/**CFile*********************************************************************** FileName [smtMp.c] PackageName [smt] Synopsis [Routines for smt mp function.] Author [Hyondeuk Kim] Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the University of Colorado nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.] ******************************************************************************/ #ifdef HAVE_LIBGMP #include "smt.h" smtMp_t * smt_mp_init(smtManager_t * sm) { smtMp_t * mp = (smtMp_t *) malloc(sizeof(smtMp_t)); sm->mp = mp; smt_mp_init_pool(mp); mpq_init(mp->zero); mpq_init(mp->one); mpq_init(mp->m_one); mpq_set_d(mp->zero, 0); mpq_set_d(mp->one, 1); mpq_set_d(mp->m_one, -1); smt_mp_init_atom_constants(sm); smt_mp_init_nvar_values(sm); return mp; } void smt_mp_init_pool(smtMp_t * mp) { mpq_t * pool; int i; mp->plimit = 10; pool = (mpq_t *) malloc(sizeof(mpq_t) * mp->plimit); mp->pool = pool; for(i = 0; i < mp->plimit; i++) { mpq_init(pool[i]); } } void smt_mp_init_nvar_values(smtManager_t * sm) { smtMp_t * mp = sm->mp; int i, size; mp->num_nvar = sm->nvarArr->size; size = mp->num_nvar + 1; mp->values = (mpq_t *) malloc(sizeof(mpq_t) * size); mp->pvalues = (mpq_t *) malloc(sizeof(mpq_t) * size); for(i = 0; i < size; i++) { mpq_init(mp->values[i]); mpq_init(mp->pvalues[i]); mpq_set_d(mp->values[i], 0); mpq_set_d(mp->pvalues[i], 0); } } void smt_mp_init_atom_constants(smtManager_t * sm) { smtMp_t * mp = sm->mp; smtAvar_t * avar; int i, size, id; mp->num_avar = sm->avarArr->size; size = mp->num_avar + 1; mp->constants = (mpq_t *) malloc(sizeof(mpq_t) * size); memset(mp->constants, 0, sizeof(mpq_t) * size); mp->weights = (mpq_t *) malloc(sizeof(mpq_t) * size); memset(mp->weights, 0, sizeof(mpq_t) * size); for(i = 0; i < sm->avarArr->size; i++) { avar = (smtAvar_t *) sm->avarArr->space[i]; id = avar->id; mpq_init(mp->constants[id]); mpq_init(mp->weights[id]); mpq_set_d(mp->weights[id], 0); } return; } void smt_mp_free(smtMp_t * mp) { smt_mp_free_pool(mp); mpq_clear(mp->zero); mpq_clear(mp->one); mpq_clear(mp->m_one); smt_mp_free_atom_constants(mp); smt_mp_free_nvar_values(mp); free(mp); } void smt_mp_free_pool(smtMp_t * mp) { mpq_t * pool = mp->pool; int i; for(i = 0; i < mp->plimit; i++) { mpq_clear(pool[i]); } free(pool); } void smt_mp_free_atom_constants(smtMp_t * mp) { int i, id; for(i = 0; i < mp->num_avar; i++) { id = i + 1; mpq_clear(mp->constants[id]); mpq_clear(mp->weights[id]); } free(mp->constants); free(mp->weights); return; } void smt_mp_free_nvar_values(smtMp_t * mp) { int i, size; size = mp->num_nvar + 1; for(i = 0; i < size; i++) { mpq_clear(mp->values[i]); mpq_clear(mp->pvalues[i]); } free(mp->values); free(mp->pvalues); } void smt_mp_assign_atom_constants(smtManager_t * sm) { smtMp_t * mp = sm->mp; smtFml_t * avfml; smtAvar_t * avar; int i; for(i = 0; i < sm->avfmlArr->size; i++) { avfml = (smtFml_t *) sm->avfmlArr->space[i]; avar = avfml->avar; if (!avar) continue; smt_mp_assign_atom_constant(mp, avfml); } return; } void smt_mp_assign_atom_constant(smtMp_t * mp, smtFml_t * avfml) { mpq_t * pool = mp->pool; mpq_t * mp_constant = 0, * coeff = 0; smtAvar_t * avar = avfml->avar; smtFml_t * lfml, * rfml; int nminus; /* mp vars */ mp_constant = &pool[0]; coeff = &pool[1]; lfml = (smtFml_t *) avfml->subfmlArr->space[0]; rfml = (smtFml_t *) avfml->subfmlArr->space[1]; mpq_set_d(*mp_constant, 0); mpq_set_d(*coeff, 1); nminus = 0; smt_mp_get_atom_constant(mp, lfml, mp_constant, coeff, nminus); mpq_set_d(*coeff, 1); nminus = 1; smt_mp_get_atom_constant(mp, rfml, mp_constant, coeff, nminus); /* assign atom constant */ mpq_set(mp->constants[avar->id], *mp_constant); return; } void smt_mp_get_atom_constant( smtMp_t * mp, smtFml_t * fml, mpq_t * mp_constant, mpq_t * coeff, int nminus) { mpq_t * pool = mp->pool; mpq_t * tmp_a = 0, * tmp_b = 0; smtFml_t * lfml, * rfml, * tfml; char * str_a, * str_b; int i; /* mp vars */ tmp_a = &pool[2]; tmp_b = &pool[3]; if (fml->type == NUM_c) { mpq_set_str(*tmp_a, (char *) fml->subfmlArr->space[0], 10); if (nminus%2 == 1) { mpq_mul(*tmp_a, *coeff, *tmp_a); } else { mpq_neg(*tmp_a, *tmp_a); mpq_mul(*tmp_a, *coeff, *tmp_a); } mpq_add(*mp_constant, *mp_constant, *tmp_a); } else if (fml->type == MINUS_c) { nminus++; tfml = (smtFml_t *) fml->subfmlArr->space[0]; smt_mp_get_atom_constant(mp, tfml, mp_constant, coeff, nminus); } else if (fml->type == SUB_c) { lfml = (smtFml_t *) fml->subfmlArr->space[0]; rfml = (smtFml_t *) fml->subfmlArr->space[1]; smt_mp_get_atom_constant(mp, lfml, mp_constant, coeff, nminus); smt_mp_get_atom_constant(mp, rfml, mp_constant, coeff, nminus + 1); } else if (fml->type == ADD_c) { for(i = 0; i < fml->subfmlArr->size; i++) { tfml = (smtFml_t *) fml->subfmlArr->space[i]; smt_mp_get_atom_constant(mp, tfml, mp_constant, coeff, nminus); } } else if (fml->type == MUL_c) { lfml = (smtFml_t *) fml->subfmlArr->space[0]; rfml = (smtFml_t *) fml->subfmlArr->space[1]; if (lfml->type == NUM_c && rfml->type == NUM_c) { mpq_set_str(*tmp_a, (char *) lfml->subfmlArr->space[0], 10); mpq_set_str(*tmp_b, (char *) rfml->subfmlArr->space[0], 10); mpq_mul(*tmp_b, *tmp_a, *tmp_b); if(nminus%2 == 1) { mpq_mul(*tmp_b, *tmp_b, *coeff); } else { mpq_neg(*tmp_a, *coeff); mpq_mul(*tmp_b, *tmp_a, *tmp_b); } mpq_add(*mp_constant, *mp_constant, *tmp_b); } else { fprintf(stdout, "ERROR: WRONG LINEAR ARITHMETIC ATOM TYPE\n"); str_a = smt_convert_fml_to_string(lfml); str_b = smt_convert_fml_to_string(rfml); fprintf(stdout, "fml = %s * %s\n", str_a, str_b); fprintf(stdout, "unknown\n"); exit(0); } } else if (fml->type == DIV_c) { lfml = (smtFml_t *) fml->subfmlArr->space[0]; rfml = (smtFml_t *) fml->subfmlArr->space[1]; if (lfml->type == NUM_c && rfml->type == NUM_c) { mpq_set_str(*tmp_a, (char *) lfml->subfmlArr->space[0], 10); mpq_set_str(*tmp_b, (char *) rfml->subfmlArr->space[0], 10); mpq_div(*tmp_b, *tmp_a, *tmp_b); if(nminus%2 == 1) { mpq_mul(*tmp_b, *tmp_b, *coeff); } else { mpq_neg(*tmp_a, *coeff); mpq_mul(*tmp_b, *tmp_a, *tmp_b); } mpq_add(*mp_constant, *mp_constant, *tmp_b); } else { fprintf(stdout, "ERROR: WRONG LINEAR ARITHMETIC ATOM TYPE\n"); str_a = smt_convert_fml_to_string(lfml); str_b = smt_convert_fml_to_string(rfml); fprintf(stdout, "fml = %s * %s\n", str_a, str_b); fprintf(stdout, "unknown\n"); exit(0); } } return; } int smt_mp_dl_theory_solve(smtManager_t * sm) { smt_mp_bellman_ford_main(sm); if (!(sm->flag & SAT_MASK)) { return 2; /* theory unsat */ } if (sm->litArr->size == sm->avarArr->size) { smt_mp_check_solution(sm); } return 0; /* sat without theory prop */ } void smt_mp_bellman_ford_main(smtManager_t * sm) { sm->stats->num_bf_call++; smt_mp_generate_constraint_graph(sm); smt_mp_bellman_ford_algorithm(sm); } void smt_mp_generate_constraint_graph(smtManager_t * sm) { smtMp_t * mp = sm->mp; mpq_t * pool = mp->pool; mpq_t * weight = 0, * epsilon = 0; smtGraph_t * G; smtVertex_t * src, * dest; smtEdge_t * e = 0; smtAvar_t * avar; smtNvar_t * lnvar, *rnvar; satArray_t *cur_edges; int cur_index, lit, id; int vindex, eindex; int i; /* mp vars */ weight = &pool[0]; epsilon = &pool[1]; if (sm->cG == 0) smt_init_constraint_graph(sm); G = sm->cG; eindex = G->esize; cur_edges = G->cur_edges; cur_edges->size = 0; /* generate edges */ cur_index = sm->cur_index; for(i = cur_index; i < sm->litArr->size; i++) { lit = sm->litArr->space[i]; id = (lit>0) ? lit : -lit; avar = (smtAvar_t *) sm->id2var->space[id]; /* filter theory propagated avar */ if (avar->flag & TPROP_MASK) continue; assert(avar->type != EQ_c); if (sm->avalues[id] == 1) { lnvar = (smtNvar_t *) avar->nvars->space[0]; rnvar = (smtNvar_t *) avar->nvars->space[1]; mpq_set(*weight, mp->constants[avar->id]); } else { assert(sm->avalues[id] == 0); lnvar = (smtNvar_t *) avar->nvars->space[1]; rnvar = (smtNvar_t *) avar->nvars->space[0]; mpq_neg(*weight, mp->constants[e->avar->id]); mpq_set_d(*epsilon, sm->epsilon); mpq_sub(*weight, *weight, *epsilon); } vindex = lnvar->id - 1; dest = &(G->vHead[vindex]); vindex = rnvar->id - 1; src = &(G->vHead[vindex]); e = smt_find_edge(src, dest); if (e) { if ( mpq_cmp(*weight, mp->weights[avar->id]) < 0 ) { e->avar->flag |= IMPLIED_MASK; e->implied = sat_array_insert(e->implied, (long) e->avar); e->avar = avar; mpq_set(mp->weights[avar->id], *weight); cur_edges = sat_array_insert(cur_edges, (long) e); } else { avar->flag |= IMPLIED_MASK; e->implied = sat_array_insert(e->implied, (long) avar); } } else { e = smt_add_edge(G, src, dest, avar, eindex++); mpq_set(mp->weights[avar->id], *weight); cur_edges = sat_array_insert(cur_edges, (long) e); G->esize++; } } return; } void smt_mp_bellman_ford_algorithm(smtManager_t * sm) { smtMp_t * mp = sm->mp; mpq_t * pool = mp->pool; mpq_t * new_dist = 0, * cur_dist = 0, * weight = 0; smtGraph_t * G = sm->cG; smtVertex_t * v = 0, * src = 0, * dest = 0, *parent = 0; smtEdge_t * e; smtQueue_t * Q; int i, qsize, cycleFound = 0; /* mp vars */ new_dist = &pool[0]; cur_dist = &pool[1]; weight = &pool[2]; smt_mp_init_bellman_ford_algorithm(sm); Q = G->queue; qsize = Q->size; while( (v = (smtVertex_t *) smt_dequeue(Q)) ) { G->flags[v->index] &= RESET_FRINGE_MASK; if (G->flags[v->index] & VISITED_MASK) continue; for(i = 0; i < v->outs->size; i++) { e = (smtEdge_t *) v->outs->space[i]; src = e->src; dest = e->dest; mpq_set(*weight, mp->weights[e->avar->id]); mpq_add(*new_dist, mp->values[src->index], *weight); mpq_set(*cur_dist, mp->values[dest->index]); if ( mpq_cmp(*new_dist, *cur_dist) < 0 ) { /* check if src is in the subtree of dest. if this is the case, the negative cycle is detected */ parent = G->paths[v->index]; while(1) { if (parent == 0) break; else if(parent == dest) { G->paths[dest->index] = v; G->flags[dest->index] &= RESET_VISITED_MASK; cycleFound = 1; break; } parent = G->paths[parent->index]; } if (cycleFound) break; smt_delete_subtree(G, dest); /* relaxation */ mpq_set(mp->values[dest->index], *new_dist); G->paths[dest->index] = src; G->flags[dest->index] &= RESET_VISITED_MASK; if (!(G->flags[dest->index] & FRINGE_MASK)) { G->flags[dest->index] |= FRINGE_MASK; smt_enqueue(Q, (long) dest); } } } if(cycleFound) break; } if(cycleFound) { sm->stats->num_bf_conf++; sm->flag &= RESET_SAT_MASK; smt_collect_edges_in_neg_cycle(G, dest); smt_get_lemma_from_neg_cycle(sm, G->neg_edges); smt_mp_retrieve_previous_distance(sm); } else if (qsize) { smt_update_value_with_current_distance(sm); } return; } void smt_mp_init_bellman_ford_algorithm(smtManager_t * sm) { smtMp_t * mp = sm->mp; mpq_t * pool = mp->pool; mpq_t * new_dist = 0, * cur_dist = 0, * weight = 0; smtGraph_t * G = sm->cG; smtVertex_t * src, * dest; smtEdge_t * e; smtQueue_t * Q; int i; /* mp vars */ new_dist = &pool[0]; cur_dist = &pool[1]; weight = &pool[2]; memset(G->flags, 0, sizeof(int) * G->vsize); memset(G->paths, 0, sizeof(smtVertex_t *) * G->vsize); Q = G->queue; smt_init_queue(Q); for(i = 0; i < G->cur_edges->size; i++) { e = (smtEdge_t *) G->cur_edges->space[i]; src = e->src; dest = e->dest; mpq_set(*weight, mp->weights[e->avar->id]); mpq_add(*new_dist, mp->values[src->index], *weight); mpq_set(*cur_dist, mp->values[dest->index]); if ( mpq_cmp(*new_dist, *cur_dist) < 0 ) { if(!(G->flags[src->index] & FRINGE_MASK)) { G->flags[src->index] |= FRINGE_MASK; /* not in queue */ smt_enqueue(Q, (long) src); } } } return; } void smt_mp_retrieve_previous_distance(smtManager_t * sm) { smtMp_t * mp = sm->mp; int i, size; size = sm->nvarArr->size + 1; for(i = 0; i < size; i++) { mpq_set(mp->pvalues[i], mp->values[i]); } return; } void smt_mp_print_atom_constants(smtManager_t * sm) { smtMp_t * mp = sm->mp; smtAvar_t * avar; int i, id; for(i = 0; i < sm->avarArr->size; i++) { avar = (smtAvar_t *) sm->avarArr->space[i]; id = avar->id; fprintf(stdout, "%s\n", avar->name); gmp_printf("constant:%#Qd\n", mp->constants[id]); } } void smt_mp_print_value(mpq_t * value) { gmp_printf("value:%#Qd\n", *value); } #endif