[8] | 1 | /**CFile*********************************************************************** |
---|
| 2 | |
---|
| 3 | FileName [cuddGenCof.c] |
---|
| 4 | |
---|
| 5 | PackageName [cudd] |
---|
| 6 | |
---|
| 7 | Synopsis [Generalized cofactors for BDDs and ADDs.] |
---|
| 8 | |
---|
| 9 | Description [External procedures included in this module: |
---|
| 10 | <ul> |
---|
| 11 | <li> Cudd_bddConstrain() |
---|
| 12 | <li> Cudd_bddRestrict() |
---|
| 13 | <li> Cudd_bddNPAnd() |
---|
| 14 | <li> Cudd_addConstrain() |
---|
| 15 | <li> Cudd_bddConstrainDecomp() |
---|
| 16 | <li> Cudd_addRestrict() |
---|
| 17 | <li> Cudd_bddCharToVect() |
---|
| 18 | <li> Cudd_bddLICompaction() |
---|
| 19 | <li> Cudd_bddSqueeze() |
---|
| 20 | <li> Cudd_SubsetCompress() |
---|
| 21 | <li> Cudd_SupersetCompress() |
---|
| 22 | </ul> |
---|
| 23 | Internal procedures included in this module: |
---|
| 24 | <ul> |
---|
| 25 | <li> cuddBddConstrainRecur() |
---|
| 26 | <li> cuddBddRestrictRecur() |
---|
| 27 | <li> cuddBddNPAndRecur() |
---|
| 28 | <li> cuddAddConstrainRecur() |
---|
| 29 | <li> cuddAddRestrictRecur() |
---|
| 30 | <li> cuddBddLICompaction() |
---|
| 31 | </ul> |
---|
| 32 | Static procedures included in this module: |
---|
| 33 | <ul> |
---|
| 34 | <li> cuddBddConstrainDecomp() |
---|
| 35 | <li> cuddBddCharToVect() |
---|
| 36 | <li> cuddBddLICMarkEdges() |
---|
| 37 | <li> cuddBddLICBuildResult() |
---|
| 38 | <li> cuddBddSqueeze() |
---|
| 39 | </ul> |
---|
| 40 | ] |
---|
| 41 | |
---|
| 42 | Author [Fabio Somenzi] |
---|
| 43 | |
---|
| 44 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
| 45 | |
---|
| 46 | All rights reserved. |
---|
| 47 | |
---|
| 48 | Redistribution and use in source and binary forms, with or without |
---|
| 49 | modification, are permitted provided that the following conditions |
---|
| 50 | are met: |
---|
| 51 | |
---|
| 52 | Redistributions of source code must retain the above copyright |
---|
| 53 | notice, this list of conditions and the following disclaimer. |
---|
| 54 | |
---|
| 55 | Redistributions in binary form must reproduce the above copyright |
---|
| 56 | notice, this list of conditions and the following disclaimer in the |
---|
| 57 | documentation and/or other materials provided with the distribution. |
---|
| 58 | |
---|
| 59 | Neither the name of the University of Colorado nor the names of its |
---|
| 60 | contributors may be used to endorse or promote products derived from |
---|
| 61 | this software without specific prior written permission. |
---|
| 62 | |
---|
| 63 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 64 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 65 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
| 66 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
| 67 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
| 68 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
| 69 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
| 70 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
| 71 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
| 72 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
| 73 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
| 74 | POSSIBILITY OF SUCH DAMAGE.] |
---|
| 75 | |
---|
| 76 | ******************************************************************************/ |
---|
| 77 | |
---|
| 78 | #include "util.h" |
---|
| 79 | #include "cuddInt.h" |
---|
| 80 | |
---|
| 81 | |
---|
| 82 | /*---------------------------------------------------------------------------*/ |
---|
| 83 | /* Constant declarations */ |
---|
| 84 | /*---------------------------------------------------------------------------*/ |
---|
| 85 | |
---|
| 86 | /* Codes for edge markings in Cudd_bddLICompaction. The codes are defined |
---|
| 87 | ** so that they can be bitwise ORed to implement the code priority scheme. |
---|
| 88 | */ |
---|
| 89 | #define DD_LIC_DC 0 |
---|
| 90 | #define DD_LIC_1 1 |
---|
| 91 | #define DD_LIC_0 2 |
---|
| 92 | #define DD_LIC_NL 3 |
---|
| 93 | |
---|
| 94 | /*---------------------------------------------------------------------------*/ |
---|
| 95 | /* Stucture declarations */ |
---|
| 96 | /*---------------------------------------------------------------------------*/ |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | /*---------------------------------------------------------------------------*/ |
---|
| 100 | /* Type declarations */ |
---|
| 101 | /*---------------------------------------------------------------------------*/ |
---|
| 102 | |
---|
| 103 | /* Key for the cache used in the edge marking phase. */ |
---|
| 104 | typedef struct MarkCacheKey { |
---|
| 105 | DdNode *f; |
---|
| 106 | DdNode *c; |
---|
| 107 | } MarkCacheKey; |
---|
| 108 | |
---|
| 109 | /*---------------------------------------------------------------------------*/ |
---|
| 110 | /* Variable declarations */ |
---|
| 111 | /*---------------------------------------------------------------------------*/ |
---|
| 112 | |
---|
| 113 | #ifndef lint |
---|
| 114 | static char rcsid[] DD_UNUSED = "$Id: cuddGenCof.c,v 1.38 2005/05/14 17:27:11 fabio Exp $"; |
---|
| 115 | #endif |
---|
| 116 | |
---|
| 117 | /*---------------------------------------------------------------------------*/ |
---|
| 118 | /* Macro declarations */ |
---|
| 119 | /*---------------------------------------------------------------------------*/ |
---|
| 120 | |
---|
| 121 | #ifdef __cplusplus |
---|
| 122 | extern "C" { |
---|
| 123 | #endif |
---|
| 124 | |
---|
| 125 | /**AutomaticStart*************************************************************/ |
---|
| 126 | |
---|
| 127 | /*---------------------------------------------------------------------------*/ |
---|
| 128 | /* Static function prototypes */ |
---|
| 129 | /*---------------------------------------------------------------------------*/ |
---|
| 130 | |
---|
| 131 | static int cuddBddConstrainDecomp (DdManager *dd, DdNode *f, DdNode **decomp); |
---|
| 132 | static DdNode * cuddBddCharToVect (DdManager *dd, DdNode *f, DdNode *x); |
---|
| 133 | static int cuddBddLICMarkEdges (DdManager *dd, DdNode *f, DdNode *c, st_table *table, st_table *cache); |
---|
| 134 | static DdNode * cuddBddLICBuildResult (DdManager *dd, DdNode *f, st_table *cache, st_table *table); |
---|
| 135 | static int MarkCacheHash (char *ptr, int modulus); |
---|
| 136 | static int MarkCacheCompare (const char *ptr1, const char *ptr2); |
---|
| 137 | static enum st_retval MarkCacheCleanUp (char *key, char *value, char *arg); |
---|
| 138 | static DdNode * cuddBddSqueeze (DdManager *dd, DdNode *l, DdNode *u); |
---|
| 139 | |
---|
| 140 | /**AutomaticEnd***************************************************************/ |
---|
| 141 | |
---|
| 142 | #ifdef __cplusplus |
---|
| 143 | } |
---|
| 144 | #endif |
---|
| 145 | |
---|
| 146 | /*---------------------------------------------------------------------------*/ |
---|
| 147 | /* Definition of exported functions */ |
---|
| 148 | /*---------------------------------------------------------------------------*/ |
---|
| 149 | |
---|
| 150 | |
---|
| 151 | /**Function******************************************************************** |
---|
| 152 | |
---|
| 153 | Synopsis [Computes f constrain c.] |
---|
| 154 | |
---|
| 155 | Description [Computes f constrain c (f @ c). |
---|
| 156 | Uses a canonical form: (f' @ c) = ( f @ c)'. (Note: this is not true |
---|
| 157 | for c.) List of special cases: |
---|
| 158 | <ul> |
---|
| 159 | <li> f @ 0 = 0 |
---|
| 160 | <li> f @ 1 = f |
---|
| 161 | <li> 0 @ c = 0 |
---|
| 162 | <li> 1 @ c = 1 |
---|
| 163 | <li> f @ f = 1 |
---|
| 164 | <li> f @ f'= 0 |
---|
| 165 | </ul> |
---|
| 166 | Returns a pointer to the result if successful; NULL otherwise. Note that if |
---|
| 167 | F=(f1,...,fn) and reordering takes place while computing F @ c, then the |
---|
| 168 | image restriction property (Img(F,c) = Img(F @ c)) is lost.] |
---|
| 169 | |
---|
| 170 | SideEffects [None] |
---|
| 171 | |
---|
| 172 | SeeAlso [Cudd_bddRestrict Cudd_addConstrain] |
---|
| 173 | |
---|
| 174 | ******************************************************************************/ |
---|
| 175 | DdNode * |
---|
| 176 | Cudd_bddConstrain( |
---|
| 177 | DdManager * dd, |
---|
| 178 | DdNode * f, |
---|
| 179 | DdNode * c) |
---|
| 180 | { |
---|
| 181 | DdNode *res; |
---|
| 182 | |
---|
| 183 | do { |
---|
| 184 | dd->reordered = 0; |
---|
| 185 | res = cuddBddConstrainRecur(dd,f,c); |
---|
| 186 | } while (dd->reordered == 1); |
---|
| 187 | return(res); |
---|
| 188 | |
---|
| 189 | } /* end of Cudd_bddConstrain */ |
---|
| 190 | |
---|
| 191 | |
---|
| 192 | /**Function******************************************************************** |
---|
| 193 | |
---|
| 194 | Synopsis [BDD restrict according to Coudert and Madre's algorithm |
---|
| 195 | (ICCAD90).] |
---|
| 196 | |
---|
| 197 | Description [BDD restrict according to Coudert and Madre's algorithm |
---|
| 198 | (ICCAD90). Returns the restricted BDD if successful; otherwise NULL. |
---|
| 199 | If application of restrict results in a BDD larger than the input |
---|
| 200 | BDD, the input BDD is returned.] |
---|
| 201 | |
---|
| 202 | SideEffects [None] |
---|
| 203 | |
---|
| 204 | SeeAlso [Cudd_bddConstrain Cudd_addRestrict] |
---|
| 205 | |
---|
| 206 | ******************************************************************************/ |
---|
| 207 | DdNode * |
---|
| 208 | Cudd_bddRestrict( |
---|
| 209 | DdManager * dd, |
---|
| 210 | DdNode * f, |
---|
| 211 | DdNode * c) |
---|
| 212 | { |
---|
| 213 | DdNode *suppF, *suppC, *commonSupport; |
---|
| 214 | DdNode *cplus, *res; |
---|
| 215 | int retval; |
---|
| 216 | int sizeF, sizeRes; |
---|
| 217 | |
---|
| 218 | /* Check terminal cases here to avoid computing supports in trivial cases. |
---|
| 219 | ** This also allows us notto check later for the case c == 0, in which |
---|
| 220 | ** there is no common support. */ |
---|
| 221 | if (c == Cudd_Not(DD_ONE(dd))) return(Cudd_Not(DD_ONE(dd))); |
---|
| 222 | if (Cudd_IsConstant(f)) return(f); |
---|
| 223 | if (f == c) return(DD_ONE(dd)); |
---|
| 224 | if (f == Cudd_Not(c)) return(Cudd_Not(DD_ONE(dd))); |
---|
| 225 | |
---|
| 226 | /* Check if supports intersect. */ |
---|
| 227 | retval = Cudd_ClassifySupport(dd,f,c,&commonSupport,&suppF,&suppC); |
---|
| 228 | if (retval == 0) { |
---|
| 229 | return(NULL); |
---|
| 230 | } |
---|
| 231 | cuddRef(commonSupport); cuddRef(suppF); cuddRef(suppC); |
---|
| 232 | Cudd_IterDerefBdd(dd,suppF); |
---|
| 233 | |
---|
| 234 | if (commonSupport == DD_ONE(dd)) { |
---|
| 235 | Cudd_IterDerefBdd(dd,commonSupport); |
---|
| 236 | Cudd_IterDerefBdd(dd,suppC); |
---|
| 237 | return(f); |
---|
| 238 | } |
---|
| 239 | Cudd_IterDerefBdd(dd,commonSupport); |
---|
| 240 | |
---|
| 241 | /* Abstract from c the variables that do not appear in f. */ |
---|
| 242 | cplus = Cudd_bddExistAbstract(dd, c, suppC); |
---|
| 243 | if (cplus == NULL) { |
---|
| 244 | Cudd_IterDerefBdd(dd,suppC); |
---|
| 245 | return(NULL); |
---|
| 246 | } |
---|
| 247 | cuddRef(cplus); |
---|
| 248 | Cudd_IterDerefBdd(dd,suppC); |
---|
| 249 | |
---|
| 250 | do { |
---|
| 251 | dd->reordered = 0; |
---|
| 252 | res = cuddBddRestrictRecur(dd, f, cplus); |
---|
| 253 | } while (dd->reordered == 1); |
---|
| 254 | if (res == NULL) { |
---|
| 255 | Cudd_IterDerefBdd(dd,cplus); |
---|
| 256 | return(NULL); |
---|
| 257 | } |
---|
| 258 | cuddRef(res); |
---|
| 259 | Cudd_IterDerefBdd(dd,cplus); |
---|
| 260 | /* Make restric safe by returning the smaller of the input and the |
---|
| 261 | ** result. */ |
---|
| 262 | sizeF = Cudd_DagSize(f); |
---|
| 263 | sizeRes = Cudd_DagSize(res); |
---|
| 264 | if (sizeF <= sizeRes) { |
---|
| 265 | Cudd_IterDerefBdd(dd, res); |
---|
| 266 | return(f); |
---|
| 267 | } else { |
---|
| 268 | cuddDeref(res); |
---|
| 269 | return(res); |
---|
| 270 | } |
---|
| 271 | |
---|
| 272 | } /* end of Cudd_bddRestrict */ |
---|
| 273 | |
---|
| 274 | |
---|
| 275 | /**Function******************************************************************** |
---|
| 276 | |
---|
| 277 | Synopsis [Computes f non-polluting-and g.] |
---|
| 278 | |
---|
| 279 | Description [Computes f non-polluting-and g. The non-polluting AND |
---|
| 280 | of f and g is a hybrid of AND and Restrict. From Restrict, this |
---|
| 281 | operation takes the idea of existentially quantifying the top |
---|
| 282 | variable of the second operand if it does not appear in the first. |
---|
| 283 | Therefore, the variables that appear in the result also appear in f. |
---|
| 284 | For the rest, the function behaves like AND. Since the two operands |
---|
| 285 | play different roles, non-polluting AND is not commutative. |
---|
| 286 | |
---|
| 287 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
| 288 | |
---|
| 289 | SideEffects [None] |
---|
| 290 | |
---|
| 291 | SeeAlso [Cudd_bddConstrain Cudd_bddRestrict] |
---|
| 292 | |
---|
| 293 | ******************************************************************************/ |
---|
| 294 | DdNode * |
---|
| 295 | Cudd_bddNPAnd( |
---|
| 296 | DdManager * dd, |
---|
| 297 | DdNode * f, |
---|
| 298 | DdNode * g) |
---|
| 299 | { |
---|
| 300 | DdNode *res; |
---|
| 301 | |
---|
| 302 | do { |
---|
| 303 | dd->reordered = 0; |
---|
| 304 | res = cuddBddNPAndRecur(dd,f,g); |
---|
| 305 | } while (dd->reordered == 1); |
---|
| 306 | return(res); |
---|
| 307 | |
---|
| 308 | } /* end of Cudd_bddNPAnd */ |
---|
| 309 | |
---|
| 310 | |
---|
| 311 | /**Function******************************************************************** |
---|
| 312 | |
---|
| 313 | Synopsis [Computes f constrain c for ADDs.] |
---|
| 314 | |
---|
| 315 | Description [Computes f constrain c (f @ c), for f an ADD and c a 0-1 |
---|
| 316 | ADD. List of special cases: |
---|
| 317 | <ul> |
---|
| 318 | <li> F @ 0 = 0 |
---|
| 319 | <li> F @ 1 = F |
---|
| 320 | <li> 0 @ c = 0 |
---|
| 321 | <li> 1 @ c = 1 |
---|
| 322 | <li> F @ F = 1 |
---|
| 323 | </ul> |
---|
| 324 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
| 325 | |
---|
| 326 | SideEffects [None] |
---|
| 327 | |
---|
| 328 | SeeAlso [Cudd_bddConstrain] |
---|
| 329 | |
---|
| 330 | ******************************************************************************/ |
---|
| 331 | DdNode * |
---|
| 332 | Cudd_addConstrain( |
---|
| 333 | DdManager * dd, |
---|
| 334 | DdNode * f, |
---|
| 335 | DdNode * c) |
---|
| 336 | { |
---|
| 337 | DdNode *res; |
---|
| 338 | |
---|
| 339 | do { |
---|
| 340 | dd->reordered = 0; |
---|
| 341 | res = cuddAddConstrainRecur(dd,f,c); |
---|
| 342 | } while (dd->reordered == 1); |
---|
| 343 | return(res); |
---|
| 344 | |
---|
| 345 | } /* end of Cudd_addConstrain */ |
---|
| 346 | |
---|
| 347 | |
---|
| 348 | /**Function******************************************************************** |
---|
| 349 | |
---|
| 350 | Synopsis [BDD conjunctive decomposition as in McMillan's CAV96 paper.] |
---|
| 351 | |
---|
| 352 | Description [BDD conjunctive decomposition as in McMillan's CAV96 |
---|
| 353 | paper. The decomposition is canonical only for a given variable |
---|
| 354 | order. If canonicity is required, variable ordering must be disabled |
---|
| 355 | after the decomposition has been computed. Returns an array with one |
---|
| 356 | entry for each BDD variable in the manager if successful; otherwise |
---|
| 357 | NULL. The components of the solution have their reference counts |
---|
| 358 | already incremented (unlike the results of most other functions in |
---|
| 359 | the package.] |
---|
| 360 | |
---|
| 361 | SideEffects [None] |
---|
| 362 | |
---|
| 363 | SeeAlso [Cudd_bddConstrain Cudd_bddExistAbstract] |
---|
| 364 | |
---|
| 365 | ******************************************************************************/ |
---|
| 366 | DdNode ** |
---|
| 367 | Cudd_bddConstrainDecomp( |
---|
| 368 | DdManager * dd, |
---|
| 369 | DdNode * f) |
---|
| 370 | { |
---|
| 371 | DdNode **decomp; |
---|
| 372 | int res; |
---|
| 373 | int i; |
---|
| 374 | |
---|
| 375 | /* Create an initialize decomposition array. */ |
---|
| 376 | decomp = ALLOC(DdNode *,dd->size); |
---|
| 377 | if (decomp == NULL) { |
---|
| 378 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 379 | return(NULL); |
---|
| 380 | } |
---|
| 381 | for (i = 0; i < dd->size; i++) { |
---|
| 382 | decomp[i] = NULL; |
---|
| 383 | } |
---|
| 384 | do { |
---|
| 385 | dd->reordered = 0; |
---|
| 386 | /* Clean up the decomposition array in case reordering took place. */ |
---|
| 387 | for (i = 0; i < dd->size; i++) { |
---|
| 388 | if (decomp[i] != NULL) { |
---|
| 389 | Cudd_IterDerefBdd(dd, decomp[i]); |
---|
| 390 | decomp[i] = NULL; |
---|
| 391 | } |
---|
| 392 | } |
---|
| 393 | res = cuddBddConstrainDecomp(dd,f,decomp); |
---|
| 394 | } while (dd->reordered == 1); |
---|
| 395 | if (res == 0) { |
---|
| 396 | FREE(decomp); |
---|
| 397 | return(NULL); |
---|
| 398 | } |
---|
| 399 | /* Missing components are constant ones. */ |
---|
| 400 | for (i = 0; i < dd->size; i++) { |
---|
| 401 | if (decomp[i] == NULL) { |
---|
| 402 | decomp[i] = DD_ONE(dd); |
---|
| 403 | cuddRef(decomp[i]); |
---|
| 404 | } |
---|
| 405 | } |
---|
| 406 | return(decomp); |
---|
| 407 | |
---|
| 408 | } /* end of Cudd_bddConstrainDecomp */ |
---|
| 409 | |
---|
| 410 | |
---|
| 411 | /**Function******************************************************************** |
---|
| 412 | |
---|
| 413 | Synopsis [ADD restrict according to Coudert and Madre's algorithm |
---|
| 414 | (ICCAD90).] |
---|
| 415 | |
---|
| 416 | Description [ADD restrict according to Coudert and Madre's algorithm |
---|
| 417 | (ICCAD90). Returns the restricted ADD if successful; otherwise NULL. |
---|
| 418 | If application of restrict results in an ADD larger than the input |
---|
| 419 | ADD, the input ADD is returned.] |
---|
| 420 | |
---|
| 421 | SideEffects [None] |
---|
| 422 | |
---|
| 423 | SeeAlso [Cudd_addConstrain Cudd_bddRestrict] |
---|
| 424 | |
---|
| 425 | ******************************************************************************/ |
---|
| 426 | DdNode * |
---|
| 427 | Cudd_addRestrict( |
---|
| 428 | DdManager * dd, |
---|
| 429 | DdNode * f, |
---|
| 430 | DdNode * c) |
---|
| 431 | { |
---|
| 432 | DdNode *supp_f, *supp_c; |
---|
| 433 | DdNode *res, *commonSupport; |
---|
| 434 | int intersection; |
---|
| 435 | int sizeF, sizeRes; |
---|
| 436 | |
---|
| 437 | /* Check if supports intersect. */ |
---|
| 438 | supp_f = Cudd_Support(dd, f); |
---|
| 439 | if (supp_f == NULL) { |
---|
| 440 | return(NULL); |
---|
| 441 | } |
---|
| 442 | cuddRef(supp_f); |
---|
| 443 | supp_c = Cudd_Support(dd, c); |
---|
| 444 | if (supp_c == NULL) { |
---|
| 445 | Cudd_RecursiveDeref(dd,supp_f); |
---|
| 446 | return(NULL); |
---|
| 447 | } |
---|
| 448 | cuddRef(supp_c); |
---|
| 449 | commonSupport = Cudd_bddLiteralSetIntersection(dd, supp_f, supp_c); |
---|
| 450 | if (commonSupport == NULL) { |
---|
| 451 | Cudd_RecursiveDeref(dd,supp_f); |
---|
| 452 | Cudd_RecursiveDeref(dd,supp_c); |
---|
| 453 | return(NULL); |
---|
| 454 | } |
---|
| 455 | cuddRef(commonSupport); |
---|
| 456 | Cudd_RecursiveDeref(dd,supp_f); |
---|
| 457 | Cudd_RecursiveDeref(dd,supp_c); |
---|
| 458 | intersection = commonSupport != DD_ONE(dd); |
---|
| 459 | Cudd_RecursiveDeref(dd,commonSupport); |
---|
| 460 | |
---|
| 461 | if (intersection) { |
---|
| 462 | do { |
---|
| 463 | dd->reordered = 0; |
---|
| 464 | res = cuddAddRestrictRecur(dd, f, c); |
---|
| 465 | } while (dd->reordered == 1); |
---|
| 466 | sizeF = Cudd_DagSize(f); |
---|
| 467 | sizeRes = Cudd_DagSize(res); |
---|
| 468 | if (sizeF <= sizeRes) { |
---|
| 469 | cuddRef(res); |
---|
| 470 | Cudd_RecursiveDeref(dd, res); |
---|
| 471 | return(f); |
---|
| 472 | } else { |
---|
| 473 | return(res); |
---|
| 474 | } |
---|
| 475 | } else { |
---|
| 476 | return(f); |
---|
| 477 | } |
---|
| 478 | |
---|
| 479 | } /* end of Cudd_addRestrict */ |
---|
| 480 | |
---|
| 481 | |
---|
| 482 | /**Function******************************************************************** |
---|
| 483 | |
---|
| 484 | Synopsis [Computes a vector whose image equals a non-zero function.] |
---|
| 485 | |
---|
| 486 | Description [Computes a vector of BDDs whose image equals a non-zero |
---|
| 487 | function. |
---|
| 488 | The result depends on the variable order. The i-th component of the vector |
---|
| 489 | depends only on the first i variables in the order. Each BDD in the vector |
---|
| 490 | is not larger than the BDD of the given characteristic function. This |
---|
| 491 | function is based on the description of char-to-vect in "Verification of |
---|
| 492 | Sequential Machines Using Boolean Functional Vectors" by O. Coudert, C. |
---|
| 493 | Berthet and J. C. Madre. |
---|
| 494 | Returns a pointer to an array containing the result if successful; NULL |
---|
| 495 | otherwise. The size of the array equals the number of variables in the |
---|
| 496 | manager. The components of the solution have their reference counts |
---|
| 497 | already incremented (unlike the results of most other functions in |
---|
| 498 | the package).] |
---|
| 499 | |
---|
| 500 | SideEffects [None] |
---|
| 501 | |
---|
| 502 | SeeAlso [Cudd_bddConstrain] |
---|
| 503 | |
---|
| 504 | ******************************************************************************/ |
---|
| 505 | DdNode ** |
---|
| 506 | Cudd_bddCharToVect( |
---|
| 507 | DdManager * dd, |
---|
| 508 | DdNode * f) |
---|
| 509 | { |
---|
| 510 | int i, j; |
---|
| 511 | DdNode **vect; |
---|
| 512 | DdNode *res = NULL; |
---|
| 513 | |
---|
| 514 | if (f == Cudd_Not(DD_ONE(dd))) return(NULL); |
---|
| 515 | |
---|
| 516 | vect = ALLOC(DdNode *, dd->size); |
---|
| 517 | if (vect == NULL) { |
---|
| 518 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 519 | return(NULL); |
---|
| 520 | } |
---|
| 521 | |
---|
| 522 | do { |
---|
| 523 | dd->reordered = 0; |
---|
| 524 | for (i = 0; i < dd->size; i++) { |
---|
| 525 | res = cuddBddCharToVect(dd,f,dd->vars[dd->invperm[i]]); |
---|
| 526 | if (res == NULL) { |
---|
| 527 | /* Clean up the vector array in case reordering took place. */ |
---|
| 528 | for (j = 0; j < i; j++) { |
---|
| 529 | Cudd_IterDerefBdd(dd, vect[dd->invperm[j]]); |
---|
| 530 | } |
---|
| 531 | break; |
---|
| 532 | } |
---|
| 533 | cuddRef(res); |
---|
| 534 | vect[dd->invperm[i]] = res; |
---|
| 535 | } |
---|
| 536 | } while (dd->reordered == 1); |
---|
| 537 | if (res == NULL) { |
---|
| 538 | FREE(vect); |
---|
| 539 | return(NULL); |
---|
| 540 | } |
---|
| 541 | return(vect); |
---|
| 542 | |
---|
| 543 | } /* end of Cudd_bddCharToVect */ |
---|
| 544 | |
---|
| 545 | |
---|
| 546 | /**Function******************************************************************** |
---|
| 547 | |
---|
| 548 | Synopsis [Performs safe minimization of a BDD.] |
---|
| 549 | |
---|
| 550 | Description [Performs safe minimization of a BDD. Given the BDD |
---|
| 551 | <code>f</code> of a function to be minimized and a BDD |
---|
| 552 | <code>c</code> representing the care set, Cudd_bddLICompaction |
---|
| 553 | produces the BDD of a function that agrees with <code>f</code> |
---|
| 554 | wherever <code>c</code> is 1. Safe minimization means that the size |
---|
| 555 | of the result is guaranteed not to exceed the size of |
---|
| 556 | <code>f</code>. This function is based on the DAC97 paper by Hong et |
---|
| 557 | al.. Returns a pointer to the result if successful; NULL |
---|
| 558 | otherwise.] |
---|
| 559 | |
---|
| 560 | SideEffects [None] |
---|
| 561 | |
---|
| 562 | SeeAlso [Cudd_bddRestrict] |
---|
| 563 | |
---|
| 564 | ******************************************************************************/ |
---|
| 565 | DdNode * |
---|
| 566 | Cudd_bddLICompaction( |
---|
| 567 | DdManager * dd /* manager */, |
---|
| 568 | DdNode * f /* function to be minimized */, |
---|
| 569 | DdNode * c /* constraint (care set) */) |
---|
| 570 | { |
---|
| 571 | DdNode *res; |
---|
| 572 | |
---|
| 573 | do { |
---|
| 574 | dd->reordered = 0; |
---|
| 575 | res = cuddBddLICompaction(dd,f,c); |
---|
| 576 | } while (dd->reordered == 1); |
---|
| 577 | return(res); |
---|
| 578 | |
---|
| 579 | } /* end of Cudd_bddLICompaction */ |
---|
| 580 | |
---|
| 581 | |
---|
| 582 | /**Function******************************************************************** |
---|
| 583 | |
---|
| 584 | Synopsis [Finds a small BDD in a function interval.] |
---|
| 585 | |
---|
| 586 | Description [Finds a small BDD in a function interval. Given BDDs |
---|
| 587 | <code>l</code> and <code>u</code>, representing the lower bound and |
---|
| 588 | upper bound of a function interval, Cudd_bddSqueeze produces the BDD |
---|
| 589 | of a function within the interval with a small BDD. Returns a |
---|
| 590 | pointer to the result if successful; NULL otherwise.] |
---|
| 591 | |
---|
| 592 | SideEffects [None] |
---|
| 593 | |
---|
| 594 | SeeAlso [Cudd_bddRestrict Cudd_bddLICompaction] |
---|
| 595 | |
---|
| 596 | ******************************************************************************/ |
---|
| 597 | DdNode * |
---|
| 598 | Cudd_bddSqueeze( |
---|
| 599 | DdManager * dd /* manager */, |
---|
| 600 | DdNode * l /* lower bound */, |
---|
| 601 | DdNode * u /* upper bound */) |
---|
| 602 | { |
---|
| 603 | DdNode *res; |
---|
| 604 | int sizeRes, sizeL, sizeU; |
---|
| 605 | |
---|
| 606 | do { |
---|
| 607 | dd->reordered = 0; |
---|
| 608 | res = cuddBddSqueeze(dd,l,u); |
---|
| 609 | } while (dd->reordered == 1); |
---|
| 610 | if (res == NULL) return(NULL); |
---|
| 611 | /* We now compare the result with the bounds and return the smallest. |
---|
| 612 | ** We first compare to u, so that in case l == 0 and u == 1, we return |
---|
| 613 | ** 0 as in other minimization algorithms. */ |
---|
| 614 | sizeRes = Cudd_DagSize(res); |
---|
| 615 | sizeU = Cudd_DagSize(u); |
---|
| 616 | if (sizeU <= sizeRes) { |
---|
| 617 | cuddRef(res); |
---|
| 618 | Cudd_IterDerefBdd(dd,res); |
---|
| 619 | res = u; |
---|
| 620 | sizeRes = sizeU; |
---|
| 621 | } |
---|
| 622 | sizeL = Cudd_DagSize(l); |
---|
| 623 | if (sizeL <= sizeRes) { |
---|
| 624 | cuddRef(res); |
---|
| 625 | Cudd_IterDerefBdd(dd,res); |
---|
| 626 | res = l; |
---|
| 627 | sizeRes = sizeL; |
---|
| 628 | } |
---|
| 629 | return(res); |
---|
| 630 | |
---|
| 631 | } /* end of Cudd_bddSqueeze */ |
---|
| 632 | |
---|
| 633 | |
---|
| 634 | /**Function******************************************************************** |
---|
| 635 | |
---|
| 636 | Synopsis [Finds a small BDD that agrees with <code>f</code> over |
---|
| 637 | <code>c</code>.] |
---|
| 638 | |
---|
| 639 | Description [Finds a small BDD that agrees with <code>f</code> over |
---|
| 640 | <code>c</code>. Returns a pointer to the result if successful; NULL |
---|
| 641 | otherwise.] |
---|
| 642 | |
---|
| 643 | SideEffects [None] |
---|
| 644 | |
---|
| 645 | SeeAlso [Cudd_bddRestrict Cudd_bddLICompaction Cudd_bddSqueeze] |
---|
| 646 | |
---|
| 647 | ******************************************************************************/ |
---|
| 648 | DdNode * |
---|
| 649 | Cudd_bddMinimize( |
---|
| 650 | DdManager * dd, |
---|
| 651 | DdNode * f, |
---|
| 652 | DdNode * c) |
---|
| 653 | { |
---|
| 654 | DdNode *cplus, *res; |
---|
| 655 | |
---|
| 656 | if (c == Cudd_Not(DD_ONE(dd))) return(c); |
---|
| 657 | if (Cudd_IsConstant(f)) return(f); |
---|
| 658 | if (f == c) return(DD_ONE(dd)); |
---|
| 659 | if (f == Cudd_Not(c)) return(Cudd_Not(DD_ONE(dd))); |
---|
| 660 | |
---|
| 661 | cplus = Cudd_RemapOverApprox(dd,c,0,0,1.0); |
---|
| 662 | if (cplus == NULL) return(NULL); |
---|
| 663 | cuddRef(cplus); |
---|
| 664 | res = Cudd_bddLICompaction(dd,f,cplus); |
---|
| 665 | if (res == NULL) { |
---|
| 666 | Cudd_IterDerefBdd(dd,cplus); |
---|
| 667 | return(NULL); |
---|
| 668 | } |
---|
| 669 | cuddRef(res); |
---|
| 670 | Cudd_IterDerefBdd(dd,cplus); |
---|
| 671 | cuddDeref(res); |
---|
| 672 | return(res); |
---|
| 673 | |
---|
| 674 | } /* end of Cudd_bddMinimize */ |
---|
| 675 | |
---|
| 676 | |
---|
| 677 | /**Function******************************************************************** |
---|
| 678 | |
---|
| 679 | Synopsis [Find a dense subset of BDD <code>f</code>.] |
---|
| 680 | |
---|
| 681 | Description [Finds a dense subset of BDD <code>f</code>. Density is |
---|
| 682 | the ratio of number of minterms to number of nodes. Uses several |
---|
| 683 | techniques in series. It is more expensive than other subsetting |
---|
| 684 | procedures, but often produces better results. See |
---|
| 685 | Cudd_SubsetShortPaths for a description of the threshold and nvars |
---|
| 686 | parameters. Returns a pointer to the result if successful; NULL |
---|
| 687 | otherwise.] |
---|
| 688 | |
---|
| 689 | SideEffects [None] |
---|
| 690 | |
---|
| 691 | SeeAlso [Cudd_SubsetRemap Cudd_SubsetShortPaths Cudd_SubsetHeavyBranch |
---|
| 692 | Cudd_bddSqueeze] |
---|
| 693 | |
---|
| 694 | ******************************************************************************/ |
---|
| 695 | DdNode * |
---|
| 696 | Cudd_SubsetCompress( |
---|
| 697 | DdManager * dd /* manager */, |
---|
| 698 | DdNode * f /* BDD whose subset is sought */, |
---|
| 699 | int nvars /* number of variables in the support of f */, |
---|
| 700 | int threshold /* maximum number of nodes in the subset */) |
---|
| 701 | { |
---|
| 702 | DdNode *res, *tmp1, *tmp2; |
---|
| 703 | |
---|
| 704 | tmp1 = Cudd_SubsetShortPaths(dd, f, nvars, threshold, 0); |
---|
| 705 | if (tmp1 == NULL) return(NULL); |
---|
| 706 | cuddRef(tmp1); |
---|
| 707 | tmp2 = Cudd_RemapUnderApprox(dd,tmp1,nvars,0,1.0); |
---|
| 708 | if (tmp2 == NULL) { |
---|
| 709 | Cudd_IterDerefBdd(dd,tmp1); |
---|
| 710 | return(NULL); |
---|
| 711 | } |
---|
| 712 | cuddRef(tmp2); |
---|
| 713 | Cudd_IterDerefBdd(dd,tmp1); |
---|
| 714 | res = Cudd_bddSqueeze(dd,tmp2,f); |
---|
| 715 | if (res == NULL) { |
---|
| 716 | Cudd_IterDerefBdd(dd,tmp2); |
---|
| 717 | return(NULL); |
---|
| 718 | } |
---|
| 719 | cuddRef(res); |
---|
| 720 | Cudd_IterDerefBdd(dd,tmp2); |
---|
| 721 | cuddDeref(res); |
---|
| 722 | return(res); |
---|
| 723 | |
---|
| 724 | } /* end of Cudd_SubsetCompress */ |
---|
| 725 | |
---|
| 726 | |
---|
| 727 | /**Function******************************************************************** |
---|
| 728 | |
---|
| 729 | Synopsis [Find a dense superset of BDD <code>f</code>.] |
---|
| 730 | |
---|
| 731 | Description [Finds a dense superset of BDD <code>f</code>. Density is |
---|
| 732 | the ratio of number of minterms to number of nodes. Uses several |
---|
| 733 | techniques in series. It is more expensive than other supersetting |
---|
| 734 | procedures, but often produces better results. See |
---|
| 735 | Cudd_SupersetShortPaths for a description of the threshold and nvars |
---|
| 736 | parameters. Returns a pointer to the result if successful; NULL |
---|
| 737 | otherwise.] |
---|
| 738 | |
---|
| 739 | SideEffects [None] |
---|
| 740 | |
---|
| 741 | SeeAlso [Cudd_SubsetCompress Cudd_SupersetRemap Cudd_SupersetShortPaths |
---|
| 742 | Cudd_SupersetHeavyBranch Cudd_bddSqueeze] |
---|
| 743 | |
---|
| 744 | ******************************************************************************/ |
---|
| 745 | DdNode * |
---|
| 746 | Cudd_SupersetCompress( |
---|
| 747 | DdManager * dd /* manager */, |
---|
| 748 | DdNode * f /* BDD whose superset is sought */, |
---|
| 749 | int nvars /* number of variables in the support of f */, |
---|
| 750 | int threshold /* maximum number of nodes in the superset */) |
---|
| 751 | { |
---|
| 752 | DdNode *subset; |
---|
| 753 | |
---|
| 754 | subset = Cudd_SubsetCompress(dd, Cudd_Not(f),nvars,threshold); |
---|
| 755 | |
---|
| 756 | return(Cudd_NotCond(subset, (subset != NULL))); |
---|
| 757 | |
---|
| 758 | } /* end of Cudd_SupersetCompress */ |
---|
| 759 | |
---|
| 760 | |
---|
| 761 | /*---------------------------------------------------------------------------*/ |
---|
| 762 | /* Definition of internal functions */ |
---|
| 763 | /*---------------------------------------------------------------------------*/ |
---|
| 764 | |
---|
| 765 | |
---|
| 766 | /**Function******************************************************************** |
---|
| 767 | |
---|
| 768 | Synopsis [Performs the recursive step of Cudd_bddConstrain.] |
---|
| 769 | |
---|
| 770 | Description [Performs the recursive step of Cudd_bddConstrain. |
---|
| 771 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
| 772 | |
---|
| 773 | SideEffects [None] |
---|
| 774 | |
---|
| 775 | SeeAlso [Cudd_bddConstrain] |
---|
| 776 | |
---|
| 777 | ******************************************************************************/ |
---|
| 778 | DdNode * |
---|
| 779 | cuddBddConstrainRecur( |
---|
| 780 | DdManager * dd, |
---|
| 781 | DdNode * f, |
---|
| 782 | DdNode * c) |
---|
| 783 | { |
---|
| 784 | DdNode *Fv, *Fnv, *Cv, *Cnv, *t, *e, *r; |
---|
| 785 | DdNode *one, *zero; |
---|
| 786 | unsigned int topf, topc; |
---|
| 787 | int index; |
---|
| 788 | int comple = 0; |
---|
| 789 | |
---|
| 790 | statLine(dd); |
---|
| 791 | one = DD_ONE(dd); |
---|
| 792 | zero = Cudd_Not(one); |
---|
| 793 | |
---|
| 794 | /* Trivial cases. */ |
---|
| 795 | if (c == one) return(f); |
---|
| 796 | if (c == zero) return(zero); |
---|
| 797 | if (Cudd_IsConstant(f)) return(f); |
---|
| 798 | if (f == c) return(one); |
---|
| 799 | if (f == Cudd_Not(c)) return(zero); |
---|
| 800 | |
---|
| 801 | /* Make canonical to increase the utilization of the cache. */ |
---|
| 802 | if (Cudd_IsComplement(f)) { |
---|
| 803 | f = Cudd_Not(f); |
---|
| 804 | comple = 1; |
---|
| 805 | } |
---|
| 806 | /* Now f is a regular pointer to a non-constant node; c is also |
---|
| 807 | ** non-constant, but may be complemented. |
---|
| 808 | */ |
---|
| 809 | |
---|
| 810 | /* Check the cache. */ |
---|
| 811 | r = cuddCacheLookup2(dd, Cudd_bddConstrain, f, c); |
---|
| 812 | if (r != NULL) { |
---|
| 813 | return(Cudd_NotCond(r,comple)); |
---|
| 814 | } |
---|
| 815 | |
---|
| 816 | /* Recursive step. */ |
---|
| 817 | topf = dd->perm[f->index]; |
---|
| 818 | topc = dd->perm[Cudd_Regular(c)->index]; |
---|
| 819 | if (topf <= topc) { |
---|
| 820 | index = f->index; |
---|
| 821 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
| 822 | } else { |
---|
| 823 | index = Cudd_Regular(c)->index; |
---|
| 824 | Fv = Fnv = f; |
---|
| 825 | } |
---|
| 826 | if (topc <= topf) { |
---|
| 827 | Cv = cuddT(Cudd_Regular(c)); Cnv = cuddE(Cudd_Regular(c)); |
---|
| 828 | if (Cudd_IsComplement(c)) { |
---|
| 829 | Cv = Cudd_Not(Cv); |
---|
| 830 | Cnv = Cudd_Not(Cnv); |
---|
| 831 | } |
---|
| 832 | } else { |
---|
| 833 | Cv = Cnv = c; |
---|
| 834 | } |
---|
| 835 | |
---|
| 836 | if (!Cudd_IsConstant(Cv)) { |
---|
| 837 | t = cuddBddConstrainRecur(dd, Fv, Cv); |
---|
| 838 | if (t == NULL) |
---|
| 839 | return(NULL); |
---|
| 840 | } else if (Cv == one) { |
---|
| 841 | t = Fv; |
---|
| 842 | } else { /* Cv == zero: return Fnv @ Cnv */ |
---|
| 843 | if (Cnv == one) { |
---|
| 844 | r = Fnv; |
---|
| 845 | } else { |
---|
| 846 | r = cuddBddConstrainRecur(dd, Fnv, Cnv); |
---|
| 847 | if (r == NULL) |
---|
| 848 | return(NULL); |
---|
| 849 | } |
---|
| 850 | return(Cudd_NotCond(r,comple)); |
---|
| 851 | } |
---|
| 852 | cuddRef(t); |
---|
| 853 | |
---|
| 854 | if (!Cudd_IsConstant(Cnv)) { |
---|
| 855 | e = cuddBddConstrainRecur(dd, Fnv, Cnv); |
---|
| 856 | if (e == NULL) { |
---|
| 857 | Cudd_IterDerefBdd(dd, t); |
---|
| 858 | return(NULL); |
---|
| 859 | } |
---|
| 860 | } else if (Cnv == one) { |
---|
| 861 | e = Fnv; |
---|
| 862 | } else { /* Cnv == zero: return Fv @ Cv previously computed */ |
---|
| 863 | cuddDeref(t); |
---|
| 864 | return(Cudd_NotCond(t,comple)); |
---|
| 865 | } |
---|
| 866 | cuddRef(e); |
---|
| 867 | |
---|
| 868 | if (Cudd_IsComplement(t)) { |
---|
| 869 | t = Cudd_Not(t); |
---|
| 870 | e = Cudd_Not(e); |
---|
| 871 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 872 | if (r == NULL) { |
---|
| 873 | Cudd_IterDerefBdd(dd, e); |
---|
| 874 | Cudd_IterDerefBdd(dd, t); |
---|
| 875 | return(NULL); |
---|
| 876 | } |
---|
| 877 | r = Cudd_Not(r); |
---|
| 878 | } else { |
---|
| 879 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 880 | if (r == NULL) { |
---|
| 881 | Cudd_IterDerefBdd(dd, e); |
---|
| 882 | Cudd_IterDerefBdd(dd, t); |
---|
| 883 | return(NULL); |
---|
| 884 | } |
---|
| 885 | } |
---|
| 886 | cuddDeref(t); |
---|
| 887 | cuddDeref(e); |
---|
| 888 | |
---|
| 889 | cuddCacheInsert2(dd, Cudd_bddConstrain, f, c, r); |
---|
| 890 | return(Cudd_NotCond(r,comple)); |
---|
| 891 | |
---|
| 892 | } /* end of cuddBddConstrainRecur */ |
---|
| 893 | |
---|
| 894 | |
---|
| 895 | /**Function******************************************************************** |
---|
| 896 | |
---|
| 897 | Synopsis [Performs the recursive step of Cudd_bddRestrict.] |
---|
| 898 | |
---|
| 899 | Description [Performs the recursive step of Cudd_bddRestrict. |
---|
| 900 | Returns the restricted BDD if successful; otherwise NULL.] |
---|
| 901 | |
---|
| 902 | SideEffects [None] |
---|
| 903 | |
---|
| 904 | SeeAlso [Cudd_bddRestrict] |
---|
| 905 | |
---|
| 906 | ******************************************************************************/ |
---|
| 907 | DdNode * |
---|
| 908 | cuddBddRestrictRecur( |
---|
| 909 | DdManager * dd, |
---|
| 910 | DdNode * f, |
---|
| 911 | DdNode * c) |
---|
| 912 | { |
---|
| 913 | DdNode *Fv, *Fnv, *Cv, *Cnv, *t, *e, *r, *one, *zero; |
---|
| 914 | unsigned int topf, topc; |
---|
| 915 | int index; |
---|
| 916 | int comple = 0; |
---|
| 917 | |
---|
| 918 | statLine(dd); |
---|
| 919 | one = DD_ONE(dd); |
---|
| 920 | zero = Cudd_Not(one); |
---|
| 921 | |
---|
| 922 | /* Trivial cases */ |
---|
| 923 | if (c == one) return(f); |
---|
| 924 | if (c == zero) return(zero); |
---|
| 925 | if (Cudd_IsConstant(f)) return(f); |
---|
| 926 | if (f == c) return(one); |
---|
| 927 | if (f == Cudd_Not(c)) return(zero); |
---|
| 928 | |
---|
| 929 | /* Make canonical to increase the utilization of the cache. */ |
---|
| 930 | if (Cudd_IsComplement(f)) { |
---|
| 931 | f = Cudd_Not(f); |
---|
| 932 | comple = 1; |
---|
| 933 | } |
---|
| 934 | /* Now f is a regular pointer to a non-constant node; c is also |
---|
| 935 | ** non-constant, but may be complemented. |
---|
| 936 | */ |
---|
| 937 | |
---|
| 938 | /* Check the cache. */ |
---|
| 939 | r = cuddCacheLookup2(dd, Cudd_bddRestrict, f, c); |
---|
| 940 | if (r != NULL) { |
---|
| 941 | return(Cudd_NotCond(r,comple)); |
---|
| 942 | } |
---|
| 943 | |
---|
| 944 | topf = dd->perm[f->index]; |
---|
| 945 | topc = dd->perm[Cudd_Regular(c)->index]; |
---|
| 946 | |
---|
| 947 | if (topc < topf) { /* abstract top variable from c */ |
---|
| 948 | DdNode *d, *s1, *s2; |
---|
| 949 | |
---|
| 950 | /* Find complements of cofactors of c. */ |
---|
| 951 | if (Cudd_IsComplement(c)) { |
---|
| 952 | s1 = cuddT(Cudd_Regular(c)); |
---|
| 953 | s2 = cuddE(Cudd_Regular(c)); |
---|
| 954 | } else { |
---|
| 955 | s1 = Cudd_Not(cuddT(c)); |
---|
| 956 | s2 = Cudd_Not(cuddE(c)); |
---|
| 957 | } |
---|
| 958 | /* Take the OR by applying DeMorgan. */ |
---|
| 959 | d = cuddBddAndRecur(dd, s1, s2); |
---|
| 960 | if (d == NULL) return(NULL); |
---|
| 961 | d = Cudd_Not(d); |
---|
| 962 | cuddRef(d); |
---|
| 963 | r = cuddBddRestrictRecur(dd, f, d); |
---|
| 964 | if (r == NULL) { |
---|
| 965 | Cudd_IterDerefBdd(dd, d); |
---|
| 966 | return(NULL); |
---|
| 967 | } |
---|
| 968 | cuddRef(r); |
---|
| 969 | Cudd_IterDerefBdd(dd, d); |
---|
| 970 | cuddCacheInsert2(dd, Cudd_bddRestrict, f, c, r); |
---|
| 971 | cuddDeref(r); |
---|
| 972 | return(Cudd_NotCond(r,comple)); |
---|
| 973 | } |
---|
| 974 | |
---|
| 975 | /* Recursive step. Here topf <= topc. */ |
---|
| 976 | index = f->index; |
---|
| 977 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
| 978 | if (topc == topf) { |
---|
| 979 | Cv = cuddT(Cudd_Regular(c)); Cnv = cuddE(Cudd_Regular(c)); |
---|
| 980 | if (Cudd_IsComplement(c)) { |
---|
| 981 | Cv = Cudd_Not(Cv); |
---|
| 982 | Cnv = Cudd_Not(Cnv); |
---|
| 983 | } |
---|
| 984 | } else { |
---|
| 985 | Cv = Cnv = c; |
---|
| 986 | } |
---|
| 987 | |
---|
| 988 | if (!Cudd_IsConstant(Cv)) { |
---|
| 989 | t = cuddBddRestrictRecur(dd, Fv, Cv); |
---|
| 990 | if (t == NULL) return(NULL); |
---|
| 991 | } else if (Cv == one) { |
---|
| 992 | t = Fv; |
---|
| 993 | } else { /* Cv == zero: return(Fnv @ Cnv) */ |
---|
| 994 | if (Cnv == one) { |
---|
| 995 | r = Fnv; |
---|
| 996 | } else { |
---|
| 997 | r = cuddBddRestrictRecur(dd, Fnv, Cnv); |
---|
| 998 | if (r == NULL) return(NULL); |
---|
| 999 | } |
---|
| 1000 | return(Cudd_NotCond(r,comple)); |
---|
| 1001 | } |
---|
| 1002 | cuddRef(t); |
---|
| 1003 | |
---|
| 1004 | if (!Cudd_IsConstant(Cnv)) { |
---|
| 1005 | e = cuddBddRestrictRecur(dd, Fnv, Cnv); |
---|
| 1006 | if (e == NULL) { |
---|
| 1007 | Cudd_IterDerefBdd(dd, t); |
---|
| 1008 | return(NULL); |
---|
| 1009 | } |
---|
| 1010 | } else if (Cnv == one) { |
---|
| 1011 | e = Fnv; |
---|
| 1012 | } else { /* Cnv == zero: return (Fv @ Cv) previously computed */ |
---|
| 1013 | cuddDeref(t); |
---|
| 1014 | return(Cudd_NotCond(t,comple)); |
---|
| 1015 | } |
---|
| 1016 | cuddRef(e); |
---|
| 1017 | |
---|
| 1018 | if (Cudd_IsComplement(t)) { |
---|
| 1019 | t = Cudd_Not(t); |
---|
| 1020 | e = Cudd_Not(e); |
---|
| 1021 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 1022 | if (r == NULL) { |
---|
| 1023 | Cudd_IterDerefBdd(dd, e); |
---|
| 1024 | Cudd_IterDerefBdd(dd, t); |
---|
| 1025 | return(NULL); |
---|
| 1026 | } |
---|
| 1027 | r = Cudd_Not(r); |
---|
| 1028 | } else { |
---|
| 1029 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 1030 | if (r == NULL) { |
---|
| 1031 | Cudd_IterDerefBdd(dd, e); |
---|
| 1032 | Cudd_IterDerefBdd(dd, t); |
---|
| 1033 | return(NULL); |
---|
| 1034 | } |
---|
| 1035 | } |
---|
| 1036 | cuddDeref(t); |
---|
| 1037 | cuddDeref(e); |
---|
| 1038 | |
---|
| 1039 | cuddCacheInsert2(dd, Cudd_bddRestrict, f, c, r); |
---|
| 1040 | return(Cudd_NotCond(r,comple)); |
---|
| 1041 | |
---|
| 1042 | } /* end of cuddBddRestrictRecur */ |
---|
| 1043 | |
---|
| 1044 | |
---|
| 1045 | /**Function******************************************************************** |
---|
| 1046 | |
---|
| 1047 | Synopsis [Implements the recursive step of Cudd_bddAnd.] |
---|
| 1048 | |
---|
| 1049 | Description [Implements the recursive step of Cudd_bddNPAnd. |
---|
| 1050 | Returns a pointer to the result is successful; NULL otherwise.] |
---|
| 1051 | |
---|
| 1052 | SideEffects [None] |
---|
| 1053 | |
---|
| 1054 | SeeAlso [Cudd_bddNPAnd] |
---|
| 1055 | |
---|
| 1056 | ******************************************************************************/ |
---|
| 1057 | DdNode * |
---|
| 1058 | cuddBddNPAndRecur( |
---|
| 1059 | DdManager * manager, |
---|
| 1060 | DdNode * f, |
---|
| 1061 | DdNode * g) |
---|
| 1062 | { |
---|
| 1063 | DdNode *F, *ft, *fe, *G, *gt, *ge; |
---|
| 1064 | DdNode *one, *r, *t, *e; |
---|
| 1065 | unsigned int topf, topg, index; |
---|
| 1066 | |
---|
| 1067 | statLine(manager); |
---|
| 1068 | one = DD_ONE(manager); |
---|
| 1069 | |
---|
| 1070 | /* Terminal cases. */ |
---|
| 1071 | F = Cudd_Regular(f); |
---|
| 1072 | G = Cudd_Regular(g); |
---|
| 1073 | if (F == G) { |
---|
| 1074 | if (f == g) return(one); |
---|
| 1075 | else return(Cudd_Not(one)); |
---|
| 1076 | } |
---|
| 1077 | if (G == one) { |
---|
| 1078 | if (g == one) return(f); |
---|
| 1079 | else return(g); |
---|
| 1080 | } |
---|
| 1081 | if (F == one) { |
---|
| 1082 | return(f); |
---|
| 1083 | } |
---|
| 1084 | |
---|
| 1085 | /* At this point f and g are not constant. */ |
---|
| 1086 | /* Check cache. */ |
---|
| 1087 | if (F->ref != 1 || G->ref != 1) { |
---|
| 1088 | r = cuddCacheLookup2(manager, Cudd_bddNPAnd, f, g); |
---|
| 1089 | if (r != NULL) return(r); |
---|
| 1090 | } |
---|
| 1091 | |
---|
| 1092 | /* Here we can skip the use of cuddI, because the operands are known |
---|
| 1093 | ** to be non-constant. |
---|
| 1094 | */ |
---|
| 1095 | topf = manager->perm[F->index]; |
---|
| 1096 | topg = manager->perm[G->index]; |
---|
| 1097 | |
---|
| 1098 | if (topg < topf) { /* abstract top variable from g */ |
---|
| 1099 | DdNode *d; |
---|
| 1100 | |
---|
| 1101 | /* Find complements of cofactors of g. */ |
---|
| 1102 | if (Cudd_IsComplement(g)) { |
---|
| 1103 | gt = cuddT(G); |
---|
| 1104 | ge = cuddE(G); |
---|
| 1105 | } else { |
---|
| 1106 | gt = Cudd_Not(cuddT(g)); |
---|
| 1107 | ge = Cudd_Not(cuddE(g)); |
---|
| 1108 | } |
---|
| 1109 | /* Take the OR by applying DeMorgan. */ |
---|
| 1110 | d = cuddBddAndRecur(manager, gt, ge); |
---|
| 1111 | if (d == NULL) return(NULL); |
---|
| 1112 | d = Cudd_Not(d); |
---|
| 1113 | cuddRef(d); |
---|
| 1114 | r = cuddBddNPAndRecur(manager, f, d); |
---|
| 1115 | if (r == NULL) { |
---|
| 1116 | Cudd_IterDerefBdd(manager, d); |
---|
| 1117 | return(NULL); |
---|
| 1118 | } |
---|
| 1119 | cuddRef(r); |
---|
| 1120 | Cudd_IterDerefBdd(manager, d); |
---|
| 1121 | cuddCacheInsert2(manager, Cudd_bddNPAnd, f, g, r); |
---|
| 1122 | cuddDeref(r); |
---|
| 1123 | return(r); |
---|
| 1124 | } |
---|
| 1125 | |
---|
| 1126 | /* Compute cofactors. */ |
---|
| 1127 | index = F->index; |
---|
| 1128 | ft = cuddT(F); |
---|
| 1129 | fe = cuddE(F); |
---|
| 1130 | if (Cudd_IsComplement(f)) { |
---|
| 1131 | ft = Cudd_Not(ft); |
---|
| 1132 | fe = Cudd_Not(fe); |
---|
| 1133 | } |
---|
| 1134 | |
---|
| 1135 | if (topg == topf) { |
---|
| 1136 | gt = cuddT(G); |
---|
| 1137 | ge = cuddE(G); |
---|
| 1138 | if (Cudd_IsComplement(g)) { |
---|
| 1139 | gt = Cudd_Not(gt); |
---|
| 1140 | ge = Cudd_Not(ge); |
---|
| 1141 | } |
---|
| 1142 | } else { |
---|
| 1143 | gt = ge = g; |
---|
| 1144 | } |
---|
| 1145 | |
---|
| 1146 | t = cuddBddAndRecur(manager, ft, gt); |
---|
| 1147 | if (t == NULL) return(NULL); |
---|
| 1148 | cuddRef(t); |
---|
| 1149 | |
---|
| 1150 | e = cuddBddAndRecur(manager, fe, ge); |
---|
| 1151 | if (e == NULL) { |
---|
| 1152 | Cudd_IterDerefBdd(manager, t); |
---|
| 1153 | return(NULL); |
---|
| 1154 | } |
---|
| 1155 | cuddRef(e); |
---|
| 1156 | |
---|
| 1157 | if (t == e) { |
---|
| 1158 | r = t; |
---|
| 1159 | } else { |
---|
| 1160 | if (Cudd_IsComplement(t)) { |
---|
| 1161 | r = cuddUniqueInter(manager,(int)index,Cudd_Not(t),Cudd_Not(e)); |
---|
| 1162 | if (r == NULL) { |
---|
| 1163 | Cudd_IterDerefBdd(manager, t); |
---|
| 1164 | Cudd_IterDerefBdd(manager, e); |
---|
| 1165 | return(NULL); |
---|
| 1166 | } |
---|
| 1167 | r = Cudd_Not(r); |
---|
| 1168 | } else { |
---|
| 1169 | r = cuddUniqueInter(manager,(int)index,t,e); |
---|
| 1170 | if (r == NULL) { |
---|
| 1171 | Cudd_IterDerefBdd(manager, t); |
---|
| 1172 | Cudd_IterDerefBdd(manager, e); |
---|
| 1173 | return(NULL); |
---|
| 1174 | } |
---|
| 1175 | } |
---|
| 1176 | } |
---|
| 1177 | cuddDeref(e); |
---|
| 1178 | cuddDeref(t); |
---|
| 1179 | if (F->ref != 1 || G->ref != 1) |
---|
| 1180 | cuddCacheInsert2(manager, Cudd_bddNPAnd, f, g, r); |
---|
| 1181 | return(r); |
---|
| 1182 | |
---|
| 1183 | } /* end of cuddBddNPAndRecur */ |
---|
| 1184 | |
---|
| 1185 | |
---|
| 1186 | /**Function******************************************************************** |
---|
| 1187 | |
---|
| 1188 | Synopsis [Performs the recursive step of Cudd_addConstrain.] |
---|
| 1189 | |
---|
| 1190 | Description [Performs the recursive step of Cudd_addConstrain. |
---|
| 1191 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
| 1192 | |
---|
| 1193 | SideEffects [None] |
---|
| 1194 | |
---|
| 1195 | SeeAlso [Cudd_addConstrain] |
---|
| 1196 | |
---|
| 1197 | ******************************************************************************/ |
---|
| 1198 | DdNode * |
---|
| 1199 | cuddAddConstrainRecur( |
---|
| 1200 | DdManager * dd, |
---|
| 1201 | DdNode * f, |
---|
| 1202 | DdNode * c) |
---|
| 1203 | { |
---|
| 1204 | DdNode *Fv, *Fnv, *Cv, *Cnv, *t, *e, *r; |
---|
| 1205 | DdNode *one, *zero; |
---|
| 1206 | unsigned int topf, topc; |
---|
| 1207 | int index; |
---|
| 1208 | |
---|
| 1209 | statLine(dd); |
---|
| 1210 | one = DD_ONE(dd); |
---|
| 1211 | zero = DD_ZERO(dd); |
---|
| 1212 | |
---|
| 1213 | /* Trivial cases. */ |
---|
| 1214 | if (c == one) return(f); |
---|
| 1215 | if (c == zero) return(zero); |
---|
| 1216 | if (Cudd_IsConstant(f)) return(f); |
---|
| 1217 | if (f == c) return(one); |
---|
| 1218 | |
---|
| 1219 | /* Now f and c are non-constant. */ |
---|
| 1220 | |
---|
| 1221 | /* Check the cache. */ |
---|
| 1222 | r = cuddCacheLookup2(dd, Cudd_addConstrain, f, c); |
---|
| 1223 | if (r != NULL) { |
---|
| 1224 | return(r); |
---|
| 1225 | } |
---|
| 1226 | |
---|
| 1227 | /* Recursive step. */ |
---|
| 1228 | topf = dd->perm[f->index]; |
---|
| 1229 | topc = dd->perm[c->index]; |
---|
| 1230 | if (topf <= topc) { |
---|
| 1231 | index = f->index; |
---|
| 1232 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
| 1233 | } else { |
---|
| 1234 | index = c->index; |
---|
| 1235 | Fv = Fnv = f; |
---|
| 1236 | } |
---|
| 1237 | if (topc <= topf) { |
---|
| 1238 | Cv = cuddT(c); Cnv = cuddE(c); |
---|
| 1239 | } else { |
---|
| 1240 | Cv = Cnv = c; |
---|
| 1241 | } |
---|
| 1242 | |
---|
| 1243 | if (!Cudd_IsConstant(Cv)) { |
---|
| 1244 | t = cuddAddConstrainRecur(dd, Fv, Cv); |
---|
| 1245 | if (t == NULL) |
---|
| 1246 | return(NULL); |
---|
| 1247 | } else if (Cv == one) { |
---|
| 1248 | t = Fv; |
---|
| 1249 | } else { /* Cv == zero: return Fnv @ Cnv */ |
---|
| 1250 | if (Cnv == one) { |
---|
| 1251 | r = Fnv; |
---|
| 1252 | } else { |
---|
| 1253 | r = cuddAddConstrainRecur(dd, Fnv, Cnv); |
---|
| 1254 | if (r == NULL) |
---|
| 1255 | return(NULL); |
---|
| 1256 | } |
---|
| 1257 | return(r); |
---|
| 1258 | } |
---|
| 1259 | cuddRef(t); |
---|
| 1260 | |
---|
| 1261 | if (!Cudd_IsConstant(Cnv)) { |
---|
| 1262 | e = cuddAddConstrainRecur(dd, Fnv, Cnv); |
---|
| 1263 | if (e == NULL) { |
---|
| 1264 | Cudd_RecursiveDeref(dd, t); |
---|
| 1265 | return(NULL); |
---|
| 1266 | } |
---|
| 1267 | } else if (Cnv == one) { |
---|
| 1268 | e = Fnv; |
---|
| 1269 | } else { /* Cnv == zero: return Fv @ Cv previously computed */ |
---|
| 1270 | cuddDeref(t); |
---|
| 1271 | return(t); |
---|
| 1272 | } |
---|
| 1273 | cuddRef(e); |
---|
| 1274 | |
---|
| 1275 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 1276 | if (r == NULL) { |
---|
| 1277 | Cudd_RecursiveDeref(dd, e); |
---|
| 1278 | Cudd_RecursiveDeref(dd, t); |
---|
| 1279 | return(NULL); |
---|
| 1280 | } |
---|
| 1281 | cuddDeref(t); |
---|
| 1282 | cuddDeref(e); |
---|
| 1283 | |
---|
| 1284 | cuddCacheInsert2(dd, Cudd_addConstrain, f, c, r); |
---|
| 1285 | return(r); |
---|
| 1286 | |
---|
| 1287 | } /* end of cuddAddConstrainRecur */ |
---|
| 1288 | |
---|
| 1289 | |
---|
| 1290 | /**Function******************************************************************** |
---|
| 1291 | |
---|
| 1292 | Synopsis [Performs the recursive step of Cudd_addRestrict.] |
---|
| 1293 | |
---|
| 1294 | Description [Performs the recursive step of Cudd_addRestrict. |
---|
| 1295 | Returns the restricted ADD if successful; otherwise NULL.] |
---|
| 1296 | |
---|
| 1297 | SideEffects [None] |
---|
| 1298 | |
---|
| 1299 | SeeAlso [Cudd_addRestrict] |
---|
| 1300 | |
---|
| 1301 | ******************************************************************************/ |
---|
| 1302 | DdNode * |
---|
| 1303 | cuddAddRestrictRecur( |
---|
| 1304 | DdManager * dd, |
---|
| 1305 | DdNode * f, |
---|
| 1306 | DdNode * c) |
---|
| 1307 | { |
---|
| 1308 | DdNode *Fv, *Fnv, *Cv, *Cnv, *t, *e, *r, *one, *zero; |
---|
| 1309 | unsigned int topf, topc; |
---|
| 1310 | int index; |
---|
| 1311 | |
---|
| 1312 | statLine(dd); |
---|
| 1313 | one = DD_ONE(dd); |
---|
| 1314 | zero = DD_ZERO(dd); |
---|
| 1315 | |
---|
| 1316 | /* Trivial cases */ |
---|
| 1317 | if (c == one) return(f); |
---|
| 1318 | if (c == zero) return(zero); |
---|
| 1319 | if (Cudd_IsConstant(f)) return(f); |
---|
| 1320 | if (f == c) return(one); |
---|
| 1321 | |
---|
| 1322 | /* Now f and c are non-constant. */ |
---|
| 1323 | |
---|
| 1324 | /* Check the cache. */ |
---|
| 1325 | r = cuddCacheLookup2(dd, Cudd_addRestrict, f, c); |
---|
| 1326 | if (r != NULL) { |
---|
| 1327 | return(r); |
---|
| 1328 | } |
---|
| 1329 | |
---|
| 1330 | topf = dd->perm[f->index]; |
---|
| 1331 | topc = dd->perm[c->index]; |
---|
| 1332 | |
---|
| 1333 | if (topc < topf) { /* abstract top variable from c */ |
---|
| 1334 | DdNode *d, *s1, *s2; |
---|
| 1335 | |
---|
| 1336 | /* Find cofactors of c. */ |
---|
| 1337 | s1 = cuddT(c); |
---|
| 1338 | s2 = cuddE(c); |
---|
| 1339 | /* Take the OR by applying DeMorgan. */ |
---|
| 1340 | d = cuddAddApplyRecur(dd, Cudd_addOr, s1, s2); |
---|
| 1341 | if (d == NULL) return(NULL); |
---|
| 1342 | cuddRef(d); |
---|
| 1343 | r = cuddAddRestrictRecur(dd, f, d); |
---|
| 1344 | if (r == NULL) { |
---|
| 1345 | Cudd_RecursiveDeref(dd, d); |
---|
| 1346 | return(NULL); |
---|
| 1347 | } |
---|
| 1348 | cuddRef(r); |
---|
| 1349 | Cudd_RecursiveDeref(dd, d); |
---|
| 1350 | cuddCacheInsert2(dd, Cudd_addRestrict, f, c, r); |
---|
| 1351 | cuddDeref(r); |
---|
| 1352 | return(r); |
---|
| 1353 | } |
---|
| 1354 | |
---|
| 1355 | /* Recursive step. Here topf <= topc. */ |
---|
| 1356 | index = f->index; |
---|
| 1357 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
| 1358 | if (topc == topf) { |
---|
| 1359 | Cv = cuddT(c); Cnv = cuddE(c); |
---|
| 1360 | } else { |
---|
| 1361 | Cv = Cnv = c; |
---|
| 1362 | } |
---|
| 1363 | |
---|
| 1364 | if (!Cudd_IsConstant(Cv)) { |
---|
| 1365 | t = cuddAddRestrictRecur(dd, Fv, Cv); |
---|
| 1366 | if (t == NULL) return(NULL); |
---|
| 1367 | } else if (Cv == one) { |
---|
| 1368 | t = Fv; |
---|
| 1369 | } else { /* Cv == zero: return(Fnv @ Cnv) */ |
---|
| 1370 | if (Cnv == one) { |
---|
| 1371 | r = Fnv; |
---|
| 1372 | } else { |
---|
| 1373 | r = cuddAddRestrictRecur(dd, Fnv, Cnv); |
---|
| 1374 | if (r == NULL) return(NULL); |
---|
| 1375 | } |
---|
| 1376 | return(r); |
---|
| 1377 | } |
---|
| 1378 | cuddRef(t); |
---|
| 1379 | |
---|
| 1380 | if (!Cudd_IsConstant(Cnv)) { |
---|
| 1381 | e = cuddAddRestrictRecur(dd, Fnv, Cnv); |
---|
| 1382 | if (e == NULL) { |
---|
| 1383 | Cudd_RecursiveDeref(dd, t); |
---|
| 1384 | return(NULL); |
---|
| 1385 | } |
---|
| 1386 | } else if (Cnv == one) { |
---|
| 1387 | e = Fnv; |
---|
| 1388 | } else { /* Cnv == zero: return (Fv @ Cv) previously computed */ |
---|
| 1389 | cuddDeref(t); |
---|
| 1390 | return(t); |
---|
| 1391 | } |
---|
| 1392 | cuddRef(e); |
---|
| 1393 | |
---|
| 1394 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 1395 | if (r == NULL) { |
---|
| 1396 | Cudd_RecursiveDeref(dd, e); |
---|
| 1397 | Cudd_RecursiveDeref(dd, t); |
---|
| 1398 | return(NULL); |
---|
| 1399 | } |
---|
| 1400 | cuddDeref(t); |
---|
| 1401 | cuddDeref(e); |
---|
| 1402 | |
---|
| 1403 | cuddCacheInsert2(dd, Cudd_addRestrict, f, c, r); |
---|
| 1404 | return(r); |
---|
| 1405 | |
---|
| 1406 | } /* end of cuddAddRestrictRecur */ |
---|
| 1407 | |
---|
| 1408 | |
---|
| 1409 | |
---|
| 1410 | /**Function******************************************************************** |
---|
| 1411 | |
---|
| 1412 | Synopsis [Performs safe minimization of a BDD.] |
---|
| 1413 | |
---|
| 1414 | Description [Performs safe minimization of a BDD. Given the BDD |
---|
| 1415 | <code>f</code> of a function to be minimized and a BDD |
---|
| 1416 | <code>c</code> representing the care set, Cudd_bddLICompaction |
---|
| 1417 | produces the BDD of a function that agrees with <code>f</code> |
---|
| 1418 | wherever <code>c</code> is 1. Safe minimization means that the size |
---|
| 1419 | of the result is guaranteed not to exceed the size of |
---|
| 1420 | <code>f</code>. This function is based on the DAC97 paper by Hong et |
---|
| 1421 | al.. Returns a pointer to the result if successful; NULL |
---|
| 1422 | otherwise.] |
---|
| 1423 | |
---|
| 1424 | SideEffects [None] |
---|
| 1425 | |
---|
| 1426 | SeeAlso [Cudd_bddLICompaction] |
---|
| 1427 | |
---|
| 1428 | ******************************************************************************/ |
---|
| 1429 | DdNode * |
---|
| 1430 | cuddBddLICompaction( |
---|
| 1431 | DdManager * dd /* manager */, |
---|
| 1432 | DdNode * f /* function to be minimized */, |
---|
| 1433 | DdNode * c /* constraint (care set) */) |
---|
| 1434 | { |
---|
| 1435 | st_table *marktable, *markcache, *buildcache; |
---|
| 1436 | DdNode *res, *zero; |
---|
| 1437 | |
---|
| 1438 | zero = Cudd_Not(DD_ONE(dd)); |
---|
| 1439 | if (c == zero) return(zero); |
---|
| 1440 | |
---|
| 1441 | /* We need to use local caches for both steps of this operation. |
---|
| 1442 | ** The results of the edge marking step are only valid as long as the |
---|
| 1443 | ** edge markings themselves are available. However, the edge markings |
---|
| 1444 | ** are lost at the end of one invocation of Cudd_bddLICompaction. |
---|
| 1445 | ** Hence, the cache entries for the edge marking step must be |
---|
| 1446 | ** invalidated at the end of this function. |
---|
| 1447 | ** For the result of the building step we argue as follows. The result |
---|
| 1448 | ** for a node and a given constrain depends on the BDD in which the node |
---|
| 1449 | ** appears. Hence, the same node and constrain may give different results |
---|
| 1450 | ** in successive invocations. |
---|
| 1451 | */ |
---|
| 1452 | marktable = st_init_table(st_ptrcmp,st_ptrhash); |
---|
| 1453 | if (marktable == NULL) { |
---|
| 1454 | return(NULL); |
---|
| 1455 | } |
---|
| 1456 | markcache = st_init_table(MarkCacheCompare,MarkCacheHash); |
---|
| 1457 | if (markcache == NULL) { |
---|
| 1458 | st_free_table(marktable); |
---|
| 1459 | return(NULL); |
---|
| 1460 | } |
---|
| 1461 | if (cuddBddLICMarkEdges(dd,f,c,marktable,markcache) == CUDD_OUT_OF_MEM) { |
---|
| 1462 | st_foreach(markcache, MarkCacheCleanUp, NULL); |
---|
| 1463 | st_free_table(marktable); |
---|
| 1464 | st_free_table(markcache); |
---|
| 1465 | return(NULL); |
---|
| 1466 | } |
---|
| 1467 | st_foreach(markcache, MarkCacheCleanUp, NULL); |
---|
| 1468 | st_free_table(markcache); |
---|
| 1469 | buildcache = st_init_table(st_ptrcmp,st_ptrhash); |
---|
| 1470 | if (buildcache == NULL) { |
---|
| 1471 | st_free_table(marktable); |
---|
| 1472 | return(NULL); |
---|
| 1473 | } |
---|
| 1474 | res = cuddBddLICBuildResult(dd,f,buildcache,marktable); |
---|
| 1475 | st_free_table(buildcache); |
---|
| 1476 | st_free_table(marktable); |
---|
| 1477 | return(res); |
---|
| 1478 | |
---|
| 1479 | } /* end of cuddBddLICompaction */ |
---|
| 1480 | |
---|
| 1481 | |
---|
| 1482 | /*---------------------------------------------------------------------------*/ |
---|
| 1483 | /* Definition of static functions */ |
---|
| 1484 | /*---------------------------------------------------------------------------*/ |
---|
| 1485 | |
---|
| 1486 | |
---|
| 1487 | /**Function******************************************************************** |
---|
| 1488 | |
---|
| 1489 | Synopsis [Performs the recursive step of Cudd_bddConstrainDecomp.] |
---|
| 1490 | |
---|
| 1491 | Description [Performs the recursive step of Cudd_bddConstrainDecomp. |
---|
| 1492 | Returns f super (i) if successful; otherwise NULL.] |
---|
| 1493 | |
---|
| 1494 | SideEffects [None] |
---|
| 1495 | |
---|
| 1496 | SeeAlso [Cudd_bddConstrainDecomp] |
---|
| 1497 | |
---|
| 1498 | ******************************************************************************/ |
---|
| 1499 | static int |
---|
| 1500 | cuddBddConstrainDecomp( |
---|
| 1501 | DdManager * dd, |
---|
| 1502 | DdNode * f, |
---|
| 1503 | DdNode ** decomp) |
---|
| 1504 | { |
---|
| 1505 | DdNode *F, *fv, *fvn; |
---|
| 1506 | DdNode *fAbs; |
---|
| 1507 | DdNode *result; |
---|
| 1508 | int ok; |
---|
| 1509 | |
---|
| 1510 | if (Cudd_IsConstant(f)) return(1); |
---|
| 1511 | /* Compute complements of cofactors. */ |
---|
| 1512 | F = Cudd_Regular(f); |
---|
| 1513 | fv = cuddT(F); |
---|
| 1514 | fvn = cuddE(F); |
---|
| 1515 | if (F == f) { |
---|
| 1516 | fv = Cudd_Not(fv); |
---|
| 1517 | fvn = Cudd_Not(fvn); |
---|
| 1518 | } |
---|
| 1519 | /* Compute abstraction of top variable. */ |
---|
| 1520 | fAbs = cuddBddAndRecur(dd, fv, fvn); |
---|
| 1521 | if (fAbs == NULL) { |
---|
| 1522 | return(0); |
---|
| 1523 | } |
---|
| 1524 | cuddRef(fAbs); |
---|
| 1525 | fAbs = Cudd_Not(fAbs); |
---|
| 1526 | /* Recursively find the next abstraction and the components of the |
---|
| 1527 | ** decomposition. */ |
---|
| 1528 | ok = cuddBddConstrainDecomp(dd, fAbs, decomp); |
---|
| 1529 | if (ok == 0) { |
---|
| 1530 | Cudd_IterDerefBdd(dd,fAbs); |
---|
| 1531 | return(0); |
---|
| 1532 | } |
---|
| 1533 | /* Compute the component of the decomposition corresponding to the |
---|
| 1534 | ** top variable and store it in the decomposition array. */ |
---|
| 1535 | result = cuddBddConstrainRecur(dd, f, fAbs); |
---|
| 1536 | if (result == NULL) { |
---|
| 1537 | Cudd_IterDerefBdd(dd,fAbs); |
---|
| 1538 | return(0); |
---|
| 1539 | } |
---|
| 1540 | cuddRef(result); |
---|
| 1541 | decomp[F->index] = result; |
---|
| 1542 | Cudd_IterDerefBdd(dd, fAbs); |
---|
| 1543 | return(1); |
---|
| 1544 | |
---|
| 1545 | } /* end of cuddBddConstrainDecomp */ |
---|
| 1546 | |
---|
| 1547 | |
---|
| 1548 | /**Function******************************************************************** |
---|
| 1549 | |
---|
| 1550 | Synopsis [Performs the recursive step of Cudd_bddCharToVect.] |
---|
| 1551 | |
---|
| 1552 | Description [Performs the recursive step of Cudd_bddCharToVect. |
---|
| 1553 | This function maintains the invariant that f is non-zero. |
---|
| 1554 | Returns the i-th component of the vector if successful; otherwise NULL.] |
---|
| 1555 | |
---|
| 1556 | SideEffects [None] |
---|
| 1557 | |
---|
| 1558 | SeeAlso [Cudd_bddCharToVect] |
---|
| 1559 | |
---|
| 1560 | ******************************************************************************/ |
---|
| 1561 | static DdNode * |
---|
| 1562 | cuddBddCharToVect( |
---|
| 1563 | DdManager * dd, |
---|
| 1564 | DdNode * f, |
---|
| 1565 | DdNode * x) |
---|
| 1566 | { |
---|
| 1567 | unsigned int topf; |
---|
| 1568 | unsigned int level; |
---|
| 1569 | int comple; |
---|
| 1570 | |
---|
| 1571 | DdNode *one, *zero, *res, *F, *fT, *fE, *T, *E; |
---|
| 1572 | |
---|
| 1573 | statLine(dd); |
---|
| 1574 | /* Check the cache. */ |
---|
| 1575 | res = cuddCacheLookup2(dd, cuddBddCharToVect, f, x); |
---|
| 1576 | if (res != NULL) { |
---|
| 1577 | return(res); |
---|
| 1578 | } |
---|
| 1579 | |
---|
| 1580 | F = Cudd_Regular(f); |
---|
| 1581 | |
---|
| 1582 | topf = cuddI(dd,F->index); |
---|
| 1583 | level = dd->perm[x->index]; |
---|
| 1584 | |
---|
| 1585 | if (topf > level) return(x); |
---|
| 1586 | |
---|
| 1587 | one = DD_ONE(dd); |
---|
| 1588 | zero = Cudd_Not(one); |
---|
| 1589 | |
---|
| 1590 | comple = F != f; |
---|
| 1591 | fT = Cudd_NotCond(cuddT(F),comple); |
---|
| 1592 | fE = Cudd_NotCond(cuddE(F),comple); |
---|
| 1593 | |
---|
| 1594 | if (topf == level) { |
---|
| 1595 | if (fT == zero) return(zero); |
---|
| 1596 | if (fE == zero) return(one); |
---|
| 1597 | return(x); |
---|
| 1598 | } |
---|
| 1599 | |
---|
| 1600 | /* Here topf < level. */ |
---|
| 1601 | if (fT == zero) return(cuddBddCharToVect(dd, fE, x)); |
---|
| 1602 | if (fE == zero) return(cuddBddCharToVect(dd, fT, x)); |
---|
| 1603 | |
---|
| 1604 | T = cuddBddCharToVect(dd, fT, x); |
---|
| 1605 | if (T == NULL) { |
---|
| 1606 | return(NULL); |
---|
| 1607 | } |
---|
| 1608 | cuddRef(T); |
---|
| 1609 | E = cuddBddCharToVect(dd, fE, x); |
---|
| 1610 | if (E == NULL) { |
---|
| 1611 | Cudd_IterDerefBdd(dd,T); |
---|
| 1612 | return(NULL); |
---|
| 1613 | } |
---|
| 1614 | cuddRef(E); |
---|
| 1615 | res = cuddBddIteRecur(dd, dd->vars[F->index], T, E); |
---|
| 1616 | if (res == NULL) { |
---|
| 1617 | Cudd_IterDerefBdd(dd,T); |
---|
| 1618 | Cudd_IterDerefBdd(dd,E); |
---|
| 1619 | return(NULL); |
---|
| 1620 | } |
---|
| 1621 | cuddDeref(T); |
---|
| 1622 | cuddDeref(E); |
---|
| 1623 | cuddCacheInsert2(dd, cuddBddCharToVect, f, x, res); |
---|
| 1624 | return(res); |
---|
| 1625 | |
---|
| 1626 | } /* end of cuddBddCharToVect */ |
---|
| 1627 | |
---|
| 1628 | |
---|
| 1629 | /**Function******************************************************************** |
---|
| 1630 | |
---|
| 1631 | Synopsis [Performs the edge marking step of Cudd_bddLICompaction.] |
---|
| 1632 | |
---|
| 1633 | Description [Performs the edge marking step of Cudd_bddLICompaction. |
---|
| 1634 | Returns the LUB of the markings of the two outgoing edges of <code>f</code> |
---|
| 1635 | if successful; otherwise CUDD_OUT_OF_MEM.] |
---|
| 1636 | |
---|
| 1637 | SideEffects [None] |
---|
| 1638 | |
---|
| 1639 | SeeAlso [Cudd_bddLICompaction cuddBddLICBuildResult] |
---|
| 1640 | |
---|
| 1641 | ******************************************************************************/ |
---|
| 1642 | static int |
---|
| 1643 | cuddBddLICMarkEdges( |
---|
| 1644 | DdManager * dd, |
---|
| 1645 | DdNode * f, |
---|
| 1646 | DdNode * c, |
---|
| 1647 | st_table * table, |
---|
| 1648 | st_table * cache) |
---|
| 1649 | { |
---|
| 1650 | DdNode *Fv, *Fnv, *Cv, *Cnv; |
---|
| 1651 | DdNode *one, *zero; |
---|
| 1652 | unsigned int topf, topc; |
---|
| 1653 | int comple; |
---|
| 1654 | int resT, resE, res, retval; |
---|
| 1655 | char **slot; |
---|
| 1656 | MarkCacheKey *key; |
---|
| 1657 | |
---|
| 1658 | one = DD_ONE(dd); |
---|
| 1659 | zero = Cudd_Not(one); |
---|
| 1660 | |
---|
| 1661 | /* Terminal cases. */ |
---|
| 1662 | if (c == zero) return(DD_LIC_DC); |
---|
| 1663 | if (f == one) return(DD_LIC_1); |
---|
| 1664 | if (f == zero) return(DD_LIC_0); |
---|
| 1665 | |
---|
| 1666 | /* Make canonical to increase the utilization of the cache. */ |
---|
| 1667 | comple = Cudd_IsComplement(f); |
---|
| 1668 | f = Cudd_Regular(f); |
---|
| 1669 | /* Now f is a regular pointer to a non-constant node; c may be |
---|
| 1670 | ** constant, or it may be complemented. |
---|
| 1671 | */ |
---|
| 1672 | |
---|
| 1673 | /* Check the cache. */ |
---|
| 1674 | key = ALLOC(MarkCacheKey, 1); |
---|
| 1675 | if (key == NULL) { |
---|
| 1676 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1677 | return(CUDD_OUT_OF_MEM); |
---|
| 1678 | } |
---|
| 1679 | key->f = f; key->c = c; |
---|
| 1680 | if (st_lookup_int(cache, (char *)key, &res)) { |
---|
| 1681 | FREE(key); |
---|
| 1682 | if (comple) { |
---|
| 1683 | if (res == DD_LIC_0) res = DD_LIC_1; |
---|
| 1684 | else if (res == DD_LIC_1) res = DD_LIC_0; |
---|
| 1685 | } |
---|
| 1686 | return(res); |
---|
| 1687 | } |
---|
| 1688 | |
---|
| 1689 | /* Recursive step. */ |
---|
| 1690 | topf = dd->perm[f->index]; |
---|
| 1691 | topc = cuddI(dd,Cudd_Regular(c)->index); |
---|
| 1692 | if (topf <= topc) { |
---|
| 1693 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
| 1694 | } else { |
---|
| 1695 | Fv = Fnv = f; |
---|
| 1696 | } |
---|
| 1697 | if (topc <= topf) { |
---|
| 1698 | /* We know that c is not constant because f is not. */ |
---|
| 1699 | Cv = cuddT(Cudd_Regular(c)); Cnv = cuddE(Cudd_Regular(c)); |
---|
| 1700 | if (Cudd_IsComplement(c)) { |
---|
| 1701 | Cv = Cudd_Not(Cv); |
---|
| 1702 | Cnv = Cudd_Not(Cnv); |
---|
| 1703 | } |
---|
| 1704 | } else { |
---|
| 1705 | Cv = Cnv = c; |
---|
| 1706 | } |
---|
| 1707 | |
---|
| 1708 | resT = cuddBddLICMarkEdges(dd, Fv, Cv, table, cache); |
---|
| 1709 | if (resT == CUDD_OUT_OF_MEM) { |
---|
| 1710 | FREE(key); |
---|
| 1711 | return(CUDD_OUT_OF_MEM); |
---|
| 1712 | } |
---|
| 1713 | resE = cuddBddLICMarkEdges(dd, Fnv, Cnv, table, cache); |
---|
| 1714 | if (resE == CUDD_OUT_OF_MEM) { |
---|
| 1715 | FREE(key); |
---|
| 1716 | return(CUDD_OUT_OF_MEM); |
---|
| 1717 | } |
---|
| 1718 | |
---|
| 1719 | /* Update edge markings. */ |
---|
| 1720 | if (topf <= topc) { |
---|
| 1721 | retval = st_find_or_add(table, (char *)f, (char ***)&slot); |
---|
| 1722 | if (retval == 0) { |
---|
| 1723 | *slot = (char *) (ptrint)((resT << 2) | resE); |
---|
| 1724 | } else if (retval == 1) { |
---|
| 1725 | *slot = (char *) (ptrint)((int)((ptrint) *slot) | (resT << 2) | resE); |
---|
| 1726 | } else { |
---|
| 1727 | FREE(key); |
---|
| 1728 | return(CUDD_OUT_OF_MEM); |
---|
| 1729 | } |
---|
| 1730 | } |
---|
| 1731 | |
---|
| 1732 | /* Cache result. */ |
---|
| 1733 | res = resT | resE; |
---|
| 1734 | if (st_insert(cache, (char *)key, (char *)(ptrint)res) == ST_OUT_OF_MEM) { |
---|
| 1735 | FREE(key); |
---|
| 1736 | return(CUDD_OUT_OF_MEM); |
---|
| 1737 | } |
---|
| 1738 | |
---|
| 1739 | /* Take into account possible complementation. */ |
---|
| 1740 | if (comple) { |
---|
| 1741 | if (res == DD_LIC_0) res = DD_LIC_1; |
---|
| 1742 | else if (res == DD_LIC_1) res = DD_LIC_0; |
---|
| 1743 | } |
---|
| 1744 | return(res); |
---|
| 1745 | |
---|
| 1746 | } /* end of cuddBddLICMarkEdges */ |
---|
| 1747 | |
---|
| 1748 | |
---|
| 1749 | /**Function******************************************************************** |
---|
| 1750 | |
---|
| 1751 | Synopsis [Builds the result of Cudd_bddLICompaction.] |
---|
| 1752 | |
---|
| 1753 | Description [Builds the results of Cudd_bddLICompaction. |
---|
| 1754 | Returns a pointer to the minimized BDD if successful; otherwise NULL.] |
---|
| 1755 | |
---|
| 1756 | SideEffects [None] |
---|
| 1757 | |
---|
| 1758 | SeeAlso [Cudd_bddLICompaction cuddBddLICMarkEdges] |
---|
| 1759 | |
---|
| 1760 | ******************************************************************************/ |
---|
| 1761 | static DdNode * |
---|
| 1762 | cuddBddLICBuildResult( |
---|
| 1763 | DdManager * dd, |
---|
| 1764 | DdNode * f, |
---|
| 1765 | st_table * cache, |
---|
| 1766 | st_table * table) |
---|
| 1767 | { |
---|
| 1768 | DdNode *Fv, *Fnv, *r, *t, *e; |
---|
| 1769 | DdNode *one, *zero; |
---|
| 1770 | int index; |
---|
| 1771 | int comple; |
---|
| 1772 | int markT, markE, markings; |
---|
| 1773 | |
---|
| 1774 | one = DD_ONE(dd); |
---|
| 1775 | zero = Cudd_Not(one); |
---|
| 1776 | |
---|
| 1777 | if (Cudd_IsConstant(f)) return(f); |
---|
| 1778 | /* Make canonical to increase the utilization of the cache. */ |
---|
| 1779 | comple = Cudd_IsComplement(f); |
---|
| 1780 | f = Cudd_Regular(f); |
---|
| 1781 | |
---|
| 1782 | /* Check the cache. */ |
---|
| 1783 | if (st_lookup(cache, f, &r)) { |
---|
| 1784 | return(Cudd_NotCond(r,comple)); |
---|
| 1785 | } |
---|
| 1786 | |
---|
| 1787 | /* Retrieve the edge markings. */ |
---|
| 1788 | if (st_lookup_int(table, (char *)f, &markings) == 0) |
---|
| 1789 | return(NULL); |
---|
| 1790 | markT = markings >> 2; |
---|
| 1791 | markE = markings & 3; |
---|
| 1792 | |
---|
| 1793 | index = f->index; |
---|
| 1794 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
| 1795 | |
---|
| 1796 | if (markT == DD_LIC_NL) { |
---|
| 1797 | t = cuddBddLICBuildResult(dd,Fv,cache,table); |
---|
| 1798 | if (t == NULL) { |
---|
| 1799 | return(NULL); |
---|
| 1800 | } |
---|
| 1801 | } else if (markT == DD_LIC_1) { |
---|
| 1802 | t = one; |
---|
| 1803 | } else { |
---|
| 1804 | t = zero; |
---|
| 1805 | } |
---|
| 1806 | cuddRef(t); |
---|
| 1807 | if (markE == DD_LIC_NL) { |
---|
| 1808 | e = cuddBddLICBuildResult(dd,Fnv,cache,table); |
---|
| 1809 | if (e == NULL) { |
---|
| 1810 | Cudd_IterDerefBdd(dd,t); |
---|
| 1811 | return(NULL); |
---|
| 1812 | } |
---|
| 1813 | } else if (markE == DD_LIC_1) { |
---|
| 1814 | e = one; |
---|
| 1815 | } else { |
---|
| 1816 | e = zero; |
---|
| 1817 | } |
---|
| 1818 | cuddRef(e); |
---|
| 1819 | |
---|
| 1820 | if (markT == DD_LIC_DC && markE != DD_LIC_DC) { |
---|
| 1821 | r = e; |
---|
| 1822 | } else if (markT != DD_LIC_DC && markE == DD_LIC_DC) { |
---|
| 1823 | r = t; |
---|
| 1824 | } else { |
---|
| 1825 | if (Cudd_IsComplement(t)) { |
---|
| 1826 | t = Cudd_Not(t); |
---|
| 1827 | e = Cudd_Not(e); |
---|
| 1828 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 1829 | if (r == NULL) { |
---|
| 1830 | Cudd_IterDerefBdd(dd, e); |
---|
| 1831 | Cudd_IterDerefBdd(dd, t); |
---|
| 1832 | return(NULL); |
---|
| 1833 | } |
---|
| 1834 | r = Cudd_Not(r); |
---|
| 1835 | } else { |
---|
| 1836 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 1837 | if (r == NULL) { |
---|
| 1838 | Cudd_IterDerefBdd(dd, e); |
---|
| 1839 | Cudd_IterDerefBdd(dd, t); |
---|
| 1840 | return(NULL); |
---|
| 1841 | } |
---|
| 1842 | } |
---|
| 1843 | } |
---|
| 1844 | cuddDeref(t); |
---|
| 1845 | cuddDeref(e); |
---|
| 1846 | |
---|
| 1847 | if (st_insert(cache, (char *)f, (char *)r) == ST_OUT_OF_MEM) { |
---|
| 1848 | cuddRef(r); |
---|
| 1849 | Cudd_IterDerefBdd(dd,r); |
---|
| 1850 | return(NULL); |
---|
| 1851 | } |
---|
| 1852 | |
---|
| 1853 | return(Cudd_NotCond(r,comple)); |
---|
| 1854 | |
---|
| 1855 | } /* end of cuddBddLICBuildResult */ |
---|
| 1856 | |
---|
| 1857 | |
---|
| 1858 | /**Function******************************************************************** |
---|
| 1859 | |
---|
| 1860 | Synopsis [Hash function for the computed table of cuddBddLICMarkEdges.] |
---|
| 1861 | |
---|
| 1862 | Description [Hash function for the computed table of |
---|
| 1863 | cuddBddLICMarkEdges. Returns the bucket number.] |
---|
| 1864 | |
---|
| 1865 | SideEffects [None] |
---|
| 1866 | |
---|
| 1867 | SeeAlso [Cudd_bddLICompaction] |
---|
| 1868 | |
---|
| 1869 | ******************************************************************************/ |
---|
| 1870 | static int |
---|
| 1871 | MarkCacheHash( |
---|
| 1872 | char * ptr, |
---|
| 1873 | int modulus) |
---|
| 1874 | { |
---|
| 1875 | int val = 0; |
---|
| 1876 | MarkCacheKey *entry; |
---|
| 1877 | |
---|
| 1878 | entry = (MarkCacheKey *) ptr; |
---|
| 1879 | |
---|
| 1880 | val = (int) (ptrint) entry->f; |
---|
| 1881 | val = val * 997 + (int) (ptrint) entry->c; |
---|
| 1882 | |
---|
| 1883 | return ((val < 0) ? -val : val) % modulus; |
---|
| 1884 | |
---|
| 1885 | } /* end of MarkCacheHash */ |
---|
| 1886 | |
---|
| 1887 | |
---|
| 1888 | /**Function******************************************************************** |
---|
| 1889 | |
---|
| 1890 | Synopsis [Comparison function for the computed table of |
---|
| 1891 | cuddBddLICMarkEdges.] |
---|
| 1892 | |
---|
| 1893 | Description [Comparison function for the computed table of |
---|
| 1894 | cuddBddLICMarkEdges. Returns 0 if the two nodes of the key are equal; 1 |
---|
| 1895 | otherwise.] |
---|
| 1896 | |
---|
| 1897 | SideEffects [None] |
---|
| 1898 | |
---|
| 1899 | SeeAlso [Cudd_bddLICompaction] |
---|
| 1900 | |
---|
| 1901 | ******************************************************************************/ |
---|
| 1902 | static int |
---|
| 1903 | MarkCacheCompare( |
---|
| 1904 | const char * ptr1, |
---|
| 1905 | const char * ptr2) |
---|
| 1906 | { |
---|
| 1907 | MarkCacheKey *entry1, *entry2; |
---|
| 1908 | |
---|
| 1909 | entry1 = (MarkCacheKey *) ptr1; |
---|
| 1910 | entry2 = (MarkCacheKey *) ptr2; |
---|
| 1911 | |
---|
| 1912 | return((entry1->f != entry2->f) || (entry1->c != entry2->c)); |
---|
| 1913 | |
---|
| 1914 | } /* end of MarkCacheCompare */ |
---|
| 1915 | |
---|
| 1916 | |
---|
| 1917 | |
---|
| 1918 | /**Function******************************************************************** |
---|
| 1919 | |
---|
| 1920 | Synopsis [Frees memory associated with computed table of |
---|
| 1921 | cuddBddLICMarkEdges.] |
---|
| 1922 | |
---|
| 1923 | Description [Frees memory associated with computed table of |
---|
| 1924 | cuddBddLICMarkEdges. Returns ST_CONTINUE.] |
---|
| 1925 | |
---|
| 1926 | SideEffects [None] |
---|
| 1927 | |
---|
| 1928 | SeeAlso [Cudd_bddLICompaction] |
---|
| 1929 | |
---|
| 1930 | ******************************************************************************/ |
---|
| 1931 | static enum st_retval |
---|
| 1932 | MarkCacheCleanUp( |
---|
| 1933 | char * key, |
---|
| 1934 | char * value, |
---|
| 1935 | char * arg) |
---|
| 1936 | { |
---|
| 1937 | MarkCacheKey *entry; |
---|
| 1938 | |
---|
| 1939 | entry = (MarkCacheKey *) key; |
---|
| 1940 | FREE(entry); |
---|
| 1941 | return ST_CONTINUE; |
---|
| 1942 | |
---|
| 1943 | } /* end of MarkCacheCleanUp */ |
---|
| 1944 | |
---|
| 1945 | |
---|
| 1946 | /**Function******************************************************************** |
---|
| 1947 | |
---|
| 1948 | Synopsis [Performs the recursive step of Cudd_bddSqueeze.] |
---|
| 1949 | |
---|
| 1950 | Description [Performs the recursive step of Cudd_bddSqueeze. This |
---|
| 1951 | procedure exploits the fact that if we complement and swap the |
---|
| 1952 | bounds of the interval we obtain a valid solution by taking the |
---|
| 1953 | complement of the solution to the original problem. Therefore, we |
---|
| 1954 | can enforce the condition that the upper bound is always regular. |
---|
| 1955 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
| 1956 | |
---|
| 1957 | SideEffects [None] |
---|
| 1958 | |
---|
| 1959 | SeeAlso [Cudd_bddSqueeze] |
---|
| 1960 | |
---|
| 1961 | ******************************************************************************/ |
---|
| 1962 | static DdNode * |
---|
| 1963 | cuddBddSqueeze( |
---|
| 1964 | DdManager * dd, |
---|
| 1965 | DdNode * l, |
---|
| 1966 | DdNode * u) |
---|
| 1967 | { |
---|
| 1968 | DdNode *one, *zero, *r, *lt, *le, *ut, *ue, *t, *e; |
---|
| 1969 | #if 0 |
---|
| 1970 | DdNode *ar; |
---|
| 1971 | #endif |
---|
| 1972 | int comple = 0; |
---|
| 1973 | unsigned int topu, topl; |
---|
| 1974 | int index; |
---|
| 1975 | |
---|
| 1976 | statLine(dd); |
---|
| 1977 | if (l == u) { |
---|
| 1978 | return(l); |
---|
| 1979 | } |
---|
| 1980 | one = DD_ONE(dd); |
---|
| 1981 | zero = Cudd_Not(one); |
---|
| 1982 | /* The only case when l == zero && u == one is at the top level, |
---|
| 1983 | ** where returning either one or zero is OK. In all other cases |
---|
| 1984 | ** the procedure will detect such a case and will perform |
---|
| 1985 | ** remapping. Therefore the order in which we test l and u at this |
---|
| 1986 | ** point is immaterial. */ |
---|
| 1987 | if (l == zero) return(l); |
---|
| 1988 | if (u == one) return(u); |
---|
| 1989 | |
---|
| 1990 | /* Make canonical to increase the utilization of the cache. */ |
---|
| 1991 | if (Cudd_IsComplement(u)) { |
---|
| 1992 | DdNode *temp; |
---|
| 1993 | temp = Cudd_Not(l); |
---|
| 1994 | l = Cudd_Not(u); |
---|
| 1995 | u = temp; |
---|
| 1996 | comple = 1; |
---|
| 1997 | } |
---|
| 1998 | /* At this point u is regular and non-constant; l is non-constant, but |
---|
| 1999 | ** may be complemented. */ |
---|
| 2000 | |
---|
| 2001 | /* Here we could check the relative sizes. */ |
---|
| 2002 | |
---|
| 2003 | /* Check the cache. */ |
---|
| 2004 | r = cuddCacheLookup2(dd, Cudd_bddSqueeze, l, u); |
---|
| 2005 | if (r != NULL) { |
---|
| 2006 | return(Cudd_NotCond(r,comple)); |
---|
| 2007 | } |
---|
| 2008 | |
---|
| 2009 | /* Recursive step. */ |
---|
| 2010 | topu = dd->perm[u->index]; |
---|
| 2011 | topl = dd->perm[Cudd_Regular(l)->index]; |
---|
| 2012 | if (topu <= topl) { |
---|
| 2013 | index = u->index; |
---|
| 2014 | ut = cuddT(u); ue = cuddE(u); |
---|
| 2015 | } else { |
---|
| 2016 | index = Cudd_Regular(l)->index; |
---|
| 2017 | ut = ue = u; |
---|
| 2018 | } |
---|
| 2019 | if (topl <= topu) { |
---|
| 2020 | lt = cuddT(Cudd_Regular(l)); le = cuddE(Cudd_Regular(l)); |
---|
| 2021 | if (Cudd_IsComplement(l)) { |
---|
| 2022 | lt = Cudd_Not(lt); |
---|
| 2023 | le = Cudd_Not(le); |
---|
| 2024 | } |
---|
| 2025 | } else { |
---|
| 2026 | lt = le = l; |
---|
| 2027 | } |
---|
| 2028 | |
---|
| 2029 | /* If one interval is contained in the other, use the smaller |
---|
| 2030 | ** interval. This corresponds to one-sided matching. */ |
---|
| 2031 | if ((lt == zero || Cudd_bddLeq(dd,lt,le)) && |
---|
| 2032 | (ut == one || Cudd_bddLeq(dd,ue,ut))) { /* remap */ |
---|
| 2033 | r = cuddBddSqueeze(dd, le, ue); |
---|
| 2034 | if (r == NULL) |
---|
| 2035 | return(NULL); |
---|
| 2036 | return(Cudd_NotCond(r,comple)); |
---|
| 2037 | } else if ((le == zero || Cudd_bddLeq(dd,le,lt)) && |
---|
| 2038 | (ue == one || Cudd_bddLeq(dd,ut,ue))) { /* remap */ |
---|
| 2039 | r = cuddBddSqueeze(dd, lt, ut); |
---|
| 2040 | if (r == NULL) |
---|
| 2041 | return(NULL); |
---|
| 2042 | return(Cudd_NotCond(r,comple)); |
---|
| 2043 | } else if ((le == zero || Cudd_bddLeq(dd,le,Cudd_Not(ut))) && |
---|
| 2044 | (ue == one || Cudd_bddLeq(dd,Cudd_Not(lt),ue))) { /* c-remap */ |
---|
| 2045 | t = cuddBddSqueeze(dd, lt, ut); |
---|
| 2046 | cuddRef(t); |
---|
| 2047 | if (Cudd_IsComplement(t)) { |
---|
| 2048 | r = cuddUniqueInter(dd, index, Cudd_Not(t), t); |
---|
| 2049 | if (r == NULL) { |
---|
| 2050 | Cudd_IterDerefBdd(dd, t); |
---|
| 2051 | return(NULL); |
---|
| 2052 | } |
---|
| 2053 | r = Cudd_Not(r); |
---|
| 2054 | } else { |
---|
| 2055 | r = cuddUniqueInter(dd, index, t, Cudd_Not(t)); |
---|
| 2056 | if (r == NULL) { |
---|
| 2057 | Cudd_IterDerefBdd(dd, t); |
---|
| 2058 | return(NULL); |
---|
| 2059 | } |
---|
| 2060 | } |
---|
| 2061 | cuddDeref(t); |
---|
| 2062 | if (r == NULL) |
---|
| 2063 | return(NULL); |
---|
| 2064 | cuddCacheInsert2(dd, Cudd_bddSqueeze, l, u, r); |
---|
| 2065 | return(Cudd_NotCond(r,comple)); |
---|
| 2066 | } else if ((lt == zero || Cudd_bddLeq(dd,lt,Cudd_Not(ue))) && |
---|
| 2067 | (ut == one || Cudd_bddLeq(dd,Cudd_Not(le),ut))) { /* c-remap */ |
---|
| 2068 | e = cuddBddSqueeze(dd, le, ue); |
---|
| 2069 | cuddRef(e); |
---|
| 2070 | if (Cudd_IsComplement(e)) { |
---|
| 2071 | r = cuddUniqueInter(dd, index, Cudd_Not(e), e); |
---|
| 2072 | if (r == NULL) { |
---|
| 2073 | Cudd_IterDerefBdd(dd, e); |
---|
| 2074 | return(NULL); |
---|
| 2075 | } |
---|
| 2076 | } else { |
---|
| 2077 | r = cuddUniqueInter(dd, index, e, Cudd_Not(e)); |
---|
| 2078 | if (r == NULL) { |
---|
| 2079 | Cudd_IterDerefBdd(dd, e); |
---|
| 2080 | return(NULL); |
---|
| 2081 | } |
---|
| 2082 | r = Cudd_Not(r); |
---|
| 2083 | } |
---|
| 2084 | cuddDeref(e); |
---|
| 2085 | if (r == NULL) |
---|
| 2086 | return(NULL); |
---|
| 2087 | cuddCacheInsert2(dd, Cudd_bddSqueeze, l, u, r); |
---|
| 2088 | return(Cudd_NotCond(r,comple)); |
---|
| 2089 | } |
---|
| 2090 | |
---|
| 2091 | #if 0 |
---|
| 2092 | /* If the two intervals intersect, take a solution from |
---|
| 2093 | ** the intersection of the intervals. This guarantees that the |
---|
| 2094 | ** splitting variable will not appear in the result. |
---|
| 2095 | ** This approach corresponds to two-sided matching, and is very |
---|
| 2096 | ** expensive. */ |
---|
| 2097 | if (Cudd_bddLeq(dd,lt,ue) && Cudd_bddLeq(dd,le,ut)) { |
---|
| 2098 | DdNode *au, *al; |
---|
| 2099 | au = cuddBddAndRecur(dd,ut,ue); |
---|
| 2100 | if (au == NULL) |
---|
| 2101 | return(NULL); |
---|
| 2102 | cuddRef(au); |
---|
| 2103 | al = cuddBddAndRecur(dd,Cudd_Not(lt),Cudd_Not(le)); |
---|
| 2104 | if (al == NULL) { |
---|
| 2105 | Cudd_IterDerefBdd(dd,au); |
---|
| 2106 | return(NULL); |
---|
| 2107 | } |
---|
| 2108 | cuddRef(al); |
---|
| 2109 | al = Cudd_Not(al); |
---|
| 2110 | ar = cuddBddSqueeze(dd, al, au); |
---|
| 2111 | if (ar == NULL) { |
---|
| 2112 | Cudd_IterDerefBdd(dd,au); |
---|
| 2113 | Cudd_IterDerefBdd(dd,al); |
---|
| 2114 | return(NULL); |
---|
| 2115 | } |
---|
| 2116 | cuddRef(ar); |
---|
| 2117 | Cudd_IterDerefBdd(dd,au); |
---|
| 2118 | Cudd_IterDerefBdd(dd,al); |
---|
| 2119 | } else { |
---|
| 2120 | ar = NULL; |
---|
| 2121 | } |
---|
| 2122 | #endif |
---|
| 2123 | |
---|
| 2124 | t = cuddBddSqueeze(dd, lt, ut); |
---|
| 2125 | if (t == NULL) { |
---|
| 2126 | return(NULL); |
---|
| 2127 | } |
---|
| 2128 | cuddRef(t); |
---|
| 2129 | e = cuddBddSqueeze(dd, le, ue); |
---|
| 2130 | if (e == NULL) { |
---|
| 2131 | Cudd_IterDerefBdd(dd,t); |
---|
| 2132 | return(NULL); |
---|
| 2133 | } |
---|
| 2134 | cuddRef(e); |
---|
| 2135 | |
---|
| 2136 | if (Cudd_IsComplement(t)) { |
---|
| 2137 | t = Cudd_Not(t); |
---|
| 2138 | e = Cudd_Not(e); |
---|
| 2139 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 2140 | if (r == NULL) { |
---|
| 2141 | Cudd_IterDerefBdd(dd, e); |
---|
| 2142 | Cudd_IterDerefBdd(dd, t); |
---|
| 2143 | return(NULL); |
---|
| 2144 | } |
---|
| 2145 | r = Cudd_Not(r); |
---|
| 2146 | } else { |
---|
| 2147 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
| 2148 | if (r == NULL) { |
---|
| 2149 | Cudd_IterDerefBdd(dd, e); |
---|
| 2150 | Cudd_IterDerefBdd(dd, t); |
---|
| 2151 | return(NULL); |
---|
| 2152 | } |
---|
| 2153 | } |
---|
| 2154 | cuddDeref(t); |
---|
| 2155 | cuddDeref(e); |
---|
| 2156 | |
---|
| 2157 | #if 0 |
---|
| 2158 | /* Check whether there is a result obtained by abstraction and whether |
---|
| 2159 | ** it is better than the one obtained by recursion. */ |
---|
| 2160 | cuddRef(r); |
---|
| 2161 | if (ar != NULL) { |
---|
| 2162 | if (Cudd_DagSize(ar) <= Cudd_DagSize(r)) { |
---|
| 2163 | Cudd_IterDerefBdd(dd, r); |
---|
| 2164 | r = ar; |
---|
| 2165 | } else { |
---|
| 2166 | Cudd_IterDerefBdd(dd, ar); |
---|
| 2167 | } |
---|
| 2168 | } |
---|
| 2169 | cuddDeref(r); |
---|
| 2170 | #endif |
---|
| 2171 | |
---|
| 2172 | cuddCacheInsert2(dd, Cudd_bddSqueeze, l, u, r); |
---|
| 2173 | return(Cudd_NotCond(r,comple)); |
---|
| 2174 | |
---|
| 2175 | } /* end of cuddBddSqueeze */ |
---|