[8] | 1 | /**CFile*********************************************************************** |
---|
| 2 | |
---|
| 3 | FileName [cuddDecomp.c] |
---|
| 4 | |
---|
| 5 | PackageName [cudd] |
---|
| 6 | |
---|
| 7 | Synopsis [Functions for BDD decomposition.] |
---|
| 8 | |
---|
| 9 | Description [External procedures included in this file: |
---|
| 10 | <ul> |
---|
| 11 | <li> Cudd_bddApproxConjDecomp() |
---|
| 12 | <li> Cudd_bddApproxDisjDecomp() |
---|
| 13 | <li> Cudd_bddIterConjDecomp() |
---|
| 14 | <li> Cudd_bddIterDisjDecomp() |
---|
| 15 | <li> Cudd_bddGenConjDecomp() |
---|
| 16 | <li> Cudd_bddGenDisjDecomp() |
---|
| 17 | <li> Cudd_bddVarConjDecomp() |
---|
| 18 | <li> Cudd_bddVarDisjDecomp() |
---|
| 19 | </ul> |
---|
| 20 | Static procedures included in this module: |
---|
| 21 | <ul> |
---|
| 22 | <li> cuddConjunctsAux() |
---|
| 23 | <li> CreateBotDist() |
---|
| 24 | <li> BuildConjuncts() |
---|
| 25 | <li> ConjunctsFree() |
---|
| 26 | </ul>] |
---|
| 27 | |
---|
| 28 | Author [Kavita Ravi, Fabio Somenzi] |
---|
| 29 | |
---|
| 30 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
| 31 | |
---|
| 32 | All rights reserved. |
---|
| 33 | |
---|
| 34 | Redistribution and use in source and binary forms, with or without |
---|
| 35 | modification, are permitted provided that the following conditions |
---|
| 36 | are met: |
---|
| 37 | |
---|
| 38 | Redistributions of source code must retain the above copyright |
---|
| 39 | notice, this list of conditions and the following disclaimer. |
---|
| 40 | |
---|
| 41 | Redistributions in binary form must reproduce the above copyright |
---|
| 42 | notice, this list of conditions and the following disclaimer in the |
---|
| 43 | documentation and/or other materials provided with the distribution. |
---|
| 44 | |
---|
| 45 | Neither the name of the University of Colorado nor the names of its |
---|
| 46 | contributors may be used to endorse or promote products derived from |
---|
| 47 | this software without specific prior written permission. |
---|
| 48 | |
---|
| 49 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 50 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 51 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
| 52 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
| 53 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
| 54 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
| 55 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
| 56 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
| 57 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
| 58 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
| 59 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
| 60 | POSSIBILITY OF SUCH DAMAGE.] |
---|
| 61 | |
---|
| 62 | ******************************************************************************/ |
---|
| 63 | |
---|
| 64 | #include "util.h" |
---|
| 65 | #include "cuddInt.h" |
---|
| 66 | |
---|
| 67 | /*---------------------------------------------------------------------------*/ |
---|
| 68 | /* Constant declarations */ |
---|
| 69 | /*---------------------------------------------------------------------------*/ |
---|
| 70 | #define DEPTH 5 |
---|
| 71 | #define THRESHOLD 10 |
---|
| 72 | #define NONE 0 |
---|
| 73 | #define PAIR_ST 1 |
---|
| 74 | #define PAIR_CR 2 |
---|
| 75 | #define G_ST 3 |
---|
| 76 | #define G_CR 4 |
---|
| 77 | #define H_ST 5 |
---|
| 78 | #define H_CR 6 |
---|
| 79 | #define BOTH_G 7 |
---|
| 80 | #define BOTH_H 8 |
---|
| 81 | |
---|
| 82 | /*---------------------------------------------------------------------------*/ |
---|
| 83 | /* Stucture declarations */ |
---|
| 84 | /*---------------------------------------------------------------------------*/ |
---|
| 85 | |
---|
| 86 | /*---------------------------------------------------------------------------*/ |
---|
| 87 | /* Type declarations */ |
---|
| 88 | /*---------------------------------------------------------------------------*/ |
---|
| 89 | typedef struct Conjuncts { |
---|
| 90 | DdNode *g; |
---|
| 91 | DdNode *h; |
---|
| 92 | } Conjuncts; |
---|
| 93 | |
---|
| 94 | typedef struct NodeStat { |
---|
| 95 | int distance; |
---|
| 96 | int localRef; |
---|
| 97 | } NodeStat; |
---|
| 98 | |
---|
| 99 | |
---|
| 100 | /*---------------------------------------------------------------------------*/ |
---|
| 101 | /* Variable declarations */ |
---|
| 102 | /*---------------------------------------------------------------------------*/ |
---|
| 103 | |
---|
| 104 | #ifndef lint |
---|
| 105 | static char rcsid[] DD_UNUSED = "$Id: cuddDecomp.c,v 1.44 2004/08/13 18:04:47 fabio Exp $"; |
---|
| 106 | #endif |
---|
| 107 | |
---|
| 108 | static DdNode *one, *zero; |
---|
| 109 | long lastTimeG; |
---|
| 110 | |
---|
| 111 | /*---------------------------------------------------------------------------*/ |
---|
| 112 | /* Macro declarations */ |
---|
| 113 | /*---------------------------------------------------------------------------*/ |
---|
| 114 | |
---|
| 115 | |
---|
| 116 | #define FactorsNotStored(factors) ((int)((long)(factors) & 01)) |
---|
| 117 | |
---|
| 118 | #define FactorsComplement(factors) ((Conjuncts *)((long)(factors) | 01)) |
---|
| 119 | |
---|
| 120 | #define FactorsUncomplement(factors) ((Conjuncts *)((long)(factors) ^ 01)) |
---|
| 121 | |
---|
| 122 | /**AutomaticStart*************************************************************/ |
---|
| 123 | |
---|
| 124 | /*---------------------------------------------------------------------------*/ |
---|
| 125 | /* Static function prototypes */ |
---|
| 126 | /*---------------------------------------------------------------------------*/ |
---|
| 127 | |
---|
| 128 | static NodeStat * CreateBotDist (DdNode * node, st_table * distanceTable); |
---|
| 129 | static double CountMinterms (DdNode * node, double max, st_table * mintermTable, FILE *fp); |
---|
| 130 | static void ConjunctsFree (DdManager * dd, Conjuncts * factors); |
---|
| 131 | static int PairInTables (DdNode * g, DdNode * h, st_table * ghTable); |
---|
| 132 | static Conjuncts * CheckTablesCacheAndReturn (DdNode * node, DdNode * g, DdNode * h, st_table * ghTable, st_table * cacheTable); |
---|
| 133 | static Conjuncts * PickOnePair (DdNode * node, DdNode * g1, DdNode * h1, DdNode * g2, DdNode * h2, st_table * ghTable, st_table * cacheTable); |
---|
| 134 | static Conjuncts * CheckInTables (DdNode * node, DdNode * g1, DdNode * h1, DdNode * g2, DdNode * h2, st_table * ghTable, st_table * cacheTable, int * outOfMem); |
---|
| 135 | static Conjuncts * ZeroCase (DdManager * dd, DdNode * node, Conjuncts * factorsNv, st_table * ghTable, st_table * cacheTable, int switched); |
---|
| 136 | static Conjuncts * BuildConjuncts (DdManager * dd, DdNode * node, st_table * distanceTable, st_table * cacheTable, int approxDistance, int maxLocalRef, st_table * ghTable, st_table * mintermTable); |
---|
| 137 | static int cuddConjunctsAux (DdManager * dd, DdNode * f, DdNode ** c1, DdNode ** c2); |
---|
| 138 | |
---|
| 139 | /**AutomaticEnd***************************************************************/ |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | /*---------------------------------------------------------------------------*/ |
---|
| 143 | /* Definition of exported functions */ |
---|
| 144 | /*---------------------------------------------------------------------------*/ |
---|
| 145 | |
---|
| 146 | |
---|
| 147 | /**Function******************************************************************** |
---|
| 148 | |
---|
| 149 | Synopsis [Performs two-way conjunctive decomposition of a BDD.] |
---|
| 150 | |
---|
| 151 | Description [Performs two-way conjunctive decomposition of a |
---|
| 152 | BDD. This procedure owes its name to the use of supersetting to |
---|
| 153 | obtain an initial factor of the given function. Returns the number |
---|
| 154 | of conjuncts produced, that is, 2 if successful; 1 if no meaningful |
---|
| 155 | decomposition was found; 0 otherwise. The conjuncts produced by this |
---|
| 156 | procedure tend to be imbalanced.] |
---|
| 157 | |
---|
| 158 | SideEffects [The factors are returned in an array as side effects. |
---|
| 159 | The array is allocated by this function. It is the caller's responsibility |
---|
| 160 | to free it. On successful completion, the conjuncts are already |
---|
| 161 | referenced. If the function returns 0, the array for the conjuncts is |
---|
| 162 | not allocated. If the function returns 1, the only factor equals the |
---|
| 163 | function to be decomposed.] |
---|
| 164 | |
---|
| 165 | SeeAlso [Cudd_bddApproxDisjDecomp Cudd_bddIterConjDecomp |
---|
| 166 | Cudd_bddGenConjDecomp Cudd_bddVarConjDecomp Cudd_RemapOverApprox |
---|
| 167 | Cudd_bddSqueeze Cudd_bddLICompaction] |
---|
| 168 | |
---|
| 169 | ******************************************************************************/ |
---|
| 170 | int |
---|
| 171 | Cudd_bddApproxConjDecomp( |
---|
| 172 | DdManager * dd /* manager */, |
---|
| 173 | DdNode * f /* function to be decomposed */, |
---|
| 174 | DdNode *** conjuncts /* address of the first factor */) |
---|
| 175 | { |
---|
| 176 | DdNode *superset1, *superset2, *glocal, *hlocal; |
---|
| 177 | int nvars = Cudd_SupportSize(dd,f); |
---|
| 178 | |
---|
| 179 | /* Find a tentative first factor by overapproximation and minimization. */ |
---|
| 180 | superset1 = Cudd_RemapOverApprox(dd,f,nvars,0,1.0); |
---|
| 181 | if (superset1 == NULL) return(0); |
---|
| 182 | cuddRef(superset1); |
---|
| 183 | superset2 = Cudd_bddSqueeze(dd,f,superset1); |
---|
| 184 | if (superset2 == NULL) { |
---|
| 185 | Cudd_RecursiveDeref(dd,superset1); |
---|
| 186 | return(0); |
---|
| 187 | } |
---|
| 188 | cuddRef(superset2); |
---|
| 189 | Cudd_RecursiveDeref(dd,superset1); |
---|
| 190 | |
---|
| 191 | /* Compute the second factor by minimization. */ |
---|
| 192 | hlocal = Cudd_bddLICompaction(dd,f,superset2); |
---|
| 193 | if (hlocal == NULL) { |
---|
| 194 | Cudd_RecursiveDeref(dd,superset2); |
---|
| 195 | return(0); |
---|
| 196 | } |
---|
| 197 | cuddRef(hlocal); |
---|
| 198 | |
---|
| 199 | /* Refine the first factor by minimization. If h turns out to be f, this |
---|
| 200 | ** step guarantees that g will be 1. */ |
---|
| 201 | glocal = Cudd_bddLICompaction(dd,superset2,hlocal); |
---|
| 202 | if (glocal == NULL) { |
---|
| 203 | Cudd_RecursiveDeref(dd,superset2); |
---|
| 204 | Cudd_RecursiveDeref(dd,hlocal); |
---|
| 205 | return(0); |
---|
| 206 | } |
---|
| 207 | cuddRef(glocal); |
---|
| 208 | Cudd_RecursiveDeref(dd,superset2); |
---|
| 209 | |
---|
| 210 | if (glocal != DD_ONE(dd)) { |
---|
| 211 | if (hlocal != DD_ONE(dd)) { |
---|
| 212 | *conjuncts = ALLOC(DdNode *,2); |
---|
| 213 | if (*conjuncts == NULL) { |
---|
| 214 | Cudd_RecursiveDeref(dd,glocal); |
---|
| 215 | Cudd_RecursiveDeref(dd,hlocal); |
---|
| 216 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 217 | return(0); |
---|
| 218 | } |
---|
| 219 | (*conjuncts)[0] = glocal; |
---|
| 220 | (*conjuncts)[1] = hlocal; |
---|
| 221 | return(2); |
---|
| 222 | } else { |
---|
| 223 | Cudd_RecursiveDeref(dd,hlocal); |
---|
| 224 | *conjuncts = ALLOC(DdNode *,1); |
---|
| 225 | if (*conjuncts == NULL) { |
---|
| 226 | Cudd_RecursiveDeref(dd,glocal); |
---|
| 227 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 228 | return(0); |
---|
| 229 | } |
---|
| 230 | (*conjuncts)[0] = glocal; |
---|
| 231 | return(1); |
---|
| 232 | } |
---|
| 233 | } else { |
---|
| 234 | Cudd_RecursiveDeref(dd,glocal); |
---|
| 235 | *conjuncts = ALLOC(DdNode *,1); |
---|
| 236 | if (*conjuncts == NULL) { |
---|
| 237 | Cudd_RecursiveDeref(dd,hlocal); |
---|
| 238 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 239 | return(0); |
---|
| 240 | } |
---|
| 241 | (*conjuncts)[0] = hlocal; |
---|
| 242 | return(1); |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | } /* end of Cudd_bddApproxConjDecomp */ |
---|
| 246 | |
---|
| 247 | |
---|
| 248 | /**Function******************************************************************** |
---|
| 249 | |
---|
| 250 | Synopsis [Performs two-way disjunctive decomposition of a BDD.] |
---|
| 251 | |
---|
| 252 | Description [Performs two-way disjunctive decomposition of a BDD. |
---|
| 253 | Returns the number of disjuncts produced, that is, 2 if successful; |
---|
| 254 | 1 if no meaningful decomposition was found; 0 otherwise. The |
---|
| 255 | disjuncts produced by this procedure tend to be imbalanced.] |
---|
| 256 | |
---|
| 257 | SideEffects [The two disjuncts are returned in an array as side effects. |
---|
| 258 | The array is allocated by this function. It is the caller's responsibility |
---|
| 259 | to free it. On successful completion, the disjuncts are already |
---|
| 260 | referenced. If the function returns 0, the array for the disjuncts is |
---|
| 261 | not allocated. If the function returns 1, the only factor equals the |
---|
| 262 | function to be decomposed.] |
---|
| 263 | |
---|
| 264 | SeeAlso [Cudd_bddApproxConjDecomp Cudd_bddIterDisjDecomp |
---|
| 265 | Cudd_bddGenDisjDecomp Cudd_bddVarDisjDecomp] |
---|
| 266 | |
---|
| 267 | ******************************************************************************/ |
---|
| 268 | int |
---|
| 269 | Cudd_bddApproxDisjDecomp( |
---|
| 270 | DdManager * dd /* manager */, |
---|
| 271 | DdNode * f /* function to be decomposed */, |
---|
| 272 | DdNode *** disjuncts /* address of the array of the disjuncts */) |
---|
| 273 | { |
---|
| 274 | int result, i; |
---|
| 275 | |
---|
| 276 | result = Cudd_bddApproxConjDecomp(dd,Cudd_Not(f),disjuncts); |
---|
| 277 | for (i = 0; i < result; i++) { |
---|
| 278 | (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); |
---|
| 279 | } |
---|
| 280 | return(result); |
---|
| 281 | |
---|
| 282 | } /* end of Cudd_bddApproxDisjDecomp */ |
---|
| 283 | |
---|
| 284 | |
---|
| 285 | /**Function******************************************************************** |
---|
| 286 | |
---|
| 287 | Synopsis [Performs two-way conjunctive decomposition of a BDD.] |
---|
| 288 | |
---|
| 289 | Description [Performs two-way conjunctive decomposition of a |
---|
| 290 | BDD. This procedure owes its name to the iterated use of |
---|
| 291 | supersetting to obtain a factor of the given function. Returns the |
---|
| 292 | number of conjuncts produced, that is, 2 if successful; 1 if no |
---|
| 293 | meaningful decomposition was found; 0 otherwise. The conjuncts |
---|
| 294 | produced by this procedure tend to be imbalanced.] |
---|
| 295 | |
---|
| 296 | SideEffects [The factors are returned in an array as side effects. |
---|
| 297 | The array is allocated by this function. It is the caller's responsibility |
---|
| 298 | to free it. On successful completion, the conjuncts are already |
---|
| 299 | referenced. If the function returns 0, the array for the conjuncts is |
---|
| 300 | not allocated. If the function returns 1, the only factor equals the |
---|
| 301 | function to be decomposed.] |
---|
| 302 | |
---|
| 303 | SeeAlso [Cudd_bddIterDisjDecomp Cudd_bddApproxConjDecomp |
---|
| 304 | Cudd_bddGenConjDecomp Cudd_bddVarConjDecomp Cudd_RemapOverApprox |
---|
| 305 | Cudd_bddSqueeze Cudd_bddLICompaction] |
---|
| 306 | |
---|
| 307 | ******************************************************************************/ |
---|
| 308 | int |
---|
| 309 | Cudd_bddIterConjDecomp( |
---|
| 310 | DdManager * dd /* manager */, |
---|
| 311 | DdNode * f /* function to be decomposed */, |
---|
| 312 | DdNode *** conjuncts /* address of the array of conjuncts */) |
---|
| 313 | { |
---|
| 314 | DdNode *superset1, *superset2, *old[2], *res[2]; |
---|
| 315 | int sizeOld, sizeNew; |
---|
| 316 | int nvars = Cudd_SupportSize(dd,f); |
---|
| 317 | |
---|
| 318 | old[0] = DD_ONE(dd); |
---|
| 319 | cuddRef(old[0]); |
---|
| 320 | old[1] = f; |
---|
| 321 | cuddRef(old[1]); |
---|
| 322 | sizeOld = Cudd_SharingSize(old,2); |
---|
| 323 | |
---|
| 324 | do { |
---|
| 325 | /* Find a tentative first factor by overapproximation and |
---|
| 326 | ** minimization. */ |
---|
| 327 | superset1 = Cudd_RemapOverApprox(dd,old[1],nvars,0,1.0); |
---|
| 328 | if (superset1 == NULL) { |
---|
| 329 | Cudd_RecursiveDeref(dd,old[0]); |
---|
| 330 | Cudd_RecursiveDeref(dd,old[1]); |
---|
| 331 | return(0); |
---|
| 332 | } |
---|
| 333 | cuddRef(superset1); |
---|
| 334 | superset2 = Cudd_bddSqueeze(dd,old[1],superset1); |
---|
| 335 | if (superset2 == NULL) { |
---|
| 336 | Cudd_RecursiveDeref(dd,old[0]); |
---|
| 337 | Cudd_RecursiveDeref(dd,old[1]); |
---|
| 338 | Cudd_RecursiveDeref(dd,superset1); |
---|
| 339 | return(0); |
---|
| 340 | } |
---|
| 341 | cuddRef(superset2); |
---|
| 342 | Cudd_RecursiveDeref(dd,superset1); |
---|
| 343 | res[0] = Cudd_bddAnd(dd,old[0],superset2); |
---|
| 344 | if (res[0] == NULL) { |
---|
| 345 | Cudd_RecursiveDeref(dd,superset2); |
---|
| 346 | Cudd_RecursiveDeref(dd,old[0]); |
---|
| 347 | Cudd_RecursiveDeref(dd,old[1]); |
---|
| 348 | return(0); |
---|
| 349 | } |
---|
| 350 | cuddRef(res[0]); |
---|
| 351 | Cudd_RecursiveDeref(dd,superset2); |
---|
| 352 | if (res[0] == old[0]) { |
---|
| 353 | Cudd_RecursiveDeref(dd,res[0]); |
---|
| 354 | break; /* avoid infinite loop */ |
---|
| 355 | } |
---|
| 356 | |
---|
| 357 | /* Compute the second factor by minimization. */ |
---|
| 358 | res[1] = Cudd_bddLICompaction(dd,old[1],res[0]); |
---|
| 359 | if (res[1] == NULL) { |
---|
| 360 | Cudd_RecursiveDeref(dd,old[0]); |
---|
| 361 | Cudd_RecursiveDeref(dd,old[1]); |
---|
| 362 | return(0); |
---|
| 363 | } |
---|
| 364 | cuddRef(res[1]); |
---|
| 365 | |
---|
| 366 | sizeNew = Cudd_SharingSize(res,2); |
---|
| 367 | if (sizeNew <= sizeOld) { |
---|
| 368 | Cudd_RecursiveDeref(dd,old[0]); |
---|
| 369 | old[0] = res[0]; |
---|
| 370 | Cudd_RecursiveDeref(dd,old[1]); |
---|
| 371 | old[1] = res[1]; |
---|
| 372 | sizeOld = sizeNew; |
---|
| 373 | } else { |
---|
| 374 | Cudd_RecursiveDeref(dd,res[0]); |
---|
| 375 | Cudd_RecursiveDeref(dd,res[1]); |
---|
| 376 | break; |
---|
| 377 | } |
---|
| 378 | |
---|
| 379 | } while (1); |
---|
| 380 | |
---|
| 381 | /* Refine the first factor by minimization. If h turns out to |
---|
| 382 | ** be f, this step guarantees that g will be 1. */ |
---|
| 383 | superset1 = Cudd_bddLICompaction(dd,old[0],old[1]); |
---|
| 384 | if (superset1 == NULL) { |
---|
| 385 | Cudd_RecursiveDeref(dd,old[0]); |
---|
| 386 | Cudd_RecursiveDeref(dd,old[1]); |
---|
| 387 | return(0); |
---|
| 388 | } |
---|
| 389 | cuddRef(superset1); |
---|
| 390 | Cudd_RecursiveDeref(dd,old[0]); |
---|
| 391 | old[0] = superset1; |
---|
| 392 | |
---|
| 393 | if (old[0] != DD_ONE(dd)) { |
---|
| 394 | if (old[1] != DD_ONE(dd)) { |
---|
| 395 | *conjuncts = ALLOC(DdNode *,2); |
---|
| 396 | if (*conjuncts == NULL) { |
---|
| 397 | Cudd_RecursiveDeref(dd,old[0]); |
---|
| 398 | Cudd_RecursiveDeref(dd,old[1]); |
---|
| 399 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 400 | return(0); |
---|
| 401 | } |
---|
| 402 | (*conjuncts)[0] = old[0]; |
---|
| 403 | (*conjuncts)[1] = old[1]; |
---|
| 404 | return(2); |
---|
| 405 | } else { |
---|
| 406 | Cudd_RecursiveDeref(dd,old[1]); |
---|
| 407 | *conjuncts = ALLOC(DdNode *,1); |
---|
| 408 | if (*conjuncts == NULL) { |
---|
| 409 | Cudd_RecursiveDeref(dd,old[0]); |
---|
| 410 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 411 | return(0); |
---|
| 412 | } |
---|
| 413 | (*conjuncts)[0] = old[0]; |
---|
| 414 | return(1); |
---|
| 415 | } |
---|
| 416 | } else { |
---|
| 417 | Cudd_RecursiveDeref(dd,old[0]); |
---|
| 418 | *conjuncts = ALLOC(DdNode *,1); |
---|
| 419 | if (*conjuncts == NULL) { |
---|
| 420 | Cudd_RecursiveDeref(dd,old[1]); |
---|
| 421 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 422 | return(0); |
---|
| 423 | } |
---|
| 424 | (*conjuncts)[0] = old[1]; |
---|
| 425 | return(1); |
---|
| 426 | } |
---|
| 427 | |
---|
| 428 | } /* end of Cudd_bddIterConjDecomp */ |
---|
| 429 | |
---|
| 430 | |
---|
| 431 | /**Function******************************************************************** |
---|
| 432 | |
---|
| 433 | Synopsis [Performs two-way disjunctive decomposition of a BDD.] |
---|
| 434 | |
---|
| 435 | Description [Performs two-way disjunctive decomposition of a BDD. |
---|
| 436 | Returns the number of disjuncts produced, that is, 2 if successful; |
---|
| 437 | 1 if no meaningful decomposition was found; 0 otherwise. The |
---|
| 438 | disjuncts produced by this procedure tend to be imbalanced.] |
---|
| 439 | |
---|
| 440 | SideEffects [The two disjuncts are returned in an array as side effects. |
---|
| 441 | The array is allocated by this function. It is the caller's responsibility |
---|
| 442 | to free it. On successful completion, the disjuncts are already |
---|
| 443 | referenced. If the function returns 0, the array for the disjuncts is |
---|
| 444 | not allocated. If the function returns 1, the only factor equals the |
---|
| 445 | function to be decomposed.] |
---|
| 446 | |
---|
| 447 | SeeAlso [Cudd_bddIterConjDecomp Cudd_bddApproxDisjDecomp |
---|
| 448 | Cudd_bddGenDisjDecomp Cudd_bddVarDisjDecomp] |
---|
| 449 | |
---|
| 450 | ******************************************************************************/ |
---|
| 451 | int |
---|
| 452 | Cudd_bddIterDisjDecomp( |
---|
| 453 | DdManager * dd /* manager */, |
---|
| 454 | DdNode * f /* function to be decomposed */, |
---|
| 455 | DdNode *** disjuncts /* address of the array of the disjuncts */) |
---|
| 456 | { |
---|
| 457 | int result, i; |
---|
| 458 | |
---|
| 459 | result = Cudd_bddIterConjDecomp(dd,Cudd_Not(f),disjuncts); |
---|
| 460 | for (i = 0; i < result; i++) { |
---|
| 461 | (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); |
---|
| 462 | } |
---|
| 463 | return(result); |
---|
| 464 | |
---|
| 465 | } /* end of Cudd_bddIterDisjDecomp */ |
---|
| 466 | |
---|
| 467 | |
---|
| 468 | /**Function******************************************************************** |
---|
| 469 | |
---|
| 470 | Synopsis [Performs two-way conjunctive decomposition of a BDD.] |
---|
| 471 | |
---|
| 472 | Description [Performs two-way conjunctive decomposition of a |
---|
| 473 | BDD. This procedure owes its name to the fact tht it generalizes the |
---|
| 474 | decomposition based on the cofactors with respect to one |
---|
| 475 | variable. Returns the number of conjuncts produced, that is, 2 if |
---|
| 476 | successful; 1 if no meaningful decomposition was found; 0 |
---|
| 477 | otherwise. The conjuncts produced by this procedure tend to be |
---|
| 478 | balanced.] |
---|
| 479 | |
---|
| 480 | SideEffects [The two factors are returned in an array as side effects. |
---|
| 481 | The array is allocated by this function. It is the caller's responsibility |
---|
| 482 | to free it. On successful completion, the conjuncts are already |
---|
| 483 | referenced. If the function returns 0, the array for the conjuncts is |
---|
| 484 | not allocated. If the function returns 1, the only factor equals the |
---|
| 485 | function to be decomposed.] |
---|
| 486 | |
---|
| 487 | SeeAlso [Cudd_bddGenDisjDecomp Cudd_bddApproxConjDecomp |
---|
| 488 | Cudd_bddIterConjDecomp Cudd_bddVarConjDecomp] |
---|
| 489 | |
---|
| 490 | ******************************************************************************/ |
---|
| 491 | int |
---|
| 492 | Cudd_bddGenConjDecomp( |
---|
| 493 | DdManager * dd /* manager */, |
---|
| 494 | DdNode * f /* function to be decomposed */, |
---|
| 495 | DdNode *** conjuncts /* address of the array of conjuncts */) |
---|
| 496 | { |
---|
| 497 | int result; |
---|
| 498 | DdNode *glocal, *hlocal; |
---|
| 499 | |
---|
| 500 | one = DD_ONE(dd); |
---|
| 501 | zero = Cudd_Not(one); |
---|
| 502 | |
---|
| 503 | do { |
---|
| 504 | dd->reordered = 0; |
---|
| 505 | result = cuddConjunctsAux(dd, f, &glocal, &hlocal); |
---|
| 506 | } while (dd->reordered == 1); |
---|
| 507 | |
---|
| 508 | if (result == 0) { |
---|
| 509 | return(0); |
---|
| 510 | } |
---|
| 511 | |
---|
| 512 | if (glocal != one) { |
---|
| 513 | if (hlocal != one) { |
---|
| 514 | *conjuncts = ALLOC(DdNode *,2); |
---|
| 515 | if (*conjuncts == NULL) { |
---|
| 516 | Cudd_RecursiveDeref(dd,glocal); |
---|
| 517 | Cudd_RecursiveDeref(dd,hlocal); |
---|
| 518 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 519 | return(0); |
---|
| 520 | } |
---|
| 521 | (*conjuncts)[0] = glocal; |
---|
| 522 | (*conjuncts)[1] = hlocal; |
---|
| 523 | return(2); |
---|
| 524 | } else { |
---|
| 525 | Cudd_RecursiveDeref(dd,hlocal); |
---|
| 526 | *conjuncts = ALLOC(DdNode *,1); |
---|
| 527 | if (*conjuncts == NULL) { |
---|
| 528 | Cudd_RecursiveDeref(dd,glocal); |
---|
| 529 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 530 | return(0); |
---|
| 531 | } |
---|
| 532 | (*conjuncts)[0] = glocal; |
---|
| 533 | return(1); |
---|
| 534 | } |
---|
| 535 | } else { |
---|
| 536 | Cudd_RecursiveDeref(dd,glocal); |
---|
| 537 | *conjuncts = ALLOC(DdNode *,1); |
---|
| 538 | if (*conjuncts == NULL) { |
---|
| 539 | Cudd_RecursiveDeref(dd,hlocal); |
---|
| 540 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 541 | return(0); |
---|
| 542 | } |
---|
| 543 | (*conjuncts)[0] = hlocal; |
---|
| 544 | return(1); |
---|
| 545 | } |
---|
| 546 | |
---|
| 547 | } /* end of Cudd_bddGenConjDecomp */ |
---|
| 548 | |
---|
| 549 | |
---|
| 550 | /**Function******************************************************************** |
---|
| 551 | |
---|
| 552 | Synopsis [Performs two-way disjunctive decomposition of a BDD.] |
---|
| 553 | |
---|
| 554 | Description [Performs two-way disjunctive decomposition of a BDD. |
---|
| 555 | Returns the number of disjuncts produced, that is, 2 if successful; |
---|
| 556 | 1 if no meaningful decomposition was found; 0 otherwise. The |
---|
| 557 | disjuncts produced by this procedure tend to be balanced.] |
---|
| 558 | |
---|
| 559 | SideEffects [The two disjuncts are returned in an array as side effects. |
---|
| 560 | The array is allocated by this function. It is the caller's responsibility |
---|
| 561 | to free it. On successful completion, the disjuncts are already |
---|
| 562 | referenced. If the function returns 0, the array for the disjuncts is |
---|
| 563 | not allocated. If the function returns 1, the only factor equals the |
---|
| 564 | function to be decomposed.] |
---|
| 565 | |
---|
| 566 | SeeAlso [Cudd_bddGenConjDecomp Cudd_bddApproxDisjDecomp |
---|
| 567 | Cudd_bddIterDisjDecomp Cudd_bddVarDisjDecomp] |
---|
| 568 | |
---|
| 569 | ******************************************************************************/ |
---|
| 570 | int |
---|
| 571 | Cudd_bddGenDisjDecomp( |
---|
| 572 | DdManager * dd /* manager */, |
---|
| 573 | DdNode * f /* function to be decomposed */, |
---|
| 574 | DdNode *** disjuncts /* address of the array of the disjuncts */) |
---|
| 575 | { |
---|
| 576 | int result, i; |
---|
| 577 | |
---|
| 578 | result = Cudd_bddGenConjDecomp(dd,Cudd_Not(f),disjuncts); |
---|
| 579 | for (i = 0; i < result; i++) { |
---|
| 580 | (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); |
---|
| 581 | } |
---|
| 582 | return(result); |
---|
| 583 | |
---|
| 584 | } /* end of Cudd_bddGenDisjDecomp */ |
---|
| 585 | |
---|
| 586 | |
---|
| 587 | /**Function******************************************************************** |
---|
| 588 | |
---|
| 589 | Synopsis [Performs two-way conjunctive decomposition of a BDD.] |
---|
| 590 | |
---|
| 591 | Description [Conjunctively decomposes one BDD according to a |
---|
| 592 | variable. If <code>f</code> is the function of the BDD and |
---|
| 593 | <code>x</code> is the variable, the decomposition is |
---|
| 594 | <code>(f+x)(f+x')</code>. The variable is chosen so as to balance |
---|
| 595 | the sizes of the two conjuncts and to keep them small. Returns the |
---|
| 596 | number of conjuncts produced, that is, 2 if successful; 1 if no |
---|
| 597 | meaningful decomposition was found; 0 otherwise.] |
---|
| 598 | |
---|
| 599 | SideEffects [The two factors are returned in an array as side effects. |
---|
| 600 | The array is allocated by this function. It is the caller's responsibility |
---|
| 601 | to free it. On successful completion, the conjuncts are already |
---|
| 602 | referenced. If the function returns 0, the array for the conjuncts is |
---|
| 603 | not allocated. If the function returns 1, the only factor equals the |
---|
| 604 | function to be decomposed.] |
---|
| 605 | |
---|
| 606 | SeeAlso [Cudd_bddVarDisjDecomp Cudd_bddGenConjDecomp |
---|
| 607 | Cudd_bddApproxConjDecomp Cudd_bddIterConjDecomp] |
---|
| 608 | |
---|
| 609 | *****************************************************************************/ |
---|
| 610 | int |
---|
| 611 | Cudd_bddVarConjDecomp( |
---|
| 612 | DdManager * dd /* manager */, |
---|
| 613 | DdNode * f /* function to be decomposed */, |
---|
| 614 | DdNode *** conjuncts /* address of the array of conjuncts */) |
---|
| 615 | { |
---|
| 616 | int best; |
---|
| 617 | int min; |
---|
| 618 | DdNode *support, *scan, *var, *glocal, *hlocal; |
---|
| 619 | |
---|
| 620 | /* Find best cofactoring variable. */ |
---|
| 621 | support = Cudd_Support(dd,f); |
---|
| 622 | if (support == NULL) return(0); |
---|
| 623 | if (Cudd_IsConstant(support)) { |
---|
| 624 | *conjuncts = ALLOC(DdNode *,1); |
---|
| 625 | if (*conjuncts == NULL) { |
---|
| 626 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 627 | return(0); |
---|
| 628 | } |
---|
| 629 | (*conjuncts)[0] = f; |
---|
| 630 | cuddRef((*conjuncts)[0]); |
---|
| 631 | return(1); |
---|
| 632 | } |
---|
| 633 | cuddRef(support); |
---|
| 634 | min = 1000000000; |
---|
| 635 | best = -1; |
---|
| 636 | scan = support; |
---|
| 637 | while (!Cudd_IsConstant(scan)) { |
---|
| 638 | int i = scan->index; |
---|
| 639 | int est1 = Cudd_EstimateCofactor(dd,f,i,1); |
---|
| 640 | int est0 = Cudd_EstimateCofactor(dd,f,i,0); |
---|
| 641 | /* Minimize the size of the larger of the two cofactors. */ |
---|
| 642 | int est = (est1 > est0) ? est1 : est0; |
---|
| 643 | if (est < min) { |
---|
| 644 | min = est; |
---|
| 645 | best = i; |
---|
| 646 | } |
---|
| 647 | scan = cuddT(scan); |
---|
| 648 | } |
---|
| 649 | #ifdef DD_DEBUG |
---|
| 650 | assert(best >= 0 && best < dd->size); |
---|
| 651 | #endif |
---|
| 652 | Cudd_RecursiveDeref(dd,support); |
---|
| 653 | |
---|
| 654 | var = Cudd_bddIthVar(dd,best); |
---|
| 655 | glocal = Cudd_bddOr(dd,f,var); |
---|
| 656 | if (glocal == NULL) { |
---|
| 657 | return(0); |
---|
| 658 | } |
---|
| 659 | cuddRef(glocal); |
---|
| 660 | hlocal = Cudd_bddOr(dd,f,Cudd_Not(var)); |
---|
| 661 | if (hlocal == NULL) { |
---|
| 662 | Cudd_RecursiveDeref(dd,glocal); |
---|
| 663 | return(0); |
---|
| 664 | } |
---|
| 665 | cuddRef(hlocal); |
---|
| 666 | |
---|
| 667 | if (glocal != DD_ONE(dd)) { |
---|
| 668 | if (hlocal != DD_ONE(dd)) { |
---|
| 669 | *conjuncts = ALLOC(DdNode *,2); |
---|
| 670 | if (*conjuncts == NULL) { |
---|
| 671 | Cudd_RecursiveDeref(dd,glocal); |
---|
| 672 | Cudd_RecursiveDeref(dd,hlocal); |
---|
| 673 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 674 | return(0); |
---|
| 675 | } |
---|
| 676 | (*conjuncts)[0] = glocal; |
---|
| 677 | (*conjuncts)[1] = hlocal; |
---|
| 678 | return(2); |
---|
| 679 | } else { |
---|
| 680 | Cudd_RecursiveDeref(dd,hlocal); |
---|
| 681 | *conjuncts = ALLOC(DdNode *,1); |
---|
| 682 | if (*conjuncts == NULL) { |
---|
| 683 | Cudd_RecursiveDeref(dd,glocal); |
---|
| 684 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 685 | return(0); |
---|
| 686 | } |
---|
| 687 | (*conjuncts)[0] = glocal; |
---|
| 688 | return(1); |
---|
| 689 | } |
---|
| 690 | } else { |
---|
| 691 | Cudd_RecursiveDeref(dd,glocal); |
---|
| 692 | *conjuncts = ALLOC(DdNode *,1); |
---|
| 693 | if (*conjuncts == NULL) { |
---|
| 694 | Cudd_RecursiveDeref(dd,hlocal); |
---|
| 695 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 696 | return(0); |
---|
| 697 | } |
---|
| 698 | (*conjuncts)[0] = hlocal; |
---|
| 699 | return(1); |
---|
| 700 | } |
---|
| 701 | |
---|
| 702 | } /* end of Cudd_bddVarConjDecomp */ |
---|
| 703 | |
---|
| 704 | |
---|
| 705 | /**Function******************************************************************** |
---|
| 706 | |
---|
| 707 | Synopsis [Performs two-way disjunctive decomposition of a BDD.] |
---|
| 708 | |
---|
| 709 | Description [Performs two-way disjunctive decomposition of a BDD |
---|
| 710 | according to a variable. If <code>f</code> is the function of the |
---|
| 711 | BDD and <code>x</code> is the variable, the decomposition is |
---|
| 712 | <code>f*x + f*x'</code>. The variable is chosen so as to balance |
---|
| 713 | the sizes of the two disjuncts and to keep them small. Returns the |
---|
| 714 | number of disjuncts produced, that is, 2 if successful; 1 if no |
---|
| 715 | meaningful decomposition was found; 0 otherwise.] |
---|
| 716 | |
---|
| 717 | SideEffects [The two disjuncts are returned in an array as side effects. |
---|
| 718 | The array is allocated by this function. It is the caller's responsibility |
---|
| 719 | to free it. On successful completion, the disjuncts are already |
---|
| 720 | referenced. If the function returns 0, the array for the disjuncts is |
---|
| 721 | not allocated. If the function returns 1, the only factor equals the |
---|
| 722 | function to be decomposed.] |
---|
| 723 | |
---|
| 724 | SeeAlso [Cudd_bddVarConjDecomp Cudd_bddApproxDisjDecomp |
---|
| 725 | Cudd_bddIterDisjDecomp Cudd_bddGenDisjDecomp] |
---|
| 726 | |
---|
| 727 | ******************************************************************************/ |
---|
| 728 | int |
---|
| 729 | Cudd_bddVarDisjDecomp( |
---|
| 730 | DdManager * dd /* manager */, |
---|
| 731 | DdNode * f /* function to be decomposed */, |
---|
| 732 | DdNode *** disjuncts /* address of the array of the disjuncts */) |
---|
| 733 | { |
---|
| 734 | int result, i; |
---|
| 735 | |
---|
| 736 | result = Cudd_bddVarConjDecomp(dd,Cudd_Not(f),disjuncts); |
---|
| 737 | for (i = 0; i < result; i++) { |
---|
| 738 | (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); |
---|
| 739 | } |
---|
| 740 | return(result); |
---|
| 741 | |
---|
| 742 | } /* end of Cudd_bddVarDisjDecomp */ |
---|
| 743 | |
---|
| 744 | |
---|
| 745 | /*---------------------------------------------------------------------------*/ |
---|
| 746 | /* Definition of internal functions */ |
---|
| 747 | /*---------------------------------------------------------------------------*/ |
---|
| 748 | |
---|
| 749 | /*---------------------------------------------------------------------------*/ |
---|
| 750 | /* Definition of static functions */ |
---|
| 751 | /*---------------------------------------------------------------------------*/ |
---|
| 752 | |
---|
| 753 | |
---|
| 754 | /**Function******************************************************************** |
---|
| 755 | |
---|
| 756 | Synopsis [Get longest distance of node from constant.] |
---|
| 757 | |
---|
| 758 | Description [Get longest distance of node from constant. Returns the |
---|
| 759 | distance of the root from the constant if successful; CUDD_OUT_OF_MEM |
---|
| 760 | otherwise.] |
---|
| 761 | |
---|
| 762 | SideEffects [None] |
---|
| 763 | |
---|
| 764 | SeeAlso [] |
---|
| 765 | |
---|
| 766 | ******************************************************************************/ |
---|
| 767 | static NodeStat * |
---|
| 768 | CreateBotDist( |
---|
| 769 | DdNode * node, |
---|
| 770 | st_table * distanceTable) |
---|
| 771 | { |
---|
| 772 | DdNode *N, *Nv, *Nnv; |
---|
| 773 | int distance, distanceNv, distanceNnv; |
---|
| 774 | NodeStat *nodeStat, *nodeStatNv, *nodeStatNnv; |
---|
| 775 | |
---|
| 776 | #if 0 |
---|
| 777 | if (Cudd_IsConstant(node)) { |
---|
| 778 | return(0); |
---|
| 779 | } |
---|
| 780 | #endif |
---|
| 781 | |
---|
| 782 | /* Return the entry in the table if found. */ |
---|
| 783 | N = Cudd_Regular(node); |
---|
| 784 | if (st_lookup(distanceTable, N, &nodeStat)) { |
---|
| 785 | nodeStat->localRef++; |
---|
| 786 | return(nodeStat); |
---|
| 787 | } |
---|
| 788 | |
---|
| 789 | Nv = cuddT(N); |
---|
| 790 | Nnv = cuddE(N); |
---|
| 791 | Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); |
---|
| 792 | Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); |
---|
| 793 | |
---|
| 794 | /* Recur on the children. */ |
---|
| 795 | nodeStatNv = CreateBotDist(Nv, distanceTable); |
---|
| 796 | if (nodeStatNv == NULL) return(NULL); |
---|
| 797 | distanceNv = nodeStatNv->distance; |
---|
| 798 | |
---|
| 799 | nodeStatNnv = CreateBotDist(Nnv, distanceTable); |
---|
| 800 | if (nodeStatNnv == NULL) return(NULL); |
---|
| 801 | distanceNnv = nodeStatNnv->distance; |
---|
| 802 | /* Store max distance from constant; note sometimes this distance |
---|
| 803 | ** may be to 0. |
---|
| 804 | */ |
---|
| 805 | distance = (distanceNv > distanceNnv) ? (distanceNv+1) : (distanceNnv + 1); |
---|
| 806 | |
---|
| 807 | nodeStat = ALLOC(NodeStat, 1); |
---|
| 808 | if (nodeStat == NULL) { |
---|
| 809 | return(0); |
---|
| 810 | } |
---|
| 811 | nodeStat->distance = distance; |
---|
| 812 | nodeStat->localRef = 1; |
---|
| 813 | |
---|
| 814 | if (st_insert(distanceTable, (char *)N, (char *)nodeStat) == |
---|
| 815 | ST_OUT_OF_MEM) { |
---|
| 816 | return(0); |
---|
| 817 | |
---|
| 818 | } |
---|
| 819 | return(nodeStat); |
---|
| 820 | |
---|
| 821 | } /* end of CreateBotDist */ |
---|
| 822 | |
---|
| 823 | |
---|
| 824 | /**Function******************************************************************** |
---|
| 825 | |
---|
| 826 | Synopsis [Count the number of minterms of each node ina a BDD and |
---|
| 827 | store it in a hash table.] |
---|
| 828 | |
---|
| 829 | Description [] |
---|
| 830 | |
---|
| 831 | SideEffects [None] |
---|
| 832 | |
---|
| 833 | SeeAlso [] |
---|
| 834 | |
---|
| 835 | ******************************************************************************/ |
---|
| 836 | static double |
---|
| 837 | CountMinterms( |
---|
| 838 | DdNode * node, |
---|
| 839 | double max, |
---|
| 840 | st_table * mintermTable, |
---|
| 841 | FILE *fp) |
---|
| 842 | { |
---|
| 843 | DdNode *N, *Nv, *Nnv; |
---|
| 844 | double min, minNv, minNnv; |
---|
| 845 | double *dummy; |
---|
| 846 | |
---|
| 847 | N = Cudd_Regular(node); |
---|
| 848 | |
---|
| 849 | if (cuddIsConstant(N)) { |
---|
| 850 | if (node == zero) { |
---|
| 851 | return(0); |
---|
| 852 | } else { |
---|
| 853 | return(max); |
---|
| 854 | } |
---|
| 855 | } |
---|
| 856 | |
---|
| 857 | /* Return the entry in the table if found. */ |
---|
| 858 | if (st_lookup(mintermTable, node, &dummy)) { |
---|
| 859 | min = *dummy; |
---|
| 860 | return(min); |
---|
| 861 | } |
---|
| 862 | |
---|
| 863 | Nv = cuddT(N); |
---|
| 864 | Nnv = cuddE(N); |
---|
| 865 | Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); |
---|
| 866 | Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); |
---|
| 867 | |
---|
| 868 | /* Recur on the children. */ |
---|
| 869 | minNv = CountMinterms(Nv, max, mintermTable, fp); |
---|
| 870 | if (minNv == -1.0) return(-1.0); |
---|
| 871 | minNnv = CountMinterms(Nnv, max, mintermTable, fp); |
---|
| 872 | if (minNnv == -1.0) return(-1.0); |
---|
| 873 | min = minNv / 2.0 + minNnv / 2.0; |
---|
| 874 | /* store |
---|
| 875 | */ |
---|
| 876 | |
---|
| 877 | dummy = ALLOC(double, 1); |
---|
| 878 | if (dummy == NULL) return(-1.0); |
---|
| 879 | *dummy = min; |
---|
| 880 | if (st_insert(mintermTable, (char *)node, (char *)dummy) == ST_OUT_OF_MEM) { |
---|
| 881 | (void) fprintf(fp, "st table insert failed\n"); |
---|
| 882 | } |
---|
| 883 | return(min); |
---|
| 884 | |
---|
| 885 | } /* end of CountMinterms */ |
---|
| 886 | |
---|
| 887 | |
---|
| 888 | /**Function******************************************************************** |
---|
| 889 | |
---|
| 890 | Synopsis [Free factors structure] |
---|
| 891 | |
---|
| 892 | Description [] |
---|
| 893 | |
---|
| 894 | SideEffects [None] |
---|
| 895 | |
---|
| 896 | SeeAlso [] |
---|
| 897 | |
---|
| 898 | ******************************************************************************/ |
---|
| 899 | static void |
---|
| 900 | ConjunctsFree( |
---|
| 901 | DdManager * dd, |
---|
| 902 | Conjuncts * factors) |
---|
| 903 | { |
---|
| 904 | Cudd_RecursiveDeref(dd, factors->g); |
---|
| 905 | Cudd_RecursiveDeref(dd, factors->h); |
---|
| 906 | FREE(factors); |
---|
| 907 | return; |
---|
| 908 | |
---|
| 909 | } /* end of ConjunctsFree */ |
---|
| 910 | |
---|
| 911 | |
---|
| 912 | /**Function******************************************************************** |
---|
| 913 | |
---|
| 914 | Synopsis [Check whether the given pair is in the tables.] |
---|
| 915 | |
---|
| 916 | Description [.Check whether the given pair is in the tables. gTable |
---|
| 917 | and hTable are combined. |
---|
| 918 | absence in both is indicated by 0, |
---|
| 919 | presence in gTable is indicated by 1, |
---|
| 920 | presence in hTable by 2 and |
---|
| 921 | presence in both by 3. |
---|
| 922 | The values returned by this function are PAIR_ST, |
---|
| 923 | PAIR_CR, G_ST, G_CR, H_ST, H_CR, BOTH_G, BOTH_H, NONE. |
---|
| 924 | PAIR_ST implies g in gTable and h in hTable |
---|
| 925 | PAIR_CR implies g in hTable and h in gTable |
---|
| 926 | G_ST implies g in gTable and h not in any table |
---|
| 927 | G_CR implies g in hTable and h not in any table |
---|
| 928 | H_ST implies h in hTable and g not in any table |
---|
| 929 | H_CR implies h in gTable and g not in any table |
---|
| 930 | BOTH_G implies both in gTable |
---|
| 931 | BOTH_H implies both in hTable |
---|
| 932 | NONE implies none in table; ] |
---|
| 933 | |
---|
| 934 | SideEffects [] |
---|
| 935 | |
---|
| 936 | SeeAlso [CheckTablesCacheAndReturn CheckInTables] |
---|
| 937 | |
---|
| 938 | ******************************************************************************/ |
---|
| 939 | static int |
---|
| 940 | PairInTables( |
---|
| 941 | DdNode * g, |
---|
| 942 | DdNode * h, |
---|
| 943 | st_table * ghTable) |
---|
| 944 | { |
---|
| 945 | int valueG, valueH, gPresent, hPresent; |
---|
| 946 | |
---|
| 947 | valueG = valueH = gPresent = hPresent = 0; |
---|
| 948 | |
---|
| 949 | gPresent = st_lookup_int(ghTable, (char *)Cudd_Regular(g), &valueG); |
---|
| 950 | hPresent = st_lookup_int(ghTable, (char *)Cudd_Regular(h), &valueH); |
---|
| 951 | |
---|
| 952 | if (!gPresent && !hPresent) return(NONE); |
---|
| 953 | |
---|
| 954 | if (!hPresent) { |
---|
| 955 | if (valueG & 1) return(G_ST); |
---|
| 956 | if (valueG & 2) return(G_CR); |
---|
| 957 | } |
---|
| 958 | if (!gPresent) { |
---|
| 959 | if (valueH & 1) return(H_CR); |
---|
| 960 | if (valueH & 2) return(H_ST); |
---|
| 961 | } |
---|
| 962 | /* both in tables */ |
---|
| 963 | if ((valueG & 1) && (valueH & 2)) return(PAIR_ST); |
---|
| 964 | if ((valueG & 2) && (valueH & 1)) return(PAIR_CR); |
---|
| 965 | |
---|
| 966 | if (valueG & 1) { |
---|
| 967 | return(BOTH_G); |
---|
| 968 | } else { |
---|
| 969 | return(BOTH_H); |
---|
| 970 | } |
---|
| 971 | |
---|
| 972 | } /* end of PairInTables */ |
---|
| 973 | |
---|
| 974 | |
---|
| 975 | /**Function******************************************************************** |
---|
| 976 | |
---|
| 977 | Synopsis [Check the tables for the existence of pair and return one |
---|
| 978 | combination, cache the result.] |
---|
| 979 | |
---|
| 980 | Description [Check the tables for the existence of pair and return |
---|
| 981 | one combination, cache the result. The assumption is that one of the |
---|
| 982 | conjuncts is already in the tables.] |
---|
| 983 | |
---|
| 984 | SideEffects [g and h referenced for the cache] |
---|
| 985 | |
---|
| 986 | SeeAlso [ZeroCase] |
---|
| 987 | |
---|
| 988 | ******************************************************************************/ |
---|
| 989 | static Conjuncts * |
---|
| 990 | CheckTablesCacheAndReturn( |
---|
| 991 | DdNode * node, |
---|
| 992 | DdNode * g, |
---|
| 993 | DdNode * h, |
---|
| 994 | st_table * ghTable, |
---|
| 995 | st_table * cacheTable) |
---|
| 996 | { |
---|
| 997 | int pairValue; |
---|
| 998 | int value; |
---|
| 999 | Conjuncts *factors; |
---|
| 1000 | |
---|
| 1001 | value = 0; |
---|
| 1002 | /* check tables */ |
---|
| 1003 | pairValue = PairInTables(g, h, ghTable); |
---|
| 1004 | assert(pairValue != NONE); |
---|
| 1005 | /* if both dont exist in table, we know one exists(either g or h). |
---|
| 1006 | * Therefore store the other and proceed |
---|
| 1007 | */ |
---|
| 1008 | factors = ALLOC(Conjuncts, 1); |
---|
| 1009 | if (factors == NULL) return(NULL); |
---|
| 1010 | if ((pairValue == BOTH_H) || (pairValue == H_ST)) { |
---|
| 1011 | if (g != one) { |
---|
| 1012 | value = 0; |
---|
| 1013 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(g), &value)) { |
---|
| 1014 | value |= 1; |
---|
| 1015 | } else { |
---|
| 1016 | value = 1; |
---|
| 1017 | } |
---|
| 1018 | if (st_insert(ghTable, (char *)Cudd_Regular(g), |
---|
| 1019 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1020 | return(NULL); |
---|
| 1021 | } |
---|
| 1022 | } |
---|
| 1023 | factors->g = g; |
---|
| 1024 | factors->h = h; |
---|
| 1025 | } else if ((pairValue == BOTH_G) || (pairValue == G_ST)) { |
---|
| 1026 | if (h != one) { |
---|
| 1027 | value = 0; |
---|
| 1028 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(h), &value)) { |
---|
| 1029 | value |= 2; |
---|
| 1030 | } else { |
---|
| 1031 | value = 2; |
---|
| 1032 | } |
---|
| 1033 | if (st_insert(ghTable, (char *)Cudd_Regular(h), |
---|
| 1034 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1035 | return(NULL); |
---|
| 1036 | } |
---|
| 1037 | } |
---|
| 1038 | factors->g = g; |
---|
| 1039 | factors->h = h; |
---|
| 1040 | } else if (pairValue == H_CR) { |
---|
| 1041 | if (g != one) { |
---|
| 1042 | value = 2; |
---|
| 1043 | if (st_insert(ghTable, (char *)Cudd_Regular(g), |
---|
| 1044 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1045 | return(NULL); |
---|
| 1046 | } |
---|
| 1047 | } |
---|
| 1048 | factors->g = h; |
---|
| 1049 | factors->h = g; |
---|
| 1050 | } else if (pairValue == G_CR) { |
---|
| 1051 | if (h != one) { |
---|
| 1052 | value = 1; |
---|
| 1053 | if (st_insert(ghTable, (char *)Cudd_Regular(h), |
---|
| 1054 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1055 | return(NULL); |
---|
| 1056 | } |
---|
| 1057 | } |
---|
| 1058 | factors->g = h; |
---|
| 1059 | factors->h = g; |
---|
| 1060 | } else if (pairValue == PAIR_CR) { |
---|
| 1061 | /* pair exists in table */ |
---|
| 1062 | factors->g = h; |
---|
| 1063 | factors->h = g; |
---|
| 1064 | } else if (pairValue == PAIR_ST) { |
---|
| 1065 | factors->g = g; |
---|
| 1066 | factors->h = h; |
---|
| 1067 | } |
---|
| 1068 | |
---|
| 1069 | /* cache the result for this node */ |
---|
| 1070 | if (st_insert(cacheTable, (char *)node, (char *)factors) == ST_OUT_OF_MEM) { |
---|
| 1071 | FREE(factors); |
---|
| 1072 | return(NULL); |
---|
| 1073 | } |
---|
| 1074 | |
---|
| 1075 | return(factors); |
---|
| 1076 | |
---|
| 1077 | } /* end of CheckTablesCacheAndReturn */ |
---|
| 1078 | |
---|
| 1079 | /**Function******************************************************************** |
---|
| 1080 | |
---|
| 1081 | Synopsis [Check the tables for the existence of pair and return one |
---|
| 1082 | combination, store in cache.] |
---|
| 1083 | |
---|
| 1084 | Description [Check the tables for the existence of pair and return |
---|
| 1085 | one combination, store in cache. The pair that has more pointers to |
---|
| 1086 | it is picked. An approximation of the number of local pointers is |
---|
| 1087 | made by taking the reference count of the pairs sent. ] |
---|
| 1088 | |
---|
| 1089 | SideEffects [] |
---|
| 1090 | |
---|
| 1091 | SeeAlso [ZeroCase BuildConjuncts] |
---|
| 1092 | |
---|
| 1093 | ******************************************************************************/ |
---|
| 1094 | static Conjuncts * |
---|
| 1095 | PickOnePair( |
---|
| 1096 | DdNode * node, |
---|
| 1097 | DdNode * g1, |
---|
| 1098 | DdNode * h1, |
---|
| 1099 | DdNode * g2, |
---|
| 1100 | DdNode * h2, |
---|
| 1101 | st_table * ghTable, |
---|
| 1102 | st_table * cacheTable) |
---|
| 1103 | { |
---|
| 1104 | int value; |
---|
| 1105 | Conjuncts *factors; |
---|
| 1106 | int oneRef, twoRef; |
---|
| 1107 | |
---|
| 1108 | factors = ALLOC(Conjuncts, 1); |
---|
| 1109 | if (factors == NULL) return(NULL); |
---|
| 1110 | |
---|
| 1111 | /* count the number of pointers to pair 2 */ |
---|
| 1112 | if (h2 == one) { |
---|
| 1113 | twoRef = (Cudd_Regular(g2))->ref; |
---|
| 1114 | } else if (g2 == one) { |
---|
| 1115 | twoRef = (Cudd_Regular(h2))->ref; |
---|
| 1116 | } else { |
---|
| 1117 | twoRef = ((Cudd_Regular(g2))->ref + (Cudd_Regular(h2))->ref)/2; |
---|
| 1118 | } |
---|
| 1119 | |
---|
| 1120 | /* count the number of pointers to pair 1 */ |
---|
| 1121 | if (h1 == one) { |
---|
| 1122 | oneRef = (Cudd_Regular(g1))->ref; |
---|
| 1123 | } else if (g1 == one) { |
---|
| 1124 | oneRef = (Cudd_Regular(h1))->ref; |
---|
| 1125 | } else { |
---|
| 1126 | oneRef = ((Cudd_Regular(g1))->ref + (Cudd_Regular(h1))->ref)/2; |
---|
| 1127 | } |
---|
| 1128 | |
---|
| 1129 | /* pick the pair with higher reference count */ |
---|
| 1130 | if (oneRef >= twoRef) { |
---|
| 1131 | factors->g = g1; |
---|
| 1132 | factors->h = h1; |
---|
| 1133 | } else { |
---|
| 1134 | factors->g = g2; |
---|
| 1135 | factors->h = h2; |
---|
| 1136 | } |
---|
| 1137 | |
---|
| 1138 | /* |
---|
| 1139 | * Store computed factors in respective tables to encourage |
---|
| 1140 | * recombination. |
---|
| 1141 | */ |
---|
| 1142 | if (factors->g != one) { |
---|
| 1143 | /* insert g in htable */ |
---|
| 1144 | value = 0; |
---|
| 1145 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(factors->g), &value)) { |
---|
| 1146 | if (value == 2) { |
---|
| 1147 | value |= 1; |
---|
| 1148 | if (st_insert(ghTable, (char *)Cudd_Regular(factors->g), |
---|
| 1149 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1150 | FREE(factors); |
---|
| 1151 | return(NULL); |
---|
| 1152 | } |
---|
| 1153 | } |
---|
| 1154 | } else { |
---|
| 1155 | value = 1; |
---|
| 1156 | if (st_insert(ghTable, (char *)Cudd_Regular(factors->g), |
---|
| 1157 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1158 | FREE(factors); |
---|
| 1159 | return(NULL); |
---|
| 1160 | } |
---|
| 1161 | } |
---|
| 1162 | } |
---|
| 1163 | |
---|
| 1164 | if (factors->h != one) { |
---|
| 1165 | /* insert h in htable */ |
---|
| 1166 | value = 0; |
---|
| 1167 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(factors->h), &value)) { |
---|
| 1168 | if (value == 1) { |
---|
| 1169 | value |= 2; |
---|
| 1170 | if (st_insert(ghTable, (char *)Cudd_Regular(factors->h), |
---|
| 1171 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1172 | FREE(factors); |
---|
| 1173 | return(NULL); |
---|
| 1174 | } |
---|
| 1175 | } |
---|
| 1176 | } else { |
---|
| 1177 | value = 2; |
---|
| 1178 | if (st_insert(ghTable, (char *)Cudd_Regular(factors->h), |
---|
| 1179 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1180 | FREE(factors); |
---|
| 1181 | return(NULL); |
---|
| 1182 | } |
---|
| 1183 | } |
---|
| 1184 | } |
---|
| 1185 | |
---|
| 1186 | /* Store factors in cache table for later use. */ |
---|
| 1187 | if (st_insert(cacheTable, (char *)node, (char *)factors) == |
---|
| 1188 | ST_OUT_OF_MEM) { |
---|
| 1189 | FREE(factors); |
---|
| 1190 | return(NULL); |
---|
| 1191 | } |
---|
| 1192 | |
---|
| 1193 | return(factors); |
---|
| 1194 | |
---|
| 1195 | } /* end of PickOnePair */ |
---|
| 1196 | |
---|
| 1197 | |
---|
| 1198 | /**Function******************************************************************** |
---|
| 1199 | |
---|
| 1200 | Synopsis [Check if the two pairs exist in the table, If any of the |
---|
| 1201 | conjuncts do exist, store in the cache and return the corresponding pair.] |
---|
| 1202 | |
---|
| 1203 | Description [Check if the two pairs exist in the table. If any of |
---|
| 1204 | the conjuncts do exist, store in the cache and return the |
---|
| 1205 | corresponding pair.] |
---|
| 1206 | |
---|
| 1207 | SideEffects [] |
---|
| 1208 | |
---|
| 1209 | SeeAlso [ZeroCase BuildConjuncts] |
---|
| 1210 | |
---|
| 1211 | ******************************************************************************/ |
---|
| 1212 | static Conjuncts * |
---|
| 1213 | CheckInTables( |
---|
| 1214 | DdNode * node, |
---|
| 1215 | DdNode * g1, |
---|
| 1216 | DdNode * h1, |
---|
| 1217 | DdNode * g2, |
---|
| 1218 | DdNode * h2, |
---|
| 1219 | st_table * ghTable, |
---|
| 1220 | st_table * cacheTable, |
---|
| 1221 | int * outOfMem) |
---|
| 1222 | { |
---|
| 1223 | int pairValue1, pairValue2; |
---|
| 1224 | Conjuncts *factors; |
---|
| 1225 | int value; |
---|
| 1226 | |
---|
| 1227 | *outOfMem = 0; |
---|
| 1228 | |
---|
| 1229 | /* check existence of pair in table */ |
---|
| 1230 | pairValue1 = PairInTables(g1, h1, ghTable); |
---|
| 1231 | pairValue2 = PairInTables(g2, h2, ghTable); |
---|
| 1232 | |
---|
| 1233 | /* if none of the 4 exist in the gh tables, return NULL */ |
---|
| 1234 | if ((pairValue1 == NONE) && (pairValue2 == NONE)) { |
---|
| 1235 | return NULL; |
---|
| 1236 | } |
---|
| 1237 | |
---|
| 1238 | factors = ALLOC(Conjuncts, 1); |
---|
| 1239 | if (factors == NULL) { |
---|
| 1240 | *outOfMem = 1; |
---|
| 1241 | return NULL; |
---|
| 1242 | } |
---|
| 1243 | |
---|
| 1244 | /* pairs that already exist in the table get preference. */ |
---|
| 1245 | if (pairValue1 == PAIR_ST) { |
---|
| 1246 | factors->g = g1; |
---|
| 1247 | factors->h = h1; |
---|
| 1248 | } else if (pairValue2 == PAIR_ST) { |
---|
| 1249 | factors->g = g2; |
---|
| 1250 | factors->h = h2; |
---|
| 1251 | } else if (pairValue1 == PAIR_CR) { |
---|
| 1252 | factors->g = h1; |
---|
| 1253 | factors->h = g1; |
---|
| 1254 | } else if (pairValue2 == PAIR_CR) { |
---|
| 1255 | factors->g = h2; |
---|
| 1256 | factors->h = g2; |
---|
| 1257 | } else if (pairValue1 == G_ST) { |
---|
| 1258 | /* g exists in the table, h is not found in either table */ |
---|
| 1259 | factors->g = g1; |
---|
| 1260 | factors->h = h1; |
---|
| 1261 | if (h1 != one) { |
---|
| 1262 | value = 2; |
---|
| 1263 | if (st_insert(ghTable, (char *)Cudd_Regular(h1), |
---|
| 1264 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1265 | *outOfMem = 1; |
---|
| 1266 | FREE(factors); |
---|
| 1267 | return(NULL); |
---|
| 1268 | } |
---|
| 1269 | } |
---|
| 1270 | } else if (pairValue1 == BOTH_G) { |
---|
| 1271 | /* g and h are found in the g table */ |
---|
| 1272 | factors->g = g1; |
---|
| 1273 | factors->h = h1; |
---|
| 1274 | if (h1 != one) { |
---|
| 1275 | value = 3; |
---|
| 1276 | if (st_insert(ghTable, (char *)Cudd_Regular(h1), |
---|
| 1277 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1278 | *outOfMem = 1; |
---|
| 1279 | FREE(factors); |
---|
| 1280 | return(NULL); |
---|
| 1281 | } |
---|
| 1282 | } |
---|
| 1283 | } else if (pairValue1 == H_ST) { |
---|
| 1284 | /* h exists in the table, g is not found in either table */ |
---|
| 1285 | factors->g = g1; |
---|
| 1286 | factors->h = h1; |
---|
| 1287 | if (g1 != one) { |
---|
| 1288 | value = 1; |
---|
| 1289 | if (st_insert(ghTable, (char *)Cudd_Regular(g1), |
---|
| 1290 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1291 | *outOfMem = 1; |
---|
| 1292 | FREE(factors); |
---|
| 1293 | return(NULL); |
---|
| 1294 | } |
---|
| 1295 | } |
---|
| 1296 | } else if (pairValue1 == BOTH_H) { |
---|
| 1297 | /* g and h are found in the h table */ |
---|
| 1298 | factors->g = g1; |
---|
| 1299 | factors->h = h1; |
---|
| 1300 | if (g1 != one) { |
---|
| 1301 | value = 3; |
---|
| 1302 | if (st_insert(ghTable, (char *)Cudd_Regular(g1), |
---|
| 1303 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1304 | *outOfMem = 1; |
---|
| 1305 | FREE(factors); |
---|
| 1306 | return(NULL); |
---|
| 1307 | } |
---|
| 1308 | } |
---|
| 1309 | } else if (pairValue2 == G_ST) { |
---|
| 1310 | /* g exists in the table, h is not found in either table */ |
---|
| 1311 | factors->g = g2; |
---|
| 1312 | factors->h = h2; |
---|
| 1313 | if (h2 != one) { |
---|
| 1314 | value = 2; |
---|
| 1315 | if (st_insert(ghTable, (char *)Cudd_Regular(h2), |
---|
| 1316 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1317 | *outOfMem = 1; |
---|
| 1318 | FREE(factors); |
---|
| 1319 | return(NULL); |
---|
| 1320 | } |
---|
| 1321 | } |
---|
| 1322 | } else if (pairValue2 == BOTH_G) { |
---|
| 1323 | /* g and h are found in the g table */ |
---|
| 1324 | factors->g = g2; |
---|
| 1325 | factors->h = h2; |
---|
| 1326 | if (h2 != one) { |
---|
| 1327 | value = 3; |
---|
| 1328 | if (st_insert(ghTable, (char *)Cudd_Regular(h2), |
---|
| 1329 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1330 | *outOfMem = 1; |
---|
| 1331 | FREE(factors); |
---|
| 1332 | return(NULL); |
---|
| 1333 | } |
---|
| 1334 | } |
---|
| 1335 | } else if (pairValue2 == H_ST) { |
---|
| 1336 | /* h exists in the table, g is not found in either table */ |
---|
| 1337 | factors->g = g2; |
---|
| 1338 | factors->h = h2; |
---|
| 1339 | if (g2 != one) { |
---|
| 1340 | value = 1; |
---|
| 1341 | if (st_insert(ghTable, (char *)Cudd_Regular(g2), |
---|
| 1342 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1343 | *outOfMem = 1; |
---|
| 1344 | FREE(factors); |
---|
| 1345 | return(NULL); |
---|
| 1346 | } |
---|
| 1347 | } |
---|
| 1348 | } else if (pairValue2 == BOTH_H) { |
---|
| 1349 | /* g and h are found in the h table */ |
---|
| 1350 | factors->g = g2; |
---|
| 1351 | factors->h = h2; |
---|
| 1352 | if (g2 != one) { |
---|
| 1353 | value = 3; |
---|
| 1354 | if (st_insert(ghTable, (char *)Cudd_Regular(g2), |
---|
| 1355 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1356 | *outOfMem = 1; |
---|
| 1357 | FREE(factors); |
---|
| 1358 | return(NULL); |
---|
| 1359 | } |
---|
| 1360 | } |
---|
| 1361 | } else if (pairValue1 == G_CR) { |
---|
| 1362 | /* g found in h table and h in none */ |
---|
| 1363 | factors->g = h1; |
---|
| 1364 | factors->h = g1; |
---|
| 1365 | if (h1 != one) { |
---|
| 1366 | value = 1; |
---|
| 1367 | if (st_insert(ghTable, (char *)Cudd_Regular(h1), |
---|
| 1368 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1369 | *outOfMem = 1; |
---|
| 1370 | FREE(factors); |
---|
| 1371 | return(NULL); |
---|
| 1372 | } |
---|
| 1373 | } |
---|
| 1374 | } else if (pairValue1 == H_CR) { |
---|
| 1375 | /* h found in g table and g in none */ |
---|
| 1376 | factors->g = h1; |
---|
| 1377 | factors->h = g1; |
---|
| 1378 | if (g1 != one) { |
---|
| 1379 | value = 2; |
---|
| 1380 | if (st_insert(ghTable, (char *)Cudd_Regular(g1), |
---|
| 1381 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1382 | *outOfMem = 1; |
---|
| 1383 | FREE(factors); |
---|
| 1384 | return(NULL); |
---|
| 1385 | } |
---|
| 1386 | } |
---|
| 1387 | } else if (pairValue2 == G_CR) { |
---|
| 1388 | /* g found in h table and h in none */ |
---|
| 1389 | factors->g = h2; |
---|
| 1390 | factors->h = g2; |
---|
| 1391 | if (h2 != one) { |
---|
| 1392 | value = 1; |
---|
| 1393 | if (st_insert(ghTable, (char *)Cudd_Regular(h2), |
---|
| 1394 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1395 | *outOfMem = 1; |
---|
| 1396 | FREE(factors); |
---|
| 1397 | return(NULL); |
---|
| 1398 | } |
---|
| 1399 | } |
---|
| 1400 | } else if (pairValue2 == H_CR) { |
---|
| 1401 | /* h found in g table and g in none */ |
---|
| 1402 | factors->g = h2; |
---|
| 1403 | factors->h = g2; |
---|
| 1404 | if (g2 != one) { |
---|
| 1405 | value = 2; |
---|
| 1406 | if (st_insert(ghTable, (char *)Cudd_Regular(g2), |
---|
| 1407 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1408 | *outOfMem = 1; |
---|
| 1409 | FREE(factors); |
---|
| 1410 | return(NULL); |
---|
| 1411 | } |
---|
| 1412 | } |
---|
| 1413 | } |
---|
| 1414 | |
---|
| 1415 | /* Store factors in cache table for later use. */ |
---|
| 1416 | if (st_insert(cacheTable, (char *)node, (char *)factors) == |
---|
| 1417 | ST_OUT_OF_MEM) { |
---|
| 1418 | *outOfMem = 1; |
---|
| 1419 | FREE(factors); |
---|
| 1420 | return(NULL); |
---|
| 1421 | } |
---|
| 1422 | return factors; |
---|
| 1423 | } /* end of CheckInTables */ |
---|
| 1424 | |
---|
| 1425 | |
---|
| 1426 | |
---|
| 1427 | /**Function******************************************************************** |
---|
| 1428 | |
---|
| 1429 | Synopsis [If one child is zero, do explicitly what Restrict does or better] |
---|
| 1430 | |
---|
| 1431 | Description [If one child is zero, do explicitly what Restrict does or better. |
---|
| 1432 | First separate a variable and its child in the base case. In case of a cube |
---|
| 1433 | times a function, separate the cube and function. As a last resort, look in |
---|
| 1434 | tables.] |
---|
| 1435 | |
---|
| 1436 | SideEffects [Frees the BDDs in factorsNv. factorsNv itself is not freed |
---|
| 1437 | because it is freed above.] |
---|
| 1438 | |
---|
| 1439 | SeeAlso [BuildConjuncts] |
---|
| 1440 | |
---|
| 1441 | ******************************************************************************/ |
---|
| 1442 | static Conjuncts * |
---|
| 1443 | ZeroCase( |
---|
| 1444 | DdManager * dd, |
---|
| 1445 | DdNode * node, |
---|
| 1446 | Conjuncts * factorsNv, |
---|
| 1447 | st_table * ghTable, |
---|
| 1448 | st_table * cacheTable, |
---|
| 1449 | int switched) |
---|
| 1450 | { |
---|
| 1451 | int topid; |
---|
| 1452 | DdNode *g, *h, *g1, *g2, *h1, *h2, *x, *N, *G, *H, *Gv, *Gnv; |
---|
| 1453 | DdNode *Hv, *Hnv; |
---|
| 1454 | int value; |
---|
| 1455 | int outOfMem; |
---|
| 1456 | Conjuncts *factors; |
---|
| 1457 | |
---|
| 1458 | /* get var at this node */ |
---|
| 1459 | N = Cudd_Regular(node); |
---|
| 1460 | topid = N->index; |
---|
| 1461 | x = dd->vars[topid]; |
---|
| 1462 | x = (switched) ? Cudd_Not(x): x; |
---|
| 1463 | cuddRef(x); |
---|
| 1464 | |
---|
| 1465 | /* Seprate variable and child */ |
---|
| 1466 | if (factorsNv->g == one) { |
---|
| 1467 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1468 | factors = ALLOC(Conjuncts, 1); |
---|
| 1469 | if (factors == NULL) { |
---|
| 1470 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1471 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1472 | Cudd_RecursiveDeref(dd, x); |
---|
| 1473 | return(NULL); |
---|
| 1474 | } |
---|
| 1475 | factors->g = x; |
---|
| 1476 | factors->h = factorsNv->h; |
---|
| 1477 | /* cache the result*/ |
---|
| 1478 | if (st_insert(cacheTable, (char *)node, (char *)factors) == ST_OUT_OF_MEM) { |
---|
| 1479 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1480 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1481 | Cudd_RecursiveDeref(dd, x); |
---|
| 1482 | FREE(factors); |
---|
| 1483 | return NULL; |
---|
| 1484 | } |
---|
| 1485 | |
---|
| 1486 | /* store x in g table, the other node is already in the table */ |
---|
| 1487 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(x), &value)) { |
---|
| 1488 | value |= 1; |
---|
| 1489 | } else { |
---|
| 1490 | value = 1; |
---|
| 1491 | } |
---|
| 1492 | if (st_insert(ghTable, (char *)Cudd_Regular(x), (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1493 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1494 | return NULL; |
---|
| 1495 | } |
---|
| 1496 | return(factors); |
---|
| 1497 | } |
---|
| 1498 | |
---|
| 1499 | /* Seprate variable and child */ |
---|
| 1500 | if (factorsNv->h == one) { |
---|
| 1501 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1502 | factors = ALLOC(Conjuncts, 1); |
---|
| 1503 | if (factors == NULL) { |
---|
| 1504 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1505 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1506 | Cudd_RecursiveDeref(dd, x); |
---|
| 1507 | return(NULL); |
---|
| 1508 | } |
---|
| 1509 | factors->g = factorsNv->g; |
---|
| 1510 | factors->h = x; |
---|
| 1511 | /* cache the result. */ |
---|
| 1512 | if (st_insert(cacheTable, (char *)node, (char *)factors) == ST_OUT_OF_MEM) { |
---|
| 1513 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1514 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1515 | Cudd_RecursiveDeref(dd, x); |
---|
| 1516 | FREE(factors); |
---|
| 1517 | return(NULL); |
---|
| 1518 | } |
---|
| 1519 | /* store x in h table, the other node is already in the table */ |
---|
| 1520 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(x), &value)) { |
---|
| 1521 | value |= 2; |
---|
| 1522 | } else { |
---|
| 1523 | value = 2; |
---|
| 1524 | } |
---|
| 1525 | if (st_insert(ghTable, (char *)Cudd_Regular(x), (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1526 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1527 | return NULL; |
---|
| 1528 | } |
---|
| 1529 | return(factors); |
---|
| 1530 | } |
---|
| 1531 | |
---|
| 1532 | G = Cudd_Regular(factorsNv->g); |
---|
| 1533 | Gv = cuddT(G); |
---|
| 1534 | Gnv = cuddE(G); |
---|
| 1535 | Gv = Cudd_NotCond(Gv, Cudd_IsComplement(node)); |
---|
| 1536 | Gnv = Cudd_NotCond(Gnv, Cudd_IsComplement(node)); |
---|
| 1537 | /* if the child below is a variable */ |
---|
| 1538 | if ((Gv == zero) || (Gnv == zero)) { |
---|
| 1539 | h = factorsNv->h; |
---|
| 1540 | g = cuddBddAndRecur(dd, x, factorsNv->g); |
---|
| 1541 | if (g != NULL) cuddRef(g); |
---|
| 1542 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1543 | Cudd_RecursiveDeref(dd, x); |
---|
| 1544 | if (g == NULL) { |
---|
| 1545 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1546 | return NULL; |
---|
| 1547 | } |
---|
| 1548 | /* CheckTablesCacheAndReturn responsible for allocating |
---|
| 1549 | * factors structure., g,h referenced for cache store the |
---|
| 1550 | */ |
---|
| 1551 | factors = CheckTablesCacheAndReturn(node, |
---|
| 1552 | g, |
---|
| 1553 | h, |
---|
| 1554 | ghTable, |
---|
| 1555 | cacheTable); |
---|
| 1556 | if (factors == NULL) { |
---|
| 1557 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1558 | Cudd_RecursiveDeref(dd, g); |
---|
| 1559 | Cudd_RecursiveDeref(dd, h); |
---|
| 1560 | } |
---|
| 1561 | return(factors); |
---|
| 1562 | } |
---|
| 1563 | |
---|
| 1564 | H = Cudd_Regular(factorsNv->h); |
---|
| 1565 | Hv = cuddT(H); |
---|
| 1566 | Hnv = cuddE(H); |
---|
| 1567 | Hv = Cudd_NotCond(Hv, Cudd_IsComplement(node)); |
---|
| 1568 | Hnv = Cudd_NotCond(Hnv, Cudd_IsComplement(node)); |
---|
| 1569 | /* if the child below is a variable */ |
---|
| 1570 | if ((Hv == zero) || (Hnv == zero)) { |
---|
| 1571 | g = factorsNv->g; |
---|
| 1572 | h = cuddBddAndRecur(dd, x, factorsNv->h); |
---|
| 1573 | if (h!= NULL) cuddRef(h); |
---|
| 1574 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1575 | Cudd_RecursiveDeref(dd, x); |
---|
| 1576 | if (h == NULL) { |
---|
| 1577 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1578 | return NULL; |
---|
| 1579 | } |
---|
| 1580 | /* CheckTablesCacheAndReturn responsible for allocating |
---|
| 1581 | * factors structure.g,h referenced for table store |
---|
| 1582 | */ |
---|
| 1583 | factors = CheckTablesCacheAndReturn(node, |
---|
| 1584 | g, |
---|
| 1585 | h, |
---|
| 1586 | ghTable, |
---|
| 1587 | cacheTable); |
---|
| 1588 | if (factors == NULL) { |
---|
| 1589 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1590 | Cudd_RecursiveDeref(dd, g); |
---|
| 1591 | Cudd_RecursiveDeref(dd, h); |
---|
| 1592 | } |
---|
| 1593 | return(factors); |
---|
| 1594 | } |
---|
| 1595 | |
---|
| 1596 | /* build g1 = x*g; h1 = h */ |
---|
| 1597 | /* build g2 = g; h2 = x*h */ |
---|
| 1598 | Cudd_RecursiveDeref(dd, x); |
---|
| 1599 | h1 = factorsNv->h; |
---|
| 1600 | g1 = cuddBddAndRecur(dd, x, factorsNv->g); |
---|
| 1601 | if (g1 != NULL) cuddRef(g1); |
---|
| 1602 | if (g1 == NULL) { |
---|
| 1603 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1604 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1605 | return NULL; |
---|
| 1606 | } |
---|
| 1607 | |
---|
| 1608 | g2 = factorsNv->g; |
---|
| 1609 | h2 = cuddBddAndRecur(dd, x, factorsNv->h); |
---|
| 1610 | if (h2 != NULL) cuddRef(h2); |
---|
| 1611 | if (h2 == NULL) { |
---|
| 1612 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1613 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1614 | return NULL; |
---|
| 1615 | } |
---|
| 1616 | |
---|
| 1617 | /* check whether any pair is in tables */ |
---|
| 1618 | factors = CheckInTables(node, g1, h1, g2, h2, ghTable, cacheTable, &outOfMem); |
---|
| 1619 | if (outOfMem) { |
---|
| 1620 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1621 | Cudd_RecursiveDeref(dd, g1); |
---|
| 1622 | Cudd_RecursiveDeref(dd, h1); |
---|
| 1623 | Cudd_RecursiveDeref(dd, g2); |
---|
| 1624 | Cudd_RecursiveDeref(dd, h2); |
---|
| 1625 | return NULL; |
---|
| 1626 | } |
---|
| 1627 | if (factors != NULL) { |
---|
| 1628 | if ((factors->g == g1) || (factors->g == h1)) { |
---|
| 1629 | Cudd_RecursiveDeref(dd, g2); |
---|
| 1630 | Cudd_RecursiveDeref(dd, h2); |
---|
| 1631 | } else { |
---|
| 1632 | Cudd_RecursiveDeref(dd, g1); |
---|
| 1633 | Cudd_RecursiveDeref(dd, h1); |
---|
| 1634 | } |
---|
| 1635 | return factors; |
---|
| 1636 | } |
---|
| 1637 | |
---|
| 1638 | /* check for each pair in tables and choose one */ |
---|
| 1639 | factors = PickOnePair(node,g1, h1, g2, h2, ghTable, cacheTable); |
---|
| 1640 | if (factors == NULL) { |
---|
| 1641 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1642 | Cudd_RecursiveDeref(dd, g1); |
---|
| 1643 | Cudd_RecursiveDeref(dd, h1); |
---|
| 1644 | Cudd_RecursiveDeref(dd, g2); |
---|
| 1645 | Cudd_RecursiveDeref(dd, h2); |
---|
| 1646 | } else { |
---|
| 1647 | /* now free what was created and not used */ |
---|
| 1648 | if ((factors->g == g1) || (factors->g == h1)) { |
---|
| 1649 | Cudd_RecursiveDeref(dd, g2); |
---|
| 1650 | Cudd_RecursiveDeref(dd, h2); |
---|
| 1651 | } else { |
---|
| 1652 | Cudd_RecursiveDeref(dd, g1); |
---|
| 1653 | Cudd_RecursiveDeref(dd, h1); |
---|
| 1654 | } |
---|
| 1655 | } |
---|
| 1656 | |
---|
| 1657 | return(factors); |
---|
| 1658 | } /* end of ZeroCase */ |
---|
| 1659 | |
---|
| 1660 | |
---|
| 1661 | /**Function******************************************************************** |
---|
| 1662 | |
---|
| 1663 | Synopsis [Builds the conjuncts recursively, bottom up.] |
---|
| 1664 | |
---|
| 1665 | Description [Builds the conjuncts recursively, bottom up. Constants |
---|
| 1666 | are returned as (f, f). The cache is checked for previously computed |
---|
| 1667 | result. The decomposition points are determined by the local |
---|
| 1668 | reference count of this node and the longest distance from the |
---|
| 1669 | constant. At the decomposition point, the factors returned are (f, |
---|
| 1670 | 1). Recur on the two children. The order is determined by the |
---|
| 1671 | heavier branch. Combine the factors of the two children and pick the |
---|
| 1672 | one that already occurs in the gh table. Occurence in g is indicated |
---|
| 1673 | by value 1, occurence in h by 2, occurence in both 3.] |
---|
| 1674 | |
---|
| 1675 | SideEffects [] |
---|
| 1676 | |
---|
| 1677 | SeeAlso [cuddConjunctsAux] |
---|
| 1678 | |
---|
| 1679 | ******************************************************************************/ |
---|
| 1680 | static Conjuncts * |
---|
| 1681 | BuildConjuncts( |
---|
| 1682 | DdManager * dd, |
---|
| 1683 | DdNode * node, |
---|
| 1684 | st_table * distanceTable, |
---|
| 1685 | st_table * cacheTable, |
---|
| 1686 | int approxDistance, |
---|
| 1687 | int maxLocalRef, |
---|
| 1688 | st_table * ghTable, |
---|
| 1689 | st_table * mintermTable) |
---|
| 1690 | { |
---|
| 1691 | int topid, distance; |
---|
| 1692 | Conjuncts *factorsNv, *factorsNnv, *factors; |
---|
| 1693 | Conjuncts *dummy; |
---|
| 1694 | DdNode *N, *Nv, *Nnv, *temp, *g1, *g2, *h1, *h2, *topv; |
---|
| 1695 | double minNv = 0.0, minNnv = 0.0; |
---|
| 1696 | double *doubleDummy; |
---|
| 1697 | int switched =0; |
---|
| 1698 | int outOfMem; |
---|
| 1699 | int freeNv = 0, freeNnv = 0, freeTemp; |
---|
| 1700 | NodeStat *nodeStat; |
---|
| 1701 | int value; |
---|
| 1702 | |
---|
| 1703 | /* if f is constant, return (f,f) */ |
---|
| 1704 | if (Cudd_IsConstant(node)) { |
---|
| 1705 | factors = ALLOC(Conjuncts, 1); |
---|
| 1706 | if (factors == NULL) { |
---|
| 1707 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1708 | return(NULL); |
---|
| 1709 | } |
---|
| 1710 | factors->g = node; |
---|
| 1711 | factors->h = node; |
---|
| 1712 | return(FactorsComplement(factors)); |
---|
| 1713 | } |
---|
| 1714 | |
---|
| 1715 | /* If result (a pair of conjuncts) in cache, return the factors. */ |
---|
| 1716 | if (st_lookup(cacheTable, node, &dummy)) { |
---|
| 1717 | factors = dummy; |
---|
| 1718 | return(factors); |
---|
| 1719 | } |
---|
| 1720 | |
---|
| 1721 | /* check distance and local reference count of this node */ |
---|
| 1722 | N = Cudd_Regular(node); |
---|
| 1723 | if (!st_lookup(distanceTable, N, &nodeStat)) { |
---|
| 1724 | (void) fprintf(dd->err, "Not in table, Something wrong\n"); |
---|
| 1725 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
| 1726 | return(NULL); |
---|
| 1727 | } |
---|
| 1728 | distance = nodeStat->distance; |
---|
| 1729 | |
---|
| 1730 | /* at or below decomposition point, return (f, 1) */ |
---|
| 1731 | if (((nodeStat->localRef > maxLocalRef*2/3) && |
---|
| 1732 | (distance < approxDistance*2/3)) || |
---|
| 1733 | (distance <= approxDistance/4)) { |
---|
| 1734 | factors = ALLOC(Conjuncts, 1); |
---|
| 1735 | if (factors == NULL) { |
---|
| 1736 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1737 | return(NULL); |
---|
| 1738 | } |
---|
| 1739 | /* alternate assigning (f,1) */ |
---|
| 1740 | value = 0; |
---|
| 1741 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(node), &value)) { |
---|
| 1742 | if (value == 3) { |
---|
| 1743 | if (!lastTimeG) { |
---|
| 1744 | factors->g = node; |
---|
| 1745 | factors->h = one; |
---|
| 1746 | lastTimeG = 1; |
---|
| 1747 | } else { |
---|
| 1748 | factors->g = one; |
---|
| 1749 | factors->h = node; |
---|
| 1750 | lastTimeG = 0; |
---|
| 1751 | } |
---|
| 1752 | } else if (value == 1) { |
---|
| 1753 | factors->g = node; |
---|
| 1754 | factors->h = one; |
---|
| 1755 | } else { |
---|
| 1756 | factors->g = one; |
---|
| 1757 | factors->h = node; |
---|
| 1758 | } |
---|
| 1759 | } else if (!lastTimeG) { |
---|
| 1760 | factors->g = node; |
---|
| 1761 | factors->h = one; |
---|
| 1762 | lastTimeG = 1; |
---|
| 1763 | value = 1; |
---|
| 1764 | if (st_insert(ghTable, (char *)Cudd_Regular(node), (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1765 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1766 | FREE(factors); |
---|
| 1767 | return NULL; |
---|
| 1768 | } |
---|
| 1769 | } else { |
---|
| 1770 | factors->g = one; |
---|
| 1771 | factors->h = node; |
---|
| 1772 | lastTimeG = 0; |
---|
| 1773 | value = 2; |
---|
| 1774 | if (st_insert(ghTable, (char *)Cudd_Regular(node), (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
| 1775 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1776 | FREE(factors); |
---|
| 1777 | return NULL; |
---|
| 1778 | } |
---|
| 1779 | } |
---|
| 1780 | return(FactorsComplement(factors)); |
---|
| 1781 | } |
---|
| 1782 | |
---|
| 1783 | /* get the children and recur */ |
---|
| 1784 | Nv = cuddT(N); |
---|
| 1785 | Nnv = cuddE(N); |
---|
| 1786 | Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); |
---|
| 1787 | Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); |
---|
| 1788 | |
---|
| 1789 | /* Choose which subproblem to solve first based on the number of |
---|
| 1790 | * minterms. We go first where there are more minterms. |
---|
| 1791 | */ |
---|
| 1792 | if (!Cudd_IsConstant(Nv)) { |
---|
| 1793 | if (!st_lookup(mintermTable, Nv, &doubleDummy)) { |
---|
| 1794 | (void) fprintf(dd->err, "Not in table: Something wrong\n"); |
---|
| 1795 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
| 1796 | return(NULL); |
---|
| 1797 | } |
---|
| 1798 | minNv = *doubleDummy; |
---|
| 1799 | } |
---|
| 1800 | |
---|
| 1801 | if (!Cudd_IsConstant(Nnv)) { |
---|
| 1802 | if (!st_lookup(mintermTable, Nnv, &doubleDummy)) { |
---|
| 1803 | (void) fprintf(dd->err, "Not in table: Something wrong\n"); |
---|
| 1804 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
| 1805 | return(NULL); |
---|
| 1806 | } |
---|
| 1807 | minNnv = *doubleDummy; |
---|
| 1808 | } |
---|
| 1809 | |
---|
| 1810 | if (minNv < minNnv) { |
---|
| 1811 | temp = Nv; |
---|
| 1812 | Nv = Nnv; |
---|
| 1813 | Nnv = temp; |
---|
| 1814 | switched = 1; |
---|
| 1815 | } |
---|
| 1816 | |
---|
| 1817 | /* build gt, ht recursively */ |
---|
| 1818 | if (Nv != zero) { |
---|
| 1819 | factorsNv = BuildConjuncts(dd, Nv, distanceTable, |
---|
| 1820 | cacheTable, approxDistance, maxLocalRef, |
---|
| 1821 | ghTable, mintermTable); |
---|
| 1822 | if (factorsNv == NULL) return(NULL); |
---|
| 1823 | freeNv = FactorsNotStored(factorsNv); |
---|
| 1824 | factorsNv = (freeNv) ? FactorsUncomplement(factorsNv) : factorsNv; |
---|
| 1825 | cuddRef(factorsNv->g); |
---|
| 1826 | cuddRef(factorsNv->h); |
---|
| 1827 | |
---|
| 1828 | /* Deal with the zero case */ |
---|
| 1829 | if (Nnv == zero) { |
---|
| 1830 | /* is responsible for freeing factorsNv */ |
---|
| 1831 | factors = ZeroCase(dd, node, factorsNv, ghTable, |
---|
| 1832 | cacheTable, switched); |
---|
| 1833 | if (freeNv) FREE(factorsNv); |
---|
| 1834 | return(factors); |
---|
| 1835 | } |
---|
| 1836 | } |
---|
| 1837 | |
---|
| 1838 | /* build ge, he recursively */ |
---|
| 1839 | if (Nnv != zero) { |
---|
| 1840 | factorsNnv = BuildConjuncts(dd, Nnv, distanceTable, |
---|
| 1841 | cacheTable, approxDistance, maxLocalRef, |
---|
| 1842 | ghTable, mintermTable); |
---|
| 1843 | if (factorsNnv == NULL) { |
---|
| 1844 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1845 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1846 | if (freeNv) FREE(factorsNv); |
---|
| 1847 | return(NULL); |
---|
| 1848 | } |
---|
| 1849 | freeNnv = FactorsNotStored(factorsNnv); |
---|
| 1850 | factorsNnv = (freeNnv) ? FactorsUncomplement(factorsNnv) : factorsNnv; |
---|
| 1851 | cuddRef(factorsNnv->g); |
---|
| 1852 | cuddRef(factorsNnv->h); |
---|
| 1853 | |
---|
| 1854 | /* Deal with the zero case */ |
---|
| 1855 | if (Nv == zero) { |
---|
| 1856 | /* is responsible for freeing factorsNv */ |
---|
| 1857 | factors = ZeroCase(dd, node, factorsNnv, ghTable, |
---|
| 1858 | cacheTable, switched); |
---|
| 1859 | if (freeNnv) FREE(factorsNnv); |
---|
| 1860 | return(factors); |
---|
| 1861 | } |
---|
| 1862 | } |
---|
| 1863 | |
---|
| 1864 | /* construct the 2 pairs */ |
---|
| 1865 | /* g1 = x*gt + x'*ge; h1 = x*ht + x'*he; */ |
---|
| 1866 | /* g2 = x*gt + x'*he; h2 = x*ht + x'*ge */ |
---|
| 1867 | if (switched) { |
---|
| 1868 | factors = factorsNnv; |
---|
| 1869 | factorsNnv = factorsNv; |
---|
| 1870 | factorsNv = factors; |
---|
| 1871 | freeTemp = freeNv; |
---|
| 1872 | freeNv = freeNnv; |
---|
| 1873 | freeNnv = freeTemp; |
---|
| 1874 | } |
---|
| 1875 | |
---|
| 1876 | /* Build the factors for this node. */ |
---|
| 1877 | topid = N->index; |
---|
| 1878 | topv = dd->vars[topid]; |
---|
| 1879 | |
---|
| 1880 | g1 = cuddBddIteRecur(dd, topv, factorsNv->g, factorsNnv->g); |
---|
| 1881 | if (g1 == NULL) { |
---|
| 1882 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1883 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1884 | Cudd_RecursiveDeref(dd, factorsNnv->g); |
---|
| 1885 | Cudd_RecursiveDeref(dd, factorsNnv->h); |
---|
| 1886 | if (freeNv) FREE(factorsNv); |
---|
| 1887 | if (freeNnv) FREE(factorsNnv); |
---|
| 1888 | return(NULL); |
---|
| 1889 | } |
---|
| 1890 | |
---|
| 1891 | cuddRef(g1); |
---|
| 1892 | |
---|
| 1893 | h1 = cuddBddIteRecur(dd, topv, factorsNv->h, factorsNnv->h); |
---|
| 1894 | if (h1 == NULL) { |
---|
| 1895 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1896 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1897 | Cudd_RecursiveDeref(dd, factorsNnv->g); |
---|
| 1898 | Cudd_RecursiveDeref(dd, factorsNnv->h); |
---|
| 1899 | Cudd_RecursiveDeref(dd, g1); |
---|
| 1900 | if (freeNv) FREE(factorsNv); |
---|
| 1901 | if (freeNnv) FREE(factorsNnv); |
---|
| 1902 | return(NULL); |
---|
| 1903 | } |
---|
| 1904 | |
---|
| 1905 | cuddRef(h1); |
---|
| 1906 | |
---|
| 1907 | g2 = cuddBddIteRecur(dd, topv, factorsNv->g, factorsNnv->h); |
---|
| 1908 | if (g2 == NULL) { |
---|
| 1909 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1910 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1911 | Cudd_RecursiveDeref(dd, factorsNnv->g); |
---|
| 1912 | Cudd_RecursiveDeref(dd, factorsNnv->h); |
---|
| 1913 | Cudd_RecursiveDeref(dd, g1); |
---|
| 1914 | Cudd_RecursiveDeref(dd, h1); |
---|
| 1915 | if (freeNv) FREE(factorsNv); |
---|
| 1916 | if (freeNnv) FREE(factorsNnv); |
---|
| 1917 | return(NULL); |
---|
| 1918 | } |
---|
| 1919 | cuddRef(g2); |
---|
| 1920 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1921 | Cudd_RecursiveDeref(dd, factorsNnv->h); |
---|
| 1922 | |
---|
| 1923 | h2 = cuddBddIteRecur(dd, topv, factorsNv->h, factorsNnv->g); |
---|
| 1924 | if (h2 == NULL) { |
---|
| 1925 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
| 1926 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1927 | Cudd_RecursiveDeref(dd, factorsNnv->g); |
---|
| 1928 | Cudd_RecursiveDeref(dd, factorsNnv->h); |
---|
| 1929 | Cudd_RecursiveDeref(dd, g1); |
---|
| 1930 | Cudd_RecursiveDeref(dd, h1); |
---|
| 1931 | Cudd_RecursiveDeref(dd, g2); |
---|
| 1932 | if (freeNv) FREE(factorsNv); |
---|
| 1933 | if (freeNnv) FREE(factorsNnv); |
---|
| 1934 | return(NULL); |
---|
| 1935 | } |
---|
| 1936 | cuddRef(h2); |
---|
| 1937 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
| 1938 | Cudd_RecursiveDeref(dd, factorsNnv->g); |
---|
| 1939 | if (freeNv) FREE(factorsNv); |
---|
| 1940 | if (freeNnv) FREE(factorsNnv); |
---|
| 1941 | |
---|
| 1942 | /* check for each pair in tables and choose one */ |
---|
| 1943 | factors = CheckInTables(node, g1, h1, g2, h2, ghTable, cacheTable, &outOfMem); |
---|
| 1944 | if (outOfMem) { |
---|
| 1945 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1946 | Cudd_RecursiveDeref(dd, g1); |
---|
| 1947 | Cudd_RecursiveDeref(dd, h1); |
---|
| 1948 | Cudd_RecursiveDeref(dd, g2); |
---|
| 1949 | Cudd_RecursiveDeref(dd, h2); |
---|
| 1950 | return(NULL); |
---|
| 1951 | } |
---|
| 1952 | if (factors != NULL) { |
---|
| 1953 | if ((factors->g == g1) || (factors->g == h1)) { |
---|
| 1954 | Cudd_RecursiveDeref(dd, g2); |
---|
| 1955 | Cudd_RecursiveDeref(dd, h2); |
---|
| 1956 | } else { |
---|
| 1957 | Cudd_RecursiveDeref(dd, g1); |
---|
| 1958 | Cudd_RecursiveDeref(dd, h1); |
---|
| 1959 | } |
---|
| 1960 | return(factors); |
---|
| 1961 | } |
---|
| 1962 | |
---|
| 1963 | /* if not in tables, pick one pair */ |
---|
| 1964 | factors = PickOnePair(node,g1, h1, g2, h2, ghTable, cacheTable); |
---|
| 1965 | if (factors == NULL) { |
---|
| 1966 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1967 | Cudd_RecursiveDeref(dd, g1); |
---|
| 1968 | Cudd_RecursiveDeref(dd, h1); |
---|
| 1969 | Cudd_RecursiveDeref(dd, g2); |
---|
| 1970 | Cudd_RecursiveDeref(dd, h2); |
---|
| 1971 | } else { |
---|
| 1972 | /* now free what was created and not used */ |
---|
| 1973 | if ((factors->g == g1) || (factors->g == h1)) { |
---|
| 1974 | Cudd_RecursiveDeref(dd, g2); |
---|
| 1975 | Cudd_RecursiveDeref(dd, h2); |
---|
| 1976 | } else { |
---|
| 1977 | Cudd_RecursiveDeref(dd, g1); |
---|
| 1978 | Cudd_RecursiveDeref(dd, h1); |
---|
| 1979 | } |
---|
| 1980 | } |
---|
| 1981 | |
---|
| 1982 | return(factors); |
---|
| 1983 | |
---|
| 1984 | } /* end of BuildConjuncts */ |
---|
| 1985 | |
---|
| 1986 | |
---|
| 1987 | /**Function******************************************************************** |
---|
| 1988 | |
---|
| 1989 | Synopsis [Procedure to compute two conjunctive factors of f and place in *c1 and *c2.] |
---|
| 1990 | |
---|
| 1991 | Description [Procedure to compute two conjunctive factors of f and |
---|
| 1992 | place in *c1 and *c2. Sets up the required data - table of distances |
---|
| 1993 | from the constant and local reference count. Also minterm table. ] |
---|
| 1994 | |
---|
| 1995 | SideEffects [] |
---|
| 1996 | |
---|
| 1997 | SeeAlso [] |
---|
| 1998 | |
---|
| 1999 | ******************************************************************************/ |
---|
| 2000 | static int |
---|
| 2001 | cuddConjunctsAux( |
---|
| 2002 | DdManager * dd, |
---|
| 2003 | DdNode * f, |
---|
| 2004 | DdNode ** c1, |
---|
| 2005 | DdNode ** c2) |
---|
| 2006 | { |
---|
| 2007 | st_table *distanceTable = NULL; |
---|
| 2008 | st_table *cacheTable = NULL; |
---|
| 2009 | st_table *mintermTable = NULL; |
---|
| 2010 | st_table *ghTable = NULL; |
---|
| 2011 | st_generator *stGen; |
---|
| 2012 | char *key, *value; |
---|
| 2013 | Conjuncts *factors; |
---|
| 2014 | int distance, approxDistance; |
---|
| 2015 | double max, minterms; |
---|
| 2016 | int freeFactors; |
---|
| 2017 | NodeStat *nodeStat; |
---|
| 2018 | int maxLocalRef; |
---|
| 2019 | |
---|
| 2020 | /* initialize */ |
---|
| 2021 | *c1 = NULL; |
---|
| 2022 | *c2 = NULL; |
---|
| 2023 | |
---|
| 2024 | /* initialize distances table */ |
---|
| 2025 | distanceTable = st_init_table(st_ptrcmp,st_ptrhash); |
---|
| 2026 | if (distanceTable == NULL) goto outOfMem; |
---|
| 2027 | |
---|
| 2028 | /* make the entry for the constant */ |
---|
| 2029 | nodeStat = ALLOC(NodeStat, 1); |
---|
| 2030 | if (nodeStat == NULL) goto outOfMem; |
---|
| 2031 | nodeStat->distance = 0; |
---|
| 2032 | nodeStat->localRef = 1; |
---|
| 2033 | if (st_insert(distanceTable, (char *)one, (char *)nodeStat) == ST_OUT_OF_MEM) { |
---|
| 2034 | goto outOfMem; |
---|
| 2035 | } |
---|
| 2036 | |
---|
| 2037 | /* Count node distances from constant. */ |
---|
| 2038 | nodeStat = CreateBotDist(f, distanceTable); |
---|
| 2039 | if (nodeStat == NULL) goto outOfMem; |
---|
| 2040 | |
---|
| 2041 | /* set the distance for the decomposition points */ |
---|
| 2042 | approxDistance = (DEPTH < nodeStat->distance) ? nodeStat->distance : DEPTH; |
---|
| 2043 | distance = nodeStat->distance; |
---|
| 2044 | |
---|
| 2045 | if (distance < approxDistance) { |
---|
| 2046 | /* Too small to bother. */ |
---|
| 2047 | *c1 = f; |
---|
| 2048 | *c2 = DD_ONE(dd); |
---|
| 2049 | cuddRef(*c1); cuddRef(*c2); |
---|
| 2050 | stGen = st_init_gen(distanceTable); |
---|
| 2051 | if (stGen == NULL) goto outOfMem; |
---|
| 2052 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
| 2053 | FREE(value); |
---|
| 2054 | } |
---|
| 2055 | st_free_gen(stGen); stGen = NULL; |
---|
| 2056 | st_free_table(distanceTable); |
---|
| 2057 | return(1); |
---|
| 2058 | } |
---|
| 2059 | |
---|
| 2060 | /* record the maximum local reference count */ |
---|
| 2061 | maxLocalRef = 0; |
---|
| 2062 | stGen = st_init_gen(distanceTable); |
---|
| 2063 | if (stGen == NULL) goto outOfMem; |
---|
| 2064 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
| 2065 | nodeStat = (NodeStat *)value; |
---|
| 2066 | maxLocalRef = (nodeStat->localRef > maxLocalRef) ? |
---|
| 2067 | nodeStat->localRef : maxLocalRef; |
---|
| 2068 | } |
---|
| 2069 | st_free_gen(stGen); stGen = NULL; |
---|
| 2070 | |
---|
| 2071 | |
---|
| 2072 | /* Count minterms for each node. */ |
---|
| 2073 | max = pow(2.0, (double)Cudd_SupportSize(dd,f)); /* potential overflow */ |
---|
| 2074 | mintermTable = st_init_table(st_ptrcmp,st_ptrhash); |
---|
| 2075 | if (mintermTable == NULL) goto outOfMem; |
---|
| 2076 | minterms = CountMinterms(f, max, mintermTable, dd->err); |
---|
| 2077 | if (minterms == -1.0) goto outOfMem; |
---|
| 2078 | |
---|
| 2079 | lastTimeG = Cudd_Random() & 1; |
---|
| 2080 | cacheTable = st_init_table(st_ptrcmp, st_ptrhash); |
---|
| 2081 | if (cacheTable == NULL) goto outOfMem; |
---|
| 2082 | ghTable = st_init_table(st_ptrcmp, st_ptrhash); |
---|
| 2083 | if (ghTable == NULL) goto outOfMem; |
---|
| 2084 | |
---|
| 2085 | /* Build conjuncts. */ |
---|
| 2086 | factors = BuildConjuncts(dd, f, distanceTable, cacheTable, |
---|
| 2087 | approxDistance, maxLocalRef, ghTable, mintermTable); |
---|
| 2088 | if (factors == NULL) goto outOfMem; |
---|
| 2089 | |
---|
| 2090 | /* free up tables */ |
---|
| 2091 | stGen = st_init_gen(distanceTable); |
---|
| 2092 | if (stGen == NULL) goto outOfMem; |
---|
| 2093 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
| 2094 | FREE(value); |
---|
| 2095 | } |
---|
| 2096 | st_free_gen(stGen); stGen = NULL; |
---|
| 2097 | st_free_table(distanceTable); distanceTable = NULL; |
---|
| 2098 | st_free_table(ghTable); ghTable = NULL; |
---|
| 2099 | |
---|
| 2100 | stGen = st_init_gen(mintermTable); |
---|
| 2101 | if (stGen == NULL) goto outOfMem; |
---|
| 2102 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
| 2103 | FREE(value); |
---|
| 2104 | } |
---|
| 2105 | st_free_gen(stGen); stGen = NULL; |
---|
| 2106 | st_free_table(mintermTable); mintermTable = NULL; |
---|
| 2107 | |
---|
| 2108 | freeFactors = FactorsNotStored(factors); |
---|
| 2109 | factors = (freeFactors) ? FactorsUncomplement(factors) : factors; |
---|
| 2110 | if (factors != NULL) { |
---|
| 2111 | *c1 = factors->g; |
---|
| 2112 | *c2 = factors->h; |
---|
| 2113 | cuddRef(*c1); |
---|
| 2114 | cuddRef(*c2); |
---|
| 2115 | if (freeFactors) FREE(factors); |
---|
| 2116 | |
---|
| 2117 | #if 0 |
---|
| 2118 | if ((*c1 == f) && (!Cudd_IsConstant(f))) { |
---|
| 2119 | assert(*c2 == one); |
---|
| 2120 | } |
---|
| 2121 | if ((*c2 == f) && (!Cudd_IsConstant(f))) { |
---|
| 2122 | assert(*c1 == one); |
---|
| 2123 | } |
---|
| 2124 | |
---|
| 2125 | if ((*c1 != one) && (!Cudd_IsConstant(f))) { |
---|
| 2126 | assert(!Cudd_bddLeq(dd, *c2, *c1)); |
---|
| 2127 | } |
---|
| 2128 | if ((*c2 != one) && (!Cudd_IsConstant(f))) { |
---|
| 2129 | assert(!Cudd_bddLeq(dd, *c1, *c2)); |
---|
| 2130 | } |
---|
| 2131 | #endif |
---|
| 2132 | } |
---|
| 2133 | |
---|
| 2134 | stGen = st_init_gen(cacheTable); |
---|
| 2135 | if (stGen == NULL) goto outOfMem; |
---|
| 2136 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
| 2137 | ConjunctsFree(dd, (Conjuncts *)value); |
---|
| 2138 | } |
---|
| 2139 | st_free_gen(stGen); stGen = NULL; |
---|
| 2140 | |
---|
| 2141 | st_free_table(cacheTable); cacheTable = NULL; |
---|
| 2142 | |
---|
| 2143 | return(1); |
---|
| 2144 | |
---|
| 2145 | outOfMem: |
---|
| 2146 | if (distanceTable != NULL) { |
---|
| 2147 | stGen = st_init_gen(distanceTable); |
---|
| 2148 | if (stGen == NULL) goto outOfMem; |
---|
| 2149 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
| 2150 | FREE(value); |
---|
| 2151 | } |
---|
| 2152 | st_free_gen(stGen); stGen = NULL; |
---|
| 2153 | st_free_table(distanceTable); distanceTable = NULL; |
---|
| 2154 | } |
---|
| 2155 | if (mintermTable != NULL) { |
---|
| 2156 | stGen = st_init_gen(mintermTable); |
---|
| 2157 | if (stGen == NULL) goto outOfMem; |
---|
| 2158 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
| 2159 | FREE(value); |
---|
| 2160 | } |
---|
| 2161 | st_free_gen(stGen); stGen = NULL; |
---|
| 2162 | st_free_table(mintermTable); mintermTable = NULL; |
---|
| 2163 | } |
---|
| 2164 | if (ghTable != NULL) st_free_table(ghTable); |
---|
| 2165 | if (cacheTable != NULL) { |
---|
| 2166 | stGen = st_init_gen(cacheTable); |
---|
| 2167 | if (stGen == NULL) goto outOfMem; |
---|
| 2168 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
| 2169 | ConjunctsFree(dd, (Conjuncts *)value); |
---|
| 2170 | } |
---|
| 2171 | st_free_gen(stGen); stGen = NULL; |
---|
| 2172 | st_free_table(cacheTable); cacheTable = NULL; |
---|
| 2173 | } |
---|
| 2174 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 2175 | return(0); |
---|
| 2176 | |
---|
| 2177 | } /* end of cuddConjunctsAux */ |
---|