[8] | 1 | /**CFile*********************************************************************** |
---|
| 2 | |
---|
| 3 | FileName [cuddApprox.c] |
---|
| 4 | |
---|
| 5 | PackageName [cudd] |
---|
| 6 | |
---|
| 7 | Synopsis [Procedures to approximate a given BDD.] |
---|
| 8 | |
---|
| 9 | Description [External procedures provided by this module: |
---|
| 10 | <ul> |
---|
| 11 | <li> Cudd_UnderApprox() |
---|
| 12 | <li> Cudd_OverApprox() |
---|
| 13 | <li> Cudd_RemapUnderApprox() |
---|
| 14 | <li> Cudd_RemapOverApprox() |
---|
| 15 | <li> Cudd_BiasedUnderApprox() |
---|
| 16 | <li> Cudd_BiasedOverApprox() |
---|
| 17 | </ul> |
---|
| 18 | Internal procedures included in this module: |
---|
| 19 | <ul> |
---|
| 20 | <li> cuddUnderApprox() |
---|
| 21 | <li> cuddRemapUnderApprox() |
---|
| 22 | <li> cuddBiasedUnderApprox() |
---|
| 23 | </ul> |
---|
| 24 | Static procedures included in this module: |
---|
| 25 | <ul> |
---|
| 26 | <li> gatherInfoAux() |
---|
| 27 | <li> gatherInfo() |
---|
| 28 | <li> computeSavings() |
---|
| 29 | <li> UAmarkNodes() |
---|
| 30 | <li> UAbuildSubset() |
---|
| 31 | <li> updateRefs() |
---|
| 32 | <li> RAmarkNodes() |
---|
| 33 | <li> BAmarkNodes() |
---|
| 34 | <li> RAbuildSubset() |
---|
| 35 | </ul> |
---|
| 36 | ] |
---|
| 37 | |
---|
| 38 | SeeAlso [cuddSubsetHB.c cuddSubsetSP.c cuddGenCof.c] |
---|
| 39 | |
---|
| 40 | Author [Fabio Somenzi] |
---|
| 41 | |
---|
| 42 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
| 43 | |
---|
| 44 | All rights reserved. |
---|
| 45 | |
---|
| 46 | Redistribution and use in source and binary forms, with or without |
---|
| 47 | modification, are permitted provided that the following conditions |
---|
| 48 | are met: |
---|
| 49 | |
---|
| 50 | Redistributions of source code must retain the above copyright |
---|
| 51 | notice, this list of conditions and the following disclaimer. |
---|
| 52 | |
---|
| 53 | Redistributions in binary form must reproduce the above copyright |
---|
| 54 | notice, this list of conditions and the following disclaimer in the |
---|
| 55 | documentation and/or other materials provided with the distribution. |
---|
| 56 | |
---|
| 57 | Neither the name of the University of Colorado nor the names of its |
---|
| 58 | contributors may be used to endorse or promote products derived from |
---|
| 59 | this software without specific prior written permission. |
---|
| 60 | |
---|
| 61 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 62 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 63 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
| 64 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
| 65 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
| 66 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
| 67 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
| 68 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
| 69 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
| 70 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
| 71 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
| 72 | POSSIBILITY OF SUCH DAMAGE.] |
---|
| 73 | |
---|
| 74 | ******************************************************************************/ |
---|
| 75 | |
---|
| 76 | #ifdef __STDC__ |
---|
| 77 | #include <float.h> |
---|
| 78 | #else |
---|
| 79 | #define DBL_MAX_EXP 1024 |
---|
| 80 | #endif |
---|
| 81 | #include "util.h" |
---|
| 82 | #include "cuddInt.h" |
---|
| 83 | |
---|
| 84 | /*---------------------------------------------------------------------------*/ |
---|
| 85 | /* Constant declarations */ |
---|
| 86 | /*---------------------------------------------------------------------------*/ |
---|
| 87 | |
---|
| 88 | #define NOTHING 0 |
---|
| 89 | #define REPLACE_T 1 |
---|
| 90 | #define REPLACE_E 2 |
---|
| 91 | #define REPLACE_N 3 |
---|
| 92 | #define REPLACE_TT 4 |
---|
| 93 | #define REPLACE_TE 5 |
---|
| 94 | |
---|
| 95 | #define DONT_CARE 0 |
---|
| 96 | #define CARE 1 |
---|
| 97 | #define TOTAL_CARE 2 |
---|
| 98 | #define CARE_ERROR 3 |
---|
| 99 | |
---|
| 100 | /*---------------------------------------------------------------------------*/ |
---|
| 101 | /* Stucture declarations */ |
---|
| 102 | /*---------------------------------------------------------------------------*/ |
---|
| 103 | |
---|
| 104 | /*---------------------------------------------------------------------------*/ |
---|
| 105 | /* Type declarations */ |
---|
| 106 | /*---------------------------------------------------------------------------*/ |
---|
| 107 | |
---|
| 108 | /* Data structure to store the information on each node. It keeps the |
---|
| 109 | ** number of minterms of the function rooted at this node in terms of |
---|
| 110 | ** the number of variables specified by the user; the number of |
---|
| 111 | ** minterms of the complement; the impact of the number of minterms of |
---|
| 112 | ** this function on the number of minterms of the root function; the |
---|
| 113 | ** reference count of the node from within the root function; the |
---|
| 114 | ** reference count of the node from an internal node; and the flag |
---|
| 115 | ** that says whether the node should be replaced and how. */ |
---|
| 116 | typedef struct NodeData { |
---|
| 117 | double mintermsP; /* minterms for the regular node */ |
---|
| 118 | double mintermsN; /* minterms for the complemented node */ |
---|
| 119 | int functionRef; /* references from within this function */ |
---|
| 120 | char care; /* node intersects care set */ |
---|
| 121 | char replace; /* replacement decision */ |
---|
| 122 | short int parity; /* 1: even; 2: odd; 3: both */ |
---|
| 123 | DdNode *resultP; /* result for even parity */ |
---|
| 124 | DdNode *resultN; /* result for odd parity */ |
---|
| 125 | } NodeData; |
---|
| 126 | |
---|
| 127 | typedef struct ApproxInfo { |
---|
| 128 | DdNode *one; /* one constant */ |
---|
| 129 | DdNode *zero; /* BDD zero constant */ |
---|
| 130 | NodeData *page; /* per-node information */ |
---|
| 131 | st_table *table; /* hash table to access the per-node info */ |
---|
| 132 | int index; /* index of the current node */ |
---|
| 133 | double max; /* max number of minterms */ |
---|
| 134 | int size; /* how many nodes are left */ |
---|
| 135 | double minterms; /* how many minterms are left */ |
---|
| 136 | } ApproxInfo; |
---|
| 137 | |
---|
| 138 | /* Item of the queue used in the levelized traversal of the BDD. */ |
---|
| 139 | #ifdef __osf__ |
---|
| 140 | #pragma pointer_size save |
---|
| 141 | #pragma pointer_size short |
---|
| 142 | #endif |
---|
| 143 | typedef struct GlobalQueueItem { |
---|
| 144 | struct GlobalQueueItem *next; |
---|
| 145 | struct GlobalQueueItem *cnext; |
---|
| 146 | DdNode *node; |
---|
| 147 | double impactP; |
---|
| 148 | double impactN; |
---|
| 149 | } GlobalQueueItem; |
---|
| 150 | |
---|
| 151 | typedef struct LocalQueueItem { |
---|
| 152 | struct LocalQueueItem *next; |
---|
| 153 | struct LocalQueueItem *cnext; |
---|
| 154 | DdNode *node; |
---|
| 155 | int localRef; |
---|
| 156 | } LocalQueueItem; |
---|
| 157 | #ifdef __osf__ |
---|
| 158 | #pragma pointer_size restore |
---|
| 159 | #endif |
---|
| 160 | |
---|
| 161 | |
---|
| 162 | /*---------------------------------------------------------------------------*/ |
---|
| 163 | /* Variable declarations */ |
---|
| 164 | /*---------------------------------------------------------------------------*/ |
---|
| 165 | |
---|
| 166 | #ifndef lint |
---|
| 167 | static char rcsid[] DD_UNUSED = "$Id: cuddApprox.c,v 1.25 2004/08/13 18:04:46 fabio Exp $"; |
---|
| 168 | #endif |
---|
| 169 | |
---|
| 170 | /*---------------------------------------------------------------------------*/ |
---|
| 171 | /* Macro declarations */ |
---|
| 172 | /*---------------------------------------------------------------------------*/ |
---|
| 173 | |
---|
| 174 | /**AutomaticStart*************************************************************/ |
---|
| 175 | |
---|
| 176 | /*---------------------------------------------------------------------------*/ |
---|
| 177 | /* Static function prototypes */ |
---|
| 178 | /*---------------------------------------------------------------------------*/ |
---|
| 179 | |
---|
| 180 | static void updateParity (DdNode *node, ApproxInfo *info, int newparity); |
---|
| 181 | static NodeData * gatherInfoAux (DdNode *node, ApproxInfo *info, int parity); |
---|
| 182 | static ApproxInfo * gatherInfo (DdManager *dd, DdNode *node, int numVars, int parity); |
---|
| 183 | static int computeSavings (DdManager *dd, DdNode *f, DdNode *skip, ApproxInfo *info, DdLevelQueue *queue); |
---|
| 184 | static int updateRefs (DdManager *dd, DdNode *f, DdNode *skip, ApproxInfo *info, DdLevelQueue *queue); |
---|
| 185 | static int UAmarkNodes (DdManager *dd, DdNode *f, ApproxInfo *info, int threshold, int safe, double quality); |
---|
| 186 | static DdNode * UAbuildSubset (DdManager *dd, DdNode *node, ApproxInfo *info); |
---|
| 187 | static int RAmarkNodes (DdManager *dd, DdNode *f, ApproxInfo *info, int threshold, double quality); |
---|
| 188 | static int BAmarkNodes (DdManager *dd, DdNode *f, ApproxInfo *info, int threshold, double quality1, double quality0); |
---|
| 189 | static DdNode * RAbuildSubset (DdManager *dd, DdNode *node, ApproxInfo *info); |
---|
| 190 | static int BAapplyBias (DdManager *dd, DdNode *f, DdNode *b, ApproxInfo *info, DdHashTable *cache); |
---|
| 191 | |
---|
| 192 | /**AutomaticEnd***************************************************************/ |
---|
| 193 | |
---|
| 194 | |
---|
| 195 | /*---------------------------------------------------------------------------*/ |
---|
| 196 | /* Definition of exported functions */ |
---|
| 197 | /*---------------------------------------------------------------------------*/ |
---|
| 198 | |
---|
| 199 | /**Function******************************************************************** |
---|
| 200 | |
---|
| 201 | Synopsis [Extracts a dense subset from a BDD with Shiple's |
---|
| 202 | underapproximation method.] |
---|
| 203 | |
---|
| 204 | Description [Extracts a dense subset from a BDD. This procedure uses |
---|
| 205 | a variant of Tom Shiple's underapproximation method. The main |
---|
| 206 | difference from the original method is that density is used as cost |
---|
| 207 | function. Returns a pointer to the BDD of the subset if |
---|
| 208 | successful. NULL if the procedure runs out of memory. The parameter |
---|
| 209 | numVars is the maximum number of variables to be used in minterm |
---|
| 210 | calculation. The optimal number should be as close as possible to |
---|
| 211 | the size of the support of f. However, it is safe to pass the value |
---|
| 212 | returned by Cudd_ReadSize for numVars when the number of variables |
---|
| 213 | is under 1023. If numVars is larger than 1023, it will cause |
---|
| 214 | overflow. If a 0 parameter is passed then the procedure will compute |
---|
| 215 | a value which will avoid overflow but will cause underflow with 2046 |
---|
| 216 | variables or more.] |
---|
| 217 | |
---|
| 218 | SideEffects [None] |
---|
| 219 | |
---|
| 220 | SeeAlso [Cudd_SubsetShortPaths Cudd_SubsetHeavyBranch Cudd_ReadSize] |
---|
| 221 | |
---|
| 222 | ******************************************************************************/ |
---|
| 223 | DdNode * |
---|
| 224 | Cudd_UnderApprox( |
---|
| 225 | DdManager * dd /* manager */, |
---|
| 226 | DdNode * f /* function to be subset */, |
---|
| 227 | int numVars /* number of variables in the support of f */, |
---|
| 228 | int threshold /* when to stop approximation */, |
---|
| 229 | int safe /* enforce safe approximation */, |
---|
| 230 | double quality /* minimum improvement for accepted changes */) |
---|
| 231 | { |
---|
| 232 | DdNode *subset; |
---|
| 233 | |
---|
| 234 | do { |
---|
| 235 | dd->reordered = 0; |
---|
| 236 | subset = cuddUnderApprox(dd, f, numVars, threshold, safe, quality); |
---|
| 237 | } while (dd->reordered == 1); |
---|
| 238 | |
---|
| 239 | return(subset); |
---|
| 240 | |
---|
| 241 | } /* end of Cudd_UnderApprox */ |
---|
| 242 | |
---|
| 243 | |
---|
| 244 | /**Function******************************************************************** |
---|
| 245 | |
---|
| 246 | Synopsis [Extracts a dense superset from a BDD with Shiple's |
---|
| 247 | underapproximation method.] |
---|
| 248 | |
---|
| 249 | Description [Extracts a dense superset from a BDD. The procedure is |
---|
| 250 | identical to the underapproximation procedure except for the fact that it |
---|
| 251 | works on the complement of the given function. Extracting the subset |
---|
| 252 | of the complement function is equivalent to extracting the superset |
---|
| 253 | of the function. |
---|
| 254 | Returns a pointer to the BDD of the superset if successful. NULL if |
---|
| 255 | intermediate result causes the procedure to run out of memory. The |
---|
| 256 | parameter numVars is the maximum number of variables to be used in |
---|
| 257 | minterm calculation. The optimal number |
---|
| 258 | should be as close as possible to the size of the support of f. |
---|
| 259 | However, it is safe to pass the value returned by Cudd_ReadSize for |
---|
| 260 | numVars when the number of variables is under 1023. If numVars is |
---|
| 261 | larger than 1023, it will overflow. If a 0 parameter is passed then |
---|
| 262 | the procedure will compute a value which will avoid overflow but |
---|
| 263 | will cause underflow with 2046 variables or more.] |
---|
| 264 | |
---|
| 265 | SideEffects [None] |
---|
| 266 | |
---|
| 267 | SeeAlso [Cudd_SupersetHeavyBranch Cudd_SupersetShortPaths Cudd_ReadSize] |
---|
| 268 | |
---|
| 269 | ******************************************************************************/ |
---|
| 270 | DdNode * |
---|
| 271 | Cudd_OverApprox( |
---|
| 272 | DdManager * dd /* manager */, |
---|
| 273 | DdNode * f /* function to be superset */, |
---|
| 274 | int numVars /* number of variables in the support of f */, |
---|
| 275 | int threshold /* when to stop approximation */, |
---|
| 276 | int safe /* enforce safe approximation */, |
---|
| 277 | double quality /* minimum improvement for accepted changes */) |
---|
| 278 | { |
---|
| 279 | DdNode *subset, *g; |
---|
| 280 | |
---|
| 281 | g = Cudd_Not(f); |
---|
| 282 | do { |
---|
| 283 | dd->reordered = 0; |
---|
| 284 | subset = cuddUnderApprox(dd, g, numVars, threshold, safe, quality); |
---|
| 285 | } while (dd->reordered == 1); |
---|
| 286 | |
---|
| 287 | return(Cudd_NotCond(subset, (subset != NULL))); |
---|
| 288 | |
---|
| 289 | } /* end of Cudd_OverApprox */ |
---|
| 290 | |
---|
| 291 | |
---|
| 292 | /**Function******************************************************************** |
---|
| 293 | |
---|
| 294 | Synopsis [Extracts a dense subset from a BDD with the remapping |
---|
| 295 | underapproximation method.] |
---|
| 296 | |
---|
| 297 | Description [Extracts a dense subset from a BDD. This procedure uses |
---|
| 298 | a remapping technique and density as the cost function. |
---|
| 299 | Returns a pointer to the BDD of the subset if |
---|
| 300 | successful. NULL if the procedure runs out of memory. The parameter |
---|
| 301 | numVars is the maximum number of variables to be used in minterm |
---|
| 302 | calculation. The optimal number should be as close as possible to |
---|
| 303 | the size of the support of f. However, it is safe to pass the value |
---|
| 304 | returned by Cudd_ReadSize for numVars when the number of variables |
---|
| 305 | is under 1023. If numVars is larger than 1023, it will cause |
---|
| 306 | overflow. If a 0 parameter is passed then the procedure will compute |
---|
| 307 | a value which will avoid overflow but will cause underflow with 2046 |
---|
| 308 | variables or more.] |
---|
| 309 | |
---|
| 310 | SideEffects [None] |
---|
| 311 | |
---|
| 312 | SeeAlso [Cudd_SubsetShortPaths Cudd_SubsetHeavyBranch Cudd_UnderApprox Cudd_ReadSize] |
---|
| 313 | |
---|
| 314 | ******************************************************************************/ |
---|
| 315 | DdNode * |
---|
| 316 | Cudd_RemapUnderApprox( |
---|
| 317 | DdManager * dd /* manager */, |
---|
| 318 | DdNode * f /* function to be subset */, |
---|
| 319 | int numVars /* number of variables in the support of f */, |
---|
| 320 | int threshold /* when to stop approximation */, |
---|
| 321 | double quality /* minimum improvement for accepted changes */) |
---|
| 322 | { |
---|
| 323 | DdNode *subset; |
---|
| 324 | |
---|
| 325 | do { |
---|
| 326 | dd->reordered = 0; |
---|
| 327 | subset = cuddRemapUnderApprox(dd, f, numVars, threshold, quality); |
---|
| 328 | } while (dd->reordered == 1); |
---|
| 329 | |
---|
| 330 | return(subset); |
---|
| 331 | |
---|
| 332 | } /* end of Cudd_RemapUnderApprox */ |
---|
| 333 | |
---|
| 334 | |
---|
| 335 | /**Function******************************************************************** |
---|
| 336 | |
---|
| 337 | Synopsis [Extracts a dense superset from a BDD with the remapping |
---|
| 338 | underapproximation method.] |
---|
| 339 | |
---|
| 340 | Description [Extracts a dense superset from a BDD. The procedure is |
---|
| 341 | identical to the underapproximation procedure except for the fact that it |
---|
| 342 | works on the complement of the given function. Extracting the subset |
---|
| 343 | of the complement function is equivalent to extracting the superset |
---|
| 344 | of the function. |
---|
| 345 | Returns a pointer to the BDD of the superset if successful. NULL if |
---|
| 346 | intermediate result causes the procedure to run out of memory. The |
---|
| 347 | parameter numVars is the maximum number of variables to be used in |
---|
| 348 | minterm calculation. The optimal number |
---|
| 349 | should be as close as possible to the size of the support of f. |
---|
| 350 | However, it is safe to pass the value returned by Cudd_ReadSize for |
---|
| 351 | numVars when the number of variables is under 1023. If numVars is |
---|
| 352 | larger than 1023, it will overflow. If a 0 parameter is passed then |
---|
| 353 | the procedure will compute a value which will avoid overflow but |
---|
| 354 | will cause underflow with 2046 variables or more.] |
---|
| 355 | |
---|
| 356 | SideEffects [None] |
---|
| 357 | |
---|
| 358 | SeeAlso [Cudd_SupersetHeavyBranch Cudd_SupersetShortPaths Cudd_ReadSize] |
---|
| 359 | |
---|
| 360 | ******************************************************************************/ |
---|
| 361 | DdNode * |
---|
| 362 | Cudd_RemapOverApprox( |
---|
| 363 | DdManager * dd /* manager */, |
---|
| 364 | DdNode * f /* function to be superset */, |
---|
| 365 | int numVars /* number of variables in the support of f */, |
---|
| 366 | int threshold /* when to stop approximation */, |
---|
| 367 | double quality /* minimum improvement for accepted changes */) |
---|
| 368 | { |
---|
| 369 | DdNode *subset, *g; |
---|
| 370 | |
---|
| 371 | g = Cudd_Not(f); |
---|
| 372 | do { |
---|
| 373 | dd->reordered = 0; |
---|
| 374 | subset = cuddRemapUnderApprox(dd, g, numVars, threshold, quality); |
---|
| 375 | } while (dd->reordered == 1); |
---|
| 376 | |
---|
| 377 | return(Cudd_NotCond(subset, (subset != NULL))); |
---|
| 378 | |
---|
| 379 | } /* end of Cudd_RemapOverApprox */ |
---|
| 380 | |
---|
| 381 | |
---|
| 382 | /**Function******************************************************************** |
---|
| 383 | |
---|
| 384 | Synopsis [Extracts a dense subset from a BDD with the biased |
---|
| 385 | underapproximation method.] |
---|
| 386 | |
---|
| 387 | Description [Extracts a dense subset from a BDD. This procedure uses |
---|
| 388 | a biased remapping technique and density as the cost function. The bias |
---|
| 389 | is a function. This procedure tries to approximate where the bias is 0 |
---|
| 390 | and preserve the given function where the bias is 1. |
---|
| 391 | Returns a pointer to the BDD of the subset if |
---|
| 392 | successful. NULL if the procedure runs out of memory. The parameter |
---|
| 393 | numVars is the maximum number of variables to be used in minterm |
---|
| 394 | calculation. The optimal number should be as close as possible to |
---|
| 395 | the size of the support of f. However, it is safe to pass the value |
---|
| 396 | returned by Cudd_ReadSize for numVars when the number of variables |
---|
| 397 | is under 1023. If numVars is larger than 1023, it will cause |
---|
| 398 | overflow. If a 0 parameter is passed then the procedure will compute |
---|
| 399 | a value which will avoid overflow but will cause underflow with 2046 |
---|
| 400 | variables or more.] |
---|
| 401 | |
---|
| 402 | SideEffects [None] |
---|
| 403 | |
---|
| 404 | SeeAlso [Cudd_SubsetShortPaths Cudd_SubsetHeavyBranch Cudd_UnderApprox |
---|
| 405 | Cudd_RemapUnderApprox Cudd_ReadSize] |
---|
| 406 | |
---|
| 407 | ******************************************************************************/ |
---|
| 408 | DdNode * |
---|
| 409 | Cudd_BiasedUnderApprox( |
---|
| 410 | DdManager *dd /* manager */, |
---|
| 411 | DdNode *f /* function to be subset */, |
---|
| 412 | DdNode *b /* bias function */, |
---|
| 413 | int numVars /* number of variables in the support of f */, |
---|
| 414 | int threshold /* when to stop approximation */, |
---|
| 415 | double quality1 /* minimum improvement for accepted changes when b=1 */, |
---|
| 416 | double quality0 /* minimum improvement for accepted changes when b=0 */) |
---|
| 417 | { |
---|
| 418 | DdNode *subset; |
---|
| 419 | |
---|
| 420 | do { |
---|
| 421 | dd->reordered = 0; |
---|
| 422 | subset = cuddBiasedUnderApprox(dd, f, b, numVars, threshold, quality1, |
---|
| 423 | quality0); |
---|
| 424 | } while (dd->reordered == 1); |
---|
| 425 | |
---|
| 426 | return(subset); |
---|
| 427 | |
---|
| 428 | } /* end of Cudd_BiasedUnderApprox */ |
---|
| 429 | |
---|
| 430 | |
---|
| 431 | /**Function******************************************************************** |
---|
| 432 | |
---|
| 433 | Synopsis [Extracts a dense superset from a BDD with the biased |
---|
| 434 | underapproximation method.] |
---|
| 435 | |
---|
| 436 | Description [Extracts a dense superset from a BDD. The procedure is |
---|
| 437 | identical to the underapproximation procedure except for the fact that it |
---|
| 438 | works on the complement of the given function. Extracting the subset |
---|
| 439 | of the complement function is equivalent to extracting the superset |
---|
| 440 | of the function. |
---|
| 441 | Returns a pointer to the BDD of the superset if successful. NULL if |
---|
| 442 | intermediate result causes the procedure to run out of memory. The |
---|
| 443 | parameter numVars is the maximum number of variables to be used in |
---|
| 444 | minterm calculation. The optimal number |
---|
| 445 | should be as close as possible to the size of the support of f. |
---|
| 446 | However, it is safe to pass the value returned by Cudd_ReadSize for |
---|
| 447 | numVars when the number of variables is under 1023. If numVars is |
---|
| 448 | larger than 1023, it will overflow. If a 0 parameter is passed then |
---|
| 449 | the procedure will compute a value which will avoid overflow but |
---|
| 450 | will cause underflow with 2046 variables or more.] |
---|
| 451 | |
---|
| 452 | SideEffects [None] |
---|
| 453 | |
---|
| 454 | SeeAlso [Cudd_SupersetHeavyBranch Cudd_SupersetShortPaths |
---|
| 455 | Cudd_RemapOverApprox Cudd_BiasedUnderApprox Cudd_ReadSize] |
---|
| 456 | |
---|
| 457 | ******************************************************************************/ |
---|
| 458 | DdNode * |
---|
| 459 | Cudd_BiasedOverApprox( |
---|
| 460 | DdManager *dd /* manager */, |
---|
| 461 | DdNode *f /* function to be superset */, |
---|
| 462 | DdNode *b /* bias function */, |
---|
| 463 | int numVars /* number of variables in the support of f */, |
---|
| 464 | int threshold /* when to stop approximation */, |
---|
| 465 | double quality1 /* minimum improvement for accepted changes when b=1*/, |
---|
| 466 | double quality0 /* minimum improvement for accepted changes when b=0 */) |
---|
| 467 | { |
---|
| 468 | DdNode *subset, *g; |
---|
| 469 | |
---|
| 470 | g = Cudd_Not(f); |
---|
| 471 | do { |
---|
| 472 | dd->reordered = 0; |
---|
| 473 | subset = cuddBiasedUnderApprox(dd, g, b, numVars, threshold, quality1, |
---|
| 474 | quality0); |
---|
| 475 | } while (dd->reordered == 1); |
---|
| 476 | |
---|
| 477 | return(Cudd_NotCond(subset, (subset != NULL))); |
---|
| 478 | |
---|
| 479 | } /* end of Cudd_BiasedOverApprox */ |
---|
| 480 | |
---|
| 481 | |
---|
| 482 | /*---------------------------------------------------------------------------*/ |
---|
| 483 | /* Definition of internal functions */ |
---|
| 484 | /*---------------------------------------------------------------------------*/ |
---|
| 485 | |
---|
| 486 | |
---|
| 487 | /**Function******************************************************************** |
---|
| 488 | |
---|
| 489 | Synopsis [Applies Tom Shiple's underappoximation algorithm.] |
---|
| 490 | |
---|
| 491 | Description [Applies Tom Shiple's underappoximation algorithm. Proceeds |
---|
| 492 | in three phases: |
---|
| 493 | <ul> |
---|
| 494 | <li> collect information on each node in the BDD; this is done via DFS. |
---|
| 495 | <li> traverse the BDD in top-down fashion and compute for each node |
---|
| 496 | whether its elimination increases density. |
---|
| 497 | <li> traverse the BDD via DFS and actually perform the elimination. |
---|
| 498 | </ul> |
---|
| 499 | Returns the approximated BDD if successful; NULL otherwise.] |
---|
| 500 | |
---|
| 501 | SideEffects [None] |
---|
| 502 | |
---|
| 503 | SeeAlso [Cudd_UnderApprox] |
---|
| 504 | |
---|
| 505 | ******************************************************************************/ |
---|
| 506 | DdNode * |
---|
| 507 | cuddUnderApprox( |
---|
| 508 | DdManager * dd /* DD manager */, |
---|
| 509 | DdNode * f /* current DD */, |
---|
| 510 | int numVars /* maximum number of variables */, |
---|
| 511 | int threshold /* threshold under which approximation stops */, |
---|
| 512 | int safe /* enforce safe approximation */, |
---|
| 513 | double quality /* minimum improvement for accepted changes */) |
---|
| 514 | { |
---|
| 515 | ApproxInfo *info; |
---|
| 516 | DdNode *subset; |
---|
| 517 | int result; |
---|
| 518 | |
---|
| 519 | if (f == NULL) { |
---|
| 520 | fprintf(dd->err, "Cannot subset, nil object\n"); |
---|
| 521 | return(NULL); |
---|
| 522 | } |
---|
| 523 | |
---|
| 524 | if (Cudd_IsConstant(f)) { |
---|
| 525 | return(f); |
---|
| 526 | } |
---|
| 527 | |
---|
| 528 | /* Create table where node data are accessible via a hash table. */ |
---|
| 529 | info = gatherInfo(dd, f, numVars, safe); |
---|
| 530 | if (info == NULL) { |
---|
| 531 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
| 532 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 533 | return(NULL); |
---|
| 534 | } |
---|
| 535 | |
---|
| 536 | /* Mark nodes that should be replaced by zero. */ |
---|
| 537 | result = UAmarkNodes(dd, f, info, threshold, safe, quality); |
---|
| 538 | if (result == 0) { |
---|
| 539 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
| 540 | FREE(info->page); |
---|
| 541 | st_free_table(info->table); |
---|
| 542 | FREE(info); |
---|
| 543 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 544 | return(NULL); |
---|
| 545 | } |
---|
| 546 | |
---|
| 547 | /* Build the result. */ |
---|
| 548 | subset = UAbuildSubset(dd, f, info); |
---|
| 549 | #if 1 |
---|
| 550 | if (subset && info->size < Cudd_DagSize(subset)) |
---|
| 551 | (void) fprintf(dd->err, "Wrong prediction: %d versus actual %d\n", |
---|
| 552 | info->size, Cudd_DagSize(subset)); |
---|
| 553 | #endif |
---|
| 554 | FREE(info->page); |
---|
| 555 | st_free_table(info->table); |
---|
| 556 | FREE(info); |
---|
| 557 | |
---|
| 558 | #ifdef DD_DEBUG |
---|
| 559 | if (subset != NULL) { |
---|
| 560 | cuddRef(subset); |
---|
| 561 | #if 0 |
---|
| 562 | (void) Cudd_DebugCheck(dd); |
---|
| 563 | (void) Cudd_CheckKeys(dd); |
---|
| 564 | #endif |
---|
| 565 | if (!Cudd_bddLeq(dd, subset, f)) { |
---|
| 566 | (void) fprintf(dd->err, "Wrong subset\n"); |
---|
| 567 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
| 568 | } |
---|
| 569 | cuddDeref(subset); |
---|
| 570 | } |
---|
| 571 | #endif |
---|
| 572 | return(subset); |
---|
| 573 | |
---|
| 574 | } /* end of cuddUnderApprox */ |
---|
| 575 | |
---|
| 576 | |
---|
| 577 | /**Function******************************************************************** |
---|
| 578 | |
---|
| 579 | Synopsis [Applies the remapping underappoximation algorithm.] |
---|
| 580 | |
---|
| 581 | Description [Applies the remapping underappoximation algorithm. |
---|
| 582 | Proceeds in three phases: |
---|
| 583 | <ul> |
---|
| 584 | <li> collect information on each node in the BDD; this is done via DFS. |
---|
| 585 | <li> traverse the BDD in top-down fashion and compute for each node |
---|
| 586 | whether remapping increases density. |
---|
| 587 | <li> traverse the BDD via DFS and actually perform the elimination. |
---|
| 588 | </ul> |
---|
| 589 | Returns the approximated BDD if successful; NULL otherwise.] |
---|
| 590 | |
---|
| 591 | SideEffects [None] |
---|
| 592 | |
---|
| 593 | SeeAlso [Cudd_RemapUnderApprox] |
---|
| 594 | |
---|
| 595 | ******************************************************************************/ |
---|
| 596 | DdNode * |
---|
| 597 | cuddRemapUnderApprox( |
---|
| 598 | DdManager * dd /* DD manager */, |
---|
| 599 | DdNode * f /* current DD */, |
---|
| 600 | int numVars /* maximum number of variables */, |
---|
| 601 | int threshold /* threshold under which approximation stops */, |
---|
| 602 | double quality /* minimum improvement for accepted changes */) |
---|
| 603 | { |
---|
| 604 | ApproxInfo *info; |
---|
| 605 | DdNode *subset; |
---|
| 606 | int result; |
---|
| 607 | |
---|
| 608 | if (f == NULL) { |
---|
| 609 | fprintf(dd->err, "Cannot subset, nil object\n"); |
---|
| 610 | dd->errorCode = CUDD_INVALID_ARG; |
---|
| 611 | return(NULL); |
---|
| 612 | } |
---|
| 613 | |
---|
| 614 | if (Cudd_IsConstant(f)) { |
---|
| 615 | return(f); |
---|
| 616 | } |
---|
| 617 | |
---|
| 618 | /* Create table where node data are accessible via a hash table. */ |
---|
| 619 | info = gatherInfo(dd, f, numVars, TRUE); |
---|
| 620 | if (info == NULL) { |
---|
| 621 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
| 622 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 623 | return(NULL); |
---|
| 624 | } |
---|
| 625 | |
---|
| 626 | /* Mark nodes that should be replaced by zero. */ |
---|
| 627 | result = RAmarkNodes(dd, f, info, threshold, quality); |
---|
| 628 | if (result == 0) { |
---|
| 629 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
| 630 | FREE(info->page); |
---|
| 631 | st_free_table(info->table); |
---|
| 632 | FREE(info); |
---|
| 633 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 634 | return(NULL); |
---|
| 635 | } |
---|
| 636 | |
---|
| 637 | /* Build the result. */ |
---|
| 638 | subset = RAbuildSubset(dd, f, info); |
---|
| 639 | #if 1 |
---|
| 640 | if (subset && info->size < Cudd_DagSize(subset)) |
---|
| 641 | (void) fprintf(dd->err, "Wrong prediction: %d versus actual %d\n", |
---|
| 642 | info->size, Cudd_DagSize(subset)); |
---|
| 643 | #endif |
---|
| 644 | FREE(info->page); |
---|
| 645 | st_free_table(info->table); |
---|
| 646 | FREE(info); |
---|
| 647 | |
---|
| 648 | #ifdef DD_DEBUG |
---|
| 649 | if (subset != NULL) { |
---|
| 650 | cuddRef(subset); |
---|
| 651 | #if 0 |
---|
| 652 | (void) Cudd_DebugCheck(dd); |
---|
| 653 | (void) Cudd_CheckKeys(dd); |
---|
| 654 | #endif |
---|
| 655 | if (!Cudd_bddLeq(dd, subset, f)) { |
---|
| 656 | (void) fprintf(dd->err, "Wrong subset\n"); |
---|
| 657 | } |
---|
| 658 | cuddDeref(subset); |
---|
| 659 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
| 660 | } |
---|
| 661 | #endif |
---|
| 662 | return(subset); |
---|
| 663 | |
---|
| 664 | } /* end of cuddRemapUnderApprox */ |
---|
| 665 | |
---|
| 666 | |
---|
| 667 | /**Function******************************************************************** |
---|
| 668 | |
---|
| 669 | Synopsis [Applies the biased remapping underappoximation algorithm.] |
---|
| 670 | |
---|
| 671 | Description [Applies the biased remapping underappoximation algorithm. |
---|
| 672 | Proceeds in three phases: |
---|
| 673 | <ul> |
---|
| 674 | <li> collect information on each node in the BDD; this is done via DFS. |
---|
| 675 | <li> traverse the BDD in top-down fashion and compute for each node |
---|
| 676 | whether remapping increases density. |
---|
| 677 | <li> traverse the BDD via DFS and actually perform the elimination. |
---|
| 678 | </ul> |
---|
| 679 | Returns the approximated BDD if successful; NULL otherwise.] |
---|
| 680 | |
---|
| 681 | SideEffects [None] |
---|
| 682 | |
---|
| 683 | SeeAlso [Cudd_BiasedUnderApprox] |
---|
| 684 | |
---|
| 685 | ******************************************************************************/ |
---|
| 686 | DdNode * |
---|
| 687 | cuddBiasedUnderApprox( |
---|
| 688 | DdManager *dd /* DD manager */, |
---|
| 689 | DdNode *f /* current DD */, |
---|
| 690 | DdNode *b /* bias function */, |
---|
| 691 | int numVars /* maximum number of variables */, |
---|
| 692 | int threshold /* threshold under which approximation stops */, |
---|
| 693 | double quality1 /* minimum improvement for accepted changes when b=1 */, |
---|
| 694 | double quality0 /* minimum improvement for accepted changes when b=0 */) |
---|
| 695 | { |
---|
| 696 | ApproxInfo *info; |
---|
| 697 | DdNode *subset; |
---|
| 698 | int result; |
---|
| 699 | DdHashTable *cache; |
---|
| 700 | |
---|
| 701 | if (f == NULL) { |
---|
| 702 | fprintf(dd->err, "Cannot subset, nil object\n"); |
---|
| 703 | dd->errorCode = CUDD_INVALID_ARG; |
---|
| 704 | return(NULL); |
---|
| 705 | } |
---|
| 706 | |
---|
| 707 | if (Cudd_IsConstant(f)) { |
---|
| 708 | return(f); |
---|
| 709 | } |
---|
| 710 | |
---|
| 711 | /* Create table where node data are accessible via a hash table. */ |
---|
| 712 | info = gatherInfo(dd, f, numVars, TRUE); |
---|
| 713 | if (info == NULL) { |
---|
| 714 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
| 715 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 716 | return(NULL); |
---|
| 717 | } |
---|
| 718 | |
---|
| 719 | cache = cuddHashTableInit(dd,2,2); |
---|
| 720 | result = BAapplyBias(dd, Cudd_Regular(f), b, info, cache); |
---|
| 721 | if (result == CARE_ERROR) { |
---|
| 722 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
| 723 | cuddHashTableQuit(cache); |
---|
| 724 | FREE(info->page); |
---|
| 725 | st_free_table(info->table); |
---|
| 726 | FREE(info); |
---|
| 727 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 728 | return(NULL); |
---|
| 729 | } |
---|
| 730 | cuddHashTableQuit(cache); |
---|
| 731 | |
---|
| 732 | /* Mark nodes that should be replaced by zero. */ |
---|
| 733 | result = BAmarkNodes(dd, f, info, threshold, quality1, quality0); |
---|
| 734 | if (result == 0) { |
---|
| 735 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
| 736 | FREE(info->page); |
---|
| 737 | st_free_table(info->table); |
---|
| 738 | FREE(info); |
---|
| 739 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 740 | return(NULL); |
---|
| 741 | } |
---|
| 742 | |
---|
| 743 | /* Build the result. */ |
---|
| 744 | subset = RAbuildSubset(dd, f, info); |
---|
| 745 | #if 1 |
---|
| 746 | if (subset && info->size < Cudd_DagSize(subset)) |
---|
| 747 | (void) fprintf(dd->err, "Wrong prediction: %d versus actual %d\n", |
---|
| 748 | info->size, Cudd_DagSize(subset)); |
---|
| 749 | #endif |
---|
| 750 | FREE(info->page); |
---|
| 751 | st_free_table(info->table); |
---|
| 752 | FREE(info); |
---|
| 753 | |
---|
| 754 | #ifdef DD_DEBUG |
---|
| 755 | if (subset != NULL) { |
---|
| 756 | cuddRef(subset); |
---|
| 757 | #if 0 |
---|
| 758 | (void) Cudd_DebugCheck(dd); |
---|
| 759 | (void) Cudd_CheckKeys(dd); |
---|
| 760 | #endif |
---|
| 761 | if (!Cudd_bddLeq(dd, subset, f)) { |
---|
| 762 | (void) fprintf(dd->err, "Wrong subset\n"); |
---|
| 763 | } |
---|
| 764 | cuddDeref(subset); |
---|
| 765 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
| 766 | } |
---|
| 767 | #endif |
---|
| 768 | return(subset); |
---|
| 769 | |
---|
| 770 | } /* end of cuddBiasedUnderApprox */ |
---|
| 771 | |
---|
| 772 | |
---|
| 773 | /*---------------------------------------------------------------------------*/ |
---|
| 774 | /* Definition of static functions */ |
---|
| 775 | /*---------------------------------------------------------------------------*/ |
---|
| 776 | |
---|
| 777 | |
---|
| 778 | /**Function******************************************************************** |
---|
| 779 | |
---|
| 780 | Synopsis [Recursively update the parity of the paths reaching a node.] |
---|
| 781 | |
---|
| 782 | Description [Recursively update the parity of the paths reaching a node. |
---|
| 783 | Assumes that node is regular and propagates the invariant.] |
---|
| 784 | |
---|
| 785 | SideEffects [None] |
---|
| 786 | |
---|
| 787 | SeeAlso [gatherInfoAux] |
---|
| 788 | |
---|
| 789 | ******************************************************************************/ |
---|
| 790 | static void |
---|
| 791 | updateParity( |
---|
| 792 | DdNode * node /* function to analyze */, |
---|
| 793 | ApproxInfo * info /* info on BDD */, |
---|
| 794 | int newparity /* new parity for node */) |
---|
| 795 | { |
---|
| 796 | NodeData *infoN; |
---|
| 797 | DdNode *E; |
---|
| 798 | |
---|
| 799 | if (!st_lookup(info->table, node, &infoN)) return; |
---|
| 800 | if ((infoN->parity & newparity) != 0) return; |
---|
| 801 | infoN->parity |= newparity; |
---|
| 802 | if (Cudd_IsConstant(node)) return; |
---|
| 803 | updateParity(cuddT(node),info,newparity); |
---|
| 804 | E = cuddE(node); |
---|
| 805 | if (Cudd_IsComplement(E)) { |
---|
| 806 | updateParity(Cudd_Not(E),info,3-newparity); |
---|
| 807 | } else { |
---|
| 808 | updateParity(E,info,newparity); |
---|
| 809 | } |
---|
| 810 | return; |
---|
| 811 | |
---|
| 812 | } /* end of updateParity */ |
---|
| 813 | |
---|
| 814 | |
---|
| 815 | /**Function******************************************************************** |
---|
| 816 | |
---|
| 817 | Synopsis [Recursively counts minterms and computes reference counts |
---|
| 818 | of each node in the BDD.] |
---|
| 819 | |
---|
| 820 | Description [Recursively counts minterms and computes reference |
---|
| 821 | counts of each node in the BDD. Similar to the cuddCountMintermAux |
---|
| 822 | which recursively counts the number of minterms for the dag rooted |
---|
| 823 | at each node in terms of the total number of variables (max). It assumes |
---|
| 824 | that the node pointer passed to it is regular and it maintains the |
---|
| 825 | invariant.] |
---|
| 826 | |
---|
| 827 | SideEffects [None] |
---|
| 828 | |
---|
| 829 | SeeAlso [gatherInfo] |
---|
| 830 | |
---|
| 831 | ******************************************************************************/ |
---|
| 832 | static NodeData * |
---|
| 833 | gatherInfoAux( |
---|
| 834 | DdNode * node /* function to analyze */, |
---|
| 835 | ApproxInfo * info /* info on BDD */, |
---|
| 836 | int parity /* gather parity information */) |
---|
| 837 | { |
---|
| 838 | DdNode *N, *Nt, *Ne; |
---|
| 839 | NodeData *infoN, *infoT, *infoE; |
---|
| 840 | |
---|
| 841 | N = Cudd_Regular(node); |
---|
| 842 | |
---|
| 843 | /* Check whether entry for this node exists. */ |
---|
| 844 | if (st_lookup(info->table, N, &infoN)) { |
---|
| 845 | if (parity) { |
---|
| 846 | /* Update parity and propagate. */ |
---|
| 847 | updateParity(N, info, 1 + (int) Cudd_IsComplement(node)); |
---|
| 848 | } |
---|
| 849 | return(infoN); |
---|
| 850 | } |
---|
| 851 | |
---|
| 852 | /* Compute the cofactors. */ |
---|
| 853 | Nt = Cudd_NotCond(cuddT(N), N != node); |
---|
| 854 | Ne = Cudd_NotCond(cuddE(N), N != node); |
---|
| 855 | |
---|
| 856 | infoT = gatherInfoAux(Nt, info, parity); |
---|
| 857 | if (infoT == NULL) return(NULL); |
---|
| 858 | infoE = gatherInfoAux(Ne, info, parity); |
---|
| 859 | if (infoE == NULL) return(NULL); |
---|
| 860 | |
---|
| 861 | infoT->functionRef++; |
---|
| 862 | infoE->functionRef++; |
---|
| 863 | |
---|
| 864 | /* Point to the correct location in the page. */ |
---|
| 865 | infoN = &(info->page[info->index++]); |
---|
| 866 | infoN->parity |= 1 + (short) Cudd_IsComplement(node); |
---|
| 867 | |
---|
| 868 | infoN->mintermsP = infoT->mintermsP/2; |
---|
| 869 | infoN->mintermsN = infoT->mintermsN/2; |
---|
| 870 | if (Cudd_IsComplement(Ne) ^ Cudd_IsComplement(node)) { |
---|
| 871 | infoN->mintermsP += infoE->mintermsN/2; |
---|
| 872 | infoN->mintermsN += infoE->mintermsP/2; |
---|
| 873 | } else { |
---|
| 874 | infoN->mintermsP += infoE->mintermsP/2; |
---|
| 875 | infoN->mintermsN += infoE->mintermsN/2; |
---|
| 876 | } |
---|
| 877 | |
---|
| 878 | /* Insert entry for the node in the table. */ |
---|
| 879 | if (st_insert(info->table,(char *)N, (char *)infoN) == ST_OUT_OF_MEM) { |
---|
| 880 | return(NULL); |
---|
| 881 | } |
---|
| 882 | return(infoN); |
---|
| 883 | |
---|
| 884 | } /* end of gatherInfoAux */ |
---|
| 885 | |
---|
| 886 | |
---|
| 887 | /**Function******************************************************************** |
---|
| 888 | |
---|
| 889 | Synopsis [Gathers information about each node.] |
---|
| 890 | |
---|
| 891 | Description [Counts minterms and computes reference counts of each |
---|
| 892 | node in the BDD . The minterm count is separately computed for the |
---|
| 893 | node and its complement. This is to avoid cancellation |
---|
| 894 | errors. Returns a pointer to the data structure holding the |
---|
| 895 | information gathered if successful; NULL otherwise.] |
---|
| 896 | |
---|
| 897 | SideEffects [None] |
---|
| 898 | |
---|
| 899 | SeeAlso [cuddUnderApprox gatherInfoAux] |
---|
| 900 | |
---|
| 901 | ******************************************************************************/ |
---|
| 902 | static ApproxInfo * |
---|
| 903 | gatherInfo( |
---|
| 904 | DdManager * dd /* manager */, |
---|
| 905 | DdNode * node /* function to be analyzed */, |
---|
| 906 | int numVars /* number of variables node depends on */, |
---|
| 907 | int parity /* gather parity information */) |
---|
| 908 | { |
---|
| 909 | ApproxInfo *info; |
---|
| 910 | NodeData *infoTop; |
---|
| 911 | |
---|
| 912 | /* If user did not give numVars value, set it to the maximum |
---|
| 913 | ** exponent that the pow function can take. The -1 is due to the |
---|
| 914 | ** discrepancy in the value that pow takes and the value that |
---|
| 915 | ** log gives. |
---|
| 916 | */ |
---|
| 917 | if (numVars == 0) { |
---|
| 918 | numVars = DBL_MAX_EXP - 1; |
---|
| 919 | } |
---|
| 920 | |
---|
| 921 | info = ALLOC(ApproxInfo,1); |
---|
| 922 | if (info == NULL) { |
---|
| 923 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 924 | return(NULL); |
---|
| 925 | } |
---|
| 926 | info->max = pow(2.0,(double) numVars); |
---|
| 927 | info->one = DD_ONE(dd); |
---|
| 928 | info->zero = Cudd_Not(info->one); |
---|
| 929 | info->size = Cudd_DagSize(node); |
---|
| 930 | /* All the information gathered will be stored in a contiguous |
---|
| 931 | ** piece of memory, which is allocated here. This can be done |
---|
| 932 | ** efficiently because we have counted the number of nodes of the |
---|
| 933 | ** BDD. info->index points to the next available entry in the array |
---|
| 934 | ** that stores the per-node information. */ |
---|
| 935 | info->page = ALLOC(NodeData,info->size); |
---|
| 936 | if (info->page == NULL) { |
---|
| 937 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 938 | FREE(info); |
---|
| 939 | return(NULL); |
---|
| 940 | } |
---|
| 941 | memset(info->page, 0, info->size * sizeof(NodeData)); /* clear all page */ |
---|
| 942 | info->table = st_init_table(st_ptrcmp,st_ptrhash); |
---|
| 943 | if (info->table == NULL) { |
---|
| 944 | FREE(info->page); |
---|
| 945 | FREE(info); |
---|
| 946 | return(NULL); |
---|
| 947 | } |
---|
| 948 | /* We visit the DAG in post-order DFS. Hence, the constant node is |
---|
| 949 | ** in first position, and the root of the DAG is in last position. */ |
---|
| 950 | |
---|
| 951 | /* Info for the constant node: Initialize only fields different from 0. */ |
---|
| 952 | if (st_insert(info->table, (char *)info->one, (char *)info->page) == ST_OUT_OF_MEM) { |
---|
| 953 | FREE(info->page); |
---|
| 954 | FREE(info); |
---|
| 955 | st_free_table(info->table); |
---|
| 956 | return(NULL); |
---|
| 957 | } |
---|
| 958 | info->page[0].mintermsP = info->max; |
---|
| 959 | info->index = 1; |
---|
| 960 | |
---|
| 961 | infoTop = gatherInfoAux(node,info,parity); |
---|
| 962 | if (infoTop == NULL) { |
---|
| 963 | FREE(info->page); |
---|
| 964 | st_free_table(info->table); |
---|
| 965 | FREE(info); |
---|
| 966 | return(NULL); |
---|
| 967 | } |
---|
| 968 | if (Cudd_IsComplement(node)) { |
---|
| 969 | info->minterms = infoTop->mintermsN; |
---|
| 970 | } else { |
---|
| 971 | info->minterms = infoTop->mintermsP; |
---|
| 972 | } |
---|
| 973 | |
---|
| 974 | infoTop->functionRef = 1; |
---|
| 975 | return(info); |
---|
| 976 | |
---|
| 977 | } /* end of gatherInfo */ |
---|
| 978 | |
---|
| 979 | |
---|
| 980 | /**Function******************************************************************** |
---|
| 981 | |
---|
| 982 | Synopsis [Counts the nodes that would be eliminated if a given node |
---|
| 983 | were replaced by zero.] |
---|
| 984 | |
---|
| 985 | Description [Counts the nodes that would be eliminated if a given |
---|
| 986 | node were replaced by zero. This procedure uses a queue passed by |
---|
| 987 | the caller for efficiency: since the queue is left empty at the |
---|
| 988 | endof the search, it can be reused as is by the next search. Returns |
---|
| 989 | the count (always striclty positive) if successful; 0 otherwise.] |
---|
| 990 | |
---|
| 991 | SideEffects [None] |
---|
| 992 | |
---|
| 993 | SeeAlso [cuddUnderApprox] |
---|
| 994 | |
---|
| 995 | ******************************************************************************/ |
---|
| 996 | static int |
---|
| 997 | computeSavings( |
---|
| 998 | DdManager * dd, |
---|
| 999 | DdNode * f, |
---|
| 1000 | DdNode * skip, |
---|
| 1001 | ApproxInfo * info, |
---|
| 1002 | DdLevelQueue * queue) |
---|
| 1003 | { |
---|
| 1004 | NodeData *infoN; |
---|
| 1005 | LocalQueueItem *item; |
---|
| 1006 | DdNode *node; |
---|
| 1007 | int savings = 0; |
---|
| 1008 | |
---|
| 1009 | node = Cudd_Regular(f); |
---|
| 1010 | skip = Cudd_Regular(skip); |
---|
| 1011 | /* Insert the given node in the level queue. Its local reference |
---|
| 1012 | ** count is set equal to the function reference count so that the |
---|
| 1013 | ** search will continue from it when it is retrieved. */ |
---|
| 1014 | item = (LocalQueueItem *) |
---|
| 1015 | cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); |
---|
| 1016 | if (item == NULL) |
---|
| 1017 | return(0); |
---|
| 1018 | (void) st_lookup(info->table, node, &infoN); |
---|
| 1019 | item->localRef = infoN->functionRef; |
---|
| 1020 | |
---|
| 1021 | /* Process the queue. */ |
---|
| 1022 | while (queue->first != NULL) { |
---|
| 1023 | item = (LocalQueueItem *) queue->first; |
---|
| 1024 | node = item->node; |
---|
| 1025 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
| 1026 | if (node == skip) continue; |
---|
| 1027 | (void) st_lookup(info->table, node, &infoN); |
---|
| 1028 | if (item->localRef != infoN->functionRef) { |
---|
| 1029 | /* This node is shared. */ |
---|
| 1030 | continue; |
---|
| 1031 | } |
---|
| 1032 | savings++; |
---|
| 1033 | if (!cuddIsConstant(cuddT(node))) { |
---|
| 1034 | item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), |
---|
| 1035 | cuddI(dd,cuddT(node)->index)); |
---|
| 1036 | if (item == NULL) return(0); |
---|
| 1037 | item->localRef++; |
---|
| 1038 | } |
---|
| 1039 | if (!Cudd_IsConstant(cuddE(node))) { |
---|
| 1040 | item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), |
---|
| 1041 | cuddI(dd,Cudd_Regular(cuddE(node))->index)); |
---|
| 1042 | if (item == NULL) return(0); |
---|
| 1043 | item->localRef++; |
---|
| 1044 | } |
---|
| 1045 | } |
---|
| 1046 | |
---|
| 1047 | #ifdef DD_DEBUG |
---|
| 1048 | /* At the end of a local search the queue should be empty. */ |
---|
| 1049 | assert(queue->size == 0); |
---|
| 1050 | #endif |
---|
| 1051 | return(savings); |
---|
| 1052 | |
---|
| 1053 | } /* end of computeSavings */ |
---|
| 1054 | |
---|
| 1055 | |
---|
| 1056 | /**Function******************************************************************** |
---|
| 1057 | |
---|
| 1058 | Synopsis [Update function reference counts.] |
---|
| 1059 | |
---|
| 1060 | Description [Update function reference counts to account for replacement. |
---|
| 1061 | Returns the number of nodes saved if successful; 0 otherwise.] |
---|
| 1062 | |
---|
| 1063 | SideEffects [None] |
---|
| 1064 | |
---|
| 1065 | SeeAlso [UAmarkNodes RAmarkNodes] |
---|
| 1066 | |
---|
| 1067 | ******************************************************************************/ |
---|
| 1068 | static int |
---|
| 1069 | updateRefs( |
---|
| 1070 | DdManager * dd, |
---|
| 1071 | DdNode * f, |
---|
| 1072 | DdNode * skip, |
---|
| 1073 | ApproxInfo * info, |
---|
| 1074 | DdLevelQueue * queue) |
---|
| 1075 | { |
---|
| 1076 | NodeData *infoN; |
---|
| 1077 | LocalQueueItem *item; |
---|
| 1078 | DdNode *node; |
---|
| 1079 | int savings = 0; |
---|
| 1080 | |
---|
| 1081 | node = Cudd_Regular(f); |
---|
| 1082 | /* Insert the given node in the level queue. Its function reference |
---|
| 1083 | ** count is set equal to 0 so that the search will continue from it |
---|
| 1084 | ** when it is retrieved. */ |
---|
| 1085 | item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); |
---|
| 1086 | if (item == NULL) |
---|
| 1087 | return(0); |
---|
| 1088 | (void) st_lookup(info->table, node, &infoN); |
---|
| 1089 | infoN->functionRef = 0; |
---|
| 1090 | |
---|
| 1091 | if (skip != NULL) { |
---|
| 1092 | /* Increase the function reference count of the node to be skipped |
---|
| 1093 | ** by 1 to account for the node pointing to it that will be created. */ |
---|
| 1094 | skip = Cudd_Regular(skip); |
---|
| 1095 | (void) st_lookup(info->table, skip, &infoN); |
---|
| 1096 | infoN->functionRef++; |
---|
| 1097 | } |
---|
| 1098 | |
---|
| 1099 | /* Process the queue. */ |
---|
| 1100 | while (queue->first != NULL) { |
---|
| 1101 | item = (LocalQueueItem *) queue->first; |
---|
| 1102 | node = item->node; |
---|
| 1103 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
| 1104 | (void) st_lookup(info->table, node, &infoN); |
---|
| 1105 | if (infoN->functionRef != 0) { |
---|
| 1106 | /* This node is shared or must be skipped. */ |
---|
| 1107 | continue; |
---|
| 1108 | } |
---|
| 1109 | savings++; |
---|
| 1110 | if (!cuddIsConstant(cuddT(node))) { |
---|
| 1111 | item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), |
---|
| 1112 | cuddI(dd,cuddT(node)->index)); |
---|
| 1113 | if (item == NULL) return(0); |
---|
| 1114 | (void) st_lookup(info->table, cuddT(node), &infoN); |
---|
| 1115 | infoN->functionRef--; |
---|
| 1116 | } |
---|
| 1117 | if (!Cudd_IsConstant(cuddE(node))) { |
---|
| 1118 | item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), |
---|
| 1119 | cuddI(dd,Cudd_Regular(cuddE(node))->index)); |
---|
| 1120 | if (item == NULL) return(0); |
---|
| 1121 | (void) st_lookup(info->table, Cudd_Regular(cuddE(node)), &infoN); |
---|
| 1122 | infoN->functionRef--; |
---|
| 1123 | } |
---|
| 1124 | } |
---|
| 1125 | |
---|
| 1126 | #ifdef DD_DEBUG |
---|
| 1127 | /* At the end of a local search the queue should be empty. */ |
---|
| 1128 | assert(queue->size == 0); |
---|
| 1129 | #endif |
---|
| 1130 | return(savings); |
---|
| 1131 | |
---|
| 1132 | } /* end of updateRefs */ |
---|
| 1133 | |
---|
| 1134 | |
---|
| 1135 | /**Function******************************************************************** |
---|
| 1136 | |
---|
| 1137 | Synopsis [Marks nodes for replacement by zero.] |
---|
| 1138 | |
---|
| 1139 | Description [Marks nodes for replacement by zero. Returns 1 if successful; |
---|
| 1140 | 0 otherwise.] |
---|
| 1141 | |
---|
| 1142 | SideEffects [None] |
---|
| 1143 | |
---|
| 1144 | SeeAlso [cuddUnderApprox] |
---|
| 1145 | |
---|
| 1146 | ******************************************************************************/ |
---|
| 1147 | static int |
---|
| 1148 | UAmarkNodes( |
---|
| 1149 | DdManager * dd /* manager */, |
---|
| 1150 | DdNode * f /* function to be analyzed */, |
---|
| 1151 | ApproxInfo * info /* info on BDD */, |
---|
| 1152 | int threshold /* when to stop approximating */, |
---|
| 1153 | int safe /* enforce safe approximation */, |
---|
| 1154 | double quality /* minimum improvement for accepted changes */) |
---|
| 1155 | { |
---|
| 1156 | DdLevelQueue *queue; |
---|
| 1157 | DdLevelQueue *localQueue; |
---|
| 1158 | NodeData *infoN; |
---|
| 1159 | GlobalQueueItem *item; |
---|
| 1160 | DdNode *node; |
---|
| 1161 | double numOnset; |
---|
| 1162 | double impactP, impactN; |
---|
| 1163 | int savings; |
---|
| 1164 | |
---|
| 1165 | #if 0 |
---|
| 1166 | (void) printf("initial size = %d initial minterms = %g\n", |
---|
| 1167 | info->size, info->minterms); |
---|
| 1168 | #endif |
---|
| 1169 | queue = cuddLevelQueueInit(dd->size,sizeof(GlobalQueueItem),info->size); |
---|
| 1170 | if (queue == NULL) { |
---|
| 1171 | return(0); |
---|
| 1172 | } |
---|
| 1173 | localQueue = cuddLevelQueueInit(dd->size,sizeof(LocalQueueItem), |
---|
| 1174 | dd->initSlots); |
---|
| 1175 | if (localQueue == NULL) { |
---|
| 1176 | cuddLevelQueueQuit(queue); |
---|
| 1177 | return(0); |
---|
| 1178 | } |
---|
| 1179 | node = Cudd_Regular(f); |
---|
| 1180 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); |
---|
| 1181 | if (item == NULL) { |
---|
| 1182 | cuddLevelQueueQuit(queue); |
---|
| 1183 | cuddLevelQueueQuit(localQueue); |
---|
| 1184 | return(0); |
---|
| 1185 | } |
---|
| 1186 | if (Cudd_IsComplement(f)) { |
---|
| 1187 | item->impactP = 0.0; |
---|
| 1188 | item->impactN = 1.0; |
---|
| 1189 | } else { |
---|
| 1190 | item->impactP = 1.0; |
---|
| 1191 | item->impactN = 0.0; |
---|
| 1192 | } |
---|
| 1193 | while (queue->first != NULL) { |
---|
| 1194 | /* If the size of the subset is below the threshold, quit. */ |
---|
| 1195 | if (info->size <= threshold) |
---|
| 1196 | break; |
---|
| 1197 | item = (GlobalQueueItem *) queue->first; |
---|
| 1198 | node = item->node; |
---|
| 1199 | node = Cudd_Regular(node); |
---|
| 1200 | (void) st_lookup(info->table, node, &infoN); |
---|
| 1201 | if (safe && infoN->parity == 3) { |
---|
| 1202 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
| 1203 | continue; |
---|
| 1204 | } |
---|
| 1205 | impactP = item->impactP; |
---|
| 1206 | impactN = item->impactN; |
---|
| 1207 | numOnset = infoN->mintermsP * impactP + infoN->mintermsN * impactN; |
---|
| 1208 | savings = computeSavings(dd,node,NULL,info,localQueue); |
---|
| 1209 | if (savings == 0) { |
---|
| 1210 | cuddLevelQueueQuit(queue); |
---|
| 1211 | cuddLevelQueueQuit(localQueue); |
---|
| 1212 | return(0); |
---|
| 1213 | } |
---|
| 1214 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
| 1215 | #if 0 |
---|
| 1216 | (void) printf("node %p: impact = %g/%g numOnset = %g savings %d\n", |
---|
| 1217 | node, impactP, impactN, numOnset, savings); |
---|
| 1218 | #endif |
---|
| 1219 | if ((1 - numOnset / info->minterms) > |
---|
| 1220 | quality * (1 - (double) savings / info->size)) { |
---|
| 1221 | infoN->replace = TRUE; |
---|
| 1222 | info->size -= savings; |
---|
| 1223 | info->minterms -=numOnset; |
---|
| 1224 | #if 0 |
---|
| 1225 | (void) printf("replace: new size = %d new minterms = %g\n", |
---|
| 1226 | info->size, info->minterms); |
---|
| 1227 | #endif |
---|
| 1228 | savings -= updateRefs(dd,node,NULL,info,localQueue); |
---|
| 1229 | assert(savings == 0); |
---|
| 1230 | continue; |
---|
| 1231 | } |
---|
| 1232 | if (!cuddIsConstant(cuddT(node))) { |
---|
| 1233 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), |
---|
| 1234 | cuddI(dd,cuddT(node)->index)); |
---|
| 1235 | item->impactP += impactP/2.0; |
---|
| 1236 | item->impactN += impactN/2.0; |
---|
| 1237 | } |
---|
| 1238 | if (!Cudd_IsConstant(cuddE(node))) { |
---|
| 1239 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), |
---|
| 1240 | cuddI(dd,Cudd_Regular(cuddE(node))->index)); |
---|
| 1241 | if (Cudd_IsComplement(cuddE(node))) { |
---|
| 1242 | item->impactP += impactN/2.0; |
---|
| 1243 | item->impactN += impactP/2.0; |
---|
| 1244 | } else { |
---|
| 1245 | item->impactP += impactP/2.0; |
---|
| 1246 | item->impactN += impactN/2.0; |
---|
| 1247 | } |
---|
| 1248 | } |
---|
| 1249 | } |
---|
| 1250 | |
---|
| 1251 | cuddLevelQueueQuit(queue); |
---|
| 1252 | cuddLevelQueueQuit(localQueue); |
---|
| 1253 | return(1); |
---|
| 1254 | |
---|
| 1255 | } /* end of UAmarkNodes */ |
---|
| 1256 | |
---|
| 1257 | |
---|
| 1258 | /**Function******************************************************************** |
---|
| 1259 | |
---|
| 1260 | Synopsis [Builds the subset BDD.] |
---|
| 1261 | |
---|
| 1262 | Description [Builds the subset BDD. Based on the info table, |
---|
| 1263 | replaces selected nodes by zero. Returns a pointer to the result if |
---|
| 1264 | successful; NULL otherwise.] |
---|
| 1265 | |
---|
| 1266 | SideEffects [None] |
---|
| 1267 | |
---|
| 1268 | SeeAlso [cuddUnderApprox] |
---|
| 1269 | |
---|
| 1270 | ******************************************************************************/ |
---|
| 1271 | static DdNode * |
---|
| 1272 | UAbuildSubset( |
---|
| 1273 | DdManager * dd /* DD manager */, |
---|
| 1274 | DdNode * node /* current node */, |
---|
| 1275 | ApproxInfo * info /* node info */) |
---|
| 1276 | { |
---|
| 1277 | |
---|
| 1278 | DdNode *Nt, *Ne, *N, *t, *e, *r; |
---|
| 1279 | NodeData *infoN; |
---|
| 1280 | |
---|
| 1281 | if (Cudd_IsConstant(node)) |
---|
| 1282 | return(node); |
---|
| 1283 | |
---|
| 1284 | N = Cudd_Regular(node); |
---|
| 1285 | |
---|
| 1286 | if (st_lookup(info->table, N, &infoN)) { |
---|
| 1287 | if (infoN->replace == TRUE) { |
---|
| 1288 | return(info->zero); |
---|
| 1289 | } |
---|
| 1290 | if (N == node ) { |
---|
| 1291 | if (infoN->resultP != NULL) { |
---|
| 1292 | return(infoN->resultP); |
---|
| 1293 | } |
---|
| 1294 | } else { |
---|
| 1295 | if (infoN->resultN != NULL) { |
---|
| 1296 | return(infoN->resultN); |
---|
| 1297 | } |
---|
| 1298 | } |
---|
| 1299 | } else { |
---|
| 1300 | (void) fprintf(dd->err, |
---|
| 1301 | "Something is wrong, ought to be in info table\n"); |
---|
| 1302 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
| 1303 | return(NULL); |
---|
| 1304 | } |
---|
| 1305 | |
---|
| 1306 | Nt = Cudd_NotCond(cuddT(N), Cudd_IsComplement(node)); |
---|
| 1307 | Ne = Cudd_NotCond(cuddE(N), Cudd_IsComplement(node)); |
---|
| 1308 | |
---|
| 1309 | t = UAbuildSubset(dd, Nt, info); |
---|
| 1310 | if (t == NULL) { |
---|
| 1311 | return(NULL); |
---|
| 1312 | } |
---|
| 1313 | cuddRef(t); |
---|
| 1314 | |
---|
| 1315 | e = UAbuildSubset(dd, Ne, info); |
---|
| 1316 | if (e == NULL) { |
---|
| 1317 | Cudd_RecursiveDeref(dd,t); |
---|
| 1318 | return(NULL); |
---|
| 1319 | } |
---|
| 1320 | cuddRef(e); |
---|
| 1321 | |
---|
| 1322 | if (Cudd_IsComplement(t)) { |
---|
| 1323 | t = Cudd_Not(t); |
---|
| 1324 | e = Cudd_Not(e); |
---|
| 1325 | r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); |
---|
| 1326 | if (r == NULL) { |
---|
| 1327 | Cudd_RecursiveDeref(dd, e); |
---|
| 1328 | Cudd_RecursiveDeref(dd, t); |
---|
| 1329 | return(NULL); |
---|
| 1330 | } |
---|
| 1331 | r = Cudd_Not(r); |
---|
| 1332 | } else { |
---|
| 1333 | r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); |
---|
| 1334 | if (r == NULL) { |
---|
| 1335 | Cudd_RecursiveDeref(dd, e); |
---|
| 1336 | Cudd_RecursiveDeref(dd, t); |
---|
| 1337 | return(NULL); |
---|
| 1338 | } |
---|
| 1339 | } |
---|
| 1340 | cuddDeref(t); |
---|
| 1341 | cuddDeref(e); |
---|
| 1342 | |
---|
| 1343 | if (N == node) { |
---|
| 1344 | infoN->resultP = r; |
---|
| 1345 | } else { |
---|
| 1346 | infoN->resultN = r; |
---|
| 1347 | } |
---|
| 1348 | |
---|
| 1349 | return(r); |
---|
| 1350 | |
---|
| 1351 | } /* end of UAbuildSubset */ |
---|
| 1352 | |
---|
| 1353 | |
---|
| 1354 | /**Function******************************************************************** |
---|
| 1355 | |
---|
| 1356 | Synopsis [Marks nodes for remapping.] |
---|
| 1357 | |
---|
| 1358 | Description [Marks nodes for remapping. Returns 1 if successful; 0 |
---|
| 1359 | otherwise.] |
---|
| 1360 | |
---|
| 1361 | SideEffects [None] |
---|
| 1362 | |
---|
| 1363 | SeeAlso [cuddRemapUnderApprox] |
---|
| 1364 | |
---|
| 1365 | ******************************************************************************/ |
---|
| 1366 | static int |
---|
| 1367 | RAmarkNodes( |
---|
| 1368 | DdManager * dd /* manager */, |
---|
| 1369 | DdNode * f /* function to be analyzed */, |
---|
| 1370 | ApproxInfo * info /* info on BDD */, |
---|
| 1371 | int threshold /* when to stop approximating */, |
---|
| 1372 | double quality /* minimum improvement for accepted changes */) |
---|
| 1373 | { |
---|
| 1374 | DdLevelQueue *queue; |
---|
| 1375 | DdLevelQueue *localQueue; |
---|
| 1376 | NodeData *infoN, *infoT, *infoE; |
---|
| 1377 | GlobalQueueItem *item; |
---|
| 1378 | DdNode *node, *T, *E; |
---|
| 1379 | DdNode *shared; /* grandchild shared by the two children of node */ |
---|
| 1380 | double numOnset; |
---|
| 1381 | double impact, impactP, impactN; |
---|
| 1382 | double minterms; |
---|
| 1383 | int savings; |
---|
| 1384 | int replace; |
---|
| 1385 | |
---|
| 1386 | #if 0 |
---|
| 1387 | (void) fprintf(dd->out,"initial size = %d initial minterms = %g\n", |
---|
| 1388 | info->size, info->minterms); |
---|
| 1389 | #endif |
---|
| 1390 | queue = cuddLevelQueueInit(dd->size,sizeof(GlobalQueueItem),info->size); |
---|
| 1391 | if (queue == NULL) { |
---|
| 1392 | return(0); |
---|
| 1393 | } |
---|
| 1394 | localQueue = cuddLevelQueueInit(dd->size,sizeof(LocalQueueItem), |
---|
| 1395 | dd->initSlots); |
---|
| 1396 | if (localQueue == NULL) { |
---|
| 1397 | cuddLevelQueueQuit(queue); |
---|
| 1398 | return(0); |
---|
| 1399 | } |
---|
| 1400 | /* Enqueue regular pointer to root and initialize impact. */ |
---|
| 1401 | node = Cudd_Regular(f); |
---|
| 1402 | item = (GlobalQueueItem *) |
---|
| 1403 | cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); |
---|
| 1404 | if (item == NULL) { |
---|
| 1405 | cuddLevelQueueQuit(queue); |
---|
| 1406 | cuddLevelQueueQuit(localQueue); |
---|
| 1407 | return(0); |
---|
| 1408 | } |
---|
| 1409 | if (Cudd_IsComplement(f)) { |
---|
| 1410 | item->impactP = 0.0; |
---|
| 1411 | item->impactN = 1.0; |
---|
| 1412 | } else { |
---|
| 1413 | item->impactP = 1.0; |
---|
| 1414 | item->impactN = 0.0; |
---|
| 1415 | } |
---|
| 1416 | /* The nodes retrieved here are guaranteed to be non-terminal. |
---|
| 1417 | ** The initial node is not terminal because constant nodes are |
---|
| 1418 | ** dealt with in the calling procedure. Subsequent nodes are inserted |
---|
| 1419 | ** only if they are not terminal. */ |
---|
| 1420 | while (queue->first != NULL) { |
---|
| 1421 | /* If the size of the subset is below the threshold, quit. */ |
---|
| 1422 | if (info->size <= threshold) |
---|
| 1423 | break; |
---|
| 1424 | item = (GlobalQueueItem *) queue->first; |
---|
| 1425 | node = item->node; |
---|
| 1426 | #ifdef DD_DEBUG |
---|
| 1427 | assert(item->impactP >= 0 && item->impactP <= 1.0); |
---|
| 1428 | assert(item->impactN >= 0 && item->impactN <= 1.0); |
---|
| 1429 | assert(!Cudd_IsComplement(node)); |
---|
| 1430 | assert(!Cudd_IsConstant(node)); |
---|
| 1431 | #endif |
---|
| 1432 | if (!st_lookup(info->table, node, &infoN)) { |
---|
| 1433 | cuddLevelQueueQuit(queue); |
---|
| 1434 | cuddLevelQueueQuit(localQueue); |
---|
| 1435 | return(0); |
---|
| 1436 | } |
---|
| 1437 | #ifdef DD_DEBUG |
---|
| 1438 | assert(infoN->parity >= 1 && infoN->parity <= 3); |
---|
| 1439 | #endif |
---|
| 1440 | if (infoN->parity == 3) { |
---|
| 1441 | /* This node can be reached through paths of different parity. |
---|
| 1442 | ** It is not safe to replace it, because remapping will give |
---|
| 1443 | ** an incorrect result, while replacement by 0 may cause node |
---|
| 1444 | ** splitting. */ |
---|
| 1445 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
| 1446 | continue; |
---|
| 1447 | } |
---|
| 1448 | T = cuddT(node); |
---|
| 1449 | E = cuddE(node); |
---|
| 1450 | shared = NULL; |
---|
| 1451 | impactP = item->impactP; |
---|
| 1452 | impactN = item->impactN; |
---|
| 1453 | if (Cudd_bddLeq(dd,T,E)) { |
---|
| 1454 | /* Here we know that E is regular. */ |
---|
| 1455 | #ifdef DD_DEBUG |
---|
| 1456 | assert(!Cudd_IsComplement(E)); |
---|
| 1457 | #endif |
---|
| 1458 | (void) st_lookup(info->table, T, &infoT); |
---|
| 1459 | (void) st_lookup(info->table, E, &infoE); |
---|
| 1460 | if (infoN->parity == 1) { |
---|
| 1461 | impact = impactP; |
---|
| 1462 | minterms = infoE->mintermsP/2.0 - infoT->mintermsP/2.0; |
---|
| 1463 | if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { |
---|
| 1464 | savings = 1 + computeSavings(dd,E,NULL,info,localQueue); |
---|
| 1465 | if (savings == 1) { |
---|
| 1466 | cuddLevelQueueQuit(queue); |
---|
| 1467 | cuddLevelQueueQuit(localQueue); |
---|
| 1468 | return(0); |
---|
| 1469 | } |
---|
| 1470 | } else { |
---|
| 1471 | savings = 1; |
---|
| 1472 | } |
---|
| 1473 | replace = REPLACE_E; |
---|
| 1474 | } else { |
---|
| 1475 | #ifdef DD_DEBUG |
---|
| 1476 | assert(infoN->parity == 2); |
---|
| 1477 | #endif |
---|
| 1478 | impact = impactN; |
---|
| 1479 | minterms = infoT->mintermsN/2.0 - infoE->mintermsN/2.0; |
---|
| 1480 | if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { |
---|
| 1481 | savings = 1 + computeSavings(dd,T,NULL,info,localQueue); |
---|
| 1482 | if (savings == 1) { |
---|
| 1483 | cuddLevelQueueQuit(queue); |
---|
| 1484 | cuddLevelQueueQuit(localQueue); |
---|
| 1485 | return(0); |
---|
| 1486 | } |
---|
| 1487 | } else { |
---|
| 1488 | savings = 1; |
---|
| 1489 | } |
---|
| 1490 | replace = REPLACE_T; |
---|
| 1491 | } |
---|
| 1492 | numOnset = impact * minterms; |
---|
| 1493 | } else if (Cudd_bddLeq(dd,E,T)) { |
---|
| 1494 | /* Here E may be complemented. */ |
---|
| 1495 | DdNode *Ereg = Cudd_Regular(E); |
---|
| 1496 | (void) st_lookup(info->table, T, &infoT); |
---|
| 1497 | (void) st_lookup(info->table, Ereg, &infoE); |
---|
| 1498 | if (infoN->parity == 1) { |
---|
| 1499 | impact = impactP; |
---|
| 1500 | minterms = infoT->mintermsP/2.0 - |
---|
| 1501 | ((E == Ereg) ? infoE->mintermsP : infoE->mintermsN)/2.0; |
---|
| 1502 | if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { |
---|
| 1503 | savings = 1 + computeSavings(dd,T,NULL,info,localQueue); |
---|
| 1504 | if (savings == 1) { |
---|
| 1505 | cuddLevelQueueQuit(queue); |
---|
| 1506 | cuddLevelQueueQuit(localQueue); |
---|
| 1507 | return(0); |
---|
| 1508 | } |
---|
| 1509 | } else { |
---|
| 1510 | savings = 1; |
---|
| 1511 | } |
---|
| 1512 | replace = REPLACE_T; |
---|
| 1513 | } else { |
---|
| 1514 | #ifdef DD_DEBUG |
---|
| 1515 | assert(infoN->parity == 2); |
---|
| 1516 | #endif |
---|
| 1517 | impact = impactN; |
---|
| 1518 | minterms = ((E == Ereg) ? infoE->mintermsN : |
---|
| 1519 | infoE->mintermsP)/2.0 - infoT->mintermsN/2.0; |
---|
| 1520 | if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { |
---|
| 1521 | savings = 1 + computeSavings(dd,E,NULL,info,localQueue); |
---|
| 1522 | if (savings == 1) { |
---|
| 1523 | cuddLevelQueueQuit(queue); |
---|
| 1524 | cuddLevelQueueQuit(localQueue); |
---|
| 1525 | return(0); |
---|
| 1526 | } |
---|
| 1527 | } else { |
---|
| 1528 | savings = 1; |
---|
| 1529 | } |
---|
| 1530 | replace = REPLACE_E; |
---|
| 1531 | } |
---|
| 1532 | numOnset = impact * minterms; |
---|
| 1533 | } else { |
---|
| 1534 | DdNode *Ereg = Cudd_Regular(E); |
---|
| 1535 | DdNode *TT = cuddT(T); |
---|
| 1536 | DdNode *ET = Cudd_NotCond(cuddT(Ereg), Cudd_IsComplement(E)); |
---|
| 1537 | if (T->index == Ereg->index && TT == ET) { |
---|
| 1538 | shared = TT; |
---|
| 1539 | replace = REPLACE_TT; |
---|
| 1540 | } else { |
---|
| 1541 | DdNode *TE = cuddE(T); |
---|
| 1542 | DdNode *EE = Cudd_NotCond(cuddE(Ereg), Cudd_IsComplement(E)); |
---|
| 1543 | if (T->index == Ereg->index && TE == EE) { |
---|
| 1544 | shared = TE; |
---|
| 1545 | replace = REPLACE_TE; |
---|
| 1546 | } else { |
---|
| 1547 | replace = REPLACE_N; |
---|
| 1548 | } |
---|
| 1549 | } |
---|
| 1550 | numOnset = infoN->mintermsP * impactP + infoN->mintermsN * impactN; |
---|
| 1551 | savings = computeSavings(dd,node,shared,info,localQueue); |
---|
| 1552 | if (shared != NULL) { |
---|
| 1553 | NodeData *infoS; |
---|
| 1554 | (void) st_lookup(info->table, Cudd_Regular(shared), &infoS); |
---|
| 1555 | if (Cudd_IsComplement(shared)) { |
---|
| 1556 | numOnset -= (infoS->mintermsN * impactP + |
---|
| 1557 | infoS->mintermsP * impactN)/2.0; |
---|
| 1558 | } else { |
---|
| 1559 | numOnset -= (infoS->mintermsP * impactP + |
---|
| 1560 | infoS->mintermsN * impactN)/2.0; |
---|
| 1561 | } |
---|
| 1562 | savings--; |
---|
| 1563 | } |
---|
| 1564 | } |
---|
| 1565 | |
---|
| 1566 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
| 1567 | #if 0 |
---|
| 1568 | if (replace == REPLACE_T || replace == REPLACE_E) |
---|
| 1569 | (void) printf("node %p: impact = %g numOnset = %g savings %d\n", |
---|
| 1570 | node, impact, numOnset, savings); |
---|
| 1571 | else |
---|
| 1572 | (void) printf("node %p: impact = %g/%g numOnset = %g savings %d\n", |
---|
| 1573 | node, impactP, impactN, numOnset, savings); |
---|
| 1574 | #endif |
---|
| 1575 | if ((1 - numOnset / info->minterms) > |
---|
| 1576 | quality * (1 - (double) savings / info->size)) { |
---|
| 1577 | infoN->replace = replace; |
---|
| 1578 | info->size -= savings; |
---|
| 1579 | info->minterms -=numOnset; |
---|
| 1580 | #if 0 |
---|
| 1581 | (void) printf("remap(%d): new size = %d new minterms = %g\n", |
---|
| 1582 | replace, info->size, info->minterms); |
---|
| 1583 | #endif |
---|
| 1584 | if (replace == REPLACE_N) { |
---|
| 1585 | savings -= updateRefs(dd,node,NULL,info,localQueue); |
---|
| 1586 | } else if (replace == REPLACE_T) { |
---|
| 1587 | savings -= updateRefs(dd,node,E,info,localQueue); |
---|
| 1588 | } else if (replace == REPLACE_E) { |
---|
| 1589 | savings -= updateRefs(dd,node,T,info,localQueue); |
---|
| 1590 | } else { |
---|
| 1591 | #ifdef DD_DEBUG |
---|
| 1592 | assert(replace == REPLACE_TT || replace == REPLACE_TE); |
---|
| 1593 | #endif |
---|
| 1594 | savings -= updateRefs(dd,node,shared,info,localQueue) - 1; |
---|
| 1595 | } |
---|
| 1596 | assert(savings == 0); |
---|
| 1597 | } else { |
---|
| 1598 | replace = NOTHING; |
---|
| 1599 | } |
---|
| 1600 | if (replace == REPLACE_N) continue; |
---|
| 1601 | if ((replace == REPLACE_E || replace == NOTHING) && |
---|
| 1602 | !cuddIsConstant(cuddT(node))) { |
---|
| 1603 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), |
---|
| 1604 | cuddI(dd,cuddT(node)->index)); |
---|
| 1605 | if (replace == REPLACE_E) { |
---|
| 1606 | item->impactP += impactP; |
---|
| 1607 | item->impactN += impactN; |
---|
| 1608 | } else { |
---|
| 1609 | item->impactP += impactP/2.0; |
---|
| 1610 | item->impactN += impactN/2.0; |
---|
| 1611 | } |
---|
| 1612 | } |
---|
| 1613 | if ((replace == REPLACE_T || replace == NOTHING) && |
---|
| 1614 | !Cudd_IsConstant(cuddE(node))) { |
---|
| 1615 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), |
---|
| 1616 | cuddI(dd,Cudd_Regular(cuddE(node))->index)); |
---|
| 1617 | if (Cudd_IsComplement(cuddE(node))) { |
---|
| 1618 | if (replace == REPLACE_T) { |
---|
| 1619 | item->impactP += impactN; |
---|
| 1620 | item->impactN += impactP; |
---|
| 1621 | } else { |
---|
| 1622 | item->impactP += impactN/2.0; |
---|
| 1623 | item->impactN += impactP/2.0; |
---|
| 1624 | } |
---|
| 1625 | } else { |
---|
| 1626 | if (replace == REPLACE_T) { |
---|
| 1627 | item->impactP += impactP; |
---|
| 1628 | item->impactN += impactN; |
---|
| 1629 | } else { |
---|
| 1630 | item->impactP += impactP/2.0; |
---|
| 1631 | item->impactN += impactN/2.0; |
---|
| 1632 | } |
---|
| 1633 | } |
---|
| 1634 | } |
---|
| 1635 | if ((replace == REPLACE_TT || replace == REPLACE_TE) && |
---|
| 1636 | !Cudd_IsConstant(shared)) { |
---|
| 1637 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(shared), |
---|
| 1638 | cuddI(dd,Cudd_Regular(shared)->index)); |
---|
| 1639 | if (Cudd_IsComplement(shared)) { |
---|
| 1640 | if (replace == REPLACE_T) { |
---|
| 1641 | item->impactP += impactN; |
---|
| 1642 | item->impactN += impactP; |
---|
| 1643 | } else { |
---|
| 1644 | item->impactP += impactN/2.0; |
---|
| 1645 | item->impactN += impactP/2.0; |
---|
| 1646 | } |
---|
| 1647 | } else { |
---|
| 1648 | if (replace == REPLACE_T) { |
---|
| 1649 | item->impactP += impactP; |
---|
| 1650 | item->impactN += impactN; |
---|
| 1651 | } else { |
---|
| 1652 | item->impactP += impactP/2.0; |
---|
| 1653 | item->impactN += impactN/2.0; |
---|
| 1654 | } |
---|
| 1655 | } |
---|
| 1656 | } |
---|
| 1657 | } |
---|
| 1658 | |
---|
| 1659 | cuddLevelQueueQuit(queue); |
---|
| 1660 | cuddLevelQueueQuit(localQueue); |
---|
| 1661 | return(1); |
---|
| 1662 | |
---|
| 1663 | } /* end of RAmarkNodes */ |
---|
| 1664 | |
---|
| 1665 | |
---|
| 1666 | /**Function******************************************************************** |
---|
| 1667 | |
---|
| 1668 | Synopsis [Marks nodes for remapping.] |
---|
| 1669 | |
---|
| 1670 | Description [Marks nodes for remapping. Returns 1 if successful; 0 |
---|
| 1671 | otherwise.] |
---|
| 1672 | |
---|
| 1673 | SideEffects [None] |
---|
| 1674 | |
---|
| 1675 | SeeAlso [cuddRemapUnderApprox] |
---|
| 1676 | |
---|
| 1677 | ******************************************************************************/ |
---|
| 1678 | static int |
---|
| 1679 | BAmarkNodes( |
---|
| 1680 | DdManager *dd /* manager */, |
---|
| 1681 | DdNode *f /* function to be analyzed */, |
---|
| 1682 | ApproxInfo *info /* info on BDD */, |
---|
| 1683 | int threshold /* when to stop approximating */, |
---|
| 1684 | double quality1 /* minimum improvement for accepted changes when b=1 */, |
---|
| 1685 | double quality0 /* minimum improvement for accepted changes when b=0 */) |
---|
| 1686 | { |
---|
| 1687 | DdLevelQueue *queue; |
---|
| 1688 | DdLevelQueue *localQueue; |
---|
| 1689 | NodeData *infoN, *infoT, *infoE; |
---|
| 1690 | GlobalQueueItem *item; |
---|
| 1691 | DdNode *node, *T, *E; |
---|
| 1692 | DdNode *shared; /* grandchild shared by the two children of node */ |
---|
| 1693 | double numOnset; |
---|
| 1694 | double impact, impactP, impactN; |
---|
| 1695 | double minterms; |
---|
| 1696 | double quality; |
---|
| 1697 | int savings; |
---|
| 1698 | int replace; |
---|
| 1699 | |
---|
| 1700 | #if 0 |
---|
| 1701 | (void) fprintf(dd->out,"initial size = %d initial minterms = %g\n", |
---|
| 1702 | info->size, info->minterms); |
---|
| 1703 | #endif |
---|
| 1704 | queue = cuddLevelQueueInit(dd->size,sizeof(GlobalQueueItem),info->size); |
---|
| 1705 | if (queue == NULL) { |
---|
| 1706 | return(0); |
---|
| 1707 | } |
---|
| 1708 | localQueue = cuddLevelQueueInit(dd->size,sizeof(LocalQueueItem), |
---|
| 1709 | dd->initSlots); |
---|
| 1710 | if (localQueue == NULL) { |
---|
| 1711 | cuddLevelQueueQuit(queue); |
---|
| 1712 | return(0); |
---|
| 1713 | } |
---|
| 1714 | /* Enqueue regular pointer to root and initialize impact. */ |
---|
| 1715 | node = Cudd_Regular(f); |
---|
| 1716 | item = (GlobalQueueItem *) |
---|
| 1717 | cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); |
---|
| 1718 | if (item == NULL) { |
---|
| 1719 | cuddLevelQueueQuit(queue); |
---|
| 1720 | cuddLevelQueueQuit(localQueue); |
---|
| 1721 | return(0); |
---|
| 1722 | } |
---|
| 1723 | if (Cudd_IsComplement(f)) { |
---|
| 1724 | item->impactP = 0.0; |
---|
| 1725 | item->impactN = 1.0; |
---|
| 1726 | } else { |
---|
| 1727 | item->impactP = 1.0; |
---|
| 1728 | item->impactN = 0.0; |
---|
| 1729 | } |
---|
| 1730 | /* The nodes retrieved here are guaranteed to be non-terminal. |
---|
| 1731 | ** The initial node is not terminal because constant nodes are |
---|
| 1732 | ** dealt with in the calling procedure. Subsequent nodes are inserted |
---|
| 1733 | ** only if they are not terminal. */ |
---|
| 1734 | while (queue->first != NULL) { |
---|
| 1735 | /* If the size of the subset is below the threshold, quit. */ |
---|
| 1736 | if (info->size <= threshold) |
---|
| 1737 | break; |
---|
| 1738 | item = (GlobalQueueItem *) queue->first; |
---|
| 1739 | node = item->node; |
---|
| 1740 | #ifdef DD_DEBUG |
---|
| 1741 | assert(item->impactP >= 0 && item->impactP <= 1.0); |
---|
| 1742 | assert(item->impactN >= 0 && item->impactN <= 1.0); |
---|
| 1743 | assert(!Cudd_IsComplement(node)); |
---|
| 1744 | assert(!Cudd_IsConstant(node)); |
---|
| 1745 | #endif |
---|
| 1746 | if (!st_lookup(info->table, node, &infoN)) { |
---|
| 1747 | cuddLevelQueueQuit(queue); |
---|
| 1748 | cuddLevelQueueQuit(localQueue); |
---|
| 1749 | return(0); |
---|
| 1750 | } |
---|
| 1751 | quality = infoN->care ? quality1 : quality0; |
---|
| 1752 | #ifdef DD_DEBUG |
---|
| 1753 | assert(infoN->parity >= 1 && infoN->parity <= 3); |
---|
| 1754 | #endif |
---|
| 1755 | if (infoN->parity == 3) { |
---|
| 1756 | /* This node can be reached through paths of different parity. |
---|
| 1757 | ** It is not safe to replace it, because remapping will give |
---|
| 1758 | ** an incorrect result, while replacement by 0 may cause node |
---|
| 1759 | ** splitting. */ |
---|
| 1760 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
| 1761 | continue; |
---|
| 1762 | } |
---|
| 1763 | T = cuddT(node); |
---|
| 1764 | E = cuddE(node); |
---|
| 1765 | shared = NULL; |
---|
| 1766 | impactP = item->impactP; |
---|
| 1767 | impactN = item->impactN; |
---|
| 1768 | if (Cudd_bddLeq(dd,T,E)) { |
---|
| 1769 | /* Here we know that E is regular. */ |
---|
| 1770 | #ifdef DD_DEBUG |
---|
| 1771 | assert(!Cudd_IsComplement(E)); |
---|
| 1772 | #endif |
---|
| 1773 | (void) st_lookup(info->table, T, &infoT); |
---|
| 1774 | (void) st_lookup(info->table, E, &infoE); |
---|
| 1775 | if (infoN->parity == 1) { |
---|
| 1776 | impact = impactP; |
---|
| 1777 | minterms = infoE->mintermsP/2.0 - infoT->mintermsP/2.0; |
---|
| 1778 | if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { |
---|
| 1779 | savings = 1 + computeSavings(dd,E,NULL,info,localQueue); |
---|
| 1780 | if (savings == 1) { |
---|
| 1781 | cuddLevelQueueQuit(queue); |
---|
| 1782 | cuddLevelQueueQuit(localQueue); |
---|
| 1783 | return(0); |
---|
| 1784 | } |
---|
| 1785 | } else { |
---|
| 1786 | savings = 1; |
---|
| 1787 | } |
---|
| 1788 | replace = REPLACE_E; |
---|
| 1789 | } else { |
---|
| 1790 | #ifdef DD_DEBUG |
---|
| 1791 | assert(infoN->parity == 2); |
---|
| 1792 | #endif |
---|
| 1793 | impact = impactN; |
---|
| 1794 | minterms = infoT->mintermsN/2.0 - infoE->mintermsN/2.0; |
---|
| 1795 | if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { |
---|
| 1796 | savings = 1 + computeSavings(dd,T,NULL,info,localQueue); |
---|
| 1797 | if (savings == 1) { |
---|
| 1798 | cuddLevelQueueQuit(queue); |
---|
| 1799 | cuddLevelQueueQuit(localQueue); |
---|
| 1800 | return(0); |
---|
| 1801 | } |
---|
| 1802 | } else { |
---|
| 1803 | savings = 1; |
---|
| 1804 | } |
---|
| 1805 | replace = REPLACE_T; |
---|
| 1806 | } |
---|
| 1807 | numOnset = impact * minterms; |
---|
| 1808 | } else if (Cudd_bddLeq(dd,E,T)) { |
---|
| 1809 | /* Here E may be complemented. */ |
---|
| 1810 | DdNode *Ereg = Cudd_Regular(E); |
---|
| 1811 | (void) st_lookup(info->table, T, &infoT); |
---|
| 1812 | (void) st_lookup(info->table, Ereg, &infoE); |
---|
| 1813 | if (infoN->parity == 1) { |
---|
| 1814 | impact = impactP; |
---|
| 1815 | minterms = infoT->mintermsP/2.0 - |
---|
| 1816 | ((E == Ereg) ? infoE->mintermsP : infoE->mintermsN)/2.0; |
---|
| 1817 | if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { |
---|
| 1818 | savings = 1 + computeSavings(dd,T,NULL,info,localQueue); |
---|
| 1819 | if (savings == 1) { |
---|
| 1820 | cuddLevelQueueQuit(queue); |
---|
| 1821 | cuddLevelQueueQuit(localQueue); |
---|
| 1822 | return(0); |
---|
| 1823 | } |
---|
| 1824 | } else { |
---|
| 1825 | savings = 1; |
---|
| 1826 | } |
---|
| 1827 | replace = REPLACE_T; |
---|
| 1828 | } else { |
---|
| 1829 | #ifdef DD_DEBUG |
---|
| 1830 | assert(infoN->parity == 2); |
---|
| 1831 | #endif |
---|
| 1832 | impact = impactN; |
---|
| 1833 | minterms = ((E == Ereg) ? infoE->mintermsN : |
---|
| 1834 | infoE->mintermsP)/2.0 - infoT->mintermsN/2.0; |
---|
| 1835 | if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { |
---|
| 1836 | savings = 1 + computeSavings(dd,E,NULL,info,localQueue); |
---|
| 1837 | if (savings == 1) { |
---|
| 1838 | cuddLevelQueueQuit(queue); |
---|
| 1839 | cuddLevelQueueQuit(localQueue); |
---|
| 1840 | return(0); |
---|
| 1841 | } |
---|
| 1842 | } else { |
---|
| 1843 | savings = 1; |
---|
| 1844 | } |
---|
| 1845 | replace = REPLACE_E; |
---|
| 1846 | } |
---|
| 1847 | numOnset = impact * minterms; |
---|
| 1848 | } else { |
---|
| 1849 | DdNode *Ereg = Cudd_Regular(E); |
---|
| 1850 | DdNode *TT = cuddT(T); |
---|
| 1851 | DdNode *ET = Cudd_NotCond(cuddT(Ereg), Cudd_IsComplement(E)); |
---|
| 1852 | if (T->index == Ereg->index && TT == ET) { |
---|
| 1853 | shared = TT; |
---|
| 1854 | replace = REPLACE_TT; |
---|
| 1855 | } else { |
---|
| 1856 | DdNode *TE = cuddE(T); |
---|
| 1857 | DdNode *EE = Cudd_NotCond(cuddE(Ereg), Cudd_IsComplement(E)); |
---|
| 1858 | if (T->index == Ereg->index && TE == EE) { |
---|
| 1859 | shared = TE; |
---|
| 1860 | replace = REPLACE_TE; |
---|
| 1861 | } else { |
---|
| 1862 | replace = REPLACE_N; |
---|
| 1863 | } |
---|
| 1864 | } |
---|
| 1865 | numOnset = infoN->mintermsP * impactP + infoN->mintermsN * impactN; |
---|
| 1866 | savings = computeSavings(dd,node,shared,info,localQueue); |
---|
| 1867 | if (shared != NULL) { |
---|
| 1868 | NodeData *infoS; |
---|
| 1869 | (void) st_lookup(info->table, Cudd_Regular(shared), &infoS); |
---|
| 1870 | if (Cudd_IsComplement(shared)) { |
---|
| 1871 | numOnset -= (infoS->mintermsN * impactP + |
---|
| 1872 | infoS->mintermsP * impactN)/2.0; |
---|
| 1873 | } else { |
---|
| 1874 | numOnset -= (infoS->mintermsP * impactP + |
---|
| 1875 | infoS->mintermsN * impactN)/2.0; |
---|
| 1876 | } |
---|
| 1877 | savings--; |
---|
| 1878 | } |
---|
| 1879 | } |
---|
| 1880 | |
---|
| 1881 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
| 1882 | #if 0 |
---|
| 1883 | if (replace == REPLACE_T || replace == REPLACE_E) |
---|
| 1884 | (void) printf("node %p: impact = %g numOnset = %g savings %d\n", |
---|
| 1885 | node, impact, numOnset, savings); |
---|
| 1886 | else |
---|
| 1887 | (void) printf("node %p: impact = %g/%g numOnset = %g savings %d\n", |
---|
| 1888 | node, impactP, impactN, numOnset, savings); |
---|
| 1889 | #endif |
---|
| 1890 | if ((1 - numOnset / info->minterms) > |
---|
| 1891 | quality * (1 - (double) savings / info->size)) { |
---|
| 1892 | infoN->replace = replace; |
---|
| 1893 | info->size -= savings; |
---|
| 1894 | info->minterms -=numOnset; |
---|
| 1895 | #if 0 |
---|
| 1896 | (void) printf("remap(%d): new size = %d new minterms = %g\n", |
---|
| 1897 | replace, info->size, info->minterms); |
---|
| 1898 | #endif |
---|
| 1899 | if (replace == REPLACE_N) { |
---|
| 1900 | savings -= updateRefs(dd,node,NULL,info,localQueue); |
---|
| 1901 | } else if (replace == REPLACE_T) { |
---|
| 1902 | savings -= updateRefs(dd,node,E,info,localQueue); |
---|
| 1903 | } else if (replace == REPLACE_E) { |
---|
| 1904 | savings -= updateRefs(dd,node,T,info,localQueue); |
---|
| 1905 | } else { |
---|
| 1906 | #ifdef DD_DEBUG |
---|
| 1907 | assert(replace == REPLACE_TT || replace == REPLACE_TE); |
---|
| 1908 | #endif |
---|
| 1909 | savings -= updateRefs(dd,node,shared,info,localQueue) - 1; |
---|
| 1910 | } |
---|
| 1911 | assert(savings == 0); |
---|
| 1912 | } else { |
---|
| 1913 | replace = NOTHING; |
---|
| 1914 | } |
---|
| 1915 | if (replace == REPLACE_N) continue; |
---|
| 1916 | if ((replace == REPLACE_E || replace == NOTHING) && |
---|
| 1917 | !cuddIsConstant(cuddT(node))) { |
---|
| 1918 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), |
---|
| 1919 | cuddI(dd,cuddT(node)->index)); |
---|
| 1920 | if (replace == REPLACE_E) { |
---|
| 1921 | item->impactP += impactP; |
---|
| 1922 | item->impactN += impactN; |
---|
| 1923 | } else { |
---|
| 1924 | item->impactP += impactP/2.0; |
---|
| 1925 | item->impactN += impactN/2.0; |
---|
| 1926 | } |
---|
| 1927 | } |
---|
| 1928 | if ((replace == REPLACE_T || replace == NOTHING) && |
---|
| 1929 | !Cudd_IsConstant(cuddE(node))) { |
---|
| 1930 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), |
---|
| 1931 | cuddI(dd,Cudd_Regular(cuddE(node))->index)); |
---|
| 1932 | if (Cudd_IsComplement(cuddE(node))) { |
---|
| 1933 | if (replace == REPLACE_T) { |
---|
| 1934 | item->impactP += impactN; |
---|
| 1935 | item->impactN += impactP; |
---|
| 1936 | } else { |
---|
| 1937 | item->impactP += impactN/2.0; |
---|
| 1938 | item->impactN += impactP/2.0; |
---|
| 1939 | } |
---|
| 1940 | } else { |
---|
| 1941 | if (replace == REPLACE_T) { |
---|
| 1942 | item->impactP += impactP; |
---|
| 1943 | item->impactN += impactN; |
---|
| 1944 | } else { |
---|
| 1945 | item->impactP += impactP/2.0; |
---|
| 1946 | item->impactN += impactN/2.0; |
---|
| 1947 | } |
---|
| 1948 | } |
---|
| 1949 | } |
---|
| 1950 | if ((replace == REPLACE_TT || replace == REPLACE_TE) && |
---|
| 1951 | !Cudd_IsConstant(shared)) { |
---|
| 1952 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(shared), |
---|
| 1953 | cuddI(dd,Cudd_Regular(shared)->index)); |
---|
| 1954 | if (Cudd_IsComplement(shared)) { |
---|
| 1955 | if (replace == REPLACE_T) { |
---|
| 1956 | item->impactP += impactN; |
---|
| 1957 | item->impactN += impactP; |
---|
| 1958 | } else { |
---|
| 1959 | item->impactP += impactN/2.0; |
---|
| 1960 | item->impactN += impactP/2.0; |
---|
| 1961 | } |
---|
| 1962 | } else { |
---|
| 1963 | if (replace == REPLACE_T) { |
---|
| 1964 | item->impactP += impactP; |
---|
| 1965 | item->impactN += impactN; |
---|
| 1966 | } else { |
---|
| 1967 | item->impactP += impactP/2.0; |
---|
| 1968 | item->impactN += impactN/2.0; |
---|
| 1969 | } |
---|
| 1970 | } |
---|
| 1971 | } |
---|
| 1972 | } |
---|
| 1973 | |
---|
| 1974 | cuddLevelQueueQuit(queue); |
---|
| 1975 | cuddLevelQueueQuit(localQueue); |
---|
| 1976 | return(1); |
---|
| 1977 | |
---|
| 1978 | } /* end of BAmarkNodes */ |
---|
| 1979 | |
---|
| 1980 | |
---|
| 1981 | /**Function******************************************************************** |
---|
| 1982 | |
---|
| 1983 | Synopsis [Builds the subset BDD for cuddRemapUnderApprox.] |
---|
| 1984 | |
---|
| 1985 | Description [Builds the subset BDDfor cuddRemapUnderApprox. Based |
---|
| 1986 | on the info table, performs remapping or replacement at selected |
---|
| 1987 | nodes. Returns a pointer to the result if successful; NULL |
---|
| 1988 | otherwise.] |
---|
| 1989 | |
---|
| 1990 | SideEffects [None] |
---|
| 1991 | |
---|
| 1992 | SeeAlso [cuddRemapUnderApprox] |
---|
| 1993 | |
---|
| 1994 | ******************************************************************************/ |
---|
| 1995 | static DdNode * |
---|
| 1996 | RAbuildSubset( |
---|
| 1997 | DdManager * dd /* DD manager */, |
---|
| 1998 | DdNode * node /* current node */, |
---|
| 1999 | ApproxInfo * info /* node info */) |
---|
| 2000 | { |
---|
| 2001 | DdNode *Nt, *Ne, *N, *t, *e, *r; |
---|
| 2002 | NodeData *infoN; |
---|
| 2003 | |
---|
| 2004 | if (Cudd_IsConstant(node)) |
---|
| 2005 | return(node); |
---|
| 2006 | |
---|
| 2007 | N = Cudd_Regular(node); |
---|
| 2008 | |
---|
| 2009 | Nt = Cudd_NotCond(cuddT(N), Cudd_IsComplement(node)); |
---|
| 2010 | Ne = Cudd_NotCond(cuddE(N), Cudd_IsComplement(node)); |
---|
| 2011 | |
---|
| 2012 | if (st_lookup(info->table, N, &infoN)) { |
---|
| 2013 | if (N == node ) { |
---|
| 2014 | if (infoN->resultP != NULL) { |
---|
| 2015 | return(infoN->resultP); |
---|
| 2016 | } |
---|
| 2017 | } else { |
---|
| 2018 | if (infoN->resultN != NULL) { |
---|
| 2019 | return(infoN->resultN); |
---|
| 2020 | } |
---|
| 2021 | } |
---|
| 2022 | if (infoN->replace == REPLACE_T) { |
---|
| 2023 | r = RAbuildSubset(dd, Ne, info); |
---|
| 2024 | return(r); |
---|
| 2025 | } else if (infoN->replace == REPLACE_E) { |
---|
| 2026 | r = RAbuildSubset(dd, Nt, info); |
---|
| 2027 | return(r); |
---|
| 2028 | } else if (infoN->replace == REPLACE_N) { |
---|
| 2029 | return(info->zero); |
---|
| 2030 | } else if (infoN->replace == REPLACE_TT) { |
---|
| 2031 | DdNode *Ntt = Cudd_NotCond(cuddT(cuddT(N)), |
---|
| 2032 | Cudd_IsComplement(node)); |
---|
| 2033 | int index = cuddT(N)->index; |
---|
| 2034 | DdNode *e = info->zero; |
---|
| 2035 | DdNode *t = RAbuildSubset(dd, Ntt, info); |
---|
| 2036 | if (t == NULL) { |
---|
| 2037 | return(NULL); |
---|
| 2038 | } |
---|
| 2039 | cuddRef(t); |
---|
| 2040 | if (Cudd_IsComplement(t)) { |
---|
| 2041 | t = Cudd_Not(t); |
---|
| 2042 | e = Cudd_Not(e); |
---|
| 2043 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 2044 | if (r == NULL) { |
---|
| 2045 | Cudd_RecursiveDeref(dd, t); |
---|
| 2046 | return(NULL); |
---|
| 2047 | } |
---|
| 2048 | r = Cudd_Not(r); |
---|
| 2049 | } else { |
---|
| 2050 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 2051 | if (r == NULL) { |
---|
| 2052 | Cudd_RecursiveDeref(dd, t); |
---|
| 2053 | return(NULL); |
---|
| 2054 | } |
---|
| 2055 | } |
---|
| 2056 | cuddDeref(t); |
---|
| 2057 | return(r); |
---|
| 2058 | } else if (infoN->replace == REPLACE_TE) { |
---|
| 2059 | DdNode *Nte = Cudd_NotCond(cuddE(cuddT(N)), |
---|
| 2060 | Cudd_IsComplement(node)); |
---|
| 2061 | int index = cuddT(N)->index; |
---|
| 2062 | DdNode *t = info->one; |
---|
| 2063 | DdNode *e = RAbuildSubset(dd, Nte, info); |
---|
| 2064 | if (e == NULL) { |
---|
| 2065 | return(NULL); |
---|
| 2066 | } |
---|
| 2067 | cuddRef(e); |
---|
| 2068 | e = Cudd_Not(e); |
---|
| 2069 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 2070 | if (r == NULL) { |
---|
| 2071 | Cudd_RecursiveDeref(dd, e); |
---|
| 2072 | return(NULL); |
---|
| 2073 | } |
---|
| 2074 | r =Cudd_Not(r); |
---|
| 2075 | cuddDeref(e); |
---|
| 2076 | return(r); |
---|
| 2077 | } |
---|
| 2078 | } else { |
---|
| 2079 | (void) fprintf(dd->err, |
---|
| 2080 | "Something is wrong, ought to be in info table\n"); |
---|
| 2081 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
| 2082 | return(NULL); |
---|
| 2083 | } |
---|
| 2084 | |
---|
| 2085 | t = RAbuildSubset(dd, Nt, info); |
---|
| 2086 | if (t == NULL) { |
---|
| 2087 | return(NULL); |
---|
| 2088 | } |
---|
| 2089 | cuddRef(t); |
---|
| 2090 | |
---|
| 2091 | e = RAbuildSubset(dd, Ne, info); |
---|
| 2092 | if (e == NULL) { |
---|
| 2093 | Cudd_RecursiveDeref(dd,t); |
---|
| 2094 | return(NULL); |
---|
| 2095 | } |
---|
| 2096 | cuddRef(e); |
---|
| 2097 | |
---|
| 2098 | if (Cudd_IsComplement(t)) { |
---|
| 2099 | t = Cudd_Not(t); |
---|
| 2100 | e = Cudd_Not(e); |
---|
| 2101 | r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); |
---|
| 2102 | if (r == NULL) { |
---|
| 2103 | Cudd_RecursiveDeref(dd, e); |
---|
| 2104 | Cudd_RecursiveDeref(dd, t); |
---|
| 2105 | return(NULL); |
---|
| 2106 | } |
---|
| 2107 | r = Cudd_Not(r); |
---|
| 2108 | } else { |
---|
| 2109 | r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); |
---|
| 2110 | if (r == NULL) { |
---|
| 2111 | Cudd_RecursiveDeref(dd, e); |
---|
| 2112 | Cudd_RecursiveDeref(dd, t); |
---|
| 2113 | return(NULL); |
---|
| 2114 | } |
---|
| 2115 | } |
---|
| 2116 | cuddDeref(t); |
---|
| 2117 | cuddDeref(e); |
---|
| 2118 | |
---|
| 2119 | if (N == node) { |
---|
| 2120 | infoN->resultP = r; |
---|
| 2121 | } else { |
---|
| 2122 | infoN->resultN = r; |
---|
| 2123 | } |
---|
| 2124 | |
---|
| 2125 | return(r); |
---|
| 2126 | |
---|
| 2127 | } /* end of RAbuildSubset */ |
---|
| 2128 | |
---|
| 2129 | |
---|
| 2130 | /**Function******************************************************************** |
---|
| 2131 | |
---|
| 2132 | Synopsis [Finds don't care nodes.] |
---|
| 2133 | |
---|
| 2134 | Description [Finds don't care nodes by traversing f and b in parallel. |
---|
| 2135 | Returns the care status of the visited f node if successful; CARE_ERROR |
---|
| 2136 | otherwise.] |
---|
| 2137 | |
---|
| 2138 | SideEffects [None] |
---|
| 2139 | |
---|
| 2140 | SeeAlso [cuddBiasedUnderApprox] |
---|
| 2141 | |
---|
| 2142 | ******************************************************************************/ |
---|
| 2143 | static int |
---|
| 2144 | BAapplyBias( |
---|
| 2145 | DdManager *dd, |
---|
| 2146 | DdNode *f, |
---|
| 2147 | DdNode *b, |
---|
| 2148 | ApproxInfo *info, |
---|
| 2149 | DdHashTable *cache) |
---|
| 2150 | { |
---|
| 2151 | DdNode *one, *zero, *res; |
---|
| 2152 | DdNode *Ft, *Fe, *B, *Bt, *Be; |
---|
| 2153 | unsigned int topf, topb; |
---|
| 2154 | NodeData *infoF; |
---|
| 2155 | int careT, careE; |
---|
| 2156 | |
---|
| 2157 | one = DD_ONE(dd); |
---|
| 2158 | zero = Cudd_Not(one); |
---|
| 2159 | |
---|
| 2160 | if (!st_lookup(info->table, f, &infoF)) |
---|
| 2161 | return(CARE_ERROR); |
---|
| 2162 | if (f == one) return(TOTAL_CARE); |
---|
| 2163 | if (b == zero) return(infoF->care); |
---|
| 2164 | if (infoF->care == TOTAL_CARE) return(TOTAL_CARE); |
---|
| 2165 | |
---|
| 2166 | if ((f->ref != 1 || Cudd_Regular(b)->ref != 1) && |
---|
| 2167 | (res = cuddHashTableLookup2(cache,f,b)) != NULL) { |
---|
| 2168 | if (res->ref == 0) { |
---|
| 2169 | cache->manager->dead++; |
---|
| 2170 | cache->manager->constants.dead++; |
---|
| 2171 | } |
---|
| 2172 | return(infoF->care); |
---|
| 2173 | } |
---|
| 2174 | |
---|
| 2175 | topf = dd->perm[f->index]; |
---|
| 2176 | B = Cudd_Regular(b); |
---|
| 2177 | topb = cuddI(dd,B->index); |
---|
| 2178 | if (topf <= topb) { |
---|
| 2179 | Ft = cuddT(f); Fe = cuddE(f); |
---|
| 2180 | } else { |
---|
| 2181 | Ft = Fe = f; |
---|
| 2182 | } |
---|
| 2183 | if (topb <= topf) { |
---|
| 2184 | /* We know that b is not constant because f is not. */ |
---|
| 2185 | Bt = cuddT(B); Be = cuddE(B); |
---|
| 2186 | if (Cudd_IsComplement(b)) { |
---|
| 2187 | Bt = Cudd_Not(Bt); |
---|
| 2188 | Be = Cudd_Not(Be); |
---|
| 2189 | } |
---|
| 2190 | } else { |
---|
| 2191 | Bt = Be = b; |
---|
| 2192 | } |
---|
| 2193 | |
---|
| 2194 | careT = BAapplyBias(dd, Ft, Bt, info, cache); |
---|
| 2195 | if (careT == CARE_ERROR) |
---|
| 2196 | return(CARE_ERROR); |
---|
| 2197 | careE = BAapplyBias(dd, Cudd_Regular(Fe), Be, info, cache); |
---|
| 2198 | if (careE == CARE_ERROR) |
---|
| 2199 | return(CARE_ERROR); |
---|
| 2200 | if (careT == TOTAL_CARE && careE == TOTAL_CARE) { |
---|
| 2201 | infoF->care = TOTAL_CARE; |
---|
| 2202 | } else { |
---|
| 2203 | infoF->care = CARE; |
---|
| 2204 | } |
---|
| 2205 | |
---|
| 2206 | if (f->ref != 1 || Cudd_Regular(b)->ref != 1) { |
---|
| 2207 | ptrint fanout = (ptrint) f->ref * Cudd_Regular(b)->ref; |
---|
| 2208 | cuddSatDec(fanout); |
---|
| 2209 | if (!cuddHashTableInsert2(cache,f,b,one,fanout)) { |
---|
| 2210 | return(CARE_ERROR); |
---|
| 2211 | } |
---|
| 2212 | } |
---|
| 2213 | return(infoF->care); |
---|
| 2214 | |
---|
| 2215 | } /* end of BAapplyBias */ |
---|