num_avar, depth); } } return; } void smt_idl_gather_backward_reachable_vertex_with_bfs( smtGraph_t * G, smtVertex_t * src, int * num_avar) { smtVertex_t * v, * w; smtEdge_t * e; smtNvar_t * nvar; smtQueue_t * Q = G->queue; double weight; int i; G->bidists[src->index] = 0; G->bpaths[src->index] = 0; smt_init_queue(Q); smt_enqueue(Q, (long) src); while( (v = (smtVertex_t *) smt_dequeue(Q)) ) { G->flags[v->index] &= RESET_BFRINGE_MASK; if (!(G->flags[v->index] & BARR_MASK)) { G->bvArr = sat_array_insert(G->bvArr, (long) v); nvar = (smtNvar_t *) G->nvarArr->space[v->index]; *num_avar += nvar->avarArr->size; G->flags[v->index] |= BARR_MASK; } for(i = 0; i < v->ins->size; i++) { e = (smtEdge_t *) v->ins->space[i]; w = e->src; weight = e->weight; if (G->bidists[w->index] > G->bidists[v->index] + (int) weight) { G->bidists[w->index] = G->bidists[v->index] + (int) weight; G->bpaths[w->index] = v; if (!(G->flags[w->index] & BFRINGE_MASK)) { smt_enqueue(Q, (long) w); G->flags[w->index] |= BFRINGE_MASK; } } } } return; } void smt_rdl_gather_backward_reachable_vertex_with_bfs( smtGraph_t * G, smtVertex_t * src, int * num_avar) { smtVertex_t * v, * w; smtEdge_t * e; smtNvar_t * nvar; smtQueue_t * Q = G->queue; double weight; int i; G->brdists[src->index] = 0; G->bpaths[src->index] = 0; smt_init_queue(Q); smt_enqueue(Q, (long) src); while( (v = (smtVertex_t *) smt_dequeue(Q)) ) { G->flags[v->index] &= RESET_BFRINGE_MASK; if (!(G->flags[v->index] & BARR_MASK)) { G->bvArr = sat_array_insert(G->bvArr, (long) v); nvar = (smtNvar_t *) G->nvarArr->space[v->index]; *num_avar += nvar->avarArr->size; G->flags[v->index] |= BARR_MASK; } for(i = 0; i < v->ins->size; i++) { e = (smtEdge_t *) v->ins->space[i]; w = e->src; weight = e->weight + G->epsilonless; if (G->brdists[w->index] > G->brdists[v->index] + weight) { G->brdists[w->index] = G->brdists[v->index] + e->weight; G->bpaths[w->index] = v; if (!(G->flags[w->index] & BFRINGE_MASK)) { smt_enqueue(Q, (long) w); G->flags[w->index] |= BFRINGE_MASK; } } } } return; } void smt_idl_gather_forward_reachable_vertex_with_bfs( smtGraph_t * G, smtVertex_t * dest, int * num_avar) { smtVertex_t * v, * w; smtEdge_t * e; smtNvar_t * nvar; smtQueue_t * Q = G->queue; double weight; int i; G->fidists[dest->index] = 0; G->fpaths[dest->index] = 0; smt_init_queue(Q); smt_enqueue(Q, (long) dest); while( (v = (smtVertex_t *) smt_dequeue(Q)) ) { G->flags[v->index] &= RESET_FFRINGE_MASK; if (!(G->flags[v->index] & FARR_MASK)) { G->fvArr = sat_array_insert(G->fvArr, (long) v); nvar = (smtNvar_t *) G->nvarArr->space[v->index]; *num_avar += nvar->avarArr->size; G->flags[v->index] |= FARR_MASK; } for(i = 0; i < v->outs->size; i++) { e = (smtEdge_t *) v->outs->space[i]; w = e->dest; weight = e->weight; if (G->fidists[w->index] > G->fidists[v->index] + (int) weight) { G->fidists[w->index] = G->fidists[v->index] + (int) weight; G->fpaths[w->index] = v; if (!(G->flags[w->index] & FFRINGE_MASK)) { smt_enqueue(Q, (long) w); G->flags[w->index] |= FFRINGE_MASK; } } } } return; } void smt_rdl_gather_forward_reachable_vertex_with_bfs( smtGraph_t * G, smtVertex_t * dest, int * num_avar) { smtVertex_t * v, * w; smtEdge_t * e; smtNvar_t * nvar; smtQueue_t * Q = G->queue; double weight; int i; G->frdists[dest->index] = 0; G->fpaths[dest->index] = 0; smt_init_queue(Q); smt_enqueue(Q, (long) dest); while( (v = (smtVertex_t *) smt_dequeue(Q)) ) { G->flags[v->index] &= RESET_FFRINGE_MASK; if (!(G->flags[v->index] & FARR_MASK)) { G->fvArr = sat_array_insert(G->fvArr, (long) v); nvar = (smtNvar_t *) G->nvarArr->space[v->index]; *num_avar += nvar->avarArr->size; G->flags[v->index] |= FARR_MASK; } for(i = 0; i < v->outs->size; i++) { e = (smtEdge_t *) v->outs->space[i]; w = e->dest; weight = e->weight + G->epsilonless; if (G->frdists[w->index] > G->frdists[v->index] + weight) { G->frdists[w->index] = G->frdists[v->index] + e->weight; G->fpaths[w->index] = v; if (!(G->flags[w->index] & FFRINGE_MASK)) { smt_enqueue(Q, (long) w); G->flags[w->index] |= FFRINGE_MASK; } } } } return; } void smt_idl_theory_propagation_with_bv_arr(smtManager_t * sm, smtAvar_t * avar) { smtGraph_t * G = sm->cG; smtAvar_t * tmp_avar; smtNvar_t * nvar;/*, * rnvar, * lnvar;*/ smtNvar_t * tmp_rnvar, * tmp_lnvar; smtVertex_t * v; satArray_t * bvArr; double weight, tmp_weight; int dist, id; int i, j; id = avar->id; if (sm->avalues[id] == 1) { /*lnvar = (smtNvar_t *) avar->nvars->space[0]; rnvar = (smtNvar_t *) avar->nvars->space[1];*/ weight = avar->constant; } else { assert(sm->avalues[id] == 0); /*lnvar = (smtNvar_t *) avar->nvars->space[1]; rnvar = (smtNvar_t *) avar->nvars->space[0];*/ weight = -avar->constant - sm->epsilon; } bvArr = G->bvArr; for(i = 0; i < bvArr->size; i++) { v = (smtVertex_t *) bvArr->space[i]; nvar = (smtNvar_t *) G->nvarArr->space[v->index]; for(j = 0; j < nvar->avarArr->size; j++) { tmp_avar = (smtAvar_t *) nvar->avarArr->space[j]; sm->stats->num_tprop_call++; if (sm->avalues[tmp_avar->id] != 2) continue; tmp_lnvar = (smtNvar_t *) tmp_avar->nvars->space[0]; tmp_rnvar = (smtNvar_t *) tmp_avar->nvars->space[1]; tmp_weight = tmp_avar->constant; if (nvar == tmp_rnvar && G->fidists[tmp_lnvar->id-1] != INT_MAX) { dist = G->fidists[tmp_lnvar->id-1] + G->bidists[tmp_rnvar->id-1] + (int) weight; if (dist <= tmp_weight) { sm->stats->num_tprop++; /* x - y <= dist ---> x - y <= weight (dist <= weight) */ sm->avalues[tmp_avar->id] = 1; smt_get_theory_prop_reason(sm, avar, tmp_avar, tmp_rnvar, tmp_lnvar); } } else if (nvar == tmp_lnvar && G->fidists[tmp_rnvar->id-1] != INT_MAX) { dist = G->bidists[tmp_lnvar->id-1] + G->fidists[tmp_rnvar->id-1] + (int) weight; if (-dist > tmp_weight) { sm->stats->num_tprop++; /* x - y <= dist ---> y - x <= weight (dist + weight < 0) */ sm->avalues[tmp_avar->id] = 0; smt_get_theory_prop_reason(sm, avar, tmp_avar, tmp_lnvar, tmp_rnvar); } } } } return; } void smt_idl_theory_propagation_with_fv_arr(smtManager_t * sm, smtAvar_t * avar) { smtGraph_t * G = sm->cG; smtAvar_t * tmp_avar; smtNvar_t * nvar; smtNvar_t * tmp_rnvar, * tmp_lnvar; smtVertex_t * v; satArray_t * fvArr; double weight, tmp_weight; int dist, id; int i, j; id = avar->id; if (sm->avalues[id] == 1) { /*lnvar = (smtNvar_t *) avar->nvars->space[0]; rnvar = (smtNvar_t *) avar->nvars->space[1];*/ weight = avar->constant; } else { assert(sm->avalues[id] == 0); /*lnvar = (smtNvar_t *) avar->nvars->space[1]; rnvar = (smtNvar_t *) avar->nvars->space[0];*/ weight = -avar->constant - sm->epsilon; } fvArr = G->fvArr; for(i = 0; i < fvArr->size; i++) { v = (smtVertex_t *) fvArr->space[i]; nvar = (smtNvar_t *) G->nvarArr->space[v->index]; for(j = 0; j < nvar->avarArr->size; j++) { tmp_avar = (smtAvar_t *) nvar->avarArr->space[j]; sm->stats->num_tprop_call++; if (sm->avalues[tmp_avar->id] != 2) continue; tmp_lnvar = (smtNvar_t *) tmp_avar->nvars->space[0]; tmp_rnvar = (smtNvar_t *) tmp_avar->nvars->space[1]; tmp_weight = tmp_avar->constant; if (nvar == tmp_lnvar && G->bidists[tmp_rnvar->id-1] != INT_MAX) { dist = G->fidists[tmp_lnvar->id-1] + G->bidists[tmp_rnvar->id-1] + (int) weight; if (dist <= (int) tmp_weight) { sm->stats->num_tprop++; /* x - y <= dist ---> x - y <= weight (dist <= weight) */ sm->avalues[tmp_avar->id] = 1; smt_get_theory_prop_reason(sm, avar, tmp_avar, tmp_rnvar, tmp_lnvar); } } else if (nvar == tmp_rnvar && G->bidists[tmp_lnvar->id-1] != INT_MAX) { dist = G->bidists[tmp_lnvar->id-1] + G->fidists[tmp_rnvar->id-1] + (int) weight; if (-dist > (int) tmp_weight) { sm->stats->num_tprop++; /* x - y <= dist ---> y - x <= weight (dist + weight < 0) */ sm->avalues[tmp_avar->id] = 0; smt_get_theory_prop_reason(sm, avar, tmp_avar, tmp_lnvar, tmp_rnvar); } } } } return; } void smt_rdl_theory_propagation_with_bv_arr(smtManager_t * sm, smtAvar_t * avar) { smtGraph_t * G = sm->cG; smtAvar_t * tmp_avar; smtNvar_t * nvar; /*, * rnvar, * lnvar;*/ smtNvar_t * tmp_rnvar, * tmp_lnvar; smtVertex_t * v; satArray_t * bvArr; double weight, tmp_weight, dist; int id; int i, j; id = avar->id; if (sm->avalues[id] == 1) { /*lnvar = (smtNvar_t *) avar->nvars->space[0]; rnvar = (smtNvar_t *) avar->nvars->space[1];*/ weight = avar->constant; } else { assert(sm->avalues[id] == 0); /*lnvar = (smtNvar_t *) avar->nvars->space[1]; rnvar = (smtNvar_t *) avar->nvars->space[0];*/ weight = -avar->constant - sm->epsilon; } bvArr = G->bvArr; for(i = 0; i < bvArr->size; i++) { v = (smtVertex_t *) bvArr->space[i]; nvar = (smtNvar_t *) G->nvarArr->space[v->index]; for(j = 0; j < nvar->avarArr->size; j++) { tmp_avar = (smtAvar_t *) nvar->avarArr->space[j]; sm->stats->num_tprop_call++; if (sm->avalues[tmp_avar->id] != 2) continue; tmp_lnvar = (smtNvar_t *) tmp_avar->nvars->space[0]; tmp_rnvar = (smtNvar_t *) tmp_avar->nvars->space[1]; tmp_weight = tmp_avar->constant; if (nvar == tmp_rnvar && G->frdists[tmp_lnvar->id-1] < HUGE_VAL) { dist = G->frdists[tmp_lnvar->id-1] + G->brdists[tmp_rnvar->id-1] + weight; if (dist <= tmp_weight) { sm->stats->num_tprop++; /* x - y <= dist ---> x - y <= weight (dist <= weight) */ sm->avalues[tmp_avar->id] = 1; smt_get_theory_prop_reason(sm, avar, tmp_avar, tmp_rnvar, tmp_lnvar); } } else if (nvar == tmp_lnvar && G->frdists[tmp_rnvar->id-1] < HUGE_VAL) { dist = G->brdists[tmp_lnvar->id-1] + G->frdists[tmp_rnvar->id-1] + weight; if (-dist > tmp_weight) { sm->stats->num_tprop++; /* x - y <= dist ---> y - x <= weight (dist + weight < 0) */ sm->avalues[tmp_avar->id] = 0; smt_get_theory_prop_reason(sm, avar, tmp_avar, tmp_lnvar, tmp_rnvar); } } } } return; } void smt_rdl_theory_propagation_with_fv_arr(smtManager_t * sm, smtAvar_t * avar) { smtGraph_t * G = sm->cG; smtAvar_t * tmp_avar; smtNvar_t * nvar; /*, * rnvar, * lnvar;*/ smtNvar_t * tmp_rnvar, * tmp_lnvar; smtVertex_t * v; satArray_t * fvArr; double weight, tmp_weight, dist; int id; int i, j; id = avar->id; if (sm->avalues[id] == 1) { /*lnvar = (smtNvar_t *) avar->nvars->space[0]; rnvar = (smtNvar_t *) avar->nvars->space[1];*/ weight = avar->constant; } else { assert(sm->avalues[id] == 0); /*lnvar = (smtNvar_t *) avar->nvars->space[1]; rnvar = (smtNvar_t *) avar->nvars->space[0];*/ weight = -avar->constant - sm->epsilon; } fvArr = G->fvArr; for(i = 0; i < fvArr->size; i++) { v = (smtVertex_t *) fvArr->space[i]; nvar = (smtNvar_t *) G->nvarArr->space[v->index]; for(j = 0; j < nvar->avarArr->size; j++) { tmp_avar = (smtAvar_t *) nvar->avarArr->space[j]; sm->stats->num_tprop_call++; if (sm->avalues[tmp_avar->id] != 2) continue; tmp_lnvar = (smtNvar_t *) tmp_avar->nvars->space[0]; tmp_rnvar = (smtNvar_t *) tmp_avar->nvars->space[1]; tmp_weight = tmp_avar->constant; if (nvar == tmp_lnvar && G->brdists[tmp_rnvar->id-1] < HUGE_VAL) { dist = G->frdists[tmp_lnvar->id-1] + G->brdists[tmp_rnvar->id-1] + weight; if (dist <= tmp_weight) { sm->stats->num_tprop++; /* x - y <= dist ---> x - y <= weight (dist <= weight) */ sm->avalues[tmp_avar->id] = 1; smt_get_theory_prop_reason(sm, avar, tmp_avar, tmp_rnvar, tmp_lnvar); } } else if (nvar == tmp_rnvar && G->brdists[tmp_lnvar->id-1] < HUGE_VAL) { dist = G->brdists[tmp_lnvar->id-1] + G->frdists[tmp_rnvar->id-1] + weight; if (-dist > tmp_weight) { sm->stats->num_tprop++; /* x - y <= dist ---> y - x <= weight (dist + weight < 0) */ sm->avalues[tmp_avar->id] = 0; smt_get_theory_prop_reason(sm, avar, tmp_avar, tmp_lnvar, tmp_rnvar); } } } } return; } void smt_dl_simple_theory_propagation(smtManager_t * sm) { smtAvar_t * avar, * sis_avar; smtNvar_t * lnvar, * sis_lnvar; double weight, sis_weight; int lit, id; int i, j; #if 0 level = sm->cm->decisionStackSeperator->size; skip_tp_cond = level!=0 && (smt_gv->color & RDL_MASK && sm->bvarArr->size>100 && sm->avarArr->size > 50*sm->bvarArr->size); if (skip_tp_cond) return; #endif for(i = sm->cur_index; i < sm->litArr->size; i++) { lit = sm->litArr->space[i]; id = (lit > 0)? lit : -lit; avar = (smtAvar_t *) sm->id2var->space[id]; sm->stats->num_simp_tprop_call++; if (avar->flag & IMPLIED_MASK || avar->flag & TPROP_MASK) continue; if (sm->avalues[id] == 1) { lnvar = (smtNvar_t *) avar->nvars->space[0]; weight = avar->constant; } else { assert(sm->avalues[id] == 0); lnvar = (smtNvar_t *) avar->nvars->space[1]; weight = -avar->constant - sm->epsilon; } for(j = 0; j < avar->sis_avars->num; j++) { /* check sister avar */ sis_avar = array_fetch(smtAvar_t *, avar->sis_avars, j); if (sm->avalues[sis_avar->id] != 2) continue; sis_lnvar = (smtNvar_t *) sis_avar->nvars->space[0]; sis_weight = sis_avar->constant; if (sis_lnvar == lnvar) { if (sis_weight >= weight) { sm->stats->num_simp_tprop++; sm->avalues[sis_avar->id] = 1; smt_get_theory_prop_reason(sm, avar, sis_avar, 0, 0); } } else { if (sis_weight < -weight) { sm->stats->num_simp_tprop++; sm->avalues[sis_avar->id] = 0; smt_get_theory_prop_reason(sm, avar, sis_avar, 0, 0); } } } } return; } void smt_get_theory_prop_reason( smtManager_t * sm, smtAvar_t * implying, smtAvar_t * implied, smtNvar_t * bnvar, smtNvar_t * fnvar) { satManager_t * cm = sm->cm; smtGraph_t * G = sm->cG; smtVertex_t * bv, * fv, * path; smtEdge_t * e; smtAvar_t * avar; int sign, id; /* * ((implying /\ avars_in_bpath /\ avars_in_fpath)' \/ implied) */ sm->lemma->size = 0; /* implied avar */ id = implied->id; sign = (sm->avalues[id] == 1) ? 0 : 1; sm->lemma = sat_array_insert(sm->lemma, (id<<1)+sign); if (bnvar) { /* reasons from backward shortest path */ bv = &(G->vHead[bnvar->id-1]); path = G->bpaths[bv->index]; while(path) { e = smt_find_edge(bv, path); avar = e->avar; id = avar->id; sign = (sm->avalues[id] == 1) ? 1 : 0; /* negated */ sm->lemma = sat_array_insert(sm->lemma, (id<<1)+sign); bv = path; path = G->bpaths[bv->index]; } } if (fnvar) { /* reasons from forward shortest path */ fv = &(G->vHead[fnvar->id-1]); path = G->fpaths[fv->index]; while(path) { e = smt_find_edge(path, fv); avar = e->avar; id = avar->id; sign = (sm->avalues[id] == 1) ? 1 : 0; /* negated */ sm->lemma = sat_array_insert(sm->lemma, (id<<1)+sign); fv = path; path = G->fpaths[fv->index]; } } /* reason from currently assigned implying */ id = implying->id; sign = (sm->avalues[id] == 1) ? 1 : 0; /* negated */ sm->lemma = sat_array_insert(sm->lemma, (id<<1)+sign); assert(sm->lemma->size); smt_add_theory_clause(cm, implied, sm->lemma); return; } void smt_idl_init_reachable_vertex(smtGraph_t * G) { smtVertex_t * v; int i; for(i = 0; i < G->bvArr->size; i++) { v = (smtVertex_t *) G->bvArr->space[i]; G->flags[v->index] = 0; G->bpaths[v->index] = 0; G->fpaths[v->index] = 0; G->bidists[v->index] = INT_MAX; G->fidists[v->index] = INT_MAX; } for(i = 0; i < G->fvArr->size; i++) { v = (smtVertex_t *) G->fvArr->space[i]; G->flags[v->index] = 0; G->bpaths[v->index] = 0; G->fpaths[v->index] = 0; G->bidists[v->index] = INT_MAX; G->fidists[v->index] = INT_MAX; } } void smt_rdl_init_reachable_vertex(smtGraph_t * G) { smtVertex_t * v; int i; for(i = 0; i < G->bvArr->size; i++) { v = (smtVertex_t *) G->bvArr->space[i]; G->flags[v->index] = 0; G->bpaths[v->index] = 0; G->fpaths[v->index] = 0; G->brdists[v->index] = HUGE_VAL; G->frdists[v->index] = HUGE_VAL; } for(i = 0; i < G->fvArr->size; i++) { v = (smtVertex_t *) G->fvArr->space[i]; G->flags[v->index] = 0; G->bpaths[v->index] = 0; G->fpaths[v->index] = 0; G->brdists[v->index] = HUGE_VAL; G->frdists[v->index] = HUGE_VAL; } } #endif