[8] | 1 | /**CFile*********************************************************************** |
---|
| 2 | |
---|
| 3 | FileName [cuddUtil.c] |
---|
| 4 | |
---|
| 5 | PackageName [cudd] |
---|
| 6 | |
---|
| 7 | Synopsis [Utility functions.] |
---|
| 8 | |
---|
| 9 | Description [External procedures included in this module: |
---|
| 10 | <ul> |
---|
| 11 | <li> Cudd_PrintMinterm() |
---|
| 12 | <li> Cudd_bddPrintCover() |
---|
| 13 | <li> Cudd_PrintDebug() |
---|
| 14 | <li> Cudd_DagSize() |
---|
| 15 | <li> Cudd_EstimateCofactor() |
---|
| 16 | <li> Cudd_EstimateCofactorSimple() |
---|
| 17 | <li> Cudd_SharingSize() |
---|
| 18 | <li> Cudd_CountMinterm() |
---|
| 19 | <li> Cudd_EpdCountMinterm() |
---|
| 20 | <li> Cudd_CountPath() |
---|
| 21 | <li> Cudd_CountPathsToNonZero() |
---|
| 22 | <li> Cudd_Support() |
---|
| 23 | <li> Cudd_SupportIndex() |
---|
| 24 | <li> Cudd_SupportSize() |
---|
| 25 | <li> Cudd_VectorSupport() |
---|
| 26 | <li> Cudd_VectorSupportIndex() |
---|
| 27 | <li> Cudd_VectorSupportSize() |
---|
| 28 | <li> Cudd_ClassifySupport() |
---|
| 29 | <li> Cudd_CountLeaves() |
---|
| 30 | <li> Cudd_bddPickOneCube() |
---|
| 31 | <li> Cudd_bddPickOneMinterm() |
---|
| 32 | <li> Cudd_bddPickArbitraryMinterms() |
---|
| 33 | <li> Cudd_SubsetWithMaskVars() |
---|
| 34 | <li> Cudd_FirstCube() |
---|
| 35 | <li> Cudd_NextCube() |
---|
| 36 | <li> Cudd_bddComputeCube() |
---|
| 37 | <li> Cudd_addComputeCube() |
---|
| 38 | <li> Cudd_FirstNode() |
---|
| 39 | <li> Cudd_NextNode() |
---|
| 40 | <li> Cudd_GenFree() |
---|
| 41 | <li> Cudd_IsGenEmpty() |
---|
| 42 | <li> Cudd_IndicesToCube() |
---|
| 43 | <li> Cudd_PrintVersion() |
---|
| 44 | <li> Cudd_AverageDistance() |
---|
| 45 | <li> Cudd_Random() |
---|
| 46 | <li> Cudd_Srandom() |
---|
| 47 | <li> Cudd_Density() |
---|
| 48 | </ul> |
---|
| 49 | Internal procedures included in this module: |
---|
| 50 | <ul> |
---|
| 51 | <li> cuddP() |
---|
| 52 | <li> cuddStCountfree() |
---|
| 53 | <li> cuddCollectNodes() |
---|
| 54 | <li> cuddNodeArray() |
---|
| 55 | </ul> |
---|
| 56 | Static procedures included in this module: |
---|
| 57 | <ul> |
---|
| 58 | <li> dp2() |
---|
| 59 | <li> ddPrintMintermAux() |
---|
| 60 | <li> ddDagInt() |
---|
| 61 | <li> ddCountMintermAux() |
---|
| 62 | <li> ddEpdCountMintermAux() |
---|
| 63 | <li> ddCountPathAux() |
---|
| 64 | <li> ddSupportStep() |
---|
| 65 | <li> ddClearFlag() |
---|
| 66 | <li> ddLeavesInt() |
---|
| 67 | <li> ddPickArbitraryMinterms() |
---|
| 68 | <li> ddPickRepresentativeCube() |
---|
| 69 | <li> ddEpdFree() |
---|
| 70 | </ul>] |
---|
| 71 | |
---|
| 72 | Author [Fabio Somenzi] |
---|
| 73 | |
---|
| 74 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
| 75 | |
---|
| 76 | All rights reserved. |
---|
| 77 | |
---|
| 78 | Redistribution and use in source and binary forms, with or without |
---|
| 79 | modification, are permitted provided that the following conditions |
---|
| 80 | are met: |
---|
| 81 | |
---|
| 82 | Redistributions of source code must retain the above copyright |
---|
| 83 | notice, this list of conditions and the following disclaimer. |
---|
| 84 | |
---|
| 85 | Redistributions in binary form must reproduce the above copyright |
---|
| 86 | notice, this list of conditions and the following disclaimer in the |
---|
| 87 | documentation and/or other materials provided with the distribution. |
---|
| 88 | |
---|
| 89 | Neither the name of the University of Colorado nor the names of its |
---|
| 90 | contributors may be used to endorse or promote products derived from |
---|
| 91 | this software without specific prior written permission. |
---|
| 92 | |
---|
| 93 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 94 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 95 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
| 96 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
| 97 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
| 98 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
| 99 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
| 100 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
| 101 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
| 102 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
| 103 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
| 104 | POSSIBILITY OF SUCH DAMAGE.] |
---|
| 105 | |
---|
| 106 | ******************************************************************************/ |
---|
| 107 | |
---|
| 108 | #include "util.h" |
---|
| 109 | #include "cuddInt.h" |
---|
| 110 | |
---|
| 111 | /*---------------------------------------------------------------------------*/ |
---|
| 112 | /* Constant declarations */ |
---|
| 113 | /*---------------------------------------------------------------------------*/ |
---|
| 114 | |
---|
| 115 | /* Random generator constants. */ |
---|
| 116 | #define MODULUS1 2147483563 |
---|
| 117 | #define LEQA1 40014 |
---|
| 118 | #define LEQQ1 53668 |
---|
| 119 | #define LEQR1 12211 |
---|
| 120 | #define MODULUS2 2147483399 |
---|
| 121 | #define LEQA2 40692 |
---|
| 122 | #define LEQQ2 52774 |
---|
| 123 | #define LEQR2 3791 |
---|
| 124 | #define STAB_SIZE 64 |
---|
| 125 | #define STAB_DIV (1 + (MODULUS1 - 1) / STAB_SIZE) |
---|
| 126 | |
---|
| 127 | /*---------------------------------------------------------------------------*/ |
---|
| 128 | /* Stucture declarations */ |
---|
| 129 | /*---------------------------------------------------------------------------*/ |
---|
| 130 | |
---|
| 131 | /*---------------------------------------------------------------------------*/ |
---|
| 132 | /* Type declarations */ |
---|
| 133 | /*---------------------------------------------------------------------------*/ |
---|
| 134 | |
---|
| 135 | |
---|
| 136 | /*---------------------------------------------------------------------------*/ |
---|
| 137 | /* Variable declarations */ |
---|
| 138 | /*---------------------------------------------------------------------------*/ |
---|
| 139 | |
---|
| 140 | #ifndef lint |
---|
| 141 | static char rcsid[] DD_UNUSED = "$Id: cuddUtil.c,v 1.78 2005/05/14 17:27:12 fabio Exp $"; |
---|
| 142 | #endif |
---|
| 143 | |
---|
| 144 | static DdNode *background, *zero; |
---|
| 145 | |
---|
| 146 | static long cuddRand = 0; |
---|
| 147 | static long cuddRand2; |
---|
| 148 | static long shuffleSelect; |
---|
| 149 | static long shuffleTable[STAB_SIZE]; |
---|
| 150 | |
---|
| 151 | /*---------------------------------------------------------------------------*/ |
---|
| 152 | /* Macro declarations */ |
---|
| 153 | /*---------------------------------------------------------------------------*/ |
---|
| 154 | |
---|
| 155 | #define bang(f) ((Cudd_IsComplement(f)) ? '!' : ' ') |
---|
| 156 | |
---|
| 157 | #ifdef __cplusplus |
---|
| 158 | extern "C" { |
---|
| 159 | #endif |
---|
| 160 | |
---|
| 161 | /**AutomaticStart*************************************************************/ |
---|
| 162 | |
---|
| 163 | /*---------------------------------------------------------------------------*/ |
---|
| 164 | /* Static function prototypes */ |
---|
| 165 | /*---------------------------------------------------------------------------*/ |
---|
| 166 | |
---|
| 167 | static int dp2 (DdManager *dd, DdNode *f, st_table *t); |
---|
| 168 | static void ddPrintMintermAux (DdManager *dd, DdNode *node, int *list); |
---|
| 169 | static int ddDagInt (DdNode *n); |
---|
| 170 | static int cuddNodeArrayRecur (DdNode *f, DdNodePtr *table, int index); |
---|
| 171 | static int cuddEstimateCofactor (DdManager *dd, st_table *table, DdNode * node, int i, int phase, DdNode ** ptr); |
---|
| 172 | static DdNode * cuddUniqueLookup (DdManager * unique, int index, DdNode * T, DdNode * E); |
---|
| 173 | static int cuddEstimateCofactorSimple (DdNode * node, int i); |
---|
| 174 | static double ddCountMintermAux (DdNode *node, double max, DdHashTable *table); |
---|
| 175 | static int ddEpdCountMintermAux (DdNode *node, EpDouble *max, EpDouble *epd, st_table *table); |
---|
| 176 | static double ddCountPathAux (DdNode *node, st_table *table); |
---|
| 177 | static double ddCountPathsToNonZero (DdNode * N, st_table * table); |
---|
| 178 | static void ddSupportStep (DdNode *f, int *support); |
---|
| 179 | static void ddClearFlag (DdNode *f); |
---|
| 180 | static int ddLeavesInt (DdNode *n); |
---|
| 181 | static int ddPickArbitraryMinterms (DdManager *dd, DdNode *node, int nvars, int nminterms, char **string); |
---|
| 182 | static int ddPickRepresentativeCube (DdManager *dd, DdNode *node, int nvars, double *weight, char *string); |
---|
| 183 | static enum st_retval ddEpdFree (char * key, char * value, char * arg); |
---|
| 184 | |
---|
| 185 | /**AutomaticEnd***************************************************************/ |
---|
| 186 | |
---|
| 187 | #ifdef __cplusplus |
---|
| 188 | } |
---|
| 189 | #endif |
---|
| 190 | |
---|
| 191 | /*---------------------------------------------------------------------------*/ |
---|
| 192 | /* Definition of exported functions */ |
---|
| 193 | /*---------------------------------------------------------------------------*/ |
---|
| 194 | |
---|
| 195 | |
---|
| 196 | /**Function******************************************************************** |
---|
| 197 | |
---|
| 198 | Synopsis [Prints a disjoint sum of products.] |
---|
| 199 | |
---|
| 200 | Description [Prints a disjoint sum of product cover for the function |
---|
| 201 | rooted at node. Each product corresponds to a path from node to a |
---|
| 202 | leaf node different from the logical zero, and different from the |
---|
| 203 | background value. Uses the package default output file. Returns 1 |
---|
| 204 | if successful; 0 otherwise.] |
---|
| 205 | |
---|
| 206 | SideEffects [None] |
---|
| 207 | |
---|
| 208 | SeeAlso [Cudd_PrintDebug Cudd_bddPrintCover] |
---|
| 209 | |
---|
| 210 | ******************************************************************************/ |
---|
| 211 | int |
---|
| 212 | Cudd_PrintMinterm( |
---|
| 213 | DdManager * manager, |
---|
| 214 | DdNode * node) |
---|
| 215 | { |
---|
| 216 | int i, *list; |
---|
| 217 | |
---|
| 218 | background = manager->background; |
---|
| 219 | zero = Cudd_Not(manager->one); |
---|
| 220 | list = ALLOC(int,manager->size); |
---|
| 221 | if (list == NULL) { |
---|
| 222 | manager->errorCode = CUDD_MEMORY_OUT; |
---|
| 223 | return(0); |
---|
| 224 | } |
---|
| 225 | for (i = 0; i < manager->size; i++) list[i] = 2; |
---|
| 226 | ddPrintMintermAux(manager,node,list); |
---|
| 227 | FREE(list); |
---|
| 228 | return(1); |
---|
| 229 | |
---|
| 230 | } /* end of Cudd_PrintMinterm */ |
---|
| 231 | |
---|
| 232 | |
---|
| 233 | /**Function******************************************************************** |
---|
| 234 | |
---|
| 235 | Synopsis [Prints a sum of prime implicants of a BDD.] |
---|
| 236 | |
---|
| 237 | Description [Prints a sum of product cover for an incompletely |
---|
| 238 | specified function given by a lower bound and an upper bound. Each |
---|
| 239 | product is a prime implicant obtained by expanding the product |
---|
| 240 | corresponding to a path from node to the constant one. Uses the |
---|
| 241 | package default output file. Returns 1 if successful; 0 otherwise.] |
---|
| 242 | |
---|
| 243 | SideEffects [None] |
---|
| 244 | |
---|
| 245 | SeeAlso [Cudd_PrintMinterm] |
---|
| 246 | |
---|
| 247 | ******************************************************************************/ |
---|
| 248 | int |
---|
| 249 | Cudd_bddPrintCover( |
---|
| 250 | DdManager *dd, |
---|
| 251 | DdNode *l, |
---|
| 252 | DdNode *u) |
---|
| 253 | { |
---|
| 254 | int *array; |
---|
| 255 | int q, result; |
---|
| 256 | DdNode *lb; |
---|
| 257 | #ifdef DD_DEBUG |
---|
| 258 | DdNode *cover; |
---|
| 259 | #endif |
---|
| 260 | |
---|
| 261 | array = ALLOC(int, Cudd_ReadSize(dd)); |
---|
| 262 | if (array == NULL) return(0); |
---|
| 263 | lb = l; |
---|
| 264 | cuddRef(lb); |
---|
| 265 | #ifdef DD_DEBUG |
---|
| 266 | cover = Cudd_ReadLogicZero(dd); |
---|
| 267 | cuddRef(cover); |
---|
| 268 | #endif |
---|
| 269 | while (lb != Cudd_ReadLogicZero(dd)) { |
---|
| 270 | DdNode *implicant, *prime, *tmp; |
---|
| 271 | int length; |
---|
| 272 | implicant = Cudd_LargestCube(dd,lb,&length); |
---|
| 273 | if (implicant == NULL) { |
---|
| 274 | Cudd_RecursiveDeref(dd,lb); |
---|
| 275 | FREE(array); |
---|
| 276 | return(0); |
---|
| 277 | } |
---|
| 278 | cuddRef(implicant); |
---|
| 279 | prime = Cudd_bddMakePrime(dd,implicant,u); |
---|
| 280 | if (prime == NULL) { |
---|
| 281 | Cudd_RecursiveDeref(dd,lb); |
---|
| 282 | Cudd_RecursiveDeref(dd,implicant); |
---|
| 283 | FREE(array); |
---|
| 284 | return(0); |
---|
| 285 | } |
---|
| 286 | cuddRef(prime); |
---|
| 287 | Cudd_RecursiveDeref(dd,implicant); |
---|
| 288 | tmp = Cudd_bddAnd(dd,lb,Cudd_Not(prime)); |
---|
| 289 | if (tmp == NULL) { |
---|
| 290 | Cudd_RecursiveDeref(dd,lb); |
---|
| 291 | Cudd_RecursiveDeref(dd,prime); |
---|
| 292 | FREE(array); |
---|
| 293 | return(0); |
---|
| 294 | } |
---|
| 295 | cuddRef(tmp); |
---|
| 296 | Cudd_RecursiveDeref(dd,lb); |
---|
| 297 | lb = tmp; |
---|
| 298 | result = Cudd_BddToCubeArray(dd,prime,array); |
---|
| 299 | if (result == 0) { |
---|
| 300 | Cudd_RecursiveDeref(dd,lb); |
---|
| 301 | Cudd_RecursiveDeref(dd,prime); |
---|
| 302 | FREE(array); |
---|
| 303 | return(0); |
---|
| 304 | } |
---|
| 305 | for (q = 0; q < dd->size; q++) { |
---|
| 306 | switch (array[q]) { |
---|
| 307 | case 0: |
---|
| 308 | (void) fprintf(dd->out, "0"); |
---|
| 309 | break; |
---|
| 310 | case 1: |
---|
| 311 | (void) fprintf(dd->out, "1"); |
---|
| 312 | break; |
---|
| 313 | case 2: |
---|
| 314 | (void) fprintf(dd->out, "-"); |
---|
| 315 | break; |
---|
| 316 | default: |
---|
| 317 | (void) fprintf(dd->out, "?"); |
---|
| 318 | } |
---|
| 319 | } |
---|
| 320 | (void) fprintf(dd->out, " 1\n"); |
---|
| 321 | #ifdef DD_DEBUG |
---|
| 322 | tmp = Cudd_bddOr(dd,prime,cover); |
---|
| 323 | if (tmp == NULL) { |
---|
| 324 | Cudd_RecursiveDeref(dd,cover); |
---|
| 325 | Cudd_RecursiveDeref(dd,lb); |
---|
| 326 | Cudd_RecursiveDeref(dd,prime); |
---|
| 327 | FREE(array); |
---|
| 328 | return(0); |
---|
| 329 | } |
---|
| 330 | cuddRef(tmp); |
---|
| 331 | Cudd_RecursiveDeref(dd,cover); |
---|
| 332 | cover = tmp; |
---|
| 333 | #endif |
---|
| 334 | Cudd_RecursiveDeref(dd,prime); |
---|
| 335 | } |
---|
| 336 | (void) fprintf(dd->out, "\n"); |
---|
| 337 | Cudd_RecursiveDeref(dd,lb); |
---|
| 338 | FREE(array); |
---|
| 339 | #ifdef DD_DEBUG |
---|
| 340 | if (!Cudd_bddLeq(dd,cover,u) || !Cudd_bddLeq(dd,l,cover)) { |
---|
| 341 | Cudd_RecursiveDeref(dd,cover); |
---|
| 342 | return(0); |
---|
| 343 | } |
---|
| 344 | Cudd_RecursiveDeref(dd,cover); |
---|
| 345 | #endif |
---|
| 346 | return(1); |
---|
| 347 | |
---|
| 348 | } /* end of Cudd_bddPrintCover */ |
---|
| 349 | |
---|
| 350 | |
---|
| 351 | /**Function******************************************************************** |
---|
| 352 | |
---|
| 353 | Synopsis [Prints to the standard output a DD and its statistics.] |
---|
| 354 | |
---|
| 355 | Description [Prints to the standard output a DD and its statistics. |
---|
| 356 | The statistics include the number of nodes, the number of leaves, and |
---|
| 357 | the number of minterms. (The number of minterms is the number of |
---|
| 358 | assignments to the variables that cause the function to be different |
---|
| 359 | from the logical zero (for BDDs) and from the background value (for |
---|
| 360 | ADDs.) The statistics are printed if pr > 0. Specifically: |
---|
| 361 | <ul> |
---|
| 362 | <li> pr = 0 : prints nothing |
---|
| 363 | <li> pr = 1 : prints counts of nodes and minterms |
---|
| 364 | <li> pr = 2 : prints counts + disjoint sum of product |
---|
| 365 | <li> pr = 3 : prints counts + list of nodes |
---|
| 366 | <li> pr > 3 : prints counts + disjoint sum of product + list of nodes |
---|
| 367 | </ul> |
---|
| 368 | For the purpose of counting the number of minterms, the function is |
---|
| 369 | supposed to depend on n variables. Returns 1 if successful; 0 otherwise.] |
---|
| 370 | |
---|
| 371 | SideEffects [None] |
---|
| 372 | |
---|
| 373 | SeeAlso [Cudd_DagSize Cudd_CountLeaves Cudd_CountMinterm |
---|
| 374 | Cudd_PrintMinterm] |
---|
| 375 | |
---|
| 376 | ******************************************************************************/ |
---|
| 377 | int |
---|
| 378 | Cudd_PrintDebug( |
---|
| 379 | DdManager * dd, |
---|
| 380 | DdNode * f, |
---|
| 381 | int n, |
---|
| 382 | int pr) |
---|
| 383 | { |
---|
| 384 | DdNode *azero, *bzero; |
---|
| 385 | int nodes; |
---|
| 386 | int leaves; |
---|
| 387 | double minterms; |
---|
| 388 | int retval = 1; |
---|
| 389 | |
---|
| 390 | if (f == NULL) { |
---|
| 391 | (void) fprintf(dd->out,": is the NULL DD\n"); |
---|
| 392 | (void) fflush(dd->out); |
---|
| 393 | return(0); |
---|
| 394 | } |
---|
| 395 | azero = DD_ZERO(dd); |
---|
| 396 | bzero = Cudd_Not(DD_ONE(dd)); |
---|
| 397 | if ((f == azero || f == bzero) && pr > 0){ |
---|
| 398 | (void) fprintf(dd->out,": is the zero DD\n"); |
---|
| 399 | (void) fflush(dd->out); |
---|
| 400 | return(1); |
---|
| 401 | } |
---|
| 402 | if (pr > 0) { |
---|
| 403 | nodes = Cudd_DagSize(f); |
---|
| 404 | if (nodes == CUDD_OUT_OF_MEM) retval = 0; |
---|
| 405 | leaves = Cudd_CountLeaves(f); |
---|
| 406 | if (leaves == CUDD_OUT_OF_MEM) retval = 0; |
---|
| 407 | minterms = Cudd_CountMinterm(dd, f, n); |
---|
| 408 | if (minterms == (double)CUDD_OUT_OF_MEM) retval = 0; |
---|
| 409 | (void) fprintf(dd->out,": %d nodes %d leaves %g minterms\n", |
---|
| 410 | nodes, leaves, minterms); |
---|
| 411 | if (pr > 2) { |
---|
| 412 | if (!cuddP(dd, f)) retval = 0; |
---|
| 413 | } |
---|
| 414 | if (pr == 2 || pr > 3) { |
---|
| 415 | if (!Cudd_PrintMinterm(dd,f)) retval = 0; |
---|
| 416 | (void) fprintf(dd->out,"\n"); |
---|
| 417 | } |
---|
| 418 | (void) fflush(dd->out); |
---|
| 419 | } |
---|
| 420 | return(retval); |
---|
| 421 | |
---|
| 422 | } /* end of Cudd_PrintDebug */ |
---|
| 423 | |
---|
| 424 | |
---|
| 425 | /**Function******************************************************************** |
---|
| 426 | |
---|
| 427 | Synopsis [Counts the number of nodes in a DD.] |
---|
| 428 | |
---|
| 429 | Description [Counts the number of nodes in a DD. Returns the number |
---|
| 430 | of nodes in the graph rooted at node.] |
---|
| 431 | |
---|
| 432 | SideEffects [None] |
---|
| 433 | |
---|
| 434 | SeeAlso [Cudd_SharingSize Cudd_PrintDebug] |
---|
| 435 | |
---|
| 436 | ******************************************************************************/ |
---|
| 437 | int |
---|
| 438 | Cudd_DagSize( |
---|
| 439 | DdNode * node) |
---|
| 440 | { |
---|
| 441 | int i; |
---|
| 442 | |
---|
| 443 | i = ddDagInt(Cudd_Regular(node)); |
---|
| 444 | ddClearFlag(Cudd_Regular(node)); |
---|
| 445 | |
---|
| 446 | return(i); |
---|
| 447 | |
---|
| 448 | } /* end of Cudd_DagSize */ |
---|
| 449 | |
---|
| 450 | |
---|
| 451 | /**Function******************************************************************** |
---|
| 452 | |
---|
| 453 | Synopsis [Estimates the number of nodes in a cofactor of a DD.] |
---|
| 454 | |
---|
| 455 | Description [Estimates the number of nodes in a cofactor of a DD. |
---|
| 456 | Returns an estimate of the number of nodes in a cofactor of |
---|
| 457 | the graph rooted at node with respect to the variable whose index is i. |
---|
| 458 | In case of failure, returns CUDD_OUT_OF_MEM. |
---|
| 459 | This function uses a refinement of the algorithm of Cabodi et al. |
---|
| 460 | (ICCAD96). The refinement allows the procedure to account for part |
---|
| 461 | of the recombination that may occur in the part of the cofactor above |
---|
| 462 | the cofactoring variable. This procedure does no create any new node. |
---|
| 463 | It does keep a small table of results; therefore it may run out of memory. |
---|
| 464 | If this is a concern, one should use Cudd_EstimateCofactorSimple, which |
---|
| 465 | is faster, does not allocate any memory, but is less accurate.] |
---|
| 466 | |
---|
| 467 | SideEffects [None] |
---|
| 468 | |
---|
| 469 | SeeAlso [Cudd_DagSize Cudd_EstimateCofactorSimple] |
---|
| 470 | |
---|
| 471 | ******************************************************************************/ |
---|
| 472 | int |
---|
| 473 | Cudd_EstimateCofactor( |
---|
| 474 | DdManager *dd /* manager */, |
---|
| 475 | DdNode * f /* function */, |
---|
| 476 | int i /* index of variable */, |
---|
| 477 | int phase /* 1: positive; 0: negative */ |
---|
| 478 | ) |
---|
| 479 | { |
---|
| 480 | int val; |
---|
| 481 | DdNode *ptr; |
---|
| 482 | st_table *table; |
---|
| 483 | |
---|
| 484 | table = st_init_table(st_ptrcmp,st_ptrhash); |
---|
| 485 | if (table == NULL) return(CUDD_OUT_OF_MEM); |
---|
| 486 | val = cuddEstimateCofactor(dd,table,Cudd_Regular(f),i,phase,&ptr); |
---|
| 487 | ddClearFlag(Cudd_Regular(f)); |
---|
| 488 | st_free_table(table); |
---|
| 489 | |
---|
| 490 | return(val); |
---|
| 491 | |
---|
| 492 | } /* end of Cudd_EstimateCofactor */ |
---|
| 493 | |
---|
| 494 | |
---|
| 495 | /**Function******************************************************************** |
---|
| 496 | |
---|
| 497 | Synopsis [Estimates the number of nodes in a cofactor of a DD.] |
---|
| 498 | |
---|
| 499 | Description [Estimates the number of nodes in a cofactor of a DD. |
---|
| 500 | Returns an estimate of the number of nodes in the positive cofactor of |
---|
| 501 | the graph rooted at node with respect to the variable whose index is i. |
---|
| 502 | This procedure implements with minor changes the algorithm of Cabodi et al. |
---|
| 503 | (ICCAD96). It does not allocate any memory, it does not change the |
---|
| 504 | state of the manager, and it is fast. However, it has been observed to |
---|
| 505 | overestimate the size of the cofactor by as much as a factor of 2.] |
---|
| 506 | |
---|
| 507 | SideEffects [None] |
---|
| 508 | |
---|
| 509 | SeeAlso [Cudd_DagSize] |
---|
| 510 | |
---|
| 511 | ******************************************************************************/ |
---|
| 512 | int |
---|
| 513 | Cudd_EstimateCofactorSimple( |
---|
| 514 | DdNode * node, |
---|
| 515 | int i) |
---|
| 516 | { |
---|
| 517 | int val; |
---|
| 518 | |
---|
| 519 | val = cuddEstimateCofactorSimple(Cudd_Regular(node),i); |
---|
| 520 | ddClearFlag(Cudd_Regular(node)); |
---|
| 521 | |
---|
| 522 | return(val); |
---|
| 523 | |
---|
| 524 | } /* end of Cudd_EstimateCofactorSimple */ |
---|
| 525 | |
---|
| 526 | |
---|
| 527 | /**Function******************************************************************** |
---|
| 528 | |
---|
| 529 | Synopsis [Counts the number of nodes in an array of DDs.] |
---|
| 530 | |
---|
| 531 | Description [Counts the number of nodes in an array of DDs. Shared |
---|
| 532 | nodes are counted only once. Returns the total number of nodes.] |
---|
| 533 | |
---|
| 534 | SideEffects [None] |
---|
| 535 | |
---|
| 536 | SeeAlso [Cudd_DagSize] |
---|
| 537 | |
---|
| 538 | ******************************************************************************/ |
---|
| 539 | int |
---|
| 540 | Cudd_SharingSize( |
---|
| 541 | DdNode ** nodeArray, |
---|
| 542 | int n) |
---|
| 543 | { |
---|
| 544 | int i,j; |
---|
| 545 | |
---|
| 546 | i = 0; |
---|
| 547 | for (j = 0; j < n; j++) { |
---|
| 548 | i += ddDagInt(Cudd_Regular(nodeArray[j])); |
---|
| 549 | } |
---|
| 550 | for (j = 0; j < n; j++) { |
---|
| 551 | ddClearFlag(Cudd_Regular(nodeArray[j])); |
---|
| 552 | } |
---|
| 553 | return(i); |
---|
| 554 | |
---|
| 555 | } /* end of Cudd_SharingSize */ |
---|
| 556 | |
---|
| 557 | |
---|
| 558 | /**Function******************************************************************** |
---|
| 559 | |
---|
| 560 | Synopsis [Counts the number of minterms of a DD.] |
---|
| 561 | |
---|
| 562 | Description [Counts the number of minterms of a DD. The function is |
---|
| 563 | assumed to depend on nvars variables. The minterm count is |
---|
| 564 | represented as a double, to allow for a larger number of variables. |
---|
| 565 | Returns the number of minterms of the function rooted at node if |
---|
| 566 | successful; (double) CUDD_OUT_OF_MEM otherwise.] |
---|
| 567 | |
---|
| 568 | SideEffects [None] |
---|
| 569 | |
---|
| 570 | SeeAlso [Cudd_PrintDebug Cudd_CountPath] |
---|
| 571 | |
---|
| 572 | ******************************************************************************/ |
---|
| 573 | double |
---|
| 574 | Cudd_CountMinterm( |
---|
| 575 | DdManager * manager, |
---|
| 576 | DdNode * node, |
---|
| 577 | int nvars) |
---|
| 578 | { |
---|
| 579 | double max; |
---|
| 580 | DdHashTable *table; |
---|
| 581 | double res; |
---|
| 582 | CUDD_VALUE_TYPE epsilon; |
---|
| 583 | |
---|
| 584 | background = manager->background; |
---|
| 585 | zero = Cudd_Not(manager->one); |
---|
| 586 | |
---|
| 587 | max = pow(2.0,(double)nvars); |
---|
| 588 | table = cuddHashTableInit(manager,1,2); |
---|
| 589 | if (table == NULL) { |
---|
| 590 | return((double)CUDD_OUT_OF_MEM); |
---|
| 591 | } |
---|
| 592 | epsilon = Cudd_ReadEpsilon(manager); |
---|
| 593 | Cudd_SetEpsilon(manager,(CUDD_VALUE_TYPE)0.0); |
---|
| 594 | res = ddCountMintermAux(node,max,table); |
---|
| 595 | cuddHashTableQuit(table); |
---|
| 596 | Cudd_SetEpsilon(manager,epsilon); |
---|
| 597 | |
---|
| 598 | return(res); |
---|
| 599 | |
---|
| 600 | } /* end of Cudd_CountMinterm */ |
---|
| 601 | |
---|
| 602 | |
---|
| 603 | /**Function******************************************************************** |
---|
| 604 | |
---|
| 605 | Synopsis [Counts the number of paths of a DD.] |
---|
| 606 | |
---|
| 607 | Description [Counts the number of paths of a DD. Paths to all |
---|
| 608 | terminal nodes are counted. The path count is represented as a |
---|
| 609 | double, to allow for a larger number of variables. Returns the |
---|
| 610 | number of paths of the function rooted at node if successful; |
---|
| 611 | (double) CUDD_OUT_OF_MEM otherwise.] |
---|
| 612 | |
---|
| 613 | SideEffects [None] |
---|
| 614 | |
---|
| 615 | SeeAlso [Cudd_CountMinterm] |
---|
| 616 | |
---|
| 617 | ******************************************************************************/ |
---|
| 618 | double |
---|
| 619 | Cudd_CountPath( |
---|
| 620 | DdNode * node) |
---|
| 621 | { |
---|
| 622 | |
---|
| 623 | st_table *table; |
---|
| 624 | double i; |
---|
| 625 | |
---|
| 626 | table = st_init_table(st_ptrcmp,st_ptrhash); |
---|
| 627 | if (table == NULL) { |
---|
| 628 | return((double)CUDD_OUT_OF_MEM); |
---|
| 629 | } |
---|
| 630 | i = ddCountPathAux(Cudd_Regular(node),table); |
---|
| 631 | st_foreach(table, cuddStCountfree, NULL); |
---|
| 632 | st_free_table(table); |
---|
| 633 | return(i); |
---|
| 634 | |
---|
| 635 | } /* end of Cudd_CountPath */ |
---|
| 636 | |
---|
| 637 | |
---|
| 638 | /**Function******************************************************************** |
---|
| 639 | |
---|
| 640 | Synopsis [Counts the number of minterms of a DD with extended precision.] |
---|
| 641 | |
---|
| 642 | Description [Counts the number of minterms of a DD with extended precision. |
---|
| 643 | The function is assumed to depend on nvars variables. The minterm count is |
---|
| 644 | represented as an EpDouble, to allow any number of variables. |
---|
| 645 | Returns 0 if successful; CUDD_OUT_OF_MEM otherwise.] |
---|
| 646 | |
---|
| 647 | SideEffects [None] |
---|
| 648 | |
---|
| 649 | SeeAlso [Cudd_PrintDebug Cudd_CountPath] |
---|
| 650 | |
---|
| 651 | ******************************************************************************/ |
---|
| 652 | int |
---|
| 653 | Cudd_EpdCountMinterm( |
---|
| 654 | DdManager * manager, |
---|
| 655 | DdNode * node, |
---|
| 656 | int nvars, |
---|
| 657 | EpDouble * epd) |
---|
| 658 | { |
---|
| 659 | EpDouble max, tmp; |
---|
| 660 | st_table *table; |
---|
| 661 | int status; |
---|
| 662 | |
---|
| 663 | background = manager->background; |
---|
| 664 | zero = Cudd_Not(manager->one); |
---|
| 665 | |
---|
| 666 | EpdPow2(nvars, &max); |
---|
| 667 | table = st_init_table(EpdCmp, st_ptrhash); |
---|
| 668 | if (table == NULL) { |
---|
| 669 | EpdMakeZero(epd, 0); |
---|
| 670 | return(CUDD_OUT_OF_MEM); |
---|
| 671 | } |
---|
| 672 | status = ddEpdCountMintermAux(Cudd_Regular(node),&max,epd,table); |
---|
| 673 | st_foreach(table, ddEpdFree, NULL); |
---|
| 674 | st_free_table(table); |
---|
| 675 | if (status == CUDD_OUT_OF_MEM) { |
---|
| 676 | EpdMakeZero(epd, 0); |
---|
| 677 | return(CUDD_OUT_OF_MEM); |
---|
| 678 | } |
---|
| 679 | if (Cudd_IsComplement(node)) { |
---|
| 680 | EpdSubtract3(&max, epd, &tmp); |
---|
| 681 | EpdCopy(&tmp, epd); |
---|
| 682 | } |
---|
| 683 | return(0); |
---|
| 684 | |
---|
| 685 | } /* end of Cudd_EpdCountMinterm */ |
---|
| 686 | |
---|
| 687 | |
---|
| 688 | /**Function******************************************************************** |
---|
| 689 | |
---|
| 690 | Synopsis [Counts the number of paths to a non-zero terminal of a DD.] |
---|
| 691 | |
---|
| 692 | Description [Counts the number of paths to a non-zero terminal of a |
---|
| 693 | DD. The path count is |
---|
| 694 | represented as a double, to allow for a larger number of variables. |
---|
| 695 | Returns the number of paths of the function rooted at node.] |
---|
| 696 | |
---|
| 697 | SideEffects [None] |
---|
| 698 | |
---|
| 699 | SeeAlso [Cudd_CountMinterm Cudd_CountPath] |
---|
| 700 | |
---|
| 701 | ******************************************************************************/ |
---|
| 702 | double |
---|
| 703 | Cudd_CountPathsToNonZero( |
---|
| 704 | DdNode * node) |
---|
| 705 | { |
---|
| 706 | |
---|
| 707 | st_table *table; |
---|
| 708 | double i; |
---|
| 709 | |
---|
| 710 | table = st_init_table(st_ptrcmp,st_ptrhash); |
---|
| 711 | if (table == NULL) { |
---|
| 712 | return((double)CUDD_OUT_OF_MEM); |
---|
| 713 | } |
---|
| 714 | i = ddCountPathsToNonZero(node,table); |
---|
| 715 | st_foreach(table, cuddStCountfree, NULL); |
---|
| 716 | st_free_table(table); |
---|
| 717 | return(i); |
---|
| 718 | |
---|
| 719 | } /* end of Cudd_CountPathsToNonZero */ |
---|
| 720 | |
---|
| 721 | |
---|
| 722 | /**Function******************************************************************** |
---|
| 723 | |
---|
| 724 | Synopsis [Finds the variables on which a DD depends.] |
---|
| 725 | |
---|
| 726 | Description [Finds the variables on which a DD depends. |
---|
| 727 | Returns a BDD consisting of the product of the variables if |
---|
| 728 | successful; NULL otherwise.] |
---|
| 729 | |
---|
| 730 | SideEffects [None] |
---|
| 731 | |
---|
| 732 | SeeAlso [Cudd_VectorSupport Cudd_ClassifySupport] |
---|
| 733 | |
---|
| 734 | ******************************************************************************/ |
---|
| 735 | DdNode * |
---|
| 736 | Cudd_Support( |
---|
| 737 | DdManager * dd /* manager */, |
---|
| 738 | DdNode * f /* DD whose support is sought */) |
---|
| 739 | { |
---|
| 740 | int *support; |
---|
| 741 | DdNode *res, *tmp, *var; |
---|
| 742 | int i,j; |
---|
| 743 | int size; |
---|
| 744 | |
---|
| 745 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
| 746 | size = ddMax(dd->size, dd->sizeZ); |
---|
| 747 | support = ALLOC(int,size); |
---|
| 748 | if (support == NULL) { |
---|
| 749 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 750 | return(NULL); |
---|
| 751 | } |
---|
| 752 | for (i = 0; i < size; i++) { |
---|
| 753 | support[i] = 0; |
---|
| 754 | } |
---|
| 755 | |
---|
| 756 | /* Compute support and clean up markers. */ |
---|
| 757 | ddSupportStep(Cudd_Regular(f),support); |
---|
| 758 | ddClearFlag(Cudd_Regular(f)); |
---|
| 759 | |
---|
| 760 | /* Transform support from array to cube. */ |
---|
| 761 | do { |
---|
| 762 | dd->reordered = 0; |
---|
| 763 | res = DD_ONE(dd); |
---|
| 764 | cuddRef(res); |
---|
| 765 | for (j = size - 1; j >= 0; j--) { /* for each level bottom-up */ |
---|
| 766 | i = (j >= dd->size) ? j : dd->invperm[j]; |
---|
| 767 | if (support[i] == 1) { |
---|
| 768 | /* The following call to cuddUniqueInter is guaranteed |
---|
| 769 | ** not to trigger reordering because the node we look up |
---|
| 770 | ** already exists. */ |
---|
| 771 | var = cuddUniqueInter(dd,i,dd->one,Cudd_Not(dd->one)); |
---|
| 772 | cuddRef(var); |
---|
| 773 | tmp = cuddBddAndRecur(dd,res,var); |
---|
| 774 | if (tmp == NULL) { |
---|
| 775 | Cudd_RecursiveDeref(dd,res); |
---|
| 776 | Cudd_RecursiveDeref(dd,var); |
---|
| 777 | res = NULL; |
---|
| 778 | break; |
---|
| 779 | } |
---|
| 780 | cuddRef(tmp); |
---|
| 781 | Cudd_RecursiveDeref(dd,res); |
---|
| 782 | Cudd_RecursiveDeref(dd,var); |
---|
| 783 | res = tmp; |
---|
| 784 | } |
---|
| 785 | } |
---|
| 786 | } while (dd->reordered == 1); |
---|
| 787 | |
---|
| 788 | FREE(support); |
---|
| 789 | if (res != NULL) cuddDeref(res); |
---|
| 790 | return(res); |
---|
| 791 | |
---|
| 792 | } /* end of Cudd_Support */ |
---|
| 793 | |
---|
| 794 | |
---|
| 795 | /**Function******************************************************************** |
---|
| 796 | |
---|
| 797 | Synopsis [Finds the variables on which a DD depends.] |
---|
| 798 | |
---|
| 799 | Description [Finds the variables on which a DD depends. Returns an |
---|
| 800 | index array of the variables if successful; NULL otherwise. The |
---|
| 801 | size of the array equals the number of variables in the manager. |
---|
| 802 | Each entry of the array is 1 if the corresponding variable is in the |
---|
| 803 | support of the DD and 0 otherwise.] |
---|
| 804 | |
---|
| 805 | SideEffects [None] |
---|
| 806 | |
---|
| 807 | SeeAlso [Cudd_Support Cudd_VectorSupport Cudd_ClassifySupport] |
---|
| 808 | |
---|
| 809 | ******************************************************************************/ |
---|
| 810 | int * |
---|
| 811 | Cudd_SupportIndex( |
---|
| 812 | DdManager * dd /* manager */, |
---|
| 813 | DdNode * f /* DD whose support is sought */) |
---|
| 814 | { |
---|
| 815 | int *support; |
---|
| 816 | int i; |
---|
| 817 | int size; |
---|
| 818 | |
---|
| 819 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
| 820 | size = ddMax(dd->size, dd->sizeZ); |
---|
| 821 | support = ALLOC(int,size); |
---|
| 822 | if (support == NULL) { |
---|
| 823 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 824 | return(NULL); |
---|
| 825 | } |
---|
| 826 | for (i = 0; i < size; i++) { |
---|
| 827 | support[i] = 0; |
---|
| 828 | } |
---|
| 829 | |
---|
| 830 | /* Compute support and clean up markers. */ |
---|
| 831 | ddSupportStep(Cudd_Regular(f),support); |
---|
| 832 | ddClearFlag(Cudd_Regular(f)); |
---|
| 833 | |
---|
| 834 | return(support); |
---|
| 835 | |
---|
| 836 | } /* end of Cudd_SupportIndex */ |
---|
| 837 | |
---|
| 838 | |
---|
| 839 | /**Function******************************************************************** |
---|
| 840 | |
---|
| 841 | Synopsis [Counts the variables on which a DD depends.] |
---|
| 842 | |
---|
| 843 | Description [Counts the variables on which a DD depends. |
---|
| 844 | Returns the number of the variables if successful; CUDD_OUT_OF_MEM |
---|
| 845 | otherwise.] |
---|
| 846 | |
---|
| 847 | SideEffects [None] |
---|
| 848 | |
---|
| 849 | SeeAlso [Cudd_Support] |
---|
| 850 | |
---|
| 851 | ******************************************************************************/ |
---|
| 852 | int |
---|
| 853 | Cudd_SupportSize( |
---|
| 854 | DdManager * dd /* manager */, |
---|
| 855 | DdNode * f /* DD whose support size is sought */) |
---|
| 856 | { |
---|
| 857 | int *support; |
---|
| 858 | int i; |
---|
| 859 | int size; |
---|
| 860 | int count; |
---|
| 861 | |
---|
| 862 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
| 863 | size = ddMax(dd->size, dd->sizeZ); |
---|
| 864 | support = ALLOC(int,size); |
---|
| 865 | if (support == NULL) { |
---|
| 866 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 867 | return(CUDD_OUT_OF_MEM); |
---|
| 868 | } |
---|
| 869 | for (i = 0; i < size; i++) { |
---|
| 870 | support[i] = 0; |
---|
| 871 | } |
---|
| 872 | |
---|
| 873 | /* Compute support and clean up markers. */ |
---|
| 874 | ddSupportStep(Cudd_Regular(f),support); |
---|
| 875 | ddClearFlag(Cudd_Regular(f)); |
---|
| 876 | |
---|
| 877 | /* Count support variables. */ |
---|
| 878 | count = 0; |
---|
| 879 | for (i = 0; i < size; i++) { |
---|
| 880 | if (support[i] == 1) count++; |
---|
| 881 | } |
---|
| 882 | |
---|
| 883 | FREE(support); |
---|
| 884 | return(count); |
---|
| 885 | |
---|
| 886 | } /* end of Cudd_SupportSize */ |
---|
| 887 | |
---|
| 888 | |
---|
| 889 | /**Function******************************************************************** |
---|
| 890 | |
---|
| 891 | Synopsis [Finds the variables on which a set of DDs depends.] |
---|
| 892 | |
---|
| 893 | Description [Finds the variables on which a set of DDs depends. |
---|
| 894 | The set must contain either BDDs and ADDs, or ZDDs. |
---|
| 895 | Returns a BDD consisting of the product of the variables if |
---|
| 896 | successful; NULL otherwise.] |
---|
| 897 | |
---|
| 898 | SideEffects [None] |
---|
| 899 | |
---|
| 900 | SeeAlso [Cudd_Support Cudd_ClassifySupport] |
---|
| 901 | |
---|
| 902 | ******************************************************************************/ |
---|
| 903 | DdNode * |
---|
| 904 | Cudd_VectorSupport( |
---|
| 905 | DdManager * dd /* manager */, |
---|
| 906 | DdNode ** F /* array of DDs whose support is sought */, |
---|
| 907 | int n /* size of the array */) |
---|
| 908 | { |
---|
| 909 | int *support; |
---|
| 910 | DdNode *res, *tmp, *var; |
---|
| 911 | int i,j; |
---|
| 912 | int size; |
---|
| 913 | |
---|
| 914 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
| 915 | size = ddMax(dd->size, dd->sizeZ); |
---|
| 916 | support = ALLOC(int,size); |
---|
| 917 | if (support == NULL) { |
---|
| 918 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 919 | return(NULL); |
---|
| 920 | } |
---|
| 921 | for (i = 0; i < size; i++) { |
---|
| 922 | support[i] = 0; |
---|
| 923 | } |
---|
| 924 | |
---|
| 925 | /* Compute support and clean up markers. */ |
---|
| 926 | for (i = 0; i < n; i++) { |
---|
| 927 | ddSupportStep(Cudd_Regular(F[i]),support); |
---|
| 928 | } |
---|
| 929 | for (i = 0; i < n; i++) { |
---|
| 930 | ddClearFlag(Cudd_Regular(F[i])); |
---|
| 931 | } |
---|
| 932 | |
---|
| 933 | /* Transform support from array to cube. */ |
---|
| 934 | res = DD_ONE(dd); |
---|
| 935 | cuddRef(res); |
---|
| 936 | for (j = size - 1; j >= 0; j--) { /* for each level bottom-up */ |
---|
| 937 | i = (j >= dd->size) ? j : dd->invperm[j]; |
---|
| 938 | if (support[i] == 1) { |
---|
| 939 | var = cuddUniqueInter(dd,i,dd->one,Cudd_Not(dd->one)); |
---|
| 940 | cuddRef(var); |
---|
| 941 | tmp = Cudd_bddAnd(dd,res,var); |
---|
| 942 | if (tmp == NULL) { |
---|
| 943 | Cudd_RecursiveDeref(dd,res); |
---|
| 944 | Cudd_RecursiveDeref(dd,var); |
---|
| 945 | FREE(support); |
---|
| 946 | return(NULL); |
---|
| 947 | } |
---|
| 948 | cuddRef(tmp); |
---|
| 949 | Cudd_RecursiveDeref(dd,res); |
---|
| 950 | Cudd_RecursiveDeref(dd,var); |
---|
| 951 | res = tmp; |
---|
| 952 | } |
---|
| 953 | } |
---|
| 954 | |
---|
| 955 | FREE(support); |
---|
| 956 | cuddDeref(res); |
---|
| 957 | return(res); |
---|
| 958 | |
---|
| 959 | } /* end of Cudd_VectorSupport */ |
---|
| 960 | |
---|
| 961 | |
---|
| 962 | /**Function******************************************************************** |
---|
| 963 | |
---|
| 964 | Synopsis [Finds the variables on which a set of DDs depends.] |
---|
| 965 | |
---|
| 966 | Description [Finds the variables on which a set of DDs depends. |
---|
| 967 | The set must contain either BDDs and ADDs, or ZDDs. |
---|
| 968 | Returns an index array of the variables if successful; NULL otherwise.] |
---|
| 969 | |
---|
| 970 | SideEffects [None] |
---|
| 971 | |
---|
| 972 | SeeAlso [Cudd_SupportIndex Cudd_VectorSupport Cudd_ClassifySupport] |
---|
| 973 | |
---|
| 974 | ******************************************************************************/ |
---|
| 975 | int * |
---|
| 976 | Cudd_VectorSupportIndex( |
---|
| 977 | DdManager * dd /* manager */, |
---|
| 978 | DdNode ** F /* array of DDs whose support is sought */, |
---|
| 979 | int n /* size of the array */) |
---|
| 980 | { |
---|
| 981 | int *support; |
---|
| 982 | int i; |
---|
| 983 | int size; |
---|
| 984 | |
---|
| 985 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
| 986 | size = ddMax(dd->size, dd->sizeZ); |
---|
| 987 | support = ALLOC(int,size); |
---|
| 988 | if (support == NULL) { |
---|
| 989 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 990 | return(NULL); |
---|
| 991 | } |
---|
| 992 | for (i = 0; i < size; i++) { |
---|
| 993 | support[i] = 0; |
---|
| 994 | } |
---|
| 995 | |
---|
| 996 | /* Compute support and clean up markers. */ |
---|
| 997 | for (i = 0; i < n; i++) { |
---|
| 998 | ddSupportStep(Cudd_Regular(F[i]),support); |
---|
| 999 | } |
---|
| 1000 | for (i = 0; i < n; i++) { |
---|
| 1001 | ddClearFlag(Cudd_Regular(F[i])); |
---|
| 1002 | } |
---|
| 1003 | |
---|
| 1004 | return(support); |
---|
| 1005 | |
---|
| 1006 | } /* end of Cudd_VectorSupportIndex */ |
---|
| 1007 | |
---|
| 1008 | |
---|
| 1009 | /**Function******************************************************************** |
---|
| 1010 | |
---|
| 1011 | Synopsis [Counts the variables on which a set of DDs depends.] |
---|
| 1012 | |
---|
| 1013 | Description [Counts the variables on which a set of DDs depends. |
---|
| 1014 | The set must contain either BDDs and ADDs, or ZDDs. |
---|
| 1015 | Returns the number of the variables if successful; CUDD_OUT_OF_MEM |
---|
| 1016 | otherwise.] |
---|
| 1017 | |
---|
| 1018 | SideEffects [None] |
---|
| 1019 | |
---|
| 1020 | SeeAlso [Cudd_VectorSupport Cudd_SupportSize] |
---|
| 1021 | |
---|
| 1022 | ******************************************************************************/ |
---|
| 1023 | int |
---|
| 1024 | Cudd_VectorSupportSize( |
---|
| 1025 | DdManager * dd /* manager */, |
---|
| 1026 | DdNode ** F /* array of DDs whose support is sought */, |
---|
| 1027 | int n /* size of the array */) |
---|
| 1028 | { |
---|
| 1029 | int *support; |
---|
| 1030 | int i; |
---|
| 1031 | int size; |
---|
| 1032 | int count; |
---|
| 1033 | |
---|
| 1034 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
| 1035 | size = ddMax(dd->size, dd->sizeZ); |
---|
| 1036 | support = ALLOC(int,size); |
---|
| 1037 | if (support == NULL) { |
---|
| 1038 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1039 | return(CUDD_OUT_OF_MEM); |
---|
| 1040 | } |
---|
| 1041 | for (i = 0; i < size; i++) { |
---|
| 1042 | support[i] = 0; |
---|
| 1043 | } |
---|
| 1044 | |
---|
| 1045 | /* Compute support and clean up markers. */ |
---|
| 1046 | for (i = 0; i < n; i++) { |
---|
| 1047 | ddSupportStep(Cudd_Regular(F[i]),support); |
---|
| 1048 | } |
---|
| 1049 | for (i = 0; i < n; i++) { |
---|
| 1050 | ddClearFlag(Cudd_Regular(F[i])); |
---|
| 1051 | } |
---|
| 1052 | |
---|
| 1053 | /* Count vriables in support. */ |
---|
| 1054 | count = 0; |
---|
| 1055 | for (i = 0; i < size; i++) { |
---|
| 1056 | if (support[i] == 1) count++; |
---|
| 1057 | } |
---|
| 1058 | |
---|
| 1059 | FREE(support); |
---|
| 1060 | return(count); |
---|
| 1061 | |
---|
| 1062 | } /* end of Cudd_VectorSupportSize */ |
---|
| 1063 | |
---|
| 1064 | |
---|
| 1065 | /**Function******************************************************************** |
---|
| 1066 | |
---|
| 1067 | Synopsis [Classifies the variables in the support of two DDs.] |
---|
| 1068 | |
---|
| 1069 | Description [Classifies the variables in the support of two DDs |
---|
| 1070 | <code>f</code> and <code>g</code>, depending on whther they appear |
---|
| 1071 | in both DDs, only in <code>f</code>, or only in <code>g</code>. |
---|
| 1072 | Returns 1 if successful; 0 otherwise.] |
---|
| 1073 | |
---|
| 1074 | SideEffects [The cubes of the three classes of variables are |
---|
| 1075 | returned as side effects.] |
---|
| 1076 | |
---|
| 1077 | SeeAlso [Cudd_Support Cudd_VectorSupport] |
---|
| 1078 | |
---|
| 1079 | ******************************************************************************/ |
---|
| 1080 | int |
---|
| 1081 | Cudd_ClassifySupport( |
---|
| 1082 | DdManager * dd /* manager */, |
---|
| 1083 | DdNode * f /* first DD */, |
---|
| 1084 | DdNode * g /* second DD */, |
---|
| 1085 | DdNode ** common /* cube of shared variables */, |
---|
| 1086 | DdNode ** onlyF /* cube of variables only in f */, |
---|
| 1087 | DdNode ** onlyG /* cube of variables only in g */) |
---|
| 1088 | { |
---|
| 1089 | int *supportF, *supportG; |
---|
| 1090 | DdNode *tmp, *var; |
---|
| 1091 | int i,j; |
---|
| 1092 | int size; |
---|
| 1093 | |
---|
| 1094 | /* Allocate and initialize support arrays for ddSupportStep. */ |
---|
| 1095 | size = ddMax(dd->size, dd->sizeZ); |
---|
| 1096 | supportF = ALLOC(int,size); |
---|
| 1097 | if (supportF == NULL) { |
---|
| 1098 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1099 | return(0); |
---|
| 1100 | } |
---|
| 1101 | supportG = ALLOC(int,size); |
---|
| 1102 | if (supportG == NULL) { |
---|
| 1103 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1104 | FREE(supportF); |
---|
| 1105 | return(0); |
---|
| 1106 | } |
---|
| 1107 | for (i = 0; i < size; i++) { |
---|
| 1108 | supportF[i] = 0; |
---|
| 1109 | supportG[i] = 0; |
---|
| 1110 | } |
---|
| 1111 | |
---|
| 1112 | /* Compute supports and clean up markers. */ |
---|
| 1113 | ddSupportStep(Cudd_Regular(f),supportF); |
---|
| 1114 | ddClearFlag(Cudd_Regular(f)); |
---|
| 1115 | ddSupportStep(Cudd_Regular(g),supportG); |
---|
| 1116 | ddClearFlag(Cudd_Regular(g)); |
---|
| 1117 | |
---|
| 1118 | /* Classify variables and create cubes. */ |
---|
| 1119 | *common = *onlyF = *onlyG = DD_ONE(dd); |
---|
| 1120 | cuddRef(*common); cuddRef(*onlyF); cuddRef(*onlyG); |
---|
| 1121 | for (j = size - 1; j >= 0; j--) { /* for each level bottom-up */ |
---|
| 1122 | i = (j >= dd->size) ? j : dd->invperm[j]; |
---|
| 1123 | if (supportF[i] == 0 && supportG[i] == 0) continue; |
---|
| 1124 | var = cuddUniqueInter(dd,i,dd->one,Cudd_Not(dd->one)); |
---|
| 1125 | cuddRef(var); |
---|
| 1126 | if (supportG[i] == 0) { |
---|
| 1127 | tmp = Cudd_bddAnd(dd,*onlyF,var); |
---|
| 1128 | if (tmp == NULL) { |
---|
| 1129 | Cudd_RecursiveDeref(dd,*common); |
---|
| 1130 | Cudd_RecursiveDeref(dd,*onlyF); |
---|
| 1131 | Cudd_RecursiveDeref(dd,*onlyG); |
---|
| 1132 | Cudd_RecursiveDeref(dd,var); |
---|
| 1133 | FREE(supportF); FREE(supportG); |
---|
| 1134 | return(0); |
---|
| 1135 | } |
---|
| 1136 | cuddRef(tmp); |
---|
| 1137 | Cudd_RecursiveDeref(dd,*onlyF); |
---|
| 1138 | *onlyF = tmp; |
---|
| 1139 | } else if (supportF[i] == 0) { |
---|
| 1140 | tmp = Cudd_bddAnd(dd,*onlyG,var); |
---|
| 1141 | if (tmp == NULL) { |
---|
| 1142 | Cudd_RecursiveDeref(dd,*common); |
---|
| 1143 | Cudd_RecursiveDeref(dd,*onlyF); |
---|
| 1144 | Cudd_RecursiveDeref(dd,*onlyG); |
---|
| 1145 | Cudd_RecursiveDeref(dd,var); |
---|
| 1146 | FREE(supportF); FREE(supportG); |
---|
| 1147 | return(0); |
---|
| 1148 | } |
---|
| 1149 | cuddRef(tmp); |
---|
| 1150 | Cudd_RecursiveDeref(dd,*onlyG); |
---|
| 1151 | *onlyG = tmp; |
---|
| 1152 | } else { |
---|
| 1153 | tmp = Cudd_bddAnd(dd,*common,var); |
---|
| 1154 | if (tmp == NULL) { |
---|
| 1155 | Cudd_RecursiveDeref(dd,*common); |
---|
| 1156 | Cudd_RecursiveDeref(dd,*onlyF); |
---|
| 1157 | Cudd_RecursiveDeref(dd,*onlyG); |
---|
| 1158 | Cudd_RecursiveDeref(dd,var); |
---|
| 1159 | FREE(supportF); FREE(supportG); |
---|
| 1160 | return(0); |
---|
| 1161 | } |
---|
| 1162 | cuddRef(tmp); |
---|
| 1163 | Cudd_RecursiveDeref(dd,*common); |
---|
| 1164 | *common = tmp; |
---|
| 1165 | } |
---|
| 1166 | Cudd_RecursiveDeref(dd,var); |
---|
| 1167 | } |
---|
| 1168 | |
---|
| 1169 | FREE(supportF); FREE(supportG); |
---|
| 1170 | cuddDeref(*common); cuddDeref(*onlyF); cuddDeref(*onlyG); |
---|
| 1171 | return(1); |
---|
| 1172 | |
---|
| 1173 | } /* end of Cudd_ClassifySupport */ |
---|
| 1174 | |
---|
| 1175 | |
---|
| 1176 | /**Function******************************************************************** |
---|
| 1177 | |
---|
| 1178 | Synopsis [Counts the number of leaves in a DD.] |
---|
| 1179 | |
---|
| 1180 | Description [Counts the number of leaves in a DD. Returns the number |
---|
| 1181 | of leaves in the DD rooted at node if successful; CUDD_OUT_OF_MEM |
---|
| 1182 | otherwise.] |
---|
| 1183 | |
---|
| 1184 | SideEffects [None] |
---|
| 1185 | |
---|
| 1186 | SeeAlso [Cudd_PrintDebug] |
---|
| 1187 | |
---|
| 1188 | ******************************************************************************/ |
---|
| 1189 | int |
---|
| 1190 | Cudd_CountLeaves( |
---|
| 1191 | DdNode * node) |
---|
| 1192 | { |
---|
| 1193 | int i; |
---|
| 1194 | |
---|
| 1195 | i = ddLeavesInt(Cudd_Regular(node)); |
---|
| 1196 | ddClearFlag(Cudd_Regular(node)); |
---|
| 1197 | return(i); |
---|
| 1198 | |
---|
| 1199 | } /* end of Cudd_CountLeaves */ |
---|
| 1200 | |
---|
| 1201 | |
---|
| 1202 | /**Function******************************************************************** |
---|
| 1203 | |
---|
| 1204 | Synopsis [Picks one on-set cube randomly from the given DD.] |
---|
| 1205 | |
---|
| 1206 | Description [Picks one on-set cube randomly from the given DD. The |
---|
| 1207 | cube is written into an array of characters. The array must have at |
---|
| 1208 | least as many entries as there are variables. Returns 1 if |
---|
| 1209 | successful; 0 otherwise.] |
---|
| 1210 | |
---|
| 1211 | SideEffects [None] |
---|
| 1212 | |
---|
| 1213 | SeeAlso [Cudd_bddPickOneMinterm] |
---|
| 1214 | |
---|
| 1215 | ******************************************************************************/ |
---|
| 1216 | int |
---|
| 1217 | Cudd_bddPickOneCube( |
---|
| 1218 | DdManager * ddm, |
---|
| 1219 | DdNode * node, |
---|
| 1220 | char * string) |
---|
| 1221 | { |
---|
| 1222 | DdNode *N, *T, *E; |
---|
| 1223 | DdNode *one, *bzero; |
---|
| 1224 | char dir; |
---|
| 1225 | int i; |
---|
| 1226 | |
---|
| 1227 | if (string == NULL || node == NULL) return(0); |
---|
| 1228 | |
---|
| 1229 | /* The constant 0 function has no on-set cubes. */ |
---|
| 1230 | one = DD_ONE(ddm); |
---|
| 1231 | bzero = Cudd_Not(one); |
---|
| 1232 | if (node == bzero) return(0); |
---|
| 1233 | |
---|
| 1234 | for (i = 0; i < ddm->size; i++) string[i] = 2; |
---|
| 1235 | |
---|
| 1236 | for (;;) { |
---|
| 1237 | |
---|
| 1238 | if (node == one) break; |
---|
| 1239 | |
---|
| 1240 | N = Cudd_Regular(node); |
---|
| 1241 | |
---|
| 1242 | T = cuddT(N); E = cuddE(N); |
---|
| 1243 | if (Cudd_IsComplement(node)) { |
---|
| 1244 | T = Cudd_Not(T); E = Cudd_Not(E); |
---|
| 1245 | } |
---|
| 1246 | if (T == bzero) { |
---|
| 1247 | string[N->index] = 0; |
---|
| 1248 | node = E; |
---|
| 1249 | } else if (E == bzero) { |
---|
| 1250 | string[N->index] = 1; |
---|
| 1251 | node = T; |
---|
| 1252 | } else { |
---|
| 1253 | dir = (char) ((Cudd_Random() & 0x2000) >> 13); |
---|
| 1254 | string[N->index] = dir; |
---|
| 1255 | node = dir ? T : E; |
---|
| 1256 | } |
---|
| 1257 | } |
---|
| 1258 | return(1); |
---|
| 1259 | |
---|
| 1260 | } /* end of Cudd_bddPickOneCube */ |
---|
| 1261 | |
---|
| 1262 | |
---|
| 1263 | /**Function******************************************************************** |
---|
| 1264 | |
---|
| 1265 | Synopsis [Picks one on-set minterm randomly from the given DD.] |
---|
| 1266 | |
---|
| 1267 | Description [Picks one on-set minterm randomly from the given |
---|
| 1268 | DD. The minterm is in terms of <code>vars</code>. The array |
---|
| 1269 | <code>vars</code> should contain at least all variables in the |
---|
| 1270 | support of <code>f</code>; if this condition is not met the minterm |
---|
| 1271 | built by this procedure may not be contained in |
---|
| 1272 | <code>f</code>. Builds a BDD for the minterm and returns a pointer |
---|
| 1273 | to it if successful; NULL otherwise. There are three reasons why the |
---|
| 1274 | procedure may fail: |
---|
| 1275 | <ul> |
---|
| 1276 | <li> It may run out of memory; |
---|
| 1277 | <li> the function <code>f</code> may be the constant 0; |
---|
| 1278 | <li> the minterm may not be contained in <code>f</code>. |
---|
| 1279 | </ul>] |
---|
| 1280 | |
---|
| 1281 | SideEffects [None] |
---|
| 1282 | |
---|
| 1283 | SeeAlso [Cudd_bddPickOneCube] |
---|
| 1284 | |
---|
| 1285 | ******************************************************************************/ |
---|
| 1286 | DdNode * |
---|
| 1287 | Cudd_bddPickOneMinterm( |
---|
| 1288 | DdManager * dd /* manager */, |
---|
| 1289 | DdNode * f /* function from which to pick one minterm */, |
---|
| 1290 | DdNode ** vars /* array of variables */, |
---|
| 1291 | int n /* size of <code>vars</code> */) |
---|
| 1292 | { |
---|
| 1293 | char *string; |
---|
| 1294 | int i, size; |
---|
| 1295 | int *indices; |
---|
| 1296 | int result; |
---|
| 1297 | DdNode *old, *neW; |
---|
| 1298 | |
---|
| 1299 | size = dd->size; |
---|
| 1300 | string = ALLOC(char, size); |
---|
| 1301 | if (string == NULL) { |
---|
| 1302 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1303 | return(NULL); |
---|
| 1304 | } |
---|
| 1305 | indices = ALLOC(int,n); |
---|
| 1306 | if (indices == NULL) { |
---|
| 1307 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1308 | FREE(string); |
---|
| 1309 | return(NULL); |
---|
| 1310 | } |
---|
| 1311 | |
---|
| 1312 | for (i = 0; i < n; i++) { |
---|
| 1313 | indices[i] = vars[i]->index; |
---|
| 1314 | } |
---|
| 1315 | |
---|
| 1316 | result = Cudd_bddPickOneCube(dd,f,string); |
---|
| 1317 | if (result == 0) { |
---|
| 1318 | FREE(string); |
---|
| 1319 | FREE(indices); |
---|
| 1320 | return(NULL); |
---|
| 1321 | } |
---|
| 1322 | |
---|
| 1323 | /* Randomize choice for don't cares. */ |
---|
| 1324 | for (i = 0; i < n; i++) { |
---|
| 1325 | if (string[indices[i]] == 2) |
---|
| 1326 | string[indices[i]] = (char) ((Cudd_Random() & 0x20) >> 5); |
---|
| 1327 | } |
---|
| 1328 | |
---|
| 1329 | /* Build result BDD. */ |
---|
| 1330 | old = Cudd_ReadOne(dd); |
---|
| 1331 | cuddRef(old); |
---|
| 1332 | |
---|
| 1333 | for (i = n-1; i >= 0; i--) { |
---|
| 1334 | neW = Cudd_bddAnd(dd,old,Cudd_NotCond(vars[i],string[indices[i]]==0)); |
---|
| 1335 | if (neW == NULL) { |
---|
| 1336 | FREE(string); |
---|
| 1337 | FREE(indices); |
---|
| 1338 | Cudd_RecursiveDeref(dd,old); |
---|
| 1339 | return(NULL); |
---|
| 1340 | } |
---|
| 1341 | cuddRef(neW); |
---|
| 1342 | Cudd_RecursiveDeref(dd,old); |
---|
| 1343 | old = neW; |
---|
| 1344 | } |
---|
| 1345 | |
---|
| 1346 | #ifdef DD_DEBUG |
---|
| 1347 | /* Test. */ |
---|
| 1348 | if (Cudd_bddLeq(dd,old,f)) { |
---|
| 1349 | cuddDeref(old); |
---|
| 1350 | } else { |
---|
| 1351 | Cudd_RecursiveDeref(dd,old); |
---|
| 1352 | old = NULL; |
---|
| 1353 | } |
---|
| 1354 | #else |
---|
| 1355 | cuddDeref(old); |
---|
| 1356 | #endif |
---|
| 1357 | |
---|
| 1358 | FREE(string); |
---|
| 1359 | FREE(indices); |
---|
| 1360 | return(old); |
---|
| 1361 | |
---|
| 1362 | } /* end of Cudd_bddPickOneMinterm */ |
---|
| 1363 | |
---|
| 1364 | |
---|
| 1365 | /**Function******************************************************************** |
---|
| 1366 | |
---|
| 1367 | Synopsis [Picks k on-set minterms evenly distributed from given DD.] |
---|
| 1368 | |
---|
| 1369 | Description [Picks k on-set minterms evenly distributed from given DD. |
---|
| 1370 | The minterms are in terms of <code>vars</code>. The array |
---|
| 1371 | <code>vars</code> should contain at least all variables in the |
---|
| 1372 | support of <code>f</code>; if this condition is not met the minterms |
---|
| 1373 | built by this procedure may not be contained in |
---|
| 1374 | <code>f</code>. Builds an array of BDDs for the minterms and returns a |
---|
| 1375 | pointer to it if successful; NULL otherwise. There are three reasons |
---|
| 1376 | why the procedure may fail: |
---|
| 1377 | <ul> |
---|
| 1378 | <li> It may run out of memory; |
---|
| 1379 | <li> the function <code>f</code> may be the constant 0; |
---|
| 1380 | <li> the minterms may not be contained in <code>f</code>. |
---|
| 1381 | </ul>] |
---|
| 1382 | |
---|
| 1383 | SideEffects [None] |
---|
| 1384 | |
---|
| 1385 | SeeAlso [Cudd_bddPickOneMinterm Cudd_bddPickOneCube] |
---|
| 1386 | |
---|
| 1387 | ******************************************************************************/ |
---|
| 1388 | DdNode ** |
---|
| 1389 | Cudd_bddPickArbitraryMinterms( |
---|
| 1390 | DdManager * dd /* manager */, |
---|
| 1391 | DdNode * f /* function from which to pick k minterms */, |
---|
| 1392 | DdNode ** vars /* array of variables */, |
---|
| 1393 | int n /* size of <code>vars</code> */, |
---|
| 1394 | int k /* number of minterms to find */) |
---|
| 1395 | { |
---|
| 1396 | char **string; |
---|
| 1397 | int i, j, l, size; |
---|
| 1398 | int *indices; |
---|
| 1399 | int result; |
---|
| 1400 | DdNode **old, *neW; |
---|
| 1401 | double minterms; |
---|
| 1402 | char *saveString; |
---|
| 1403 | int saveFlag, savePoint, isSame; |
---|
| 1404 | |
---|
| 1405 | minterms = Cudd_CountMinterm(dd,f,n); |
---|
| 1406 | if ((double)k > minterms) { |
---|
| 1407 | return(NULL); |
---|
| 1408 | } |
---|
| 1409 | |
---|
| 1410 | size = dd->size; |
---|
| 1411 | string = ALLOC(char *, k); |
---|
| 1412 | if (string == NULL) { |
---|
| 1413 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1414 | return(NULL); |
---|
| 1415 | } |
---|
| 1416 | for (i = 0; i < k; i++) { |
---|
| 1417 | string[i] = ALLOC(char, size + 1); |
---|
| 1418 | if (string[i] == NULL) { |
---|
| 1419 | for (j = 0; j < i; j++) |
---|
| 1420 | FREE(string[i]); |
---|
| 1421 | FREE(string); |
---|
| 1422 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1423 | return(NULL); |
---|
| 1424 | } |
---|
| 1425 | for (j = 0; j < size; j++) string[i][j] = '2'; |
---|
| 1426 | string[i][size] = '\0'; |
---|
| 1427 | } |
---|
| 1428 | indices = ALLOC(int,n); |
---|
| 1429 | if (indices == NULL) { |
---|
| 1430 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1431 | for (i = 0; i < k; i++) |
---|
| 1432 | FREE(string[i]); |
---|
| 1433 | FREE(string); |
---|
| 1434 | return(NULL); |
---|
| 1435 | } |
---|
| 1436 | |
---|
| 1437 | for (i = 0; i < n; i++) { |
---|
| 1438 | indices[i] = vars[i]->index; |
---|
| 1439 | } |
---|
| 1440 | |
---|
| 1441 | result = ddPickArbitraryMinterms(dd,f,n,k,string); |
---|
| 1442 | if (result == 0) { |
---|
| 1443 | for (i = 0; i < k; i++) |
---|
| 1444 | FREE(string[i]); |
---|
| 1445 | FREE(string); |
---|
| 1446 | FREE(indices); |
---|
| 1447 | return(NULL); |
---|
| 1448 | } |
---|
| 1449 | |
---|
| 1450 | old = ALLOC(DdNode *, k); |
---|
| 1451 | if (old == NULL) { |
---|
| 1452 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1453 | for (i = 0; i < k; i++) |
---|
| 1454 | FREE(string[i]); |
---|
| 1455 | FREE(string); |
---|
| 1456 | FREE(indices); |
---|
| 1457 | return(NULL); |
---|
| 1458 | } |
---|
| 1459 | saveString = ALLOC(char, size + 1); |
---|
| 1460 | if (saveString == NULL) { |
---|
| 1461 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1462 | for (i = 0; i < k; i++) |
---|
| 1463 | FREE(string[i]); |
---|
| 1464 | FREE(string); |
---|
| 1465 | FREE(indices); |
---|
| 1466 | FREE(old); |
---|
| 1467 | return(NULL); |
---|
| 1468 | } |
---|
| 1469 | saveFlag = 0; |
---|
| 1470 | |
---|
| 1471 | /* Build result BDD array. */ |
---|
| 1472 | for (i = 0; i < k; i++) { |
---|
| 1473 | isSame = 0; |
---|
| 1474 | if (!saveFlag) { |
---|
| 1475 | for (j = i + 1; j < k; j++) { |
---|
| 1476 | if (strcmp(string[i], string[j]) == 0) { |
---|
| 1477 | savePoint = i; |
---|
| 1478 | strcpy(saveString, string[i]); |
---|
| 1479 | saveFlag = 1; |
---|
| 1480 | break; |
---|
| 1481 | } |
---|
| 1482 | } |
---|
| 1483 | } else { |
---|
| 1484 | if (strcmp(string[i], saveString) == 0) { |
---|
| 1485 | isSame = 1; |
---|
| 1486 | } else { |
---|
| 1487 | saveFlag = 0; |
---|
| 1488 | for (j = i + 1; j < k; j++) { |
---|
| 1489 | if (strcmp(string[i], string[j]) == 0) { |
---|
| 1490 | savePoint = i; |
---|
| 1491 | strcpy(saveString, string[i]); |
---|
| 1492 | saveFlag = 1; |
---|
| 1493 | break; |
---|
| 1494 | } |
---|
| 1495 | } |
---|
| 1496 | } |
---|
| 1497 | } |
---|
| 1498 | /* Randomize choice for don't cares. */ |
---|
| 1499 | for (j = 0; j < n; j++) { |
---|
| 1500 | if (string[i][indices[j]] == '2') |
---|
| 1501 | string[i][indices[j]] = (Cudd_Random() & 0x20) ? '1' : '0'; |
---|
| 1502 | } |
---|
| 1503 | |
---|
| 1504 | while (isSame) { |
---|
| 1505 | isSame = 0; |
---|
| 1506 | for (j = savePoint; j < i; j++) { |
---|
| 1507 | if (strcmp(string[i], string[j]) == 0) { |
---|
| 1508 | isSame = 1; |
---|
| 1509 | break; |
---|
| 1510 | } |
---|
| 1511 | } |
---|
| 1512 | if (isSame) { |
---|
| 1513 | strcpy(string[i], saveString); |
---|
| 1514 | /* Randomize choice for don't cares. */ |
---|
| 1515 | for (j = 0; j < n; j++) { |
---|
| 1516 | if (string[i][indices[j]] == '2') |
---|
| 1517 | string[i][indices[j]] = (Cudd_Random() & 0x20) ? |
---|
| 1518 | '1' : '0'; |
---|
| 1519 | } |
---|
| 1520 | } |
---|
| 1521 | } |
---|
| 1522 | |
---|
| 1523 | old[i] = Cudd_ReadOne(dd); |
---|
| 1524 | cuddRef(old[i]); |
---|
| 1525 | |
---|
| 1526 | for (j = 0; j < n; j++) { |
---|
| 1527 | if (string[i][indices[j]] == '0') { |
---|
| 1528 | neW = Cudd_bddAnd(dd,old[i],Cudd_Not(vars[j])); |
---|
| 1529 | } else { |
---|
| 1530 | neW = Cudd_bddAnd(dd,old[i],vars[j]); |
---|
| 1531 | } |
---|
| 1532 | if (neW == NULL) { |
---|
| 1533 | FREE(saveString); |
---|
| 1534 | for (l = 0; l < k; l++) |
---|
| 1535 | FREE(string[l]); |
---|
| 1536 | FREE(string); |
---|
| 1537 | FREE(indices); |
---|
| 1538 | for (l = 0; l <= i; l++) |
---|
| 1539 | Cudd_RecursiveDeref(dd,old[l]); |
---|
| 1540 | FREE(old); |
---|
| 1541 | return(NULL); |
---|
| 1542 | } |
---|
| 1543 | cuddRef(neW); |
---|
| 1544 | Cudd_RecursiveDeref(dd,old[i]); |
---|
| 1545 | old[i] = neW; |
---|
| 1546 | } |
---|
| 1547 | |
---|
| 1548 | /* Test. */ |
---|
| 1549 | if (!Cudd_bddLeq(dd,old[i],f)) { |
---|
| 1550 | FREE(saveString); |
---|
| 1551 | for (l = 0; l < k; l++) |
---|
| 1552 | FREE(string[l]); |
---|
| 1553 | FREE(string); |
---|
| 1554 | FREE(indices); |
---|
| 1555 | for (l = 0; l <= i; l++) |
---|
| 1556 | Cudd_RecursiveDeref(dd,old[l]); |
---|
| 1557 | FREE(old); |
---|
| 1558 | return(NULL); |
---|
| 1559 | } |
---|
| 1560 | } |
---|
| 1561 | |
---|
| 1562 | FREE(saveString); |
---|
| 1563 | for (i = 0; i < k; i++) { |
---|
| 1564 | cuddDeref(old[i]); |
---|
| 1565 | FREE(string[i]); |
---|
| 1566 | } |
---|
| 1567 | FREE(string); |
---|
| 1568 | FREE(indices); |
---|
| 1569 | return(old); |
---|
| 1570 | |
---|
| 1571 | } /* end of Cudd_bddPickArbitraryMinterms */ |
---|
| 1572 | |
---|
| 1573 | |
---|
| 1574 | /**Function******************************************************************** |
---|
| 1575 | |
---|
| 1576 | Synopsis [Extracts a subset from a BDD.] |
---|
| 1577 | |
---|
| 1578 | Description [Extracts a subset from a BDD in the following procedure. |
---|
| 1579 | 1. Compute the weight for each mask variable by counting the number of |
---|
| 1580 | minterms for both positive and negative cofactors of the BDD with |
---|
| 1581 | respect to each mask variable. (weight = #positive - #negative) |
---|
| 1582 | 2. Find a representative cube of the BDD by using the weight. From the |
---|
| 1583 | top variable of the BDD, for each variable, if the weight is greater |
---|
| 1584 | than 0.0, choose THEN branch, othereise ELSE branch, until meeting |
---|
| 1585 | the constant 1. |
---|
| 1586 | 3. Quantify out the variables not in maskVars from the representative |
---|
| 1587 | cube and if a variable in maskVars is don't care, replace the |
---|
| 1588 | variable with a constant(1 or 0) depending on the weight. |
---|
| 1589 | 4. Make a subset of the BDD by multiplying with the modified cube.] |
---|
| 1590 | |
---|
| 1591 | SideEffects [None] |
---|
| 1592 | |
---|
| 1593 | SeeAlso [] |
---|
| 1594 | |
---|
| 1595 | ******************************************************************************/ |
---|
| 1596 | DdNode * |
---|
| 1597 | Cudd_SubsetWithMaskVars( |
---|
| 1598 | DdManager * dd /* manager */, |
---|
| 1599 | DdNode * f /* function from which to pick a cube */, |
---|
| 1600 | DdNode ** vars /* array of variables */, |
---|
| 1601 | int nvars /* size of <code>vars</code> */, |
---|
| 1602 | DdNode ** maskVars /* array of variables */, |
---|
| 1603 | int mvars /* size of <code>maskVars</code> */) |
---|
| 1604 | { |
---|
| 1605 | double *weight; |
---|
| 1606 | char *string; |
---|
| 1607 | int i, size; |
---|
| 1608 | int *indices, *mask; |
---|
| 1609 | int result; |
---|
| 1610 | DdNode *zero, *cube, *newCube, *subset; |
---|
| 1611 | DdNode *cof; |
---|
| 1612 | |
---|
| 1613 | DdNode *support; |
---|
| 1614 | support = Cudd_Support(dd,f); |
---|
| 1615 | cuddRef(support); |
---|
| 1616 | Cudd_RecursiveDeref(dd,support); |
---|
| 1617 | |
---|
| 1618 | zero = Cudd_Not(dd->one); |
---|
| 1619 | size = dd->size; |
---|
| 1620 | |
---|
| 1621 | weight = ALLOC(double,size); |
---|
| 1622 | if (weight == NULL) { |
---|
| 1623 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1624 | return(NULL); |
---|
| 1625 | } |
---|
| 1626 | for (i = 0; i < size; i++) { |
---|
| 1627 | weight[i] = 0.0; |
---|
| 1628 | } |
---|
| 1629 | for (i = 0; i < mvars; i++) { |
---|
| 1630 | cof = Cudd_Cofactor(dd, f, maskVars[i]); |
---|
| 1631 | cuddRef(cof); |
---|
| 1632 | weight[i] = Cudd_CountMinterm(dd, cof, nvars); |
---|
| 1633 | Cudd_RecursiveDeref(dd,cof); |
---|
| 1634 | |
---|
| 1635 | cof = Cudd_Cofactor(dd, f, Cudd_Not(maskVars[i])); |
---|
| 1636 | cuddRef(cof); |
---|
| 1637 | weight[i] -= Cudd_CountMinterm(dd, cof, nvars); |
---|
| 1638 | Cudd_RecursiveDeref(dd,cof); |
---|
| 1639 | } |
---|
| 1640 | |
---|
| 1641 | string = ALLOC(char, size + 1); |
---|
| 1642 | if (string == NULL) { |
---|
| 1643 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1644 | return(NULL); |
---|
| 1645 | } |
---|
| 1646 | mask = ALLOC(int, size); |
---|
| 1647 | if (mask == NULL) { |
---|
| 1648 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1649 | FREE(string); |
---|
| 1650 | return(NULL); |
---|
| 1651 | } |
---|
| 1652 | for (i = 0; i < size; i++) { |
---|
| 1653 | string[i] = '2'; |
---|
| 1654 | mask[i] = 0; |
---|
| 1655 | } |
---|
| 1656 | string[size] = '\0'; |
---|
| 1657 | indices = ALLOC(int,nvars); |
---|
| 1658 | if (indices == NULL) { |
---|
| 1659 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1660 | FREE(string); |
---|
| 1661 | FREE(mask); |
---|
| 1662 | return(NULL); |
---|
| 1663 | } |
---|
| 1664 | for (i = 0; i < nvars; i++) { |
---|
| 1665 | indices[i] = vars[i]->index; |
---|
| 1666 | } |
---|
| 1667 | |
---|
| 1668 | result = ddPickRepresentativeCube(dd,f,nvars,weight,string); |
---|
| 1669 | if (result == 0) { |
---|
| 1670 | FREE(string); |
---|
| 1671 | FREE(mask); |
---|
| 1672 | FREE(indices); |
---|
| 1673 | return(NULL); |
---|
| 1674 | } |
---|
| 1675 | |
---|
| 1676 | cube = Cudd_ReadOne(dd); |
---|
| 1677 | cuddRef(cube); |
---|
| 1678 | zero = Cudd_Not(Cudd_ReadOne(dd)); |
---|
| 1679 | for (i = 0; i < nvars; i++) { |
---|
| 1680 | if (string[indices[i]] == '0') { |
---|
| 1681 | newCube = Cudd_bddIte(dd,cube,Cudd_Not(vars[i]),zero); |
---|
| 1682 | } else if (string[indices[i]] == '1') { |
---|
| 1683 | newCube = Cudd_bddIte(dd,cube,vars[i],zero); |
---|
| 1684 | } else |
---|
| 1685 | continue; |
---|
| 1686 | if (newCube == NULL) { |
---|
| 1687 | FREE(string); |
---|
| 1688 | FREE(mask); |
---|
| 1689 | FREE(indices); |
---|
| 1690 | Cudd_RecursiveDeref(dd,cube); |
---|
| 1691 | return(NULL); |
---|
| 1692 | } |
---|
| 1693 | cuddRef(newCube); |
---|
| 1694 | Cudd_RecursiveDeref(dd,cube); |
---|
| 1695 | cube = newCube; |
---|
| 1696 | } |
---|
| 1697 | Cudd_RecursiveDeref(dd,cube); |
---|
| 1698 | |
---|
| 1699 | for (i = 0; i < mvars; i++) { |
---|
| 1700 | mask[maskVars[i]->index] = 1; |
---|
| 1701 | } |
---|
| 1702 | for (i = 0; i < nvars; i++) { |
---|
| 1703 | if (mask[indices[i]]) { |
---|
| 1704 | if (string[indices[i]] == '2') { |
---|
| 1705 | if (weight[indices[i]] >= 0.0) |
---|
| 1706 | string[indices[i]] = '1'; |
---|
| 1707 | else |
---|
| 1708 | string[indices[i]] = '0'; |
---|
| 1709 | } |
---|
| 1710 | } else { |
---|
| 1711 | string[indices[i]] = '2'; |
---|
| 1712 | } |
---|
| 1713 | } |
---|
| 1714 | |
---|
| 1715 | cube = Cudd_ReadOne(dd); |
---|
| 1716 | cuddRef(cube); |
---|
| 1717 | zero = Cudd_Not(Cudd_ReadOne(dd)); |
---|
| 1718 | |
---|
| 1719 | /* Build result BDD. */ |
---|
| 1720 | for (i = 0; i < nvars; i++) { |
---|
| 1721 | if (string[indices[i]] == '0') { |
---|
| 1722 | newCube = Cudd_bddIte(dd,cube,Cudd_Not(vars[i]),zero); |
---|
| 1723 | } else if (string[indices[i]] == '1') { |
---|
| 1724 | newCube = Cudd_bddIte(dd,cube,vars[i],zero); |
---|
| 1725 | } else |
---|
| 1726 | continue; |
---|
| 1727 | if (newCube == NULL) { |
---|
| 1728 | FREE(string); |
---|
| 1729 | FREE(mask); |
---|
| 1730 | FREE(indices); |
---|
| 1731 | Cudd_RecursiveDeref(dd,cube); |
---|
| 1732 | return(NULL); |
---|
| 1733 | } |
---|
| 1734 | cuddRef(newCube); |
---|
| 1735 | Cudd_RecursiveDeref(dd,cube); |
---|
| 1736 | cube = newCube; |
---|
| 1737 | } |
---|
| 1738 | |
---|
| 1739 | subset = Cudd_bddAnd(dd,f,cube); |
---|
| 1740 | cuddRef(subset); |
---|
| 1741 | Cudd_RecursiveDeref(dd,cube); |
---|
| 1742 | |
---|
| 1743 | /* Test. */ |
---|
| 1744 | if (Cudd_bddLeq(dd,subset,f)) { |
---|
| 1745 | cuddDeref(subset); |
---|
| 1746 | } else { |
---|
| 1747 | Cudd_RecursiveDeref(dd,subset); |
---|
| 1748 | subset = NULL; |
---|
| 1749 | } |
---|
| 1750 | |
---|
| 1751 | FREE(string); |
---|
| 1752 | FREE(mask); |
---|
| 1753 | FREE(indices); |
---|
| 1754 | FREE(weight); |
---|
| 1755 | return(subset); |
---|
| 1756 | |
---|
| 1757 | } /* end of Cudd_SubsetWithMaskVars */ |
---|
| 1758 | |
---|
| 1759 | |
---|
| 1760 | /**Function******************************************************************** |
---|
| 1761 | |
---|
| 1762 | Synopsis [Finds the first cube of a decision diagram.] |
---|
| 1763 | |
---|
| 1764 | Description [Defines an iterator on the onset of a decision diagram |
---|
| 1765 | and finds its first cube. Returns a generator that contains the |
---|
| 1766 | information necessary to continue the enumeration if successful; NULL |
---|
| 1767 | otherwise.<p> |
---|
| 1768 | A cube is represented as an array of literals, which are integers in |
---|
| 1769 | {0, 1, 2}; 0 represents a complemented literal, 1 represents an |
---|
| 1770 | uncomplemented literal, and 2 stands for don't care. The enumeration |
---|
| 1771 | produces a disjoint cover of the function associated with the diagram. |
---|
| 1772 | The size of the array equals the number of variables in the manager at |
---|
| 1773 | the time Cudd_FirstCube is called.<p> |
---|
| 1774 | For each cube, a value is also returned. This value is always 1 for a |
---|
| 1775 | BDD, while it may be different from 1 for an ADD. |
---|
| 1776 | For BDDs, the offset is the set of cubes whose value is the logical zero. |
---|
| 1777 | For ADDs, the offset is the set of cubes whose value is the |
---|
| 1778 | background value. The cubes of the offset are not enumerated.] |
---|
| 1779 | |
---|
| 1780 | SideEffects [The first cube and its value are returned as side effects.] |
---|
| 1781 | |
---|
| 1782 | SeeAlso [Cudd_ForeachCube Cudd_NextCube Cudd_GenFree Cudd_IsGenEmpty |
---|
| 1783 | Cudd_FirstNode] |
---|
| 1784 | |
---|
| 1785 | ******************************************************************************/ |
---|
| 1786 | DdGen * |
---|
| 1787 | Cudd_FirstCube( |
---|
| 1788 | DdManager * dd, |
---|
| 1789 | DdNode * f, |
---|
| 1790 | int ** cube, |
---|
| 1791 | CUDD_VALUE_TYPE * value) |
---|
| 1792 | { |
---|
| 1793 | DdGen *gen; |
---|
| 1794 | DdNode *top, *treg, *next, *nreg, *prev, *preg; |
---|
| 1795 | int i; |
---|
| 1796 | int nvars; |
---|
| 1797 | |
---|
| 1798 | /* Sanity Check. */ |
---|
| 1799 | if (dd == NULL || f == NULL) return(NULL); |
---|
| 1800 | |
---|
| 1801 | /* Allocate generator an initialize it. */ |
---|
| 1802 | gen = ALLOC(DdGen,1); |
---|
| 1803 | if (gen == NULL) { |
---|
| 1804 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1805 | return(NULL); |
---|
| 1806 | } |
---|
| 1807 | |
---|
| 1808 | gen->manager = dd; |
---|
| 1809 | gen->type = CUDD_GEN_CUBES; |
---|
| 1810 | gen->status = CUDD_GEN_EMPTY; |
---|
| 1811 | gen->gen.cubes.cube = NULL; |
---|
| 1812 | gen->gen.cubes.value = DD_ZERO_VAL; |
---|
| 1813 | gen->stack.sp = 0; |
---|
| 1814 | gen->stack.stack = NULL; |
---|
| 1815 | gen->node = NULL; |
---|
| 1816 | |
---|
| 1817 | nvars = dd->size; |
---|
| 1818 | gen->gen.cubes.cube = ALLOC(int,nvars); |
---|
| 1819 | if (gen->gen.cubes.cube == NULL) { |
---|
| 1820 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1821 | FREE(gen); |
---|
| 1822 | return(NULL); |
---|
| 1823 | } |
---|
| 1824 | for (i = 0; i < nvars; i++) gen->gen.cubes.cube[i] = 2; |
---|
| 1825 | |
---|
| 1826 | /* The maximum stack depth is one plus the number of variables. |
---|
| 1827 | ** because a path may have nodes at all levels, including the |
---|
| 1828 | ** constant level. |
---|
| 1829 | */ |
---|
| 1830 | gen->stack.stack = ALLOC(DdNodePtr, nvars+1); |
---|
| 1831 | if (gen->stack.stack == NULL) { |
---|
| 1832 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 1833 | FREE(gen->gen.cubes.cube); |
---|
| 1834 | FREE(gen); |
---|
| 1835 | return(NULL); |
---|
| 1836 | } |
---|
| 1837 | for (i = 0; i <= nvars; i++) gen->stack.stack[i] = NULL; |
---|
| 1838 | |
---|
| 1839 | /* Find the first cube of the onset. */ |
---|
| 1840 | gen->stack.stack[gen->stack.sp] = f; gen->stack.sp++; |
---|
| 1841 | |
---|
| 1842 | while (1) { |
---|
| 1843 | top = gen->stack.stack[gen->stack.sp-1]; |
---|
| 1844 | treg = Cudd_Regular(top); |
---|
| 1845 | if (!cuddIsConstant(treg)) { |
---|
| 1846 | /* Take the else branch first. */ |
---|
| 1847 | gen->gen.cubes.cube[treg->index] = 0; |
---|
| 1848 | next = cuddE(treg); |
---|
| 1849 | if (top != treg) next = Cudd_Not(next); |
---|
| 1850 | gen->stack.stack[gen->stack.sp] = next; gen->stack.sp++; |
---|
| 1851 | } else if (top == Cudd_Not(DD_ONE(dd)) || top == dd->background) { |
---|
| 1852 | /* Backtrack */ |
---|
| 1853 | while (1) { |
---|
| 1854 | if (gen->stack.sp == 1) { |
---|
| 1855 | /* The current node has no predecessor. */ |
---|
| 1856 | gen->status = CUDD_GEN_EMPTY; |
---|
| 1857 | gen->stack.sp--; |
---|
| 1858 | goto done; |
---|
| 1859 | } |
---|
| 1860 | prev = gen->stack.stack[gen->stack.sp-2]; |
---|
| 1861 | preg = Cudd_Regular(prev); |
---|
| 1862 | nreg = cuddT(preg); |
---|
| 1863 | if (prev != preg) {next = Cudd_Not(nreg);} else {next = nreg;} |
---|
| 1864 | if (next != top) { /* follow the then branch next */ |
---|
| 1865 | gen->gen.cubes.cube[preg->index] = 1; |
---|
| 1866 | gen->stack.stack[gen->stack.sp-1] = next; |
---|
| 1867 | break; |
---|
| 1868 | } |
---|
| 1869 | /* Pop the stack and try again. */ |
---|
| 1870 | gen->gen.cubes.cube[preg->index] = 2; |
---|
| 1871 | gen->stack.sp--; |
---|
| 1872 | top = gen->stack.stack[gen->stack.sp-1]; |
---|
| 1873 | treg = Cudd_Regular(top); |
---|
| 1874 | } |
---|
| 1875 | } else { |
---|
| 1876 | gen->status = CUDD_GEN_NONEMPTY; |
---|
| 1877 | gen->gen.cubes.value = cuddV(top); |
---|
| 1878 | goto done; |
---|
| 1879 | } |
---|
| 1880 | } |
---|
| 1881 | |
---|
| 1882 | done: |
---|
| 1883 | *cube = gen->gen.cubes.cube; |
---|
| 1884 | *value = gen->gen.cubes.value; |
---|
| 1885 | return(gen); |
---|
| 1886 | |
---|
| 1887 | } /* end of Cudd_FirstCube */ |
---|
| 1888 | |
---|
| 1889 | |
---|
| 1890 | /**Function******************************************************************** |
---|
| 1891 | |
---|
| 1892 | Synopsis [Generates the next cube of a decision diagram onset.] |
---|
| 1893 | |
---|
| 1894 | Description [Generates the next cube of a decision diagram onset, |
---|
| 1895 | using generator gen. Returns 0 if the enumeration is completed; 1 |
---|
| 1896 | otherwise.] |
---|
| 1897 | |
---|
| 1898 | SideEffects [The cube and its value are returned as side effects. The |
---|
| 1899 | generator is modified.] |
---|
| 1900 | |
---|
| 1901 | SeeAlso [Cudd_ForeachCube Cudd_FirstCube Cudd_GenFree Cudd_IsGenEmpty |
---|
| 1902 | Cudd_NextNode] |
---|
| 1903 | |
---|
| 1904 | ******************************************************************************/ |
---|
| 1905 | int |
---|
| 1906 | Cudd_NextCube( |
---|
| 1907 | DdGen * gen, |
---|
| 1908 | int ** cube, |
---|
| 1909 | CUDD_VALUE_TYPE * value) |
---|
| 1910 | { |
---|
| 1911 | DdNode *top, *treg, *next, *nreg, *prev, *preg; |
---|
| 1912 | DdManager *dd = gen->manager; |
---|
| 1913 | |
---|
| 1914 | /* Backtrack from previously reached terminal node. */ |
---|
| 1915 | while (1) { |
---|
| 1916 | if (gen->stack.sp == 1) { |
---|
| 1917 | /* The current node has no predecessor. */ |
---|
| 1918 | gen->status = CUDD_GEN_EMPTY; |
---|
| 1919 | gen->stack.sp--; |
---|
| 1920 | goto done; |
---|
| 1921 | } |
---|
| 1922 | top = gen->stack.stack[gen->stack.sp-1]; |
---|
| 1923 | treg = Cudd_Regular(top); |
---|
| 1924 | prev = gen->stack.stack[gen->stack.sp-2]; |
---|
| 1925 | preg = Cudd_Regular(prev); |
---|
| 1926 | nreg = cuddT(preg); |
---|
| 1927 | if (prev != preg) {next = Cudd_Not(nreg);} else {next = nreg;} |
---|
| 1928 | if (next != top) { /* follow the then branch next */ |
---|
| 1929 | gen->gen.cubes.cube[preg->index] = 1; |
---|
| 1930 | gen->stack.stack[gen->stack.sp-1] = next; |
---|
| 1931 | break; |
---|
| 1932 | } |
---|
| 1933 | /* Pop the stack and try again. */ |
---|
| 1934 | gen->gen.cubes.cube[preg->index] = 2; |
---|
| 1935 | gen->stack.sp--; |
---|
| 1936 | } |
---|
| 1937 | |
---|
| 1938 | while (1) { |
---|
| 1939 | top = gen->stack.stack[gen->stack.sp-1]; |
---|
| 1940 | treg = Cudd_Regular(top); |
---|
| 1941 | if (!cuddIsConstant(treg)) { |
---|
| 1942 | /* Take the else branch first. */ |
---|
| 1943 | gen->gen.cubes.cube[treg->index] = 0; |
---|
| 1944 | next = cuddE(treg); |
---|
| 1945 | if (top != treg) next = Cudd_Not(next); |
---|
| 1946 | gen->stack.stack[gen->stack.sp] = next; gen->stack.sp++; |
---|
| 1947 | } else if (top == Cudd_Not(DD_ONE(dd)) || top == dd->background) { |
---|
| 1948 | /* Backtrack */ |
---|
| 1949 | while (1) { |
---|
| 1950 | if (gen->stack.sp == 1) { |
---|
| 1951 | /* The current node has no predecessor. */ |
---|
| 1952 | gen->status = CUDD_GEN_EMPTY; |
---|
| 1953 | gen->stack.sp--; |
---|
| 1954 | goto done; |
---|
| 1955 | } |
---|
| 1956 | prev = gen->stack.stack[gen->stack.sp-2]; |
---|
| 1957 | preg = Cudd_Regular(prev); |
---|
| 1958 | nreg = cuddT(preg); |
---|
| 1959 | if (prev != preg) {next = Cudd_Not(nreg);} else {next = nreg;} |
---|
| 1960 | if (next != top) { /* follow the then branch next */ |
---|
| 1961 | gen->gen.cubes.cube[preg->index] = 1; |
---|
| 1962 | gen->stack.stack[gen->stack.sp-1] = next; |
---|
| 1963 | break; |
---|
| 1964 | } |
---|
| 1965 | /* Pop the stack and try again. */ |
---|
| 1966 | gen->gen.cubes.cube[preg->index] = 2; |
---|
| 1967 | gen->stack.sp--; |
---|
| 1968 | top = gen->stack.stack[gen->stack.sp-1]; |
---|
| 1969 | treg = Cudd_Regular(top); |
---|
| 1970 | } |
---|
| 1971 | } else { |
---|
| 1972 | gen->status = CUDD_GEN_NONEMPTY; |
---|
| 1973 | gen->gen.cubes.value = cuddV(top); |
---|
| 1974 | goto done; |
---|
| 1975 | } |
---|
| 1976 | } |
---|
| 1977 | |
---|
| 1978 | done: |
---|
| 1979 | if (gen->status == CUDD_GEN_EMPTY) return(0); |
---|
| 1980 | *cube = gen->gen.cubes.cube; |
---|
| 1981 | *value = gen->gen.cubes.value; |
---|
| 1982 | return(1); |
---|
| 1983 | |
---|
| 1984 | } /* end of Cudd_NextCube */ |
---|
| 1985 | |
---|
| 1986 | |
---|
| 1987 | /**Function******************************************************************** |
---|
| 1988 | |
---|
| 1989 | Synopsis [Finds the first prime of a Boolean function.] |
---|
| 1990 | |
---|
| 1991 | Description [Defines an iterator on a pair of BDDs describing a |
---|
| 1992 | (possibly incompletely specified) Boolean functions and finds the |
---|
| 1993 | first cube of a cover of the function. Returns a generator |
---|
| 1994 | that contains the information necessary to continue the enumeration |
---|
| 1995 | if successful; NULL otherwise.<p> |
---|
| 1996 | |
---|
| 1997 | The two argument BDDs are the lower and upper bounds of an interval. |
---|
| 1998 | It is a mistake to call this function with a lower bound that is not |
---|
| 1999 | less than or equal to the upper bound.<p> |
---|
| 2000 | |
---|
| 2001 | A cube is represented as an array of literals, which are integers in |
---|
| 2002 | {0, 1, 2}; 0 represents a complemented literal, 1 represents an |
---|
| 2003 | uncomplemented literal, and 2 stands for don't care. The enumeration |
---|
| 2004 | produces a prime and irredundant cover of the function associated |
---|
| 2005 | with the two BDDs. The size of the array equals the number of |
---|
| 2006 | variables in the manager at the time Cudd_FirstCube is called.<p> |
---|
| 2007 | |
---|
| 2008 | This iterator can only be used on BDDs.] |
---|
| 2009 | |
---|
| 2010 | SideEffects [The first cube is returned as side effect.] |
---|
| 2011 | |
---|
| 2012 | SeeAlso [Cudd_ForeachPrime Cudd_NextPrime Cudd_GenFree Cudd_IsGenEmpty |
---|
| 2013 | Cudd_FirstCube Cudd_FirstNode] |
---|
| 2014 | |
---|
| 2015 | ******************************************************************************/ |
---|
| 2016 | DdGen * |
---|
| 2017 | Cudd_FirstPrime( |
---|
| 2018 | DdManager *dd, |
---|
| 2019 | DdNode *l, |
---|
| 2020 | DdNode *u, |
---|
| 2021 | int **cube) |
---|
| 2022 | { |
---|
| 2023 | DdGen *gen; |
---|
| 2024 | DdNode *implicant, *prime, *tmp; |
---|
| 2025 | int length, result; |
---|
| 2026 | |
---|
| 2027 | /* Sanity Check. */ |
---|
| 2028 | if (dd == NULL || l == NULL || u == NULL) return(NULL); |
---|
| 2029 | |
---|
| 2030 | /* Allocate generator an initialize it. */ |
---|
| 2031 | gen = ALLOC(DdGen,1); |
---|
| 2032 | if (gen == NULL) { |
---|
| 2033 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 2034 | return(NULL); |
---|
| 2035 | } |
---|
| 2036 | |
---|
| 2037 | gen->manager = dd; |
---|
| 2038 | gen->type = CUDD_GEN_PRIMES; |
---|
| 2039 | gen->status = CUDD_GEN_EMPTY; |
---|
| 2040 | gen->gen.primes.cube = NULL; |
---|
| 2041 | gen->gen.primes.ub = u; |
---|
| 2042 | gen->stack.sp = 0; |
---|
| 2043 | gen->stack.stack = NULL; |
---|
| 2044 | gen->node = l; |
---|
| 2045 | cuddRef(l); |
---|
| 2046 | |
---|
| 2047 | gen->gen.primes.cube = ALLOC(int,dd->size); |
---|
| 2048 | if (gen->gen.primes.cube == NULL) { |
---|
| 2049 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 2050 | FREE(gen); |
---|
| 2051 | return(NULL); |
---|
| 2052 | } |
---|
| 2053 | |
---|
| 2054 | if (gen->node == Cudd_ReadLogicZero(dd)) { |
---|
| 2055 | gen->status = CUDD_GEN_EMPTY; |
---|
| 2056 | } else { |
---|
| 2057 | implicant = Cudd_LargestCube(dd,gen->node,&length); |
---|
| 2058 | if (implicant == NULL) { |
---|
| 2059 | Cudd_RecursiveDeref(dd,gen->node); |
---|
| 2060 | FREE(gen->gen.primes.cube); |
---|
| 2061 | FREE(gen); |
---|
| 2062 | return(NULL); |
---|
| 2063 | } |
---|
| 2064 | cuddRef(implicant); |
---|
| 2065 | prime = Cudd_bddMakePrime(dd,implicant,gen->gen.primes.ub); |
---|
| 2066 | if (prime == NULL) { |
---|
| 2067 | Cudd_RecursiveDeref(dd,gen->node); |
---|
| 2068 | Cudd_RecursiveDeref(dd,implicant); |
---|
| 2069 | FREE(gen->gen.primes.cube); |
---|
| 2070 | FREE(gen); |
---|
| 2071 | return(NULL); |
---|
| 2072 | } |
---|
| 2073 | cuddRef(prime); |
---|
| 2074 | Cudd_RecursiveDeref(dd,implicant); |
---|
| 2075 | tmp = Cudd_bddAnd(dd,gen->node,Cudd_Not(prime)); |
---|
| 2076 | if (tmp == NULL) { |
---|
| 2077 | Cudd_RecursiveDeref(dd,gen->node); |
---|
| 2078 | Cudd_RecursiveDeref(dd,prime); |
---|
| 2079 | FREE(gen->gen.primes.cube); |
---|
| 2080 | FREE(gen); |
---|
| 2081 | return(NULL); |
---|
| 2082 | } |
---|
| 2083 | cuddRef(tmp); |
---|
| 2084 | Cudd_RecursiveDeref(dd,gen->node); |
---|
| 2085 | gen->node = tmp; |
---|
| 2086 | result = Cudd_BddToCubeArray(dd,prime,gen->gen.primes.cube); |
---|
| 2087 | if (result == 0) { |
---|
| 2088 | Cudd_RecursiveDeref(dd,gen->node); |
---|
| 2089 | Cudd_RecursiveDeref(dd,prime); |
---|
| 2090 | FREE(gen->gen.primes.cube); |
---|
| 2091 | FREE(gen); |
---|
| 2092 | return(NULL); |
---|
| 2093 | } |
---|
| 2094 | Cudd_RecursiveDeref(dd,prime); |
---|
| 2095 | gen->status = CUDD_GEN_NONEMPTY; |
---|
| 2096 | } |
---|
| 2097 | *cube = gen->gen.primes.cube; |
---|
| 2098 | return(gen); |
---|
| 2099 | |
---|
| 2100 | } /* end of Cudd_FirstPrime */ |
---|
| 2101 | |
---|
| 2102 | |
---|
| 2103 | /**Function******************************************************************** |
---|
| 2104 | |
---|
| 2105 | Synopsis [Generates the next prime of a Boolean function.] |
---|
| 2106 | |
---|
| 2107 | Description [Generates the next cube of a Boolean function, |
---|
| 2108 | using generator gen. Returns 0 if the enumeration is completed; 1 |
---|
| 2109 | otherwise.] |
---|
| 2110 | |
---|
| 2111 | SideEffects [The cube and is returned as side effects. The |
---|
| 2112 | generator is modified.] |
---|
| 2113 | |
---|
| 2114 | SeeAlso [Cudd_ForeachPrime Cudd_FirstPrime Cudd_GenFree Cudd_IsGenEmpty |
---|
| 2115 | Cudd_NextCube Cudd_NextNode] |
---|
| 2116 | |
---|
| 2117 | ******************************************************************************/ |
---|
| 2118 | int |
---|
| 2119 | Cudd_NextPrime( |
---|
| 2120 | DdGen *gen, |
---|
| 2121 | int **cube) |
---|
| 2122 | { |
---|
| 2123 | DdNode *implicant, *prime, *tmp; |
---|
| 2124 | DdManager *dd = gen->manager; |
---|
| 2125 | int length, result; |
---|
| 2126 | |
---|
| 2127 | if (gen->node == Cudd_ReadLogicZero(dd)) { |
---|
| 2128 | gen->status = CUDD_GEN_EMPTY; |
---|
| 2129 | } else { |
---|
| 2130 | implicant = Cudd_LargestCube(dd,gen->node,&length); |
---|
| 2131 | if (implicant == NULL) { |
---|
| 2132 | gen->status = CUDD_GEN_EMPTY; |
---|
| 2133 | return(0); |
---|
| 2134 | } |
---|
| 2135 | cuddRef(implicant); |
---|
| 2136 | prime = Cudd_bddMakePrime(dd,implicant,gen->gen.primes.ub); |
---|
| 2137 | if (prime == NULL) { |
---|
| 2138 | Cudd_RecursiveDeref(dd,implicant); |
---|
| 2139 | gen->status = CUDD_GEN_EMPTY; |
---|
| 2140 | return(0); |
---|
| 2141 | } |
---|
| 2142 | cuddRef(prime); |
---|
| 2143 | Cudd_RecursiveDeref(dd,implicant); |
---|
| 2144 | tmp = Cudd_bddAnd(dd,gen->node,Cudd_Not(prime)); |
---|
| 2145 | if (tmp == NULL) { |
---|
| 2146 | Cudd_RecursiveDeref(dd,prime); |
---|
| 2147 | gen->status = CUDD_GEN_EMPTY; |
---|
| 2148 | return(0); |
---|
| 2149 | } |
---|
| 2150 | cuddRef(tmp); |
---|
| 2151 | Cudd_RecursiveDeref(dd,gen->node); |
---|
| 2152 | gen->node = tmp; |
---|
| 2153 | result = Cudd_BddToCubeArray(dd,prime,gen->gen.primes.cube); |
---|
| 2154 | if (result == 0) { |
---|
| 2155 | Cudd_RecursiveDeref(dd,prime); |
---|
| 2156 | gen->status = CUDD_GEN_EMPTY; |
---|
| 2157 | return(0); |
---|
| 2158 | } |
---|
| 2159 | Cudd_RecursiveDeref(dd,prime); |
---|
| 2160 | gen->status = CUDD_GEN_NONEMPTY; |
---|
| 2161 | } |
---|
| 2162 | if (gen->status == CUDD_GEN_EMPTY) return(0); |
---|
| 2163 | *cube = gen->gen.primes.cube; |
---|
| 2164 | return(1); |
---|
| 2165 | |
---|
| 2166 | } /* end of Cudd_NextPrime */ |
---|
| 2167 | |
---|
| 2168 | |
---|
| 2169 | /**Function******************************************************************** |
---|
| 2170 | |
---|
| 2171 | Synopsis [Computes the cube of an array of BDD variables.] |
---|
| 2172 | |
---|
| 2173 | Description [Computes the cube of an array of BDD variables. If |
---|
| 2174 | non-null, the phase argument indicates which literal of each |
---|
| 2175 | variable should appear in the cube. If phase\[i\] is nonzero, then the |
---|
| 2176 | positive literal is used. If phase is NULL, the cube is positive unate. |
---|
| 2177 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
| 2178 | |
---|
| 2179 | SideEffects [None] |
---|
| 2180 | |
---|
| 2181 | SeeAlso [Cudd_addComputeCube Cudd_IndicesToCube Cudd_CubeArrayToBdd] |
---|
| 2182 | |
---|
| 2183 | ******************************************************************************/ |
---|
| 2184 | DdNode * |
---|
| 2185 | Cudd_bddComputeCube( |
---|
| 2186 | DdManager * dd, |
---|
| 2187 | DdNode ** vars, |
---|
| 2188 | int * phase, |
---|
| 2189 | int n) |
---|
| 2190 | { |
---|
| 2191 | DdNode *cube; |
---|
| 2192 | DdNode *fn; |
---|
| 2193 | int i; |
---|
| 2194 | |
---|
| 2195 | cube = DD_ONE(dd); |
---|
| 2196 | cuddRef(cube); |
---|
| 2197 | |
---|
| 2198 | for (i = n - 1; i >= 0; i--) { |
---|
| 2199 | if (phase == NULL || phase[i] != 0) { |
---|
| 2200 | fn = Cudd_bddAnd(dd,vars[i],cube); |
---|
| 2201 | } else { |
---|
| 2202 | fn = Cudd_bddAnd(dd,Cudd_Not(vars[i]),cube); |
---|
| 2203 | } |
---|
| 2204 | if (fn == NULL) { |
---|
| 2205 | Cudd_RecursiveDeref(dd,cube); |
---|
| 2206 | return(NULL); |
---|
| 2207 | } |
---|
| 2208 | cuddRef(fn); |
---|
| 2209 | Cudd_RecursiveDeref(dd,cube); |
---|
| 2210 | cube = fn; |
---|
| 2211 | } |
---|
| 2212 | cuddDeref(cube); |
---|
| 2213 | |
---|
| 2214 | return(cube); |
---|
| 2215 | |
---|
| 2216 | } /* end of Cudd_bddComputeCube */ |
---|
| 2217 | |
---|
| 2218 | |
---|
| 2219 | /**Function******************************************************************** |
---|
| 2220 | |
---|
| 2221 | Synopsis [Computes the cube of an array of ADD variables.] |
---|
| 2222 | |
---|
| 2223 | Description [Computes the cube of an array of ADD variables. If |
---|
| 2224 | non-null, the phase argument indicates which literal of each |
---|
| 2225 | variable should appear in the cube. If phase\[i\] is nonzero, then the |
---|
| 2226 | positive literal is used. If phase is NULL, the cube is positive unate. |
---|
| 2227 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
| 2228 | |
---|
| 2229 | SideEffects [none] |
---|
| 2230 | |
---|
| 2231 | SeeAlso [Cudd_bddComputeCube] |
---|
| 2232 | |
---|
| 2233 | ******************************************************************************/ |
---|
| 2234 | DdNode * |
---|
| 2235 | Cudd_addComputeCube( |
---|
| 2236 | DdManager * dd, |
---|
| 2237 | DdNode ** vars, |
---|
| 2238 | int * phase, |
---|
| 2239 | int n) |
---|
| 2240 | { |
---|
| 2241 | DdNode *cube, *zero; |
---|
| 2242 | DdNode *fn; |
---|
| 2243 | int i; |
---|
| 2244 | |
---|
| 2245 | cube = DD_ONE(dd); |
---|
| 2246 | cuddRef(cube); |
---|
| 2247 | zero = DD_ZERO(dd); |
---|
| 2248 | |
---|
| 2249 | for (i = n - 1; i >= 0; i--) { |
---|
| 2250 | if (phase == NULL || phase[i] != 0) { |
---|
| 2251 | fn = Cudd_addIte(dd,vars[i],cube,zero); |
---|
| 2252 | } else { |
---|
| 2253 | fn = Cudd_addIte(dd,vars[i],zero,cube); |
---|
| 2254 | } |
---|
| 2255 | if (fn == NULL) { |
---|
| 2256 | Cudd_RecursiveDeref(dd,cube); |
---|
| 2257 | return(NULL); |
---|
| 2258 | } |
---|
| 2259 | cuddRef(fn); |
---|
| 2260 | Cudd_RecursiveDeref(dd,cube); |
---|
| 2261 | cube = fn; |
---|
| 2262 | } |
---|
| 2263 | cuddDeref(cube); |
---|
| 2264 | |
---|
| 2265 | return(cube); |
---|
| 2266 | |
---|
| 2267 | } /* end of Cudd_addComputeCube */ |
---|
| 2268 | |
---|
| 2269 | |
---|
| 2270 | /**Function******************************************************************** |
---|
| 2271 | |
---|
| 2272 | Synopsis [Builds the BDD of a cube from a positional array.] |
---|
| 2273 | |
---|
| 2274 | Description [Builds a cube from a positional array. The array must |
---|
| 2275 | have one integer entry for each BDD variable. If the i-th entry is |
---|
| 2276 | 1, the variable of index i appears in true form in the cube; If the |
---|
| 2277 | i-th entry is 0, the variable of index i appears complemented in the |
---|
| 2278 | cube; otherwise the variable does not appear in the cube. Returns a |
---|
| 2279 | pointer to the BDD for the cube if successful; NULL otherwise.] |
---|
| 2280 | |
---|
| 2281 | SideEffects [None] |
---|
| 2282 | |
---|
| 2283 | SeeAlso [Cudd_bddComputeCube Cudd_IndicesToCube Cudd_BddToCubeArray] |
---|
| 2284 | |
---|
| 2285 | ******************************************************************************/ |
---|
| 2286 | DdNode * |
---|
| 2287 | Cudd_CubeArrayToBdd( |
---|
| 2288 | DdManager *dd, |
---|
| 2289 | int *array) |
---|
| 2290 | { |
---|
| 2291 | DdNode *cube, *var, *tmp; |
---|
| 2292 | int i; |
---|
| 2293 | int size = Cudd_ReadSize(dd); |
---|
| 2294 | |
---|
| 2295 | cube = DD_ONE(dd); |
---|
| 2296 | cuddRef(cube); |
---|
| 2297 | for (i = size - 1; i >= 0; i--) { |
---|
| 2298 | if ((array[i] & ~1) == 0) { |
---|
| 2299 | var = Cudd_bddIthVar(dd,i); |
---|
| 2300 | tmp = Cudd_bddAnd(dd,cube,Cudd_NotCond(var,array[i]==0)); |
---|
| 2301 | if (tmp == NULL) { |
---|
| 2302 | Cudd_RecursiveDeref(dd,cube); |
---|
| 2303 | return(NULL); |
---|
| 2304 | } |
---|
| 2305 | cuddRef(tmp); |
---|
| 2306 | Cudd_RecursiveDeref(dd,cube); |
---|
| 2307 | cube = tmp; |
---|
| 2308 | } |
---|
| 2309 | } |
---|
| 2310 | cuddDeref(cube); |
---|
| 2311 | return(cube); |
---|
| 2312 | |
---|
| 2313 | } /* end of Cudd_CubeArrayToBdd */ |
---|
| 2314 | |
---|
| 2315 | |
---|
| 2316 | /**Function******************************************************************** |
---|
| 2317 | |
---|
| 2318 | Synopsis [Builds a positional array from the BDD of a cube.] |
---|
| 2319 | |
---|
| 2320 | Description [Builds a positional array from the BDD of a cube. |
---|
| 2321 | Array must have one entry for each BDD variable. The positional |
---|
| 2322 | array has 1 in i-th position if the variable of index i appears in |
---|
| 2323 | true form in the cube; it has 0 in i-th position if the variable of |
---|
| 2324 | index i appears in complemented form in the cube; finally, it has 2 |
---|
| 2325 | in i-th position if the variable of index i does not appear in the |
---|
| 2326 | cube. Returns 1 if successful (the BDD is indeed a cube); 0 |
---|
| 2327 | otherwise.] |
---|
| 2328 | |
---|
| 2329 | SideEffects [The result is in the array passed by reference.] |
---|
| 2330 | |
---|
| 2331 | SeeAlso [Cudd_CubeArrayToBdd] |
---|
| 2332 | |
---|
| 2333 | ******************************************************************************/ |
---|
| 2334 | int |
---|
| 2335 | Cudd_BddToCubeArray( |
---|
| 2336 | DdManager *dd, |
---|
| 2337 | DdNode *cube, |
---|
| 2338 | int *array) |
---|
| 2339 | { |
---|
| 2340 | DdNode *scan, *t, *e; |
---|
| 2341 | int i; |
---|
| 2342 | int size = Cudd_ReadSize(dd); |
---|
| 2343 | DdNode *zero = Cudd_Not(DD_ONE(dd)); |
---|
| 2344 | |
---|
| 2345 | for (i = size-1; i >= 0; i--) { |
---|
| 2346 | array[i] = 2; |
---|
| 2347 | } |
---|
| 2348 | scan = cube; |
---|
| 2349 | while (!Cudd_IsConstant(scan)) { |
---|
| 2350 | int index = Cudd_Regular(scan)->index; |
---|
| 2351 | cuddGetBranches(scan,&t,&e); |
---|
| 2352 | if (t == zero) { |
---|
| 2353 | array[index] = 0; |
---|
| 2354 | scan = e; |
---|
| 2355 | } else if (e == zero) { |
---|
| 2356 | array[index] = 1; |
---|
| 2357 | scan = t; |
---|
| 2358 | } else { |
---|
| 2359 | return(0); /* cube is not a cube */ |
---|
| 2360 | } |
---|
| 2361 | } |
---|
| 2362 | if (scan == zero) { |
---|
| 2363 | return(0); |
---|
| 2364 | } else { |
---|
| 2365 | return(1); |
---|
| 2366 | } |
---|
| 2367 | |
---|
| 2368 | } /* end of Cudd_BddToCubeArray */ |
---|
| 2369 | |
---|
| 2370 | |
---|
| 2371 | /**Function******************************************************************** |
---|
| 2372 | |
---|
| 2373 | Synopsis [Finds the first node of a decision diagram.] |
---|
| 2374 | |
---|
| 2375 | Description [Defines an iterator on the nodes of a decision diagram |
---|
| 2376 | and finds its first node. Returns a generator that contains the |
---|
| 2377 | information necessary to continue the enumeration if successful; |
---|
| 2378 | NULL otherwise. The nodes are enumerated in a reverse topological |
---|
| 2379 | order, so that a node is always preceded in the enumeration by its |
---|
| 2380 | descendants.] |
---|
| 2381 | |
---|
| 2382 | SideEffects [The first node is returned as a side effect.] |
---|
| 2383 | |
---|
| 2384 | SeeAlso [Cudd_ForeachNode Cudd_NextNode Cudd_GenFree Cudd_IsGenEmpty |
---|
| 2385 | Cudd_FirstCube] |
---|
| 2386 | |
---|
| 2387 | ******************************************************************************/ |
---|
| 2388 | DdGen * |
---|
| 2389 | Cudd_FirstNode( |
---|
| 2390 | DdManager * dd, |
---|
| 2391 | DdNode * f, |
---|
| 2392 | DdNode ** node) |
---|
| 2393 | { |
---|
| 2394 | DdGen *gen; |
---|
| 2395 | int size; |
---|
| 2396 | |
---|
| 2397 | /* Sanity Check. */ |
---|
| 2398 | if (dd == NULL || f == NULL) return(NULL); |
---|
| 2399 | |
---|
| 2400 | /* Allocate generator an initialize it. */ |
---|
| 2401 | gen = ALLOC(DdGen,1); |
---|
| 2402 | if (gen == NULL) { |
---|
| 2403 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 2404 | return(NULL); |
---|
| 2405 | } |
---|
| 2406 | |
---|
| 2407 | gen->manager = dd; |
---|
| 2408 | gen->type = CUDD_GEN_NODES; |
---|
| 2409 | gen->status = CUDD_GEN_EMPTY; |
---|
| 2410 | gen->stack.sp = 0; |
---|
| 2411 | gen->node = NULL; |
---|
| 2412 | |
---|
| 2413 | /* Collect all the nodes on the generator stack for later perusal. */ |
---|
| 2414 | gen->stack.stack = cuddNodeArray(Cudd_Regular(f), &size); |
---|
| 2415 | if (gen->stack.stack == NULL) { |
---|
| 2416 | FREE(gen); |
---|
| 2417 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
| 2418 | return(NULL); |
---|
| 2419 | } |
---|
| 2420 | gen->gen.nodes.size = size; |
---|
| 2421 | |
---|
| 2422 | /* Find the first node. */ |
---|
| 2423 | if (gen->stack.sp < gen->gen.nodes.size) { |
---|
| 2424 | gen->status = CUDD_GEN_NONEMPTY; |
---|
| 2425 | gen->node = gen->stack.stack[gen->stack.sp]; |
---|
| 2426 | *node = gen->node; |
---|
| 2427 | } |
---|
| 2428 | |
---|
| 2429 | return(gen); |
---|
| 2430 | |
---|
| 2431 | } /* end of Cudd_FirstNode */ |
---|
| 2432 | |
---|
| 2433 | |
---|
| 2434 | /**Function******************************************************************** |
---|
| 2435 | |
---|
| 2436 | Synopsis [Finds the next node of a decision diagram.] |
---|
| 2437 | |
---|
| 2438 | Description [Finds the node of a decision diagram, using generator |
---|
| 2439 | gen. Returns 0 if the enumeration is completed; 1 otherwise.] |
---|
| 2440 | |
---|
| 2441 | SideEffects [The next node is returned as a side effect.] |
---|
| 2442 | |
---|
| 2443 | SeeAlso [Cudd_ForeachNode Cudd_FirstNode Cudd_GenFree Cudd_IsGenEmpty |
---|
| 2444 | Cudd_NextCube] |
---|
| 2445 | |
---|
| 2446 | ******************************************************************************/ |
---|
| 2447 | int |
---|
| 2448 | Cudd_NextNode( |
---|
| 2449 | DdGen * gen, |
---|
| 2450 | DdNode ** node) |
---|
| 2451 | { |
---|
| 2452 | /* Find the next node. */ |
---|
| 2453 | gen->stack.sp++; |
---|
| 2454 | if (gen->stack.sp < gen->gen.nodes.size) { |
---|
| 2455 | gen->node = gen->stack.stack[gen->stack.sp]; |
---|
| 2456 | *node = gen->node; |
---|
| 2457 | return(1); |
---|
| 2458 | } else { |
---|
| 2459 | gen->status = CUDD_GEN_EMPTY; |
---|
| 2460 | return(0); |
---|
| 2461 | } |
---|
| 2462 | |
---|
| 2463 | } /* end of Cudd_NextNode */ |
---|
| 2464 | |
---|
| 2465 | |
---|
| 2466 | /**Function******************************************************************** |
---|
| 2467 | |
---|
| 2468 | Synopsis [Frees a CUDD generator.] |
---|
| 2469 | |
---|
| 2470 | Description [Frees a CUDD generator. Always returns 0, so that it can |
---|
| 2471 | be used in mis-like foreach constructs.] |
---|
| 2472 | |
---|
| 2473 | SideEffects [None] |
---|
| 2474 | |
---|
| 2475 | SeeAlso [Cudd_ForeachCube Cudd_ForeachNode Cudd_FirstCube Cudd_NextCube |
---|
| 2476 | Cudd_FirstNode Cudd_NextNode Cudd_IsGenEmpty] |
---|
| 2477 | |
---|
| 2478 | ******************************************************************************/ |
---|
| 2479 | int |
---|
| 2480 | Cudd_GenFree( |
---|
| 2481 | DdGen * gen) |
---|
| 2482 | { |
---|
| 2483 | if (gen == NULL) return(0); |
---|
| 2484 | switch (gen->type) { |
---|
| 2485 | case CUDD_GEN_CUBES: |
---|
| 2486 | case CUDD_GEN_ZDD_PATHS: |
---|
| 2487 | FREE(gen->gen.cubes.cube); |
---|
| 2488 | FREE(gen->stack.stack); |
---|
| 2489 | break; |
---|
| 2490 | case CUDD_GEN_PRIMES: |
---|
| 2491 | FREE(gen->gen.primes.cube); |
---|
| 2492 | Cudd_RecursiveDeref(gen->manager,gen->node); |
---|
| 2493 | break; |
---|
| 2494 | case CUDD_GEN_NODES: |
---|
| 2495 | FREE(gen->stack.stack); |
---|
| 2496 | break; |
---|
| 2497 | default: |
---|
| 2498 | return(0); |
---|
| 2499 | } |
---|
| 2500 | FREE(gen); |
---|
| 2501 | return(0); |
---|
| 2502 | |
---|
| 2503 | } /* end of Cudd_GenFree */ |
---|
| 2504 | |
---|
| 2505 | |
---|
| 2506 | /**Function******************************************************************** |
---|
| 2507 | |
---|
| 2508 | Synopsis [Queries the status of a generator.] |
---|
| 2509 | |
---|
| 2510 | Description [Queries the status of a generator. Returns 1 if the |
---|
| 2511 | generator is empty or NULL; 0 otherswise.] |
---|
| 2512 | |
---|
| 2513 | SideEffects [None] |
---|
| 2514 | |
---|
| 2515 | SeeAlso [Cudd_ForeachCube Cudd_ForeachNode Cudd_FirstCube Cudd_NextCube |
---|
| 2516 | Cudd_FirstNode Cudd_NextNode Cudd_GenFree] |
---|
| 2517 | |
---|
| 2518 | ******************************************************************************/ |
---|
| 2519 | int |
---|
| 2520 | Cudd_IsGenEmpty( |
---|
| 2521 | DdGen * gen) |
---|
| 2522 | { |
---|
| 2523 | if (gen == NULL) return(1); |
---|
| 2524 | return(gen->status == CUDD_GEN_EMPTY); |
---|
| 2525 | |
---|
| 2526 | } /* end of Cudd_IsGenEmpty */ |
---|
| 2527 | |
---|
| 2528 | |
---|
| 2529 | /**Function******************************************************************** |
---|
| 2530 | |
---|
| 2531 | Synopsis [Builds a cube of BDD variables from an array of indices.] |
---|
| 2532 | |
---|
| 2533 | Description [Builds a cube of BDD variables from an array of indices. |
---|
| 2534 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
| 2535 | |
---|
| 2536 | SideEffects [None] |
---|
| 2537 | |
---|
| 2538 | SeeAlso [Cudd_bddComputeCube Cudd_CubeArrayToBdd] |
---|
| 2539 | |
---|
| 2540 | ******************************************************************************/ |
---|
| 2541 | DdNode * |
---|
| 2542 | Cudd_IndicesToCube( |
---|
| 2543 | DdManager * dd, |
---|
| 2544 | int * array, |
---|
| 2545 | int n) |
---|
| 2546 | { |
---|
| 2547 | DdNode *cube, *tmp; |
---|
| 2548 | int i; |
---|
| 2549 | |
---|
| 2550 | cube = DD_ONE(dd); |
---|
| 2551 | cuddRef(cube); |
---|
| 2552 | for (i = n - 1; i >= 0; i--) { |
---|
| 2553 | tmp = Cudd_bddAnd(dd,Cudd_bddIthVar(dd,array[i]),cube); |
---|
| 2554 | if (tmp == NULL) { |
---|
| 2555 | Cudd_RecursiveDeref(dd,cube); |
---|
| 2556 | return(NULL); |
---|
| 2557 | } |
---|
| 2558 | cuddRef(tmp); |
---|
| 2559 | Cudd_RecursiveDeref(dd,cube); |
---|
| 2560 | cube = tmp; |
---|
| 2561 | } |
---|
| 2562 | |
---|
| 2563 | cuddDeref(cube); |
---|
| 2564 | return(cube); |
---|
| 2565 | |
---|
| 2566 | } /* end of Cudd_IndicesToCube */ |
---|
| 2567 | |
---|
| 2568 | |
---|
| 2569 | /**Function******************************************************************** |
---|
| 2570 | |
---|
| 2571 | Synopsis [Prints the package version number.] |
---|
| 2572 | |
---|
| 2573 | Description [] |
---|
| 2574 | |
---|
| 2575 | SideEffects [None] |
---|
| 2576 | |
---|
| 2577 | SeeAlso [] |
---|
| 2578 | |
---|
| 2579 | ******************************************************************************/ |
---|
| 2580 | void |
---|
| 2581 | Cudd_PrintVersion( |
---|
| 2582 | FILE * fp) |
---|
| 2583 | { |
---|
| 2584 | (void) fprintf(fp, "%s\n", CUDD_VERSION); |
---|
| 2585 | |
---|
| 2586 | } /* end of Cudd_PrintVersion */ |
---|
| 2587 | |
---|
| 2588 | |
---|
| 2589 | /**Function******************************************************************** |
---|
| 2590 | |
---|
| 2591 | Synopsis [Computes the average distance between adjacent nodes.] |
---|
| 2592 | |
---|
| 2593 | Description [Computes the average distance between adjacent nodes in |
---|
| 2594 | the manager. Adjacent nodes are node pairs such that the second node |
---|
| 2595 | is the then child, else child, or next node in the collision list.] |
---|
| 2596 | |
---|
| 2597 | SideEffects [None] |
---|
| 2598 | |
---|
| 2599 | SeeAlso [] |
---|
| 2600 | |
---|
| 2601 | ******************************************************************************/ |
---|
| 2602 | double |
---|
| 2603 | Cudd_AverageDistance( |
---|
| 2604 | DdManager * dd) |
---|
| 2605 | { |
---|
| 2606 | double tetotal, nexttotal; |
---|
| 2607 | double tesubtotal, nextsubtotal; |
---|
| 2608 | double temeasured, nextmeasured; |
---|
| 2609 | int i, j; |
---|
| 2610 | int slots, nvars; |
---|
| 2611 | long diff; |
---|
| 2612 | DdNode *scan; |
---|
| 2613 | DdNodePtr *nodelist; |
---|
| 2614 | DdNode *sentinel = &(dd->sentinel); |
---|
| 2615 | |
---|
| 2616 | nvars = dd->size; |
---|
| 2617 | if (nvars == 0) return(0.0); |
---|
| 2618 | |
---|
| 2619 | /* Initialize totals. */ |
---|
| 2620 | tetotal = 0.0; |
---|
| 2621 | nexttotal = 0.0; |
---|
| 2622 | temeasured = 0.0; |
---|
| 2623 | nextmeasured = 0.0; |
---|
| 2624 | |
---|
| 2625 | /* Scan the variable subtables. */ |
---|
| 2626 | for (i = 0; i < nvars; i++) { |
---|
| 2627 | nodelist = dd->subtables[i].nodelist; |
---|
| 2628 | tesubtotal = 0.0; |
---|
| 2629 | nextsubtotal = 0.0; |
---|
| 2630 | slots = dd->subtables[i].slots; |
---|
| 2631 | for (j = 0; j < slots; j++) { |
---|
| 2632 | scan = nodelist[j]; |
---|
| 2633 | while (scan != sentinel) { |
---|
| 2634 | diff = (long) scan - (long) cuddT(scan); |
---|
| 2635 | tesubtotal += (double) ddAbs(diff); |
---|
| 2636 | diff = (long) scan - (long) Cudd_Regular(cuddE(scan)); |
---|
| 2637 | tesubtotal += (double) ddAbs(diff); |
---|
| 2638 | temeasured += 2.0; |
---|
| 2639 | if (scan->next != NULL) { |
---|
| 2640 | diff = (long) scan - (long) scan->next; |
---|
| 2641 | nextsubtotal += (double) ddAbs(diff); |
---|
| 2642 | nextmeasured += 1.0; |
---|
| 2643 | } |
---|
| 2644 | scan = scan->next; |
---|
| 2645 | } |
---|
| 2646 | } |
---|
| 2647 | tetotal += tesubtotal; |
---|
| 2648 | nexttotal += nextsubtotal; |
---|
| 2649 | } |
---|
| 2650 | |
---|
| 2651 | /* Scan the constant table. */ |
---|
| 2652 | nodelist = dd->constants.nodelist; |
---|
| 2653 | nextsubtotal = 0.0; |
---|
| 2654 | slots = dd->constants.slots; |
---|
| 2655 | for (j = 0; j < slots; j++) { |
---|
| 2656 | scan = nodelist[j]; |
---|
| 2657 | while (scan != NULL) { |
---|
| 2658 | if (scan->next != NULL) { |
---|
| 2659 | diff = (long) scan - (long) scan->next; |
---|
| 2660 | nextsubtotal += (double) ddAbs(diff); |
---|
| 2661 | nextmeasured += 1.0; |
---|
| 2662 | } |
---|
| 2663 | scan = scan->next; |
---|
| 2664 | } |
---|
| 2665 | } |
---|
| 2666 | nexttotal += nextsubtotal; |
---|
| 2667 | |
---|
| 2668 | return((tetotal + nexttotal) / (temeasured + nextmeasured)); |
---|
| 2669 | |
---|
| 2670 | } /* end of Cudd_AverageDistance */ |
---|
| 2671 | |
---|
| 2672 | |
---|
| 2673 | /**Function******************************************************************** |
---|
| 2674 | |
---|
| 2675 | Synopsis [Portable random number generator.] |
---|
| 2676 | |
---|
| 2677 | Description [Portable number generator based on ran2 from "Numerical |
---|
| 2678 | Recipes in C." It is a long period (> 2 * 10^18) random number generator |
---|
| 2679 | of L'Ecuyer with Bays-Durham shuffle. Returns a long integer uniformly |
---|
| 2680 | distributed between 0 and 2147483561 (inclusive of the endpoint values). |
---|
| 2681 | The random generator can be explicitly initialized by calling |
---|
| 2682 | Cudd_Srandom. If no explicit initialization is performed, then the |
---|
| 2683 | seed 1 is assumed.] |
---|
| 2684 | |
---|
| 2685 | SideEffects [None] |
---|
| 2686 | |
---|
| 2687 | SeeAlso [Cudd_Srandom] |
---|
| 2688 | |
---|
| 2689 | ******************************************************************************/ |
---|
| 2690 | long |
---|
| 2691 | Cudd_Random(void) |
---|
| 2692 | { |
---|
| 2693 | int i; /* index in the shuffle table */ |
---|
| 2694 | long int w; /* work variable */ |
---|
| 2695 | |
---|
| 2696 | /* cuddRand == 0 if the geneartor has not been initialized yet. */ |
---|
| 2697 | if (cuddRand == 0) Cudd_Srandom(1); |
---|
| 2698 | |
---|
| 2699 | /* Compute cuddRand = (cuddRand * LEQA1) % MODULUS1 avoiding |
---|
| 2700 | ** overflows by Schrage's method. |
---|
| 2701 | */ |
---|
| 2702 | w = cuddRand / LEQQ1; |
---|
| 2703 | cuddRand = LEQA1 * (cuddRand - w * LEQQ1) - w * LEQR1; |
---|
| 2704 | cuddRand += (cuddRand < 0) * MODULUS1; |
---|
| 2705 | |
---|
| 2706 | /* Compute cuddRand2 = (cuddRand2 * LEQA2) % MODULUS2 avoiding |
---|
| 2707 | ** overflows by Schrage's method. |
---|
| 2708 | */ |
---|
| 2709 | w = cuddRand2 / LEQQ2; |
---|
| 2710 | cuddRand2 = LEQA2 * (cuddRand2 - w * LEQQ2) - w * LEQR2; |
---|
| 2711 | cuddRand2 += (cuddRand2 < 0) * MODULUS2; |
---|
| 2712 | |
---|
| 2713 | /* cuddRand is shuffled with the Bays-Durham algorithm. |
---|
| 2714 | ** shuffleSelect and cuddRand2 are combined to generate the output. |
---|
| 2715 | */ |
---|
| 2716 | |
---|
| 2717 | /* Pick one element from the shuffle table; "i" will be in the range |
---|
| 2718 | ** from 0 to STAB_SIZE-1. |
---|
| 2719 | */ |
---|
| 2720 | i = (int) (shuffleSelect / STAB_DIV); |
---|
| 2721 | /* Mix the element of the shuffle table with the current iterate of |
---|
| 2722 | ** the second sub-generator, and replace the chosen element of the |
---|
| 2723 | ** shuffle table with the current iterate of the first sub-generator. |
---|
| 2724 | */ |
---|
| 2725 | shuffleSelect = shuffleTable[i] - cuddRand2; |
---|
| 2726 | shuffleTable[i] = cuddRand; |
---|
| 2727 | shuffleSelect += (shuffleSelect < 1) * (MODULUS1 - 1); |
---|
| 2728 | /* Since shuffleSelect != 0, and we want to be able to return 0, |
---|
| 2729 | ** here we subtract 1 before returning. |
---|
| 2730 | */ |
---|
| 2731 | return(shuffleSelect - 1); |
---|
| 2732 | |
---|
| 2733 | } /* end of Cudd_Random */ |
---|
| 2734 | |
---|
| 2735 | |
---|
| 2736 | /**Function******************************************************************** |
---|
| 2737 | |
---|
| 2738 | Synopsis [Initializer for the portable random number generator.] |
---|
| 2739 | |
---|
| 2740 | Description [Initializer for the portable number generator based on |
---|
| 2741 | ran2 in "Numerical Recipes in C." The input is the seed for the |
---|
| 2742 | generator. If it is negative, its absolute value is taken as seed. |
---|
| 2743 | If it is 0, then 1 is taken as seed. The initialized sets up the two |
---|
| 2744 | recurrences used to generate a long-period stream, and sets up the |
---|
| 2745 | shuffle table.] |
---|
| 2746 | |
---|
| 2747 | SideEffects [None] |
---|
| 2748 | |
---|
| 2749 | SeeAlso [Cudd_Random] |
---|
| 2750 | |
---|
| 2751 | ******************************************************************************/ |
---|
| 2752 | void |
---|
| 2753 | Cudd_Srandom( |
---|
| 2754 | long seed) |
---|
| 2755 | { |
---|
| 2756 | int i; |
---|
| 2757 | |
---|
| 2758 | if (seed < 0) cuddRand = -seed; |
---|
| 2759 | else if (seed == 0) cuddRand = 1; |
---|
| 2760 | else cuddRand = seed; |
---|
| 2761 | cuddRand2 = cuddRand; |
---|
| 2762 | /* Load the shuffle table (after 11 warm-ups). */ |
---|
| 2763 | for (i = 0; i < STAB_SIZE + 11; i++) { |
---|
| 2764 | long int w; |
---|
| 2765 | w = cuddRand / LEQQ1; |
---|
| 2766 | cuddRand = LEQA1 * (cuddRand - w * LEQQ1) - w * LEQR1; |
---|
| 2767 | cuddRand += (cuddRand < 0) * MODULUS1; |
---|
| 2768 | shuffleTable[i % STAB_SIZE] = cuddRand; |
---|
| 2769 | } |
---|
| 2770 | shuffleSelect = shuffleTable[1 % STAB_SIZE]; |
---|
| 2771 | |
---|
| 2772 | } /* end of Cudd_Srandom */ |
---|
| 2773 | |
---|
| 2774 | |
---|
| 2775 | /**Function******************************************************************** |
---|
| 2776 | |
---|
| 2777 | Synopsis [Computes the density of a BDD or ADD.] |
---|
| 2778 | |
---|
| 2779 | Description [Computes the density of a BDD or ADD. The density is |
---|
| 2780 | the ratio of the number of minterms to the number of nodes. If 0 is |
---|
| 2781 | passed as number of variables, the number of variables existing in |
---|
| 2782 | the manager is used. Returns the density if successful; (double) |
---|
| 2783 | CUDD_OUT_OF_MEM otherwise.] |
---|
| 2784 | |
---|
| 2785 | SideEffects [None] |
---|
| 2786 | |
---|
| 2787 | SeeAlso [Cudd_CountMinterm Cudd_DagSize] |
---|
| 2788 | |
---|
| 2789 | ******************************************************************************/ |
---|
| 2790 | double |
---|
| 2791 | Cudd_Density( |
---|
| 2792 | DdManager * dd /* manager */, |
---|
| 2793 | DdNode * f /* function whose density is sought */, |
---|
| 2794 | int nvars /* size of the support of f */) |
---|
| 2795 | { |
---|
| 2796 | double minterms; |
---|
| 2797 | int nodes; |
---|
| 2798 | double density; |
---|
| 2799 | |
---|
| 2800 | if (nvars == 0) nvars = dd->size; |
---|
| 2801 | minterms = Cudd_CountMinterm(dd,f,nvars); |
---|
| 2802 | if (minterms == (double) CUDD_OUT_OF_MEM) return(minterms); |
---|
| 2803 | nodes = Cudd_DagSize(f); |
---|
| 2804 | density = minterms / (double) nodes; |
---|
| 2805 | return(density); |
---|
| 2806 | |
---|
| 2807 | } /* end of Cudd_Density */ |
---|
| 2808 | |
---|
| 2809 | |
---|
| 2810 | /**Function******************************************************************** |
---|
| 2811 | |
---|
| 2812 | Synopsis [Warns that a memory allocation failed.] |
---|
| 2813 | |
---|
| 2814 | Description [Warns that a memory allocation failed. |
---|
| 2815 | This function can be used as replacement of MMout_of_memory to prevent |
---|
| 2816 | the safe_mem functions of the util package from exiting when malloc |
---|
| 2817 | returns NULL. One possible use is in case of discretionary allocations; |
---|
| 2818 | for instance, the allocation of memory to enlarge the computed table.] |
---|
| 2819 | |
---|
| 2820 | SideEffects [None] |
---|
| 2821 | |
---|
| 2822 | SeeAlso [] |
---|
| 2823 | |
---|
| 2824 | ******************************************************************************/ |
---|
| 2825 | void |
---|
| 2826 | Cudd_OutOfMem( |
---|
| 2827 | long size /* size of the allocation that failed */) |
---|
| 2828 | { |
---|
| 2829 | (void) fflush(stdout); |
---|
| 2830 | (void) fprintf(stderr, "\nunable to allocate %ld bytes\n", size); |
---|
| 2831 | return; |
---|
| 2832 | |
---|
| 2833 | } /* end of Cudd_OutOfMem */ |
---|
| 2834 | |
---|
| 2835 | |
---|
| 2836 | /*---------------------------------------------------------------------------*/ |
---|
| 2837 | /* Definition of internal functions */ |
---|
| 2838 | /*---------------------------------------------------------------------------*/ |
---|
| 2839 | |
---|
| 2840 | |
---|
| 2841 | /**Function******************************************************************** |
---|
| 2842 | |
---|
| 2843 | Synopsis [Prints a DD to the standard output. One line per node is |
---|
| 2844 | printed.] |
---|
| 2845 | |
---|
| 2846 | Description [Prints a DD to the standard output. One line per node is |
---|
| 2847 | printed. Returns 1 if successful; 0 otherwise.] |
---|
| 2848 | |
---|
| 2849 | SideEffects [None] |
---|
| 2850 | |
---|
| 2851 | SeeAlso [Cudd_PrintDebug] |
---|
| 2852 | |
---|
| 2853 | ******************************************************************************/ |
---|
| 2854 | int |
---|
| 2855 | cuddP( |
---|
| 2856 | DdManager * dd, |
---|
| 2857 | DdNode * f) |
---|
| 2858 | { |
---|
| 2859 | int retval; |
---|
| 2860 | st_table *table = st_init_table(st_ptrcmp,st_ptrhash); |
---|
| 2861 | |
---|
| 2862 | if (table == NULL) return(0); |
---|
| 2863 | |
---|
| 2864 | retval = dp2(dd,f,table); |
---|
| 2865 | st_free_table(table); |
---|
| 2866 | (void) fputc('\n',dd->out); |
---|
| 2867 | return(retval); |
---|
| 2868 | |
---|
| 2869 | } /* end of cuddP */ |
---|
| 2870 | |
---|
| 2871 | |
---|
| 2872 | /**Function******************************************************************** |
---|
| 2873 | |
---|
| 2874 | Synopsis [Frees the memory used to store the minterm counts recorded |
---|
| 2875 | in the visited table.] |
---|
| 2876 | |
---|
| 2877 | Description [Frees the memory used to store the minterm counts |
---|
| 2878 | recorded in the visited table. Returns ST_CONTINUE.] |
---|
| 2879 | |
---|
| 2880 | SideEffects [None] |
---|
| 2881 | |
---|
| 2882 | ******************************************************************************/ |
---|
| 2883 | enum st_retval |
---|
| 2884 | cuddStCountfree( |
---|
| 2885 | char * key, |
---|
| 2886 | char * value, |
---|
| 2887 | char * arg) |
---|
| 2888 | { |
---|
| 2889 | double *d; |
---|
| 2890 | |
---|
| 2891 | d = (double *)value; |
---|
| 2892 | FREE(d); |
---|
| 2893 | return(ST_CONTINUE); |
---|
| 2894 | |
---|
| 2895 | } /* end of cuddStCountfree */ |
---|
| 2896 | |
---|
| 2897 | |
---|
| 2898 | /**Function******************************************************************** |
---|
| 2899 | |
---|
| 2900 | Synopsis [Recursively collects all the nodes of a DD in a symbol |
---|
| 2901 | table.] |
---|
| 2902 | |
---|
| 2903 | Description [Traverses the DD f and collects all its nodes in a |
---|
| 2904 | symbol table. f is assumed to be a regular pointer and |
---|
| 2905 | cuddCollectNodes guarantees this assumption in the recursive calls. |
---|
| 2906 | Returns 1 in case of success; 0 otherwise.] |
---|
| 2907 | |
---|
| 2908 | SideEffects [None] |
---|
| 2909 | |
---|
| 2910 | SeeAlso [] |
---|
| 2911 | |
---|
| 2912 | ******************************************************************************/ |
---|
| 2913 | int |
---|
| 2914 | cuddCollectNodes( |
---|
| 2915 | DdNode * f, |
---|
| 2916 | st_table * visited) |
---|
| 2917 | { |
---|
| 2918 | DdNode *T, *E; |
---|
| 2919 | int retval; |
---|
| 2920 | |
---|
| 2921 | #ifdef DD_DEBUG |
---|
| 2922 | assert(!Cudd_IsComplement(f)); |
---|
| 2923 | #endif |
---|
| 2924 | |
---|
| 2925 | /* If already visited, nothing to do. */ |
---|
| 2926 | if (st_is_member(visited, (char *) f) == 1) |
---|
| 2927 | return(1); |
---|
| 2928 | |
---|
| 2929 | /* Check for abnormal condition that should never happen. */ |
---|
| 2930 | if (f == NULL) |
---|
| 2931 | return(0); |
---|
| 2932 | |
---|
| 2933 | /* Mark node as visited. */ |
---|
| 2934 | if (st_add_direct(visited, (char *) f, NULL) == ST_OUT_OF_MEM) |
---|
| 2935 | return(0); |
---|
| 2936 | |
---|
| 2937 | /* Check terminal case. */ |
---|
| 2938 | if (cuddIsConstant(f)) |
---|
| 2939 | return(1); |
---|
| 2940 | |
---|
| 2941 | /* Recursive calls. */ |
---|
| 2942 | T = cuddT(f); |
---|
| 2943 | retval = cuddCollectNodes(T,visited); |
---|
| 2944 | if (retval != 1) return(retval); |
---|
| 2945 | E = Cudd_Regular(cuddE(f)); |
---|
| 2946 | retval = cuddCollectNodes(E,visited); |
---|
| 2947 | return(retval); |
---|
| 2948 | |
---|
| 2949 | } /* end of cuddCollectNodes */ |
---|
| 2950 | |
---|
| 2951 | |
---|
| 2952 | /**Function******************************************************************** |
---|
| 2953 | |
---|
| 2954 | Synopsis [Recursively collects all the nodes of a DD in an array.] |
---|
| 2955 | |
---|
| 2956 | Description [Traverses the DD f and collects all its nodes in an array. |
---|
| 2957 | The caller should free the array returned by cuddNodeArray. |
---|
| 2958 | Returns a pointer to the array of nodes in case of success; NULL |
---|
| 2959 | otherwise. The nodes are collected in reverse topological order, so |
---|
| 2960 | that a node is always preceded in the array by all its descendants.] |
---|
| 2961 | |
---|
| 2962 | SideEffects [The number of nodes is returned as a side effect.] |
---|
| 2963 | |
---|
| 2964 | SeeAlso [Cudd_FirstNode] |
---|
| 2965 | |
---|
| 2966 | ******************************************************************************/ |
---|
| 2967 | DdNodePtr * |
---|
| 2968 | cuddNodeArray( |
---|
| 2969 | DdNode *f, |
---|
| 2970 | int *n) |
---|
| 2971 | { |
---|
| 2972 | DdNodePtr *table; |
---|
| 2973 | int size, retval; |
---|
| 2974 | |
---|
| 2975 | size = ddDagInt(Cudd_Regular(f)); |
---|
| 2976 | table = ALLOC(DdNodePtr, size); |
---|
| 2977 | if (table == NULL) { |
---|
| 2978 | ddClearFlag(Cudd_Regular(f)); |
---|
| 2979 | return(NULL); |
---|
| 2980 | } |
---|
| 2981 | |
---|
| 2982 | retval = cuddNodeArrayRecur(f, table, 0); |
---|
| 2983 | assert(retval == size); |
---|
| 2984 | |
---|
| 2985 | *n = size; |
---|
| 2986 | return(table); |
---|
| 2987 | |
---|
| 2988 | } /* cuddNodeArray */ |
---|
| 2989 | |
---|
| 2990 | |
---|
| 2991 | /*---------------------------------------------------------------------------*/ |
---|
| 2992 | /* Definition of static functions */ |
---|
| 2993 | /*---------------------------------------------------------------------------*/ |
---|
| 2994 | |
---|
| 2995 | |
---|
| 2996 | /**Function******************************************************************** |
---|
| 2997 | |
---|
| 2998 | Synopsis [Performs the recursive step of cuddP.] |
---|
| 2999 | |
---|
| 3000 | Description [Performs the recursive step of cuddP. Returns 1 in case |
---|
| 3001 | of success; 0 otherwise.] |
---|
| 3002 | |
---|
| 3003 | SideEffects [None] |
---|
| 3004 | |
---|
| 3005 | ******************************************************************************/ |
---|
| 3006 | static int |
---|
| 3007 | dp2( |
---|
| 3008 | DdManager *dd, |
---|
| 3009 | DdNode * f, |
---|
| 3010 | st_table * t) |
---|
| 3011 | { |
---|
| 3012 | DdNode *g, *n, *N; |
---|
| 3013 | int T,E; |
---|
| 3014 | |
---|
| 3015 | if (f == NULL) { |
---|
| 3016 | return(0); |
---|
| 3017 | } |
---|
| 3018 | g = Cudd_Regular(f); |
---|
| 3019 | if (cuddIsConstant(g)) { |
---|
| 3020 | #if SIZEOF_VOID_P == 8 |
---|
| 3021 | (void) fprintf(dd->out,"ID = %c0x%lx\tvalue = %-9g\n", bang(f), |
---|
| 3022 | (unsigned long) g / (unsigned long) sizeof(DdNode),cuddV(g)); |
---|
| 3023 | #else |
---|
| 3024 | (void) fprintf(dd->out,"ID = %c0x%x\tvalue = %-9g\n", bang(f), |
---|
| 3025 | (unsigned) g / (unsigned) sizeof(DdNode),cuddV(g)); |
---|
| 3026 | #endif |
---|
| 3027 | return(1); |
---|
| 3028 | } |
---|
| 3029 | if (st_is_member(t,(char *) g) == 1) { |
---|
| 3030 | return(1); |
---|
| 3031 | } |
---|
| 3032 | if (st_add_direct(t,(char *) g,NULL) == ST_OUT_OF_MEM) |
---|
| 3033 | return(0); |
---|
| 3034 | #ifdef DD_STATS |
---|
| 3035 | #if SIZEOF_VOID_P == 8 |
---|
| 3036 | (void) fprintf(dd->out,"ID = %c0x%lx\tindex = %d\tr = %d\t", bang(f), |
---|
| 3037 | (unsigned long) g / (unsigned long) sizeof(DdNode), g->index, g->ref); |
---|
| 3038 | #else |
---|
| 3039 | (void) fprintf(dd->out,"ID = %c0x%x\tindex = %d\tr = %d\t", bang(f), |
---|
| 3040 | (unsigned) g / (unsigned) sizeof(DdNode),g->index,g->ref); |
---|
| 3041 | #endif |
---|
| 3042 | #else |
---|
| 3043 | #if SIZEOF_VOID_P == 8 |
---|
| 3044 | (void) fprintf(dd->out,"ID = %c0x%lx\tindex = %d\t", bang(f), |
---|
| 3045 | (unsigned long) g / (unsigned long) sizeof(DdNode),g->index); |
---|
| 3046 | #else |
---|
| 3047 | (void) fprintf(dd->out,"ID = %c0x%x\tindex = %d\t", bang(f), |
---|
| 3048 | (unsigned) g / (unsigned) sizeof(DdNode),g->index); |
---|
| 3049 | #endif |
---|
| 3050 | #endif |
---|
| 3051 | n = cuddT(g); |
---|
| 3052 | if (cuddIsConstant(n)) { |
---|
| 3053 | (void) fprintf(dd->out,"T = %-9g\t",cuddV(n)); |
---|
| 3054 | T = 1; |
---|
| 3055 | } else { |
---|
| 3056 | #if SIZEOF_VOID_P == 8 |
---|
| 3057 | (void) fprintf(dd->out,"T = 0x%lx\t",(unsigned long) n / (unsigned long) sizeof(DdNode)); |
---|
| 3058 | #else |
---|
| 3059 | (void) fprintf(dd->out,"T = 0x%x\t",(unsigned) n / (unsigned) sizeof(DdNode)); |
---|
| 3060 | #endif |
---|
| 3061 | T = 0; |
---|
| 3062 | } |
---|
| 3063 | |
---|
| 3064 | n = cuddE(g); |
---|
| 3065 | N = Cudd_Regular(n); |
---|
| 3066 | if (cuddIsConstant(N)) { |
---|
| 3067 | (void) fprintf(dd->out,"E = %c%-9g\n",bang(n),cuddV(N)); |
---|
| 3068 | E = 1; |
---|
| 3069 | } else { |
---|
| 3070 | #if SIZEOF_VOID_P == 8 |
---|
| 3071 | (void) fprintf(dd->out,"E = %c0x%lx\n", bang(n), (unsigned long) N/(unsigned long) sizeof(DdNode)); |
---|
| 3072 | #else |
---|
| 3073 | (void) fprintf(dd->out,"E = %c0x%x\n", bang(n), (unsigned) N/(unsigned) sizeof(DdNode)); |
---|
| 3074 | #endif |
---|
| 3075 | E = 0; |
---|
| 3076 | } |
---|
| 3077 | if (E == 0) { |
---|
| 3078 | if (dp2(dd,N,t) == 0) |
---|
| 3079 | return(0); |
---|
| 3080 | } |
---|
| 3081 | if (T == 0) { |
---|
| 3082 | if (dp2(dd,cuddT(g),t) == 0) |
---|
| 3083 | return(0); |
---|
| 3084 | } |
---|
| 3085 | return(1); |
---|
| 3086 | |
---|
| 3087 | } /* end of dp2 */ |
---|
| 3088 | |
---|
| 3089 | |
---|
| 3090 | /**Function******************************************************************** |
---|
| 3091 | |
---|
| 3092 | Synopsis [Performs the recursive step of Cudd_PrintMinterm.] |
---|
| 3093 | |
---|
| 3094 | Description [] |
---|
| 3095 | |
---|
| 3096 | SideEffects [None] |
---|
| 3097 | |
---|
| 3098 | ******************************************************************************/ |
---|
| 3099 | static void |
---|
| 3100 | ddPrintMintermAux( |
---|
| 3101 | DdManager * dd /* manager */, |
---|
| 3102 | DdNode * node /* current node */, |
---|
| 3103 | int * list /* current recursion path */) |
---|
| 3104 | { |
---|
| 3105 | DdNode *N,*Nv,*Nnv; |
---|
| 3106 | int i,v,index; |
---|
| 3107 | |
---|
| 3108 | N = Cudd_Regular(node); |
---|
| 3109 | |
---|
| 3110 | if (cuddIsConstant(N)) { |
---|
| 3111 | /* Terminal case: Print one cube based on the current recursion |
---|
| 3112 | ** path, unless we have reached the background value (ADDs) or |
---|
| 3113 | ** the logical zero (BDDs). |
---|
| 3114 | */ |
---|
| 3115 | if (node != background && node != zero) { |
---|
| 3116 | for (i = 0; i < dd->size; i++) { |
---|
| 3117 | v = list[i]; |
---|
| 3118 | if (v == 0) (void) fprintf(dd->out,"0"); |
---|
| 3119 | else if (v == 1) (void) fprintf(dd->out,"1"); |
---|
| 3120 | else (void) fprintf(dd->out,"-"); |
---|
| 3121 | } |
---|
| 3122 | (void) fprintf(dd->out," % g\n", cuddV(node)); |
---|
| 3123 | } |
---|
| 3124 | } else { |
---|
| 3125 | Nv = cuddT(N); |
---|
| 3126 | Nnv = cuddE(N); |
---|
| 3127 | if (Cudd_IsComplement(node)) { |
---|
| 3128 | Nv = Cudd_Not(Nv); |
---|
| 3129 | Nnv = Cudd_Not(Nnv); |
---|
| 3130 | } |
---|
| 3131 | index = N->index; |
---|
| 3132 | list[index] = 0; |
---|
| 3133 | ddPrintMintermAux(dd,Nnv,list); |
---|
| 3134 | list[index] = 1; |
---|
| 3135 | ddPrintMintermAux(dd,Nv,list); |
---|
| 3136 | list[index] = 2; |
---|
| 3137 | } |
---|
| 3138 | return; |
---|
| 3139 | |
---|
| 3140 | } /* end of ddPrintMintermAux */ |
---|
| 3141 | |
---|
| 3142 | |
---|
| 3143 | /**Function******************************************************************** |
---|
| 3144 | |
---|
| 3145 | Synopsis [Performs the recursive step of Cudd_DagSize.] |
---|
| 3146 | |
---|
| 3147 | Description [Performs the recursive step of Cudd_DagSize. Returns the |
---|
| 3148 | number of nodes in the graph rooted at n.] |
---|
| 3149 | |
---|
| 3150 | SideEffects [None] |
---|
| 3151 | |
---|
| 3152 | ******************************************************************************/ |
---|
| 3153 | static int |
---|
| 3154 | ddDagInt( |
---|
| 3155 | DdNode * n) |
---|
| 3156 | { |
---|
| 3157 | int tval, eval; |
---|
| 3158 | |
---|
| 3159 | if (Cudd_IsComplement(n->next)) { |
---|
| 3160 | return(0); |
---|
| 3161 | } |
---|
| 3162 | n->next = Cudd_Not(n->next); |
---|
| 3163 | if (cuddIsConstant(n)) { |
---|
| 3164 | return(1); |
---|
| 3165 | } |
---|
| 3166 | tval = ddDagInt(cuddT(n)); |
---|
| 3167 | eval = ddDagInt(Cudd_Regular(cuddE(n))); |
---|
| 3168 | return(1 + tval + eval); |
---|
| 3169 | |
---|
| 3170 | } /* end of ddDagInt */ |
---|
| 3171 | |
---|
| 3172 | |
---|
| 3173 | /**Function******************************************************************** |
---|
| 3174 | |
---|
| 3175 | Synopsis [Performs the recursive step of cuddNodeArray.] |
---|
| 3176 | |
---|
| 3177 | Description [Performs the recursive step of cuddNodeArray. Returns |
---|
| 3178 | an the number of nodes in the DD. Clear the least significant bit |
---|
| 3179 | of the next field that was used as visited flag by |
---|
| 3180 | cuddNodeArrayRecur when counting the nodes. node is supposed to be |
---|
| 3181 | regular; the invariant is maintained by this procedure.] |
---|
| 3182 | |
---|
| 3183 | SideEffects [None] |
---|
| 3184 | |
---|
| 3185 | SeeAlso [] |
---|
| 3186 | |
---|
| 3187 | ******************************************************************************/ |
---|
| 3188 | static int |
---|
| 3189 | cuddNodeArrayRecur( |
---|
| 3190 | DdNode *f, |
---|
| 3191 | DdNodePtr *table, |
---|
| 3192 | int index) |
---|
| 3193 | { |
---|
| 3194 | int tindex, eindex; |
---|
| 3195 | |
---|
| 3196 | if (!Cudd_IsComplement(f->next)) { |
---|
| 3197 | return(index); |
---|
| 3198 | } |
---|
| 3199 | /* Clear visited flag. */ |
---|
| 3200 | f->next = Cudd_Regular(f->next); |
---|
| 3201 | if (cuddIsConstant(f)) { |
---|
| 3202 | table[index] = f; |
---|
| 3203 | return(index + 1); |
---|
| 3204 | } |
---|
| 3205 | tindex = cuddNodeArrayRecur(cuddT(f), table, index); |
---|
| 3206 | eindex = cuddNodeArrayRecur(Cudd_Regular(cuddE(f)), table, tindex); |
---|
| 3207 | table[eindex] = f; |
---|
| 3208 | return(eindex + 1); |
---|
| 3209 | |
---|
| 3210 | } /* end of cuddNodeArrayRecur */ |
---|
| 3211 | |
---|
| 3212 | |
---|
| 3213 | /**Function******************************************************************** |
---|
| 3214 | |
---|
| 3215 | Synopsis [Performs the recursive step of Cudd_CofactorEstimate.] |
---|
| 3216 | |
---|
| 3217 | Description [Performs the recursive step of Cudd_CofactorEstimate. |
---|
| 3218 | Returns an estimate of the number of nodes in the DD of a |
---|
| 3219 | cofactor of node. Uses the least significant bit of the next field as |
---|
| 3220 | visited flag. node is supposed to be regular; the invariant is maintained |
---|
| 3221 | by this procedure.] |
---|
| 3222 | |
---|
| 3223 | SideEffects [None] |
---|
| 3224 | |
---|
| 3225 | SeeAlso [] |
---|
| 3226 | |
---|
| 3227 | ******************************************************************************/ |
---|
| 3228 | static int |
---|
| 3229 | cuddEstimateCofactor( |
---|
| 3230 | DdManager *dd, |
---|
| 3231 | st_table *table, |
---|
| 3232 | DdNode * node, |
---|
| 3233 | int i, |
---|
| 3234 | int phase, |
---|
| 3235 | DdNode ** ptr) |
---|
| 3236 | { |
---|
| 3237 | int tval, eval, val; |
---|
| 3238 | DdNode *ptrT, *ptrE; |
---|
| 3239 | |
---|
| 3240 | if (Cudd_IsComplement(node->next)) { |
---|
| 3241 | if (!st_lookup(table,(char *)node,(char **)ptr)) { |
---|
| 3242 | st_add_direct(table,(char *)node,(char *)node); |
---|
| 3243 | *ptr = node; |
---|
| 3244 | } |
---|
| 3245 | return(0); |
---|
| 3246 | } |
---|
| 3247 | node->next = Cudd_Not(node->next); |
---|
| 3248 | if (cuddIsConstant(node)) { |
---|
| 3249 | *ptr = node; |
---|
| 3250 | if (st_add_direct(table,(char *)node,(char *)node) == ST_OUT_OF_MEM) |
---|
| 3251 | return(CUDD_OUT_OF_MEM); |
---|
| 3252 | return(1); |
---|
| 3253 | } |
---|
| 3254 | if ((int) node->index == i) { |
---|
| 3255 | if (phase == 1) { |
---|
| 3256 | *ptr = cuddT(node); |
---|
| 3257 | val = ddDagInt(cuddT(node)); |
---|
| 3258 | } else { |
---|
| 3259 | *ptr = cuddE(node); |
---|
| 3260 | val = ddDagInt(Cudd_Regular(cuddE(node))); |
---|
| 3261 | } |
---|
| 3262 | if (node->ref > 1) { |
---|
| 3263 | if (st_add_direct(table,(char *)node,(char *)*ptr) == |
---|
| 3264 | ST_OUT_OF_MEM) |
---|
| 3265 | return(CUDD_OUT_OF_MEM); |
---|
| 3266 | } |
---|
| 3267 | return(val); |
---|
| 3268 | } |
---|
| 3269 | if (dd->perm[node->index] > dd->perm[i]) { |
---|
| 3270 | *ptr = node; |
---|
| 3271 | tval = ddDagInt(cuddT(node)); |
---|
| 3272 | eval = ddDagInt(Cudd_Regular(cuddE(node))); |
---|
| 3273 | if (node->ref > 1) { |
---|
| 3274 | if (st_add_direct(table,(char *)node,(char *)node) == |
---|
| 3275 | ST_OUT_OF_MEM) |
---|
| 3276 | return(CUDD_OUT_OF_MEM); |
---|
| 3277 | } |
---|
| 3278 | val = 1 + tval + eval; |
---|
| 3279 | return(val); |
---|
| 3280 | } |
---|
| 3281 | tval = cuddEstimateCofactor(dd,table,cuddT(node),i,phase,&ptrT); |
---|
| 3282 | eval = cuddEstimateCofactor(dd,table,Cudd_Regular(cuddE(node)),i, |
---|
| 3283 | phase,&ptrE); |
---|
| 3284 | ptrE = Cudd_NotCond(ptrE,Cudd_IsComplement(cuddE(node))); |
---|
| 3285 | if (ptrT == ptrE) { /* recombination */ |
---|
| 3286 | *ptr = ptrT; |
---|
| 3287 | val = tval; |
---|
| 3288 | if (node->ref > 1) { |
---|
| 3289 | if (st_add_direct(table,(char *)node,(char *)*ptr) == |
---|
| 3290 | ST_OUT_OF_MEM) |
---|
| 3291 | return(CUDD_OUT_OF_MEM); |
---|
| 3292 | } |
---|
| 3293 | } else if ((ptrT != cuddT(node) || ptrE != cuddE(node)) && |
---|
| 3294 | (*ptr = cuddUniqueLookup(dd,node->index,ptrT,ptrE)) != NULL) { |
---|
| 3295 | if (Cudd_IsComplement((*ptr)->next)) { |
---|
| 3296 | val = 0; |
---|
| 3297 | } else { |
---|
| 3298 | val = 1 + tval + eval; |
---|
| 3299 | } |
---|
| 3300 | if (node->ref > 1) { |
---|
| 3301 | if (st_add_direct(table,(char *)node,(char *)*ptr) == |
---|
| 3302 | ST_OUT_OF_MEM) |
---|
| 3303 | return(CUDD_OUT_OF_MEM); |
---|
| 3304 | } |
---|
| 3305 | } else { |
---|
| 3306 | *ptr = node; |
---|
| 3307 | val = 1 + tval + eval; |
---|
| 3308 | } |
---|
| 3309 | return(val); |
---|
| 3310 | |
---|
| 3311 | } /* end of cuddEstimateCofactor */ |
---|
| 3312 | |
---|
| 3313 | |
---|
| 3314 | /**Function******************************************************************** |
---|
| 3315 | |
---|
| 3316 | Synopsis [Checks the unique table for the existence of an internal node.] |
---|
| 3317 | |
---|
| 3318 | Description [Checks the unique table for the existence of an internal |
---|
| 3319 | node. Returns a pointer to the node if it is in the table; NULL otherwise.] |
---|
| 3320 | |
---|
| 3321 | SideEffects [None] |
---|
| 3322 | |
---|
| 3323 | SeeAlso [cuddUniqueInter] |
---|
| 3324 | |
---|
| 3325 | ******************************************************************************/ |
---|
| 3326 | static DdNode * |
---|
| 3327 | cuddUniqueLookup( |
---|
| 3328 | DdManager * unique, |
---|
| 3329 | int index, |
---|
| 3330 | DdNode * T, |
---|
| 3331 | DdNode * E) |
---|
| 3332 | { |
---|
| 3333 | int posn; |
---|
| 3334 | unsigned int level; |
---|
| 3335 | DdNodePtr *nodelist; |
---|
| 3336 | DdNode *looking; |
---|
| 3337 | DdSubtable *subtable; |
---|
| 3338 | |
---|
| 3339 | if (index >= unique->size) { |
---|
| 3340 | return(NULL); |
---|
| 3341 | } |
---|
| 3342 | |
---|
| 3343 | level = unique->perm[index]; |
---|
| 3344 | subtable = &(unique->subtables[level]); |
---|
| 3345 | |
---|
| 3346 | #ifdef DD_DEBUG |
---|
| 3347 | assert(level < (unsigned) cuddI(unique,T->index)); |
---|
| 3348 | assert(level < (unsigned) cuddI(unique,Cudd_Regular(E)->index)); |
---|
| 3349 | #endif |
---|
| 3350 | |
---|
| 3351 | posn = ddHash(T, E, subtable->shift); |
---|
| 3352 | nodelist = subtable->nodelist; |
---|
| 3353 | looking = nodelist[posn]; |
---|
| 3354 | |
---|
| 3355 | while (T < cuddT(looking)) { |
---|
| 3356 | looking = Cudd_Regular(looking->next); |
---|
| 3357 | } |
---|
| 3358 | while (T == cuddT(looking) && E < cuddE(looking)) { |
---|
| 3359 | looking = Cudd_Regular(looking->next); |
---|
| 3360 | } |
---|
| 3361 | if (cuddT(looking) == T && cuddE(looking) == E) { |
---|
| 3362 | return(looking); |
---|
| 3363 | } |
---|
| 3364 | |
---|
| 3365 | return(NULL); |
---|
| 3366 | |
---|
| 3367 | } /* end of cuddUniqueLookup */ |
---|
| 3368 | |
---|
| 3369 | |
---|
| 3370 | /**Function******************************************************************** |
---|
| 3371 | |
---|
| 3372 | Synopsis [Performs the recursive step of Cudd_CofactorEstimateSimple.] |
---|
| 3373 | |
---|
| 3374 | Description [Performs the recursive step of Cudd_CofactorEstimateSimple. |
---|
| 3375 | Returns an estimate of the number of nodes in the DD of the positive |
---|
| 3376 | cofactor of node. Uses the least significant bit of the next field as |
---|
| 3377 | visited flag. node is supposed to be regular; the invariant is maintained |
---|
| 3378 | by this procedure.] |
---|
| 3379 | |
---|
| 3380 | SideEffects [None] |
---|
| 3381 | |
---|
| 3382 | SeeAlso [] |
---|
| 3383 | |
---|
| 3384 | ******************************************************************************/ |
---|
| 3385 | static int |
---|
| 3386 | cuddEstimateCofactorSimple( |
---|
| 3387 | DdNode * node, |
---|
| 3388 | int i) |
---|
| 3389 | { |
---|
| 3390 | int tval, eval; |
---|
| 3391 | |
---|
| 3392 | if (Cudd_IsComplement(node->next)) { |
---|
| 3393 | return(0); |
---|
| 3394 | } |
---|
| 3395 | node->next = Cudd_Not(node->next); |
---|
| 3396 | if (cuddIsConstant(node)) { |
---|
| 3397 | return(1); |
---|
| 3398 | } |
---|
| 3399 | tval = cuddEstimateCofactorSimple(cuddT(node),i); |
---|
| 3400 | if ((int) node->index == i) return(tval); |
---|
| 3401 | eval = cuddEstimateCofactorSimple(Cudd_Regular(cuddE(node)),i); |
---|
| 3402 | return(1 + tval + eval); |
---|
| 3403 | |
---|
| 3404 | } /* end of cuddEstimateCofactorSimple */ |
---|
| 3405 | |
---|
| 3406 | |
---|
| 3407 | /**Function******************************************************************** |
---|
| 3408 | |
---|
| 3409 | Synopsis [Performs the recursive step of Cudd_CountMinterm.] |
---|
| 3410 | |
---|
| 3411 | Description [Performs the recursive step of Cudd_CountMinterm. |
---|
| 3412 | It is based on the following identity. Let |f| be the |
---|
| 3413 | number of minterms of f. Then: |
---|
| 3414 | <xmp> |
---|
| 3415 | |f| = (|f0|+|f1|)/2 |
---|
| 3416 | </xmp> |
---|
| 3417 | where f0 and f1 are the two cofactors of f. Does not use the |
---|
| 3418 | identity |f'| = max - |f|, to minimize loss of accuracy due to |
---|
| 3419 | roundoff. Returns the number of minterms of the function rooted at |
---|
| 3420 | node.] |
---|
| 3421 | |
---|
| 3422 | SideEffects [None] |
---|
| 3423 | |
---|
| 3424 | ******************************************************************************/ |
---|
| 3425 | static double |
---|
| 3426 | ddCountMintermAux( |
---|
| 3427 | DdNode * node, |
---|
| 3428 | double max, |
---|
| 3429 | DdHashTable * table) |
---|
| 3430 | { |
---|
| 3431 | DdNode *N, *Nt, *Ne; |
---|
| 3432 | double min, minT, minE; |
---|
| 3433 | DdNode *res; |
---|
| 3434 | |
---|
| 3435 | N = Cudd_Regular(node); |
---|
| 3436 | |
---|
| 3437 | if (cuddIsConstant(N)) { |
---|
| 3438 | if (node == background || node == zero) { |
---|
| 3439 | return(0.0); |
---|
| 3440 | } else { |
---|
| 3441 | return(max); |
---|
| 3442 | } |
---|
| 3443 | } |
---|
| 3444 | if (N->ref != 1 && (res = cuddHashTableLookup1(table,node)) != NULL) { |
---|
| 3445 | min = cuddV(res); |
---|
| 3446 | if (res->ref == 0) { |
---|
| 3447 | table->manager->dead++; |
---|
| 3448 | table->manager->constants.dead++; |
---|
| 3449 | } |
---|
| 3450 | return(min); |
---|
| 3451 | } |
---|
| 3452 | |
---|
| 3453 | Nt = cuddT(N); Ne = cuddE(N); |
---|
| 3454 | if (Cudd_IsComplement(node)) { |
---|
| 3455 | Nt = Cudd_Not(Nt); Ne = Cudd_Not(Ne); |
---|
| 3456 | } |
---|
| 3457 | |
---|
| 3458 | minT = ddCountMintermAux(Nt,max,table); |
---|
| 3459 | if (minT == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
| 3460 | minT *= 0.5; |
---|
| 3461 | minE = ddCountMintermAux(Ne,max,table); |
---|
| 3462 | if (minE == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
| 3463 | minE *= 0.5; |
---|
| 3464 | min = minT + minE; |
---|
| 3465 | |
---|
| 3466 | if (N->ref != 1) { |
---|
| 3467 | ptrint fanout = (ptrint) N->ref; |
---|
| 3468 | cuddSatDec(fanout); |
---|
| 3469 | res = cuddUniqueConst(table->manager,min); |
---|
| 3470 | if (!cuddHashTableInsert1(table,node,res,fanout)) { |
---|
| 3471 | cuddRef(res); Cudd_RecursiveDeref(table->manager, res); |
---|
| 3472 | return((double)CUDD_OUT_OF_MEM); |
---|
| 3473 | } |
---|
| 3474 | } |
---|
| 3475 | |
---|
| 3476 | return(min); |
---|
| 3477 | |
---|
| 3478 | } /* end of ddCountMintermAux */ |
---|
| 3479 | |
---|
| 3480 | |
---|
| 3481 | /**Function******************************************************************** |
---|
| 3482 | |
---|
| 3483 | Synopsis [Performs the recursive step of Cudd_CountPath.] |
---|
| 3484 | |
---|
| 3485 | Description [Performs the recursive step of Cudd_CountPath. |
---|
| 3486 | It is based on the following identity. Let |f| be the |
---|
| 3487 | number of paths of f. Then: |
---|
| 3488 | <xmp> |
---|
| 3489 | |f| = |f0|+|f1| |
---|
| 3490 | </xmp> |
---|
| 3491 | where f0 and f1 are the two cofactors of f. Uses the |
---|
| 3492 | identity |f'| = |f|, to improve the utilization of the (local) cache. |
---|
| 3493 | Returns the number of paths of the function rooted at node.] |
---|
| 3494 | |
---|
| 3495 | SideEffects [None] |
---|
| 3496 | |
---|
| 3497 | ******************************************************************************/ |
---|
| 3498 | static double |
---|
| 3499 | ddCountPathAux( |
---|
| 3500 | DdNode * node, |
---|
| 3501 | st_table * table) |
---|
| 3502 | { |
---|
| 3503 | |
---|
| 3504 | DdNode *Nv, *Nnv; |
---|
| 3505 | double paths, *ppaths, paths1, paths2; |
---|
| 3506 | double *dummy; |
---|
| 3507 | |
---|
| 3508 | |
---|
| 3509 | if (cuddIsConstant(node)) { |
---|
| 3510 | return(1.0); |
---|
| 3511 | } |
---|
| 3512 | if (st_lookup(table, node, &dummy)) { |
---|
| 3513 | paths = *dummy; |
---|
| 3514 | return(paths); |
---|
| 3515 | } |
---|
| 3516 | |
---|
| 3517 | Nv = cuddT(node); Nnv = cuddE(node); |
---|
| 3518 | |
---|
| 3519 | paths1 = ddCountPathAux(Nv,table); |
---|
| 3520 | if (paths1 == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
| 3521 | paths2 = ddCountPathAux(Cudd_Regular(Nnv),table); |
---|
| 3522 | if (paths2 == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
| 3523 | paths = paths1 + paths2; |
---|
| 3524 | |
---|
| 3525 | ppaths = ALLOC(double,1); |
---|
| 3526 | if (ppaths == NULL) { |
---|
| 3527 | return((double)CUDD_OUT_OF_MEM); |
---|
| 3528 | } |
---|
| 3529 | |
---|
| 3530 | *ppaths = paths; |
---|
| 3531 | |
---|
| 3532 | if (st_add_direct(table,(char *)node, (char *)ppaths) == ST_OUT_OF_MEM) { |
---|
| 3533 | FREE(ppaths); |
---|
| 3534 | return((double)CUDD_OUT_OF_MEM); |
---|
| 3535 | } |
---|
| 3536 | return(paths); |
---|
| 3537 | |
---|
| 3538 | } /* end of ddCountPathAux */ |
---|
| 3539 | |
---|
| 3540 | |
---|
| 3541 | /**Function******************************************************************** |
---|
| 3542 | |
---|
| 3543 | Synopsis [Performs the recursive step of Cudd_EpdCountMinterm.] |
---|
| 3544 | |
---|
| 3545 | Description [Performs the recursive step of Cudd_EpdCountMinterm. |
---|
| 3546 | It is based on the following identity. Let |f| be the |
---|
| 3547 | number of minterms of f. Then: |
---|
| 3548 | <xmp> |
---|
| 3549 | |f| = (|f0|+|f1|)/2 |
---|
| 3550 | </xmp> |
---|
| 3551 | where f0 and f1 are the two cofactors of f. Does not use the |
---|
| 3552 | identity |f'| = max - |f|, to minimize loss of accuracy due to |
---|
| 3553 | roundoff. Returns the number of minterms of the function rooted at |
---|
| 3554 | node.] |
---|
| 3555 | |
---|
| 3556 | SideEffects [None] |
---|
| 3557 | |
---|
| 3558 | ******************************************************************************/ |
---|
| 3559 | static int |
---|
| 3560 | ddEpdCountMintermAux( |
---|
| 3561 | DdNode * node, |
---|
| 3562 | EpDouble * max, |
---|
| 3563 | EpDouble * epd, |
---|
| 3564 | st_table * table) |
---|
| 3565 | { |
---|
| 3566 | DdNode *Nt, *Ne; |
---|
| 3567 | EpDouble *min, minT, minE; |
---|
| 3568 | EpDouble *res; |
---|
| 3569 | int status; |
---|
| 3570 | |
---|
| 3571 | /* node is assumed to be regular */ |
---|
| 3572 | if (cuddIsConstant(node)) { |
---|
| 3573 | if (node == background || node == zero) { |
---|
| 3574 | EpdMakeZero(epd, 0); |
---|
| 3575 | } else { |
---|
| 3576 | EpdCopy(max, epd); |
---|
| 3577 | } |
---|
| 3578 | return(0); |
---|
| 3579 | } |
---|
| 3580 | if (node->ref != 1 && st_lookup(table, node, &res)) { |
---|
| 3581 | EpdCopy(res, epd); |
---|
| 3582 | return(0); |
---|
| 3583 | } |
---|
| 3584 | |
---|
| 3585 | Nt = cuddT(node); Ne = cuddE(node); |
---|
| 3586 | |
---|
| 3587 | status = ddEpdCountMintermAux(Nt,max,&minT,table); |
---|
| 3588 | if (status == CUDD_OUT_OF_MEM) return(CUDD_OUT_OF_MEM); |
---|
| 3589 | EpdMultiply(&minT, (double)0.5); |
---|
| 3590 | status = ddEpdCountMintermAux(Cudd_Regular(Ne),max,&minE,table); |
---|
| 3591 | if (status == CUDD_OUT_OF_MEM) return(CUDD_OUT_OF_MEM); |
---|
| 3592 | if (Cudd_IsComplement(Ne)) { |
---|
| 3593 | EpdSubtract3(max, &minE, epd); |
---|
| 3594 | EpdCopy(epd, &minE); |
---|
| 3595 | } |
---|
| 3596 | EpdMultiply(&minE, (double)0.5); |
---|
| 3597 | EpdAdd3(&minT, &minE, epd); |
---|
| 3598 | |
---|
| 3599 | if (node->ref > 1) { |
---|
| 3600 | min = EpdAlloc(); |
---|
| 3601 | if (!min) |
---|
| 3602 | return(CUDD_OUT_OF_MEM); |
---|
| 3603 | EpdCopy(epd, min); |
---|
| 3604 | if (st_insert(table, (char *)node, (char *)min) == ST_OUT_OF_MEM) { |
---|
| 3605 | EpdFree(min); |
---|
| 3606 | return(CUDD_OUT_OF_MEM); |
---|
| 3607 | } |
---|
| 3608 | } |
---|
| 3609 | |
---|
| 3610 | return(0); |
---|
| 3611 | |
---|
| 3612 | } /* end of ddEpdCountMintermAux */ |
---|
| 3613 | |
---|
| 3614 | |
---|
| 3615 | /**Function******************************************************************** |
---|
| 3616 | |
---|
| 3617 | Synopsis [Performs the recursive step of Cudd_CountPathsToNonZero.] |
---|
| 3618 | |
---|
| 3619 | Description [Performs the recursive step of Cudd_CountPathsToNonZero. |
---|
| 3620 | It is based on the following identity. Let |f| be the |
---|
| 3621 | number of paths of f. Then: |
---|
| 3622 | <xmp> |
---|
| 3623 | |f| = |f0|+|f1| |
---|
| 3624 | </xmp> |
---|
| 3625 | where f0 and f1 are the two cofactors of f. Returns the number of |
---|
| 3626 | paths of the function rooted at node.] |
---|
| 3627 | |
---|
| 3628 | SideEffects [None] |
---|
| 3629 | |
---|
| 3630 | ******************************************************************************/ |
---|
| 3631 | static double |
---|
| 3632 | ddCountPathsToNonZero( |
---|
| 3633 | DdNode * N, |
---|
| 3634 | st_table * table) |
---|
| 3635 | { |
---|
| 3636 | |
---|
| 3637 | DdNode *node, *Nt, *Ne; |
---|
| 3638 | double paths, *ppaths, paths1, paths2; |
---|
| 3639 | double *dummy; |
---|
| 3640 | |
---|
| 3641 | node = Cudd_Regular(N); |
---|
| 3642 | if (cuddIsConstant(node)) { |
---|
| 3643 | return((double) !(Cudd_IsComplement(N) || cuddV(node)==DD_ZERO_VAL)); |
---|
| 3644 | } |
---|
| 3645 | if (st_lookup(table, N, &dummy)) { |
---|
| 3646 | paths = *dummy; |
---|
| 3647 | return(paths); |
---|
| 3648 | } |
---|
| 3649 | |
---|
| 3650 | Nt = cuddT(node); Ne = cuddE(node); |
---|
| 3651 | if (node != N) { |
---|
| 3652 | Nt = Cudd_Not(Nt); Ne = Cudd_Not(Ne); |
---|
| 3653 | } |
---|
| 3654 | |
---|
| 3655 | paths1 = ddCountPathsToNonZero(Nt,table); |
---|
| 3656 | if (paths1 == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
| 3657 | paths2 = ddCountPathsToNonZero(Ne,table); |
---|
| 3658 | if (paths2 == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
| 3659 | paths = paths1 + paths2; |
---|
| 3660 | |
---|
| 3661 | ppaths = ALLOC(double,1); |
---|
| 3662 | if (ppaths == NULL) { |
---|
| 3663 | return((double)CUDD_OUT_OF_MEM); |
---|
| 3664 | } |
---|
| 3665 | |
---|
| 3666 | *ppaths = paths; |
---|
| 3667 | |
---|
| 3668 | if (st_add_direct(table,(char *)N, (char *)ppaths) == ST_OUT_OF_MEM) { |
---|
| 3669 | FREE(ppaths); |
---|
| 3670 | return((double)CUDD_OUT_OF_MEM); |
---|
| 3671 | } |
---|
| 3672 | return(paths); |
---|
| 3673 | |
---|
| 3674 | } /* end of ddCountPathsToNonZero */ |
---|
| 3675 | |
---|
| 3676 | |
---|
| 3677 | /**Function******************************************************************** |
---|
| 3678 | |
---|
| 3679 | Synopsis [Performs the recursive step of Cudd_Support.] |
---|
| 3680 | |
---|
| 3681 | Description [Performs the recursive step of Cudd_Support. Performs a |
---|
| 3682 | DFS from f. The support is accumulated in supp as a side effect. Uses |
---|
| 3683 | the LSB of the then pointer as visited flag.] |
---|
| 3684 | |
---|
| 3685 | SideEffects [None] |
---|
| 3686 | |
---|
| 3687 | SeeAlso [ddClearFlag] |
---|
| 3688 | |
---|
| 3689 | ******************************************************************************/ |
---|
| 3690 | static void |
---|
| 3691 | ddSupportStep( |
---|
| 3692 | DdNode * f, |
---|
| 3693 | int * support) |
---|
| 3694 | { |
---|
| 3695 | if (cuddIsConstant(f) || Cudd_IsComplement(f->next)) { |
---|
| 3696 | return; |
---|
| 3697 | } |
---|
| 3698 | |
---|
| 3699 | support[f->index] = 1; |
---|
| 3700 | ddSupportStep(cuddT(f),support); |
---|
| 3701 | ddSupportStep(Cudd_Regular(cuddE(f)),support); |
---|
| 3702 | /* Mark as visited. */ |
---|
| 3703 | f->next = Cudd_Not(f->next); |
---|
| 3704 | return; |
---|
| 3705 | |
---|
| 3706 | } /* end of ddSupportStep */ |
---|
| 3707 | |
---|
| 3708 | |
---|
| 3709 | /**Function******************************************************************** |
---|
| 3710 | |
---|
| 3711 | Synopsis [Performs a DFS from f, clearing the LSB of the next |
---|
| 3712 | pointers.] |
---|
| 3713 | |
---|
| 3714 | Description [] |
---|
| 3715 | |
---|
| 3716 | SideEffects [None] |
---|
| 3717 | |
---|
| 3718 | SeeAlso [ddSupportStep ddDagInt] |
---|
| 3719 | |
---|
| 3720 | ******************************************************************************/ |
---|
| 3721 | static void |
---|
| 3722 | ddClearFlag( |
---|
| 3723 | DdNode * f) |
---|
| 3724 | { |
---|
| 3725 | if (!Cudd_IsComplement(f->next)) { |
---|
| 3726 | return; |
---|
| 3727 | } |
---|
| 3728 | /* Clear visited flag. */ |
---|
| 3729 | f->next = Cudd_Regular(f->next); |
---|
| 3730 | if (cuddIsConstant(f)) { |
---|
| 3731 | return; |
---|
| 3732 | } |
---|
| 3733 | ddClearFlag(cuddT(f)); |
---|
| 3734 | ddClearFlag(Cudd_Regular(cuddE(f))); |
---|
| 3735 | return; |
---|
| 3736 | |
---|
| 3737 | } /* end of ddClearFlag */ |
---|
| 3738 | |
---|
| 3739 | |
---|
| 3740 | /**Function******************************************************************** |
---|
| 3741 | |
---|
| 3742 | Synopsis [Performs the recursive step of Cudd_CountLeaves.] |
---|
| 3743 | |
---|
| 3744 | Description [Performs the recursive step of Cudd_CountLeaves. Returns |
---|
| 3745 | the number of leaves in the DD rooted at n.] |
---|
| 3746 | |
---|
| 3747 | SideEffects [None] |
---|
| 3748 | |
---|
| 3749 | SeeAlso [Cudd_CountLeaves] |
---|
| 3750 | |
---|
| 3751 | ******************************************************************************/ |
---|
| 3752 | static int |
---|
| 3753 | ddLeavesInt( |
---|
| 3754 | DdNode * n) |
---|
| 3755 | { |
---|
| 3756 | int tval, eval; |
---|
| 3757 | |
---|
| 3758 | if (Cudd_IsComplement(n->next)) { |
---|
| 3759 | return(0); |
---|
| 3760 | } |
---|
| 3761 | n->next = Cudd_Not(n->next); |
---|
| 3762 | if (cuddIsConstant(n)) { |
---|
| 3763 | return(1); |
---|
| 3764 | } |
---|
| 3765 | tval = ddLeavesInt(cuddT(n)); |
---|
| 3766 | eval = ddLeavesInt(Cudd_Regular(cuddE(n))); |
---|
| 3767 | return(tval + eval); |
---|
| 3768 | |
---|
| 3769 | } /* end of ddLeavesInt */ |
---|
| 3770 | |
---|
| 3771 | |
---|
| 3772 | /**Function******************************************************************** |
---|
| 3773 | |
---|
| 3774 | Synopsis [Performs the recursive step of Cudd_bddPickArbitraryMinterms.] |
---|
| 3775 | |
---|
| 3776 | Description [Performs the recursive step of Cudd_bddPickArbitraryMinterms. |
---|
| 3777 | Returns 1 if successful; 0 otherwise.] |
---|
| 3778 | |
---|
| 3779 | SideEffects [none] |
---|
| 3780 | |
---|
| 3781 | SeeAlso [Cudd_bddPickArbitraryMinterms] |
---|
| 3782 | |
---|
| 3783 | ******************************************************************************/ |
---|
| 3784 | static int |
---|
| 3785 | ddPickArbitraryMinterms( |
---|
| 3786 | DdManager *dd, |
---|
| 3787 | DdNode *node, |
---|
| 3788 | int nvars, |
---|
| 3789 | int nminterms, |
---|
| 3790 | char **string) |
---|
| 3791 | { |
---|
| 3792 | DdNode *N, *T, *E; |
---|
| 3793 | DdNode *one, *bzero; |
---|
| 3794 | int i, t, result; |
---|
| 3795 | double min1, min2; |
---|
| 3796 | |
---|
| 3797 | if (string == NULL || node == NULL) return(0); |
---|
| 3798 | |
---|
| 3799 | /* The constant 0 function has no on-set cubes. */ |
---|
| 3800 | one = DD_ONE(dd); |
---|
| 3801 | bzero = Cudd_Not(one); |
---|
| 3802 | if (nminterms == 0 || node == bzero) return(1); |
---|
| 3803 | if (node == one) { |
---|
| 3804 | return(1); |
---|
| 3805 | } |
---|
| 3806 | |
---|
| 3807 | N = Cudd_Regular(node); |
---|
| 3808 | T = cuddT(N); E = cuddE(N); |
---|
| 3809 | if (Cudd_IsComplement(node)) { |
---|
| 3810 | T = Cudd_Not(T); E = Cudd_Not(E); |
---|
| 3811 | } |
---|
| 3812 | |
---|
| 3813 | min1 = Cudd_CountMinterm(dd, T, nvars) / 2.0; |
---|
| 3814 | if (min1 == (double)CUDD_OUT_OF_MEM) return(0); |
---|
| 3815 | min2 = Cudd_CountMinterm(dd, E, nvars) / 2.0; |
---|
| 3816 | if (min2 == (double)CUDD_OUT_OF_MEM) return(0); |
---|
| 3817 | |
---|
| 3818 | t = (int)((double)nminterms * min1 / (min1 + min2) + 0.5); |
---|
| 3819 | for (i = 0; i < t; i++) |
---|
| 3820 | string[i][N->index] = '1'; |
---|
| 3821 | for (i = t; i < nminterms; i++) |
---|
| 3822 | string[i][N->index] = '0'; |
---|
| 3823 | |
---|
| 3824 | result = ddPickArbitraryMinterms(dd,T,nvars,t,&string[0]); |
---|
| 3825 | if (result == 0) |
---|
| 3826 | return(0); |
---|
| 3827 | result = ddPickArbitraryMinterms(dd,E,nvars,nminterms-t,&string[t]); |
---|
| 3828 | return(result); |
---|
| 3829 | |
---|
| 3830 | } /* end of ddPickArbitraryMinterms */ |
---|
| 3831 | |
---|
| 3832 | |
---|
| 3833 | /**Function******************************************************************** |
---|
| 3834 | |
---|
| 3835 | Synopsis [Finds a representative cube of a BDD.] |
---|
| 3836 | |
---|
| 3837 | Description [Finds a representative cube of a BDD with the weight of |
---|
| 3838 | each variable. From the top variable, if the weight is greater than or |
---|
| 3839 | equal to 0.0, choose THEN branch unless the child is the constant 0. |
---|
| 3840 | Otherwise, choose ELSE branch unless the child is the constant 0.] |
---|
| 3841 | |
---|
| 3842 | SideEffects [Cudd_SubsetWithMaskVars Cudd_bddPickOneCube] |
---|
| 3843 | |
---|
| 3844 | ******************************************************************************/ |
---|
| 3845 | static int |
---|
| 3846 | ddPickRepresentativeCube( |
---|
| 3847 | DdManager *dd, |
---|
| 3848 | DdNode *node, |
---|
| 3849 | int nvars, |
---|
| 3850 | double *weight, |
---|
| 3851 | char *string) |
---|
| 3852 | { |
---|
| 3853 | DdNode *N, *T, *E; |
---|
| 3854 | DdNode *one, *bzero; |
---|
| 3855 | |
---|
| 3856 | if (string == NULL || node == NULL) return(0); |
---|
| 3857 | |
---|
| 3858 | /* The constant 0 function has no on-set cubes. */ |
---|
| 3859 | one = DD_ONE(dd); |
---|
| 3860 | bzero = Cudd_Not(one); |
---|
| 3861 | if (node == bzero) return(0); |
---|
| 3862 | |
---|
| 3863 | if (node == DD_ONE(dd)) return(1); |
---|
| 3864 | |
---|
| 3865 | for (;;) { |
---|
| 3866 | N = Cudd_Regular(node); |
---|
| 3867 | if (N == one) |
---|
| 3868 | break; |
---|
| 3869 | T = cuddT(N); |
---|
| 3870 | E = cuddE(N); |
---|
| 3871 | if (Cudd_IsComplement(node)) { |
---|
| 3872 | T = Cudd_Not(T); |
---|
| 3873 | E = Cudd_Not(E); |
---|
| 3874 | } |
---|
| 3875 | if (weight[N->index] >= 0.0) { |
---|
| 3876 | if (T == bzero) { |
---|
| 3877 | node = E; |
---|
| 3878 | string[N->index] = '0'; |
---|
| 3879 | } else { |
---|
| 3880 | node = T; |
---|
| 3881 | string[N->index] = '1'; |
---|
| 3882 | } |
---|
| 3883 | } else { |
---|
| 3884 | if (E == bzero) { |
---|
| 3885 | node = T; |
---|
| 3886 | string[N->index] = '1'; |
---|
| 3887 | } else { |
---|
| 3888 | node = E; |
---|
| 3889 | string[N->index] = '0'; |
---|
| 3890 | } |
---|
| 3891 | } |
---|
| 3892 | } |
---|
| 3893 | return(1); |
---|
| 3894 | |
---|
| 3895 | } /* end of ddPickRepresentativeCube */ |
---|
| 3896 | |
---|
| 3897 | |
---|
| 3898 | /**Function******************************************************************** |
---|
| 3899 | |
---|
| 3900 | Synopsis [Frees the memory used to store the minterm counts recorded |
---|
| 3901 | in the visited table.] |
---|
| 3902 | |
---|
| 3903 | Description [Frees the memory used to store the minterm counts |
---|
| 3904 | recorded in the visited table. Returns ST_CONTINUE.] |
---|
| 3905 | |
---|
| 3906 | SideEffects [None] |
---|
| 3907 | |
---|
| 3908 | ******************************************************************************/ |
---|
| 3909 | static enum st_retval |
---|
| 3910 | ddEpdFree( |
---|
| 3911 | char * key, |
---|
| 3912 | char * value, |
---|
| 3913 | char * arg) |
---|
| 3914 | { |
---|
| 3915 | EpDouble *epd; |
---|
| 3916 | |
---|
| 3917 | epd = (EpDouble *) value; |
---|
| 3918 | EpdFree(epd); |
---|
| 3919 | return(ST_CONTINUE); |
---|
| 3920 | |
---|
| 3921 | } /* end of ddEpdFree */ |
---|