[13] | 1 | .\" BDD library man page |
---|
| 2 | .TH BDD 3 "11 June 1993" |
---|
| 3 | .SH NAME |
---|
| 4 | bdd \- a binary decision diagram (BDD) package |
---|
| 5 | .SH SYNOPSIS |
---|
| 6 | .B #include <bdduser.h> |
---|
| 7 | .SH DESCRIPTION |
---|
| 8 | The |
---|
| 9 | .B libbdd |
---|
| 10 | library provides a set of routines for manipulating binary decision |
---|
| 11 | diagrams (BDDs). Some support is also provided for multi-terminal |
---|
| 12 | BDDs (MTBDDs). Programs designed to be used with the library should |
---|
| 13 | use the |
---|
| 14 | .B -lbdd -lmem |
---|
| 15 | options to |
---|
| 16 | .B cc |
---|
| 17 | when linking. |
---|
| 18 | .SH "LIST OF FUNCTIONS" |
---|
| 19 | .nf |
---|
| 20 | .ta 3in |
---|
| 21 | \fIName\fP \fIFunction\fP |
---|
| 22 | bdd_init Initialize the library |
---|
| 23 | bdd_quit Finish using the library |
---|
| 24 | bdd_new_var_first Create a variable first in the order |
---|
| 25 | bdd_new_var_last Create a variable last in the order |
---|
| 26 | bdd_new_var_before Create a variable before an existing one |
---|
| 27 | bdd_new_var_after Create a variable after an existing one |
---|
| 28 | bdd_var_with_index Obtain an existing variable |
---|
| 29 | bdd_var_with_id Obtain an existing variable |
---|
| 30 | bdd_one Constant TRUE |
---|
| 31 | bdd_zero Constant FALSE |
---|
| 32 | bdd_and Logical AND |
---|
| 33 | bdd_nand Logical NAND |
---|
| 34 | bdd_or Logical OR |
---|
| 35 | bdd_nor Logical NOR |
---|
| 36 | bdd_xor Logical XOR |
---|
| 37 | bdd_xnor Logical XNOR |
---|
| 38 | bdd_identity Logical identity |
---|
| 39 | bdd_not Logical NOT |
---|
| 40 | bdd_ite Logical IF-THEN-ELSE |
---|
| 41 | bdd_if Get the variable of the top node in a BDD |
---|
| 42 | bdd_then Get the THEN branch of the top node in a BDD |
---|
| 43 | bdd_else Get the ELSE branch of the top node in a BDD |
---|
| 44 | bdd_if_index Get the index of the top variable in a BDD |
---|
| 45 | bdd_if_id Get a unique ID number for the top variable |
---|
| 46 | bdd_intersects Check intersection |
---|
| 47 | bdd_implies Check boolean implication |
---|
| 48 | bdd_new_assoc Make a new variable association |
---|
| 49 | bdd_free_assoc Free a variable association |
---|
| 50 | bdd_temp_assoc Set the temporary variable association |
---|
| 51 | bdd_augment_temp_assoc Set the temporary variable association |
---|
| 52 | bdd_assoc Set the current variable association |
---|
| 53 | bdd_exists Existential quantification |
---|
| 54 | bdd_forall Universal quantification |
---|
| 55 | bdd_rel_prod Relational product |
---|
| 56 | bdd_compose Substitute for a variable |
---|
| 57 | bdd_substitute Substitute for a set of variables |
---|
| 58 | bdd_reduce Simplify given a constraint |
---|
| 59 | bdd_cofactor Generalized cofactor |
---|
| 60 | bdd_depends_on Determine if a BDD depends on a variable |
---|
| 61 | bdd_support Find the support of a BDD |
---|
| 62 | bdd_satisfy Find a satisfying assignment |
---|
| 63 | bdd_satisfy_support Find a satisfying assignment |
---|
| 64 | bdd_satisfying_fraction Fraction of valuations satisfying a BDD |
---|
| 65 | bdd_swap_vars Swap two variables in a BDD |
---|
| 66 | bdd_apply2 Generic apply routine |
---|
| 67 | bdd_apply1 Generic apply routine |
---|
| 68 | bdd_size Number of nodes in a BDD |
---|
| 69 | bdd_size_multiple Number of nodes in multiple BDDs |
---|
| 70 | bdd_profile Node profile of a BDD |
---|
| 71 | bdd_profile_multiple Node profile of multiple BDDs |
---|
| 72 | bdd_function_profile Function profile of a BDD |
---|
| 73 | bdd_function_profile_multiple Function profile of multiple BDDs |
---|
| 74 | bdd_print_bdd Print a BDD in human-readable form |
---|
| 75 | bdd_print_profile Print a node profile of a BDD |
---|
| 76 | bdd_print_profile_multiple Print a profile of multiple BDDs |
---|
| 77 | bdd_print_function_profile Print a function profile of a BDD |
---|
| 78 | bdd_dump_bdd Write a BDD to a file |
---|
| 79 | bdd_undump_bdd Load a BDD from a file |
---|
| 80 | bdd_type Classify a BDD |
---|
| 81 | bdd_free Decrease the reference count of a BDD |
---|
| 82 | bdd_unfree Increase the reference count of a BDD |
---|
| 83 | bdd_clear_refs Set all BDD reference counts to zero |
---|
| 84 | bdd_gc Garbage collect unused BDD nodes |
---|
| 85 | bdd_total_size Total number of BDD nodes in use |
---|
| 86 | bdd_vars Total number of variables in existence |
---|
| 87 | bdd_cache_ratio Get/set operation result cache size |
---|
| 88 | bdd_node_limit Get/set the number of BDD nodes allowed |
---|
| 89 | bdd_overflow Get/clear overflow flag |
---|
| 90 | bdd_overflow_closure Set a closure to invoke on overflow |
---|
| 91 | bdd_abort_closure Used to abort operations in progress |
---|
| 92 | bdd_stats Print statistics |
---|
| 93 | bdd_dynamic_reordering Specify dynamic reordering technique |
---|
| 94 | bdd_reorder Invoke dynamic reordering |
---|
| 95 | bdd_new_var_block Create variable block |
---|
| 96 | bdd_var_block_reorderable Set block reorderability |
---|
| 97 | mtbdd_free_terminal_closure Called when freeing an MTBDD terminal |
---|
| 98 | mtbdd_get_terminal Get an MTBDD terminal node |
---|
| 99 | mtbdd_terminal_value Get the value of an MTBDD terminal node |
---|
| 100 | mtbdd_ite IF-THEN-ELSE operation for MTBDDs |
---|
| 101 | mtbdd_equal Equality operation for MTBDDs |
---|
| 102 | mtbdd_transform Applies the current transform to an MTBDD |
---|
| 103 | mtbdd_transform_closure Called to set the MTBDD transform |
---|
| 104 | mtbdd_one_data Sets the MTBDD data value for TRUE |
---|
| 105 | .fi |
---|
| 106 | .SH "BASIC CONCEPTS" |
---|
| 107 | For a general overview of BDDs, see the original article by Bryant |
---|
| 108 | [1]. |
---|
| 109 | |
---|
| 110 | Almost all of the BDD library routines require a BDD manager as one of |
---|
| 111 | their arguments. A BDD manager is a structure which holds various |
---|
| 112 | variables used by the BDD routines. The type |
---|
| 113 | .B bdd_manager |
---|
| 114 | is a pointer to this structure. BDDs themselves are also represented |
---|
| 115 | internally as structures. The type |
---|
| 116 | .B bdd |
---|
| 117 | is a pointer to one of these structures. |
---|
| 118 | |
---|
| 119 | There is a global ordering on the boolean variables which may appear |
---|
| 120 | in a BDD. The variable at the root of a BDD is earlier in the |
---|
| 121 | ordering than all other variables in the BDD. Each variable has an |
---|
| 122 | index which represents its position in the ordering; |
---|
| 123 | .I v1 |
---|
| 124 | appears before |
---|
| 125 | .I v2 |
---|
| 126 | in the ordering if and only if the index for |
---|
| 127 | .I v1 |
---|
| 128 | is less than the ordering for \fIv2\fR. Each variable is also |
---|
| 129 | assigned a unique ID number that is invariant. Since variables can be |
---|
| 130 | created at any position within the order, this is not true for the |
---|
| 131 | index. Also, the library supports dynamic variable reordering. With |
---|
| 132 | dynamic variable reordering, variables may be shuffled around in the |
---|
| 133 | middle of an operation in order to reduce the number of BDD nodes in |
---|
| 134 | use. |
---|
| 135 | |
---|
| 136 | Some routines such as |
---|
| 137 | .B bdd_substitute |
---|
| 138 | require a mapping from variables to BDDs to operate. This mapping is |
---|
| 139 | supplied in the form of a variable association which is a set of |
---|
| 140 | pairs. The first element of each pair is the variable, and the second |
---|
| 141 | element is the BDD that the variable is associated with. Multiple |
---|
| 142 | associations may exist at any one time. Other routines such as |
---|
| 143 | .B bdd_exists |
---|
| 144 | require sets of variables. Sets of variables are represented by |
---|
| 145 | variable associations where only the fact that a variable is |
---|
| 146 | associated with some BDD is significant. There is one association, |
---|
| 147 | called the temporary variable association, which is special in two |
---|
| 148 | ways. First, this association always exists. Second, results are not |
---|
| 149 | cached across calls when this association is used. The temporary |
---|
| 150 | association is intended for when an association will not be reused. |
---|
| 151 | The advantage of using it is that setting the temporary association |
---|
| 152 | does not require scanning the result cache to flush out-of-date |
---|
| 153 | results. |
---|
| 154 | |
---|
| 155 | The results returned by the library represent canonical forms and may |
---|
| 156 | be checked for equivalence using the standard C comparison operators. |
---|
| 157 | For example: |
---|
| 158 | |
---|
| 159 | .nf |
---|
| 160 | { |
---|
| 161 | bdd_manager bddm; |
---|
| 162 | bdd f; |
---|
| 163 | ... |
---|
| 164 | if (f == bdd_one(bddm)) /* Tautology check */ |
---|
| 165 | ... |
---|
| 166 | } |
---|
| 167 | .fi |
---|
| 168 | |
---|
| 169 | For checking for relations such as boolean implication, use |
---|
| 170 | .B bdd_intersects |
---|
| 171 | and \fBbdd_implies\fR. |
---|
| 172 | |
---|
| 173 | Multi-terminal BDDs are like BDDs, except an MTBDD may have more than |
---|
| 174 | just the constants TRUE and FALSE at the leaves. Passing an MTBDD to |
---|
| 175 | a routine expecting a BDD will give undefined results, except where |
---|
| 176 | noted below. MTBDDs are built up using |
---|
| 177 | .B mtbdd_get_terminal |
---|
| 178 | and \fBmtbdd_ite\fR. |
---|
| 179 | .SH "STORAGE MANAGEMENT" |
---|
| 180 | Each BDD node has an associated reference count which records the |
---|
| 181 | number of references to the BDD (internal and external). Whenever a |
---|
| 182 | BDD is returned from a function, the reference count for its top node |
---|
| 183 | is incremented. (If the BDD did not exist before, the reference count |
---|
| 184 | will be 1.) Each time a garbage collection occurs, either internally |
---|
| 185 | or because of a call to \fBbdd_gc\fR, all nodes which are not |
---|
| 186 | referenced are reclaimed. The reference count of a BDD may be |
---|
| 187 | decremented by calling \fBbdd_free\fR. This should be done whenever |
---|
| 188 | possible for maximum space efficiency. You may also specify a limit |
---|
| 189 | for the total number of BDD nodes using \fBbdd_node_limit\fR. If it |
---|
| 190 | is not possible to complete an operation without exceeding this limit, |
---|
| 191 | the operation is aborted and (by default) a null pointer is returned. |
---|
| 192 | Whenever this happens, the reference counts of all nodes are restored |
---|
| 193 | to what they were before the operation. If a null pointer is passed |
---|
| 194 | to a routine, the routine simply returns null. Thus, it is not |
---|
| 195 | necessary to check for overflows after each operation. There is also |
---|
| 196 | an internal flag that indicates whether any operation has caused an |
---|
| 197 | overflow. It may be read and reset by \fBbdd_overflow\fR. |
---|
| 198 | Optionally, a user-defined closure may be invoked when an overflow |
---|
| 199 | occurs; see \fBbdd_overflow_closure\fR. Also see \fBbdd_free\fR, |
---|
| 200 | \fBbdd_unfree\fR, \fBbdd_clear_refs\fR, \fBbdd_node_limit\fR and |
---|
| 201 | \fBbdd_gc\fR. The library also includes high-performance replacements |
---|
| 202 | for |
---|
| 203 | .B malloc |
---|
| 204 | and \fBfree\fR. See the discussion at the end of the section on |
---|
| 205 | adding new routines. |
---|
| 206 | .SH "DETAILED DESCRIPTION" |
---|
| 207 | .B bdd_manager |
---|
| 208 | .br |
---|
| 209 | .B bdd_init() |
---|
| 210 | .in +4 |
---|
| 211 | Creates and initializes a new BDD manager. Multiple BDD managers may |
---|
| 212 | exist at any time. |
---|
| 213 | .LP |
---|
| 214 | .B void |
---|
| 215 | .br |
---|
| 216 | .B bdd_quit(bddm) |
---|
| 217 | .br |
---|
| 218 | .B bdd_manager bddm; |
---|
| 219 | .in +4 |
---|
| 220 | Deallocates the BDD manager given by |
---|
| 221 | .B bddm |
---|
| 222 | and all the storage associated with it. |
---|
| 223 | .LP |
---|
| 224 | .B bdd |
---|
| 225 | .br |
---|
| 226 | .B bdd_new_var_first(bddm) |
---|
| 227 | .br |
---|
| 228 | .B bdd_manager bddm; |
---|
| 229 | .in +4 |
---|
| 230 | Creates a new variable at the start of the BDD variable ordering and |
---|
| 231 | returns the BDD for it. |
---|
| 232 | .LP |
---|
| 233 | .B bdd |
---|
| 234 | .br |
---|
| 235 | .B bdd_new_var_last(bddm) |
---|
| 236 | .br |
---|
| 237 | .B bdd_manager bddm; |
---|
| 238 | .in +4 |
---|
| 239 | Creates a new variable at the end of the BDD variable ordering and |
---|
| 240 | returns the BDD for it. |
---|
| 241 | .LP |
---|
| 242 | .B bdd |
---|
| 243 | .br |
---|
| 244 | .B bdd_new_var_before(bddm, var) |
---|
| 245 | .br |
---|
| 246 | .B bdd_manager bddm; |
---|
| 247 | .br |
---|
| 248 | .B bdd var; |
---|
| 249 | .in +4 |
---|
| 250 | Creates a new variable which is before |
---|
| 251 | .B var |
---|
| 252 | in the BDD variable ordering and returns the BDD for the new variable. |
---|
| 253 | .LP |
---|
| 254 | .B bdd |
---|
| 255 | .br |
---|
| 256 | .B bdd_new_var_after(bddm, var) |
---|
| 257 | .br |
---|
| 258 | .B bdd_manager bddm; |
---|
| 259 | .br |
---|
| 260 | .B bdd var; |
---|
| 261 | .in +4 |
---|
| 262 | Creates a new variable which is after |
---|
| 263 | .B var |
---|
| 264 | in the BDD variable ordering and returns the BDD for the new variable. |
---|
| 265 | .LP |
---|
| 266 | .B bdd |
---|
| 267 | .br |
---|
| 268 | .B bdd_var_with_index(bddm, i) |
---|
| 269 | .br |
---|
| 270 | .B bdd_manager bddm; |
---|
| 271 | .br |
---|
| 272 | .B long i; |
---|
| 273 | .in +4 |
---|
| 274 | If a variable with index |
---|
| 275 | .B i |
---|
| 276 | has been created, returns the BDD for the variable. If no such |
---|
| 277 | variable exists, returns null. See also \fBbdd_if_index\fR. |
---|
| 278 | .LP |
---|
| 279 | .B bdd |
---|
| 280 | .br |
---|
| 281 | .B bdd_var_with_id(bddm, i) |
---|
| 282 | .br |
---|
| 283 | .B bdd_manager bddm; |
---|
| 284 | .br |
---|
| 285 | .B long i; |
---|
| 286 | .in +4 |
---|
| 287 | If a variable with ID |
---|
| 288 | .B i |
---|
| 289 | has been created, returns the BDD for the variable. If no such |
---|
| 290 | variable has been created, returns null. See also \fBbdd_if_id\fR. |
---|
| 291 | .LP |
---|
| 292 | .B bdd |
---|
| 293 | .br |
---|
| 294 | .B bdd_one(bddm) |
---|
| 295 | .br |
---|
| 296 | .B bdd_manager bddm; |
---|
| 297 | .in +4 |
---|
| 298 | Returns the BDD for the constant TRUE. |
---|
| 299 | .LP |
---|
| 300 | .B bdd |
---|
| 301 | .br |
---|
| 302 | .B bdd_zero(bddm) |
---|
| 303 | .br |
---|
| 304 | .B bdd_manager bddm; |
---|
| 305 | .in +4 |
---|
| 306 | Returns the BDD for the constant FALSE. |
---|
| 307 | .LP |
---|
| 308 | .B bdd |
---|
| 309 | .br |
---|
| 310 | .B bdd_and(bddm, f, g) |
---|
| 311 | .br |
---|
| 312 | .B bdd_manager bddm; |
---|
| 313 | .br |
---|
| 314 | .B bdd f, g; |
---|
| 315 | .in +4 |
---|
| 316 | Returns the BDD for the logical AND of |
---|
| 317 | .B f |
---|
| 318 | and \fBg\fR. |
---|
| 319 | .LP |
---|
| 320 | .B bdd |
---|
| 321 | .br |
---|
| 322 | .B bdd_nand(bddm, f, g) |
---|
| 323 | .br |
---|
| 324 | .B bdd_manager bddm; |
---|
| 325 | .br |
---|
| 326 | .B bdd f, g; |
---|
| 327 | .in +4 |
---|
| 328 | Returns the BDD for the logical NAND of |
---|
| 329 | .B f |
---|
| 330 | and \fBg\fR. |
---|
| 331 | .LP |
---|
| 332 | .B bdd |
---|
| 333 | .br |
---|
| 334 | .B bdd_or(bddm, f, g) |
---|
| 335 | .br |
---|
| 336 | .B bdd_manager bddm; |
---|
| 337 | .br |
---|
| 338 | .B bdd f, g; |
---|
| 339 | .in +4 |
---|
| 340 | Returns the BDD for the logical OR of |
---|
| 341 | .B f |
---|
| 342 | and \fBg\fR. |
---|
| 343 | .LP |
---|
| 344 | .B bdd |
---|
| 345 | .br |
---|
| 346 | .B bdd_nor(bddm, f, g) |
---|
| 347 | .br |
---|
| 348 | .B bdd_manager bddm; |
---|
| 349 | .br |
---|
| 350 | .B bdd f, g; |
---|
| 351 | .in +4 |
---|
| 352 | Returns the BDD for the logical NOR of |
---|
| 353 | .B f |
---|
| 354 | and \fBg\fR. |
---|
| 355 | .LP |
---|
| 356 | .B bdd |
---|
| 357 | .br |
---|
| 358 | .B bdd_xor(bddm, f, g) |
---|
| 359 | .br |
---|
| 360 | .B bdd_manager bddm; |
---|
| 361 | .br |
---|
| 362 | .B bdd f, g; |
---|
| 363 | .in +4 |
---|
| 364 | Returns the BDD for the logical XOR of |
---|
| 365 | .B f |
---|
| 366 | and \fBg\fR. |
---|
| 367 | .LP |
---|
| 368 | .B bdd |
---|
| 369 | .br |
---|
| 370 | .B bdd_xnor(bddm, f, g) |
---|
| 371 | .br |
---|
| 372 | .B bdd_manager bddm; |
---|
| 373 | .br |
---|
| 374 | .B bdd f, g; |
---|
| 375 | .in +4 |
---|
| 376 | Returns the BDD for the logical XNOR of |
---|
| 377 | .B f |
---|
| 378 | and \fBg\fR. |
---|
| 379 | .LP |
---|
| 380 | .B bdd |
---|
| 381 | .br |
---|
| 382 | .B bdd_identity(bddm, f) |
---|
| 383 | .br |
---|
| 384 | .B bdd_manager bddm; |
---|
| 385 | .br |
---|
| 386 | .B bdd f; |
---|
| 387 | .in +4 |
---|
| 388 | Returns the BDD for \fBf\fR. The only real effect of this function is |
---|
| 389 | to increase the reference count of \fBf\fR. Also works with MTBDDs. |
---|
| 390 | .LP |
---|
| 391 | .B bdd |
---|
| 392 | .br |
---|
| 393 | .B bdd_not(bddm, f) |
---|
| 394 | .br |
---|
| 395 | .B bdd_manager bddm; |
---|
| 396 | .br |
---|
| 397 | .B bdd f; |
---|
| 398 | .in +4 |
---|
| 399 | Returns the BDD for the logical NOT of \fBf\fR. |
---|
| 400 | .LP |
---|
| 401 | .B bdd |
---|
| 402 | .br |
---|
| 403 | .B bdd_ite(bddm, f, g, h) |
---|
| 404 | .br |
---|
| 405 | .B bdd_manager bddm; |
---|
| 406 | .br |
---|
| 407 | .B bdd f, g, h; |
---|
| 408 | .in +4 |
---|
| 409 | Returns the BDD for the logical operation IF |
---|
| 410 | .B f |
---|
| 411 | THEN |
---|
| 412 | .B g |
---|
| 413 | ELSE \fBh\fR. |
---|
| 414 | .LP |
---|
| 415 | .B bdd |
---|
| 416 | .br |
---|
| 417 | .B bdd_if(bddm, f) |
---|
| 418 | .br |
---|
| 419 | .B bdd_manager bddm; |
---|
| 420 | .br |
---|
| 421 | .B bdd f; |
---|
| 422 | .in +4 |
---|
| 423 | Returns the BDD for the variable which labels the root of the BDD |
---|
| 424 | given by \fBf\fR. Also works with MTBDDs. The result is undefined if |
---|
| 425 | .B f |
---|
| 426 | is one of the constants TRUE or FALSE or an MTBDD terminal node. |
---|
| 427 | .LP |
---|
| 428 | .B bdd |
---|
| 429 | .br |
---|
| 430 | .B bdd_then(bddm, f) |
---|
| 431 | .br |
---|
| 432 | .B bdd_manager bddm; |
---|
| 433 | .br |
---|
| 434 | .B bdd f; |
---|
| 435 | .in +4 |
---|
| 436 | Returns the BDD for the THEN branch of the root of the BDD given by |
---|
| 437 | \fBf\fR. Also works with MTBDDs. The result is undefined if |
---|
| 438 | .B f |
---|
| 439 | is one of the constants TRUE or FALSE or an MTBDD terminal node. |
---|
| 440 | .LP |
---|
| 441 | .B bdd |
---|
| 442 | .br |
---|
| 443 | .B bdd_else(bddm, f) |
---|
| 444 | .br |
---|
| 445 | .B bdd_manager bddm; |
---|
| 446 | .br |
---|
| 447 | .B bdd f; |
---|
| 448 | .in +4 |
---|
| 449 | Returns the BDD for the ELSE branch of the root of the BDD given by |
---|
| 450 | \fBf\fR. Also works with MTBDDs. The result is undefined if |
---|
| 451 | .B f |
---|
| 452 | is one of the constants TRUE or FALSE or an MTBDD terminal node. |
---|
| 453 | .LP |
---|
| 454 | .B long |
---|
| 455 | .br |
---|
| 456 | .B bdd_if_index(bddm, f) |
---|
| 457 | .br |
---|
| 458 | .B bdd_manager bddm; |
---|
| 459 | .br |
---|
| 460 | .B bdd f; |
---|
| 461 | .in +4 |
---|
| 462 | Returns the index of the variable which labels the root of the BDD |
---|
| 463 | given by \fBf\fR. Also works with MTBDDs. The result is undefined if |
---|
| 464 | .B f |
---|
| 465 | is one of the constants TRUE or FALSE or an MTBDD terminal node. The |
---|
| 466 | variable at the start of variable ordering has index 0, the next has |
---|
| 467 | index 1, etc. Note that creating new variables may change the index |
---|
| 468 | of existing variables. Dynamic reordering may also change the index |
---|
| 469 | of variables. |
---|
| 470 | .LP |
---|
| 471 | .B long |
---|
| 472 | .br |
---|
| 473 | .B bdd_if_id(bddm, f) |
---|
| 474 | .br |
---|
| 475 | .B bdd_manager bddm; |
---|
| 476 | .br |
---|
| 477 | .B bdd f; |
---|
| 478 | .in +4 |
---|
| 479 | Returns a unique ID number for the variable which labels the root of |
---|
| 480 | the BDD given by \fBf\fR. Also works with MTBDDs. The result is |
---|
| 481 | undefined if |
---|
| 482 | .B f |
---|
| 483 | is one of the constants TRUE or FALSE or an MTBDD terminal node. The |
---|
| 484 | ID for a variable is fixed at the time the variable is created and |
---|
| 485 | never changes after that. |
---|
| 486 | .LP |
---|
| 487 | .B bdd |
---|
| 488 | .br |
---|
| 489 | .B bdd_intersects(bddm, f, g) |
---|
| 490 | .br |
---|
| 491 | .B bdd_manager bddm; |
---|
| 492 | .br |
---|
| 493 | .B bdd f, g; |
---|
| 494 | .in +4 |
---|
| 495 | Computes a BDD that implies the conjunction of |
---|
| 496 | .B f |
---|
| 497 | and \fBg\fR. If the conjunction is not FALSE, then the BDD returned |
---|
| 498 | will not be FALSE. Also, the function tries to construct as few new |
---|
| 499 | nodes as possible. This routine is intended for cases where you need |
---|
| 500 | to test for a FALSE conjunction, and, when it the conjunction is not |
---|
| 501 | FALSE, to obtain just one valuation satisfying both |
---|
| 502 | .B f |
---|
| 503 | and \fBg\fR. A non-FALSE result from |
---|
| 504 | .B bdd_intersects |
---|
| 505 | can be passed directly to a routine like \fBbdd_satisfy_support\fR. |
---|
| 506 | .LP |
---|
| 507 | .B bdd |
---|
| 508 | .br |
---|
| 509 | .B bdd_implies(bddm, f, g) |
---|
| 510 | .br |
---|
| 511 | .B bdd_manager bddm; |
---|
| 512 | .br |
---|
| 513 | .B bdd f, g; |
---|
| 514 | .in +4 |
---|
| 515 | This is equivalent to calling |
---|
| 516 | .B bdd_intersects |
---|
| 517 | with |
---|
| 518 | .B f |
---|
| 519 | and NOT \fBg\fR. |
---|
| 520 | .LP |
---|
| 521 | .B int |
---|
| 522 | .br |
---|
| 523 | .B bdd_new_assoc(bddm, assoc, pairs) |
---|
| 524 | .br |
---|
| 525 | .B bdd_manager bddm; |
---|
| 526 | .br |
---|
| 527 | .B bdd *assoc; |
---|
| 528 | .br |
---|
| 529 | .B int pairs; |
---|
| 530 | .in +4 |
---|
| 531 | Creates or finds a variable association. The association is specified |
---|
| 532 | by |
---|
| 533 | .B assoc |
---|
| 534 | and should be a null-terminated array of BDDs. If |
---|
| 535 | .B pairs |
---|
| 536 | is 0, the array is assumed to be an array of variables. In this case, |
---|
| 537 | each variable is paired with the BDD for TRUE. Such an association |
---|
| 538 | may essentially be viewed as specifying a set of variables for use |
---|
| 539 | with routines such as \fBbdd_exists\fR. If |
---|
| 540 | .B pairs |
---|
| 541 | is nonzero, then the even numbered array elements should be variables |
---|
| 542 | and the odd numbered elements should be the BDDs which they are mapped |
---|
| 543 | to. In both cases, the return value is an integer identifier for this |
---|
| 544 | association. Note: if the given association is equivalent to one |
---|
| 545 | which already exists, the same identifier is used for both, and the |
---|
| 546 | reference count of the association is increased by one. |
---|
| 547 | .LP |
---|
| 548 | .B void |
---|
| 549 | .br |
---|
| 550 | .B bdd_free_assoc(bddm, id) |
---|
| 551 | .br |
---|
| 552 | .B bdd_manager bddm; |
---|
| 553 | .br |
---|
| 554 | .B int id; |
---|
| 555 | .in +4 |
---|
| 556 | Decrements the reference count of the variable association with |
---|
| 557 | identifier \fBid\fR, and frees it if the reference count becomes zero. |
---|
| 558 | .LP |
---|
| 559 | .B void |
---|
| 560 | .br |
---|
| 561 | .B bdd_temp_assoc(bddm, assoc, pairs) |
---|
| 562 | .br |
---|
| 563 | .B bdd_manager bddm; |
---|
| 564 | .br |
---|
| 565 | .B bdd *assoc; |
---|
| 566 | .br |
---|
| 567 | .B int pairs; |
---|
| 568 | .in +4 |
---|
| 569 | Sets the temporary variable association. The arguments |
---|
| 570 | .B assoc |
---|
| 571 | and |
---|
| 572 | .B pairs |
---|
| 573 | are as in \fBbdd_new_assoc\fR. |
---|
| 574 | .LP |
---|
| 575 | .B void |
---|
| 576 | .br |
---|
| 577 | .B bdd_augment_temp_assoc(bddm, assoc, pairs) |
---|
| 578 | .br |
---|
| 579 | .B bdd_manager bddm; |
---|
| 580 | .br |
---|
| 581 | .B bdd *assoc; |
---|
| 582 | .br |
---|
| 583 | .B int pairs; |
---|
| 584 | .in +4 |
---|
| 585 | Add to the temporary variable association. The arguments |
---|
| 586 | .B assoc |
---|
| 587 | and |
---|
| 588 | .B pairs |
---|
| 589 | are as in \fBbdd_new_assoc\fR. Any existing associations are |
---|
| 590 | overwritten. This is mainly used when doing things like substituting |
---|
| 591 | for all variables in a BDD. It isn't necessary to clear out the |
---|
| 592 | temporary association in such cases, so you can save a little time by |
---|
| 593 | using this routine. |
---|
| 594 | .LP |
---|
| 595 | .B int |
---|
| 596 | .br |
---|
| 597 | .B bdd_assoc(bddm, id) |
---|
| 598 | .br |
---|
| 599 | .B bdd_manager bddm; |
---|
| 600 | .br |
---|
| 601 | .B int id; |
---|
| 602 | .in +4 |
---|
| 603 | Sets the current variable association to the one identified by |
---|
| 604 | \fBid\fR. The identifier for the old current association is returned. |
---|
| 605 | The temporary variable association has identifier -1. |
---|
| 606 | .LP |
---|
| 607 | .B bdd |
---|
| 608 | .br |
---|
| 609 | .B bdd_exists(bddm, f) |
---|
| 610 | .br |
---|
| 611 | .B bdd_manager bddm; |
---|
| 612 | .br |
---|
| 613 | .B bdd f; |
---|
| 614 | .in +4 |
---|
| 615 | Returns the BDD for |
---|
| 616 | .B f |
---|
| 617 | with all the variables that are paired with something in the current |
---|
| 618 | variable association existentially quantified out. |
---|
| 619 | .LP |
---|
| 620 | .B bdd |
---|
| 621 | .br |
---|
| 622 | .B bdd_forall(bddm, f) |
---|
| 623 | .br |
---|
| 624 | .B bdd_manager bddm; |
---|
| 625 | .br |
---|
| 626 | .B bdd f; |
---|
| 627 | .in +4 |
---|
| 628 | Returns the BDD for |
---|
| 629 | .B f |
---|
| 630 | with all the variables that are paired with something in the current |
---|
| 631 | variable association universally quantified out. |
---|
| 632 | .LP |
---|
| 633 | .B bdd |
---|
| 634 | .br |
---|
| 635 | .B bdd_rel_prod(bddm, f, g) |
---|
| 636 | .br |
---|
| 637 | .B bdd_manager bddm; |
---|
| 638 | .br |
---|
| 639 | .B bdd f, g; |
---|
| 640 | .in +4 |
---|
| 641 | Returns the BDD for the logical AND of |
---|
| 642 | .B f |
---|
| 643 | and |
---|
| 644 | .B g |
---|
| 645 | with all the variables that are paired with something in the current |
---|
| 646 | variable association existentially quantified out. If |
---|
| 647 | .B f |
---|
| 648 | and |
---|
| 649 | .B g |
---|
| 650 | are viewed as boolean relations, this operation corresponds to |
---|
| 651 | relational product. This routine is generally much more efficient |
---|
| 652 | than doing the operations separately. |
---|
| 653 | .LP |
---|
| 654 | .B bdd |
---|
| 655 | .br |
---|
| 656 | .B bdd_compose(bddm, f, g, h) |
---|
| 657 | .br |
---|
| 658 | .B bdd_manager bddm; |
---|
| 659 | .br |
---|
| 660 | .B bdd f, g, h; |
---|
| 661 | .in +4 |
---|
| 662 | Returns the BDD for the substitution of |
---|
| 663 | .B h |
---|
| 664 | for the variable |
---|
| 665 | .B g |
---|
| 666 | in \fBf\fR. When |
---|
| 667 | .B h |
---|
| 668 | does not depend on \fBg\fR, the operation may be viewed as composition |
---|
| 669 | of boolean functions. If |
---|
| 670 | .B h |
---|
| 671 | does depend on \fBg\fR, it corresponds to instantaneous substitution |
---|
| 672 | in a boolean formula. |
---|
| 673 | .LP |
---|
| 674 | .B bdd |
---|
| 675 | .br |
---|
| 676 | .B bdd_substitute(bddm, f) |
---|
| 677 | .br |
---|
| 678 | .B bdd_manager bddm; |
---|
| 679 | .br |
---|
| 680 | .B bdd f; |
---|
| 681 | .in +4 |
---|
| 682 | Returns the BDD for |
---|
| 683 | .B f |
---|
| 684 | under a substitution defined by the current variable association. |
---|
| 685 | Each variable is replaced by its associated BDD. The substitution is |
---|
| 686 | effectively simultaneous. |
---|
| 687 | .LP |
---|
| 688 | .B bdd |
---|
| 689 | .br |
---|
| 690 | .B bdd_reduce(bddm, f, g) |
---|
| 691 | .br |
---|
| 692 | .B bdd_manager bddm; |
---|
| 693 | .br |
---|
| 694 | .B bdd f, g; |
---|
| 695 | .in +4 |
---|
| 696 | Returns a BDD which agrees with |
---|
| 697 | .B f |
---|
| 698 | for all valuations which satisfy \fBg\fR. The result is usually |
---|
| 699 | smaller in terms of number of BDD nodes than \fBf\fR. This operation |
---|
| 700 | is typically used in state space searches to simplify the |
---|
| 701 | representation for the set of states which will be expanded at each |
---|
| 702 | step. |
---|
| 703 | .LP |
---|
| 704 | .B bdd |
---|
| 705 | .br |
---|
| 706 | .B bdd_cofactor(bddm, f, g) |
---|
| 707 | .br |
---|
| 708 | .B bdd_manager bddm; |
---|
| 709 | .br |
---|
| 710 | .B bdd f, g; |
---|
| 711 | .in +4 |
---|
| 712 | Returns a BDD for the generalized cofactor of |
---|
| 713 | .B f |
---|
| 714 | by \fBg\fR. The BDD indicated by |
---|
| 715 | .B g |
---|
| 716 | should not be the constant FALSE. For some properties of this |
---|
| 717 | operation, see Touati |
---|
| 718 | .I et al. |
---|
| 719 | [2]. |
---|
| 720 | .LP |
---|
| 721 | .B int |
---|
| 722 | .br |
---|
| 723 | .B bdd_depends_on(bddm, f, g) |
---|
| 724 | .br |
---|
| 725 | .B bdd_manager bddm; |
---|
| 726 | .br |
---|
| 727 | .B bdd f; |
---|
| 728 | .br |
---|
| 729 | .B bdd g; |
---|
| 730 | .in +4 |
---|
| 731 | Returns 1 if the BDD or MTBDD |
---|
| 732 | .B f |
---|
| 733 | depends on the variable given by the BDD \fBg\fR, and returns 0 |
---|
| 734 | otherwise. |
---|
| 735 | .LP |
---|
| 736 | .B void |
---|
| 737 | .br |
---|
| 738 | .B bdd_support(bddm, f, support) |
---|
| 739 | .br |
---|
| 740 | .B bdd_manager bddm; |
---|
| 741 | .br |
---|
| 742 | .B bdd f; |
---|
| 743 | .br |
---|
| 744 | .B bdd *support; |
---|
| 745 | .in +4 |
---|
| 746 | Stores the support of |
---|
| 747 | .B f |
---|
| 748 | as a null-terminated sequence of variables in \fBsupport\fR. Works |
---|
| 749 | for MTBDDs also. |
---|
| 750 | .LP |
---|
| 751 | .B bdd |
---|
| 752 | .br |
---|
| 753 | .B bdd_satisfy(bddm, f) |
---|
| 754 | .br |
---|
| 755 | .B bdd_manager bddm; |
---|
| 756 | .br |
---|
| 757 | .B bdd f; |
---|
| 758 | .in +4 |
---|
| 759 | Returns a BDD which is not false, implies \fBf\fR, and has at most one |
---|
| 760 | BDD node at each level. The BDD indicated by |
---|
| 761 | .B f |
---|
| 762 | should not be the constant FALSE. |
---|
| 763 | .LP |
---|
| 764 | .B bdd |
---|
| 765 | .br |
---|
| 766 | .B bdd_satisfy_support(bddm, f) |
---|
| 767 | .br |
---|
| 768 | .B bdd_manager bddm; |
---|
| 769 | .br |
---|
| 770 | .B bdd f; |
---|
| 771 | .in +4 |
---|
| 772 | Returns a BDD which is not false, implies \fBf\fR, has at most one |
---|
| 773 | BDD node at each level, and has a node labeled with each variable |
---|
| 774 | which is paired with something in the current variable association. |
---|
| 775 | If |
---|
| 776 | .B f |
---|
| 777 | is the constant FALSE, the result is undefined. |
---|
| 778 | .LP |
---|
| 779 | .B double |
---|
| 780 | .br |
---|
| 781 | .B bdd_satisfying_fraction(bddm, f) |
---|
| 782 | .br |
---|
| 783 | .B bdd_manager bddm; |
---|
| 784 | .br |
---|
| 785 | .B bdd f; |
---|
| 786 | .in +4 |
---|
| 787 | Returns the fraction of valuations which satisfy \fBf\fR. If |
---|
| 788 | .B f |
---|
| 789 | is a function of |
---|
| 790 | .I n |
---|
| 791 | variables, then 2 to the power |
---|
| 792 | .I n |
---|
| 793 | times this fraction is the number of valuations which satisfy \fBf\fR. |
---|
| 794 | .LP |
---|
| 795 | .B bdd |
---|
| 796 | .br |
---|
| 797 | .B bdd_swap_vars(bddm, f, g, h) |
---|
| 798 | .br |
---|
| 799 | .B bdd_manager bddm; |
---|
| 800 | .br |
---|
| 801 | .B bdd f; |
---|
| 802 | .br |
---|
| 803 | .B bdd g; |
---|
| 804 | .br |
---|
| 805 | .B bdd h; |
---|
| 806 | .in +4 |
---|
| 807 | Returns the BDD for |
---|
| 808 | .B f |
---|
| 809 | with |
---|
| 810 | .B g |
---|
| 811 | substituted for |
---|
| 812 | .B h |
---|
| 813 | and |
---|
| 814 | .B h |
---|
| 815 | substituted for \fBg\fR. The substitution is effectively |
---|
| 816 | simultaneous. |
---|
| 817 | .LP |
---|
| 818 | .B bdd |
---|
| 819 | .br |
---|
| 820 | .B bdd_apply2(bddm, terminal_fn, f, g, env) |
---|
| 821 | .br |
---|
| 822 | .B bdd_manager bddm; |
---|
| 823 | .br |
---|
| 824 | .B bdd (*terminal_fn)(); |
---|
| 825 | .br |
---|
| 826 | .B bdd f; |
---|
| 827 | .br |
---|
| 828 | .B bdd g; |
---|
| 829 | .br |
---|
| 830 | .B pointer env; |
---|
| 831 | .in +4 |
---|
| 832 | This is a generic two-argument operation. The behavior of the |
---|
| 833 | operation on terminal values is given by \fBterminal_fn\fR. It should |
---|
| 834 | take as arguments: the BDD manager, pointers to two BDDs (the |
---|
| 835 | arguments for the call), and the pointer given by \fBenv\fR. If the |
---|
| 836 | value of the call can be determined immediately from the arguments, it |
---|
| 837 | should return that value. Otherwise, it should return a null pointer. |
---|
| 838 | In this case, it may also use the BDD pointers that it received to |
---|
| 839 | alter the arguments to the call. A typical use for this ability is to |
---|
| 840 | put the arguments in a canonical order for commutative operations. |
---|
| 841 | The function should not alter the reference counts of either the |
---|
| 842 | arguments or the returned value. Also, the returned value (if |
---|
| 843 | non-null) has its temporary reference count incremented once |
---|
| 844 | automatically. If your function always returns one of the arguments |
---|
| 845 | or TRUE or FALSE, this is the right thing and you don't have to worry |
---|
| 846 | about it. If you want to call other routines to determine the return |
---|
| 847 | value, you should read the section on adding new routines below. |
---|
| 848 | Works with MTBDDs. |
---|
| 849 | .LP |
---|
| 850 | .B bdd |
---|
| 851 | .br |
---|
| 852 | .B bdd_apply1(bddm, terminal_fn, f, env) |
---|
| 853 | .br |
---|
| 854 | .B bdd_manager bddm; |
---|
| 855 | .br |
---|
| 856 | .B bdd (*terminal_fn)(); |
---|
| 857 | .br |
---|
| 858 | .B bdd f; |
---|
| 859 | .br |
---|
| 860 | .B pointer env; |
---|
| 861 | .in +4 |
---|
| 862 | This is a generic one-argument operation. It is basically like |
---|
| 863 | \fBbdd_apply2\fR, except that |
---|
| 864 | .B terminal_fn |
---|
| 865 | takes a single BDD pointer argument instead of the pair of pointers in |
---|
| 866 | the two-argument case. Works with MTBDDs. |
---|
| 867 | .LP |
---|
| 868 | .B long |
---|
| 869 | .br |
---|
| 870 | .B bdd_size(bddm, f, negout) |
---|
| 871 | .br |
---|
| 872 | .B bdd_manager bddm; |
---|
| 873 | .br |
---|
| 874 | .B bdd f; |
---|
| 875 | .br |
---|
| 876 | .B int negout; |
---|
| 877 | .in +4 |
---|
| 878 | Returns the number of nodes in \fBf\fR. The parameter |
---|
| 879 | .B negout |
---|
| 880 | is a flag indicating whether negative output pointers should be |
---|
| 881 | considered. The library uses this type of pointer flag internally, |
---|
| 882 | so if the flag is nonzero, the actual number of nodes used is |
---|
| 883 | returned. If the flag is zero, the return value is the number of |
---|
| 884 | nodes which would be needed to represent |
---|
| 885 | .B f |
---|
| 886 | using a basic BDD. Works for MTBDDs too. |
---|
| 887 | .LP |
---|
| 888 | .B long |
---|
| 889 | .br |
---|
| 890 | .B bdd_size_multiple(bddm, fs, negout) |
---|
| 891 | .br |
---|
| 892 | .B bdd_manager bddm; |
---|
| 893 | .br |
---|
| 894 | .B bdd *fs; |
---|
| 895 | .br |
---|
| 896 | .B int negout; |
---|
| 897 | .in +4 |
---|
| 898 | Returns the number of nodes in the set of BDDs or MTBDDs given by |
---|
| 899 | \fBfs\fR, which should be a null-terminated array. Nodes which are |
---|
| 900 | shared among the BDDs are only counted once. The parameter |
---|
| 901 | .B negout |
---|
| 902 | is as in \fBbdd_size\fR. |
---|
| 903 | .LP |
---|
| 904 | .B void |
---|
| 905 | .br |
---|
| 906 | .B bdd_profile(bddm, f, level_counts, negout) |
---|
| 907 | .br |
---|
| 908 | .B bdd_manager bddm; |
---|
| 909 | .br |
---|
| 910 | .B bdd f; |
---|
| 911 | .br |
---|
| 912 | .B long *level_counts; |
---|
| 913 | .br |
---|
| 914 | .B int negout; |
---|
| 915 | .in +4 |
---|
| 916 | Returns the ``node profile'' of \fBf\fR, i.e., the number of nodes at |
---|
| 917 | each level in \fBf\fR. The parameter |
---|
| 918 | .B level_counts |
---|
| 919 | should be an array of longs of size one plus the number of variables |
---|
| 920 | in existence (see \fBbdd_vars\fR). On return, this array holds the |
---|
| 921 | profile; the \fIi\fRth entry is the number of nodes labeled with the |
---|
| 922 | variable of index \fIi\fR. The last entry corresponds to the nodes |
---|
| 923 | for TRUE and FALSE. The parameter |
---|
| 924 | .B negout |
---|
| 925 | is as in \fBbdd_size\fR. Works for MTBDDs too; in this case, the |
---|
| 926 | last entry corresponds to the MTBDD terminal nodes. |
---|
| 927 | .LP |
---|
| 928 | .B void |
---|
| 929 | .br |
---|
| 930 | .B bdd_profile_multiple(bddm, fs, level_counts, negout) |
---|
| 931 | .br |
---|
| 932 | .B bdd_manager bddm; |
---|
| 933 | .br |
---|
| 934 | .B bdd* fs; |
---|
| 935 | .br |
---|
| 936 | .B long *level_counts; |
---|
| 937 | .br |
---|
| 938 | .B int negout; |
---|
| 939 | .in +4 |
---|
| 940 | Returns the ``node profile'' of the set of BDDs or MTBDDs given by |
---|
| 941 | \fBfs\fR, which should be a null-terminated array. The parameters |
---|
| 942 | \fBlevel_counts\fR and |
---|
| 943 | .B negout |
---|
| 944 | are as in \fBbdd_profile\fR. |
---|
| 945 | .LP |
---|
| 946 | .B void |
---|
| 947 | .br |
---|
| 948 | .B bdd_function_profile(bddm, f, func_counts) |
---|
| 949 | .br |
---|
| 950 | .B bdd_manager bddm; |
---|
| 951 | .br |
---|
| 952 | .B bdd f; |
---|
| 953 | .br |
---|
| 954 | .B long *func_counts; |
---|
| 955 | .in +4 |
---|
| 956 | Returns the ``function profile'' of \fBf\fR, i.e., the number of |
---|
| 957 | functions at or below each level in \fBf\fR. The parameter |
---|
| 958 | .B func_counts |
---|
| 959 | should be an array of longs of size one plus the number of variables |
---|
| 960 | in existence (see \fBbdd_vars\fR). On return, this array holds the |
---|
| 961 | profile. The \fIi\fRth entry corresponds to the number of functions |
---|
| 962 | which can be obtained by restricting those variables of index less |
---|
| 963 | than \fIi\fR, provided that |
---|
| 964 | .B f |
---|
| 965 | has at least one node labeled with the variable of index \fIi\fR. If |
---|
| 966 | .B f |
---|
| 967 | has no nodes labeled with the variable of index \fIi\fR, then the |
---|
| 968 | \fIi\fRth entry of the profile is 0. Works for MTBDDs also. |
---|
| 969 | .LP |
---|
| 970 | .B void |
---|
| 971 | .br |
---|
| 972 | .B bdd_function_profile_multiple(bddm, fs, func_counts) |
---|
| 973 | .br |
---|
| 974 | .B bdd_manager bddm; |
---|
| 975 | .br |
---|
| 976 | .B bdd *fs; |
---|
| 977 | .br |
---|
| 978 | .B long *func_counts; |
---|
| 979 | .in +4 |
---|
| 980 | Returns the ``function profile'' of the set of BDDs or MTBDDs given by |
---|
| 981 | \fBfs\fR, which should be a null-terminated array. The parameter |
---|
| 982 | .B func_counts |
---|
| 983 | is as in \fBbdd_function_profile\fR. |
---|
| 984 | .LP |
---|
| 985 | .B void |
---|
| 986 | .br |
---|
| 987 | .B bdd_print_bdd(bddm, f, naming_fn, terminal_id_fn, env, fp) |
---|
| 988 | .br |
---|
| 989 | .B bdd_manager bddm; |
---|
| 990 | .br |
---|
| 991 | .B bdd f; |
---|
| 992 | .br |
---|
| 993 | .B char *(*naming_fn)(); |
---|
| 994 | .br |
---|
| 995 | .B char *(*terminal_id_fn)(); |
---|
| 996 | .br |
---|
| 997 | .B pointer env; |
---|
| 998 | .br |
---|
| 999 | .B FILE *fp; |
---|
| 1000 | .in +4 |
---|
| 1001 | Prints a human-readable representation of the BDD or MTBDD |
---|
| 1002 | .B f |
---|
| 1003 | to the file given by \fBfp\fR. The |
---|
| 1004 | .B naming_fn |
---|
| 1005 | should be a pointer to a function taking a \fBbdd_manager\fR, a |
---|
| 1006 | .B bdd |
---|
| 1007 | and the pointer given by \fBenv\fR. This function should return |
---|
| 1008 | either a null pointer or a string that is the name of the supplied |
---|
| 1009 | variable. If it returns a null pointer, a default name is generated |
---|
| 1010 | based on the index of the variable. It is also legal for |
---|
| 1011 | .B naming_fn |
---|
| 1012 | to be null; in this case, default names are generated for all variables. |
---|
| 1013 | The macro |
---|
| 1014 | .B bdd_naming_fn_none |
---|
| 1015 | is a null pointer of suitable type. |
---|
| 1016 | .B terminal_id_fn |
---|
| 1017 | should be a pointer to a function taking a |
---|
| 1018 | .B bdd_manager |
---|
| 1019 | and two longs, plus the pointer given by \fBenv\fR. It should |
---|
| 1020 | return either a null pointer or a string representing the MTBDD |
---|
| 1021 | terminal represented by the given value. If it returns a null |
---|
| 1022 | pointer, or if |
---|
| 1023 | .B terminal_id_fn |
---|
| 1024 | is null, then default names are generated for the terminals. |
---|
| 1025 | The macro |
---|
| 1026 | .B bdd_terminal_id_fn_none |
---|
| 1027 | is a null pointer of suitable type. |
---|
| 1028 | .LP |
---|
| 1029 | .B void |
---|
| 1030 | .br |
---|
| 1031 | .B bdd_print_profile(bddm, f, naming_fn, env, width, fp) |
---|
| 1032 | .br |
---|
| 1033 | .B bdd_manager bddm; |
---|
| 1034 | .br |
---|
| 1035 | .B bdd f; |
---|
| 1036 | .br |
---|
| 1037 | .B char *(*naming_fn)(); |
---|
| 1038 | .br |
---|
| 1039 | .B pointer env; |
---|
| 1040 | .br |
---|
| 1041 | .B int width; |
---|
| 1042 | .br |
---|
| 1043 | .B FILE *fp; |
---|
| 1044 | .in +4 |
---|
| 1045 | Prints a node profile of a BDD in histogram form. The argument |
---|
| 1046 | .B naming_fn |
---|
| 1047 | should be as described in \fBbdd_print_bdd\fR. The width of the |
---|
| 1048 | output stream is specified by \fBwidth\fR. This is used to determine |
---|
| 1049 | how to scale the histogram. |
---|
| 1050 | .LP |
---|
| 1051 | .B void |
---|
| 1052 | .br |
---|
| 1053 | .B bdd_print_profile_multiple(bddm, fs, naming_fn, env, width, fp) |
---|
| 1054 | .br |
---|
| 1055 | .B bdd_manager bddm; |
---|
| 1056 | .br |
---|
| 1057 | .B bdd *fs; |
---|
| 1058 | .br |
---|
| 1059 | .B char *(*naming_fn)(); |
---|
| 1060 | .br |
---|
| 1061 | .B pointer env; |
---|
| 1062 | .br |
---|
| 1063 | .B int width; |
---|
| 1064 | .br |
---|
| 1065 | .B FILE *fp; |
---|
| 1066 | .in +4 |
---|
| 1067 | Prints a node profile of a set of BDDs, which should be given as a |
---|
| 1068 | null-terminated array. The other arguments are as in |
---|
| 1069 | \fBbdd_print_profile\fR. |
---|
| 1070 | .LP |
---|
| 1071 | .B void |
---|
| 1072 | .br |
---|
| 1073 | .B bdd_print_function_profile(bddm, f, naming_fn, env, width, fp) |
---|
| 1074 | .br |
---|
| 1075 | .B bdd_manager bddm; |
---|
| 1076 | .br |
---|
| 1077 | .B bdd f; |
---|
| 1078 | .br |
---|
| 1079 | .B char *(*naming_fn)(); |
---|
| 1080 | .br |
---|
| 1081 | .B pointer env; |
---|
| 1082 | .br |
---|
| 1083 | .B int width; |
---|
| 1084 | .br |
---|
| 1085 | .B FILE *fp; |
---|
| 1086 | .in +4 |
---|
| 1087 | Prints a function profile of a BDD in histogram form. The arguments |
---|
| 1088 | are the same as those to \fBbdd_print_profile\fR. |
---|
| 1089 | .LP |
---|
| 1090 | .B int |
---|
| 1091 | .br |
---|
| 1092 | .B bdd_dump_bdd(bddm, f, vars, fp) |
---|
| 1093 | .br |
---|
| 1094 | .B bdd_manager bddm; |
---|
| 1095 | .br |
---|
| 1096 | .B bdd f; |
---|
| 1097 | .br |
---|
| 1098 | .B bdd *vars; |
---|
| 1099 | .br |
---|
| 1100 | .B FILE *fp; |
---|
| 1101 | .in +4 |
---|
| 1102 | Writes an encoded description of the BDD or MTBDD |
---|
| 1103 | .B f |
---|
| 1104 | to the file given by \fBfp\fR. The argument |
---|
| 1105 | .B vars |
---|
| 1106 | should be a null-terminated array of variables that include the |
---|
| 1107 | support of \fBf\fR. These variables need not be in order of |
---|
| 1108 | increasing index. The function returns a nonzero value if |
---|
| 1109 | .B f |
---|
| 1110 | was written to the file successfully. |
---|
| 1111 | .LP |
---|
| 1112 | .B bdd |
---|
| 1113 | .br |
---|
| 1114 | .B bdd_undump_bdd(bddm, vars, fp, error) |
---|
| 1115 | .br |
---|
| 1116 | .B bdd_manager bddm; |
---|
| 1117 | .br |
---|
| 1118 | .B bdd *vars; |
---|
| 1119 | .br |
---|
| 1120 | .B FILE *fp; |
---|
| 1121 | .br |
---|
| 1122 | .B int *error; |
---|
| 1123 | .in +4 |
---|
| 1124 | Loads an encoded description of a BDD or MTBDD from the file given by |
---|
| 1125 | \fBfp\fR. The argument |
---|
| 1126 | .B vars |
---|
| 1127 | should be a null-terminated array of variables that will become the |
---|
| 1128 | support of the BDD. As in \fBbdd_dump_bdd\fR, these need not be in |
---|
| 1129 | order of increasing index. If the same array of variables is used in |
---|
| 1130 | dumping and undumping, the BDD returned will be equal to the one that |
---|
| 1131 | was dumped. More generally, if the array |
---|
| 1132 | .B v1 |
---|
| 1133 | is used when dumping, and the array |
---|
| 1134 | .B v2 |
---|
| 1135 | is used when undumping, the BDD returned will be equal to the original |
---|
| 1136 | BDD with the \fIi\fRth variable in |
---|
| 1137 | .B v2 |
---|
| 1138 | substituted for the \fIi\fRth variable in |
---|
| 1139 | .B v1 |
---|
| 1140 | for all \fIi\fR. Null is returned if the operation fails for some |
---|
| 1141 | reason (node limit reached, I/O error, invalid file format, etc.). |
---|
| 1142 | In this case, an error code is stored in \fBerror\fR. The code will |
---|
| 1143 | be one of the following. |
---|
| 1144 | .nf |
---|
| 1145 | .ta 3in |
---|
| 1146 | \fIValue\fR \fIMeaning\fR |
---|
| 1147 | BDD_UNDUMP_FORMAT Invalid file format |
---|
| 1148 | BDD_UNDUMP_OVERFLOW Node limit exceeded |
---|
| 1149 | BDD_UNDUMP_IOERROR File I/O error |
---|
| 1150 | BDD_UNDUMP_EOF Unexpected EOF |
---|
| 1151 | .fi |
---|
| 1152 | .LP |
---|
| 1153 | .B int |
---|
| 1154 | .br |
---|
| 1155 | .B bdd_type(bddm, f) |
---|
| 1156 | .br |
---|
| 1157 | .B bdd_manager bddm; |
---|
| 1158 | .br |
---|
| 1159 | .B bdd f; |
---|
| 1160 | .in +4 |
---|
| 1161 | Returns an integer classifying the BDD or MTBDD \fBf\fR. The possible |
---|
| 1162 | return values and their meanings are as follows. |
---|
| 1163 | .nf |
---|
| 1164 | .ta 3in |
---|
| 1165 | \fIValue\fR \fIMeaning\fR |
---|
| 1166 | BDD_TYPE_OVERFLOW \fBf\fR is a null pointer |
---|
| 1167 | BDD_TYPE_ZERO \fBf\fR is the constant FALSE |
---|
| 1168 | BDD_TYPE_ONE \fBf\fR is the constant TRUE |
---|
| 1169 | BDD_TYPE_CONSTANT \fBf\fR is an MTBDD constant |
---|
| 1170 | BDD_TYPE_POSVAR \fBf\fR is a variable |
---|
| 1171 | BDD_TYPE_NEGVAR \fBf\fR is the negation of a variable |
---|
| 1172 | BDD_TYPE_NONTERMINAL \fBf\fR is not one of the above |
---|
| 1173 | .fi |
---|
| 1174 | .LP |
---|
| 1175 | .B void |
---|
| 1176 | .br |
---|
| 1177 | .B bdd_free(bddm, f) |
---|
| 1178 | .br |
---|
| 1179 | .B bdd_manager bddm; |
---|
| 1180 | .br |
---|
| 1181 | .B bdd f; |
---|
| 1182 | .in +4 |
---|
| 1183 | Decreases the reference count of |
---|
| 1184 | .B f |
---|
| 1185 | by one. When the reference count of a BDD or MTBDD node reaches 0, |
---|
| 1186 | the node and any of its children that are not otherwise referenced may |
---|
| 1187 | eventually be garbage collected and reused. Intermediate results and |
---|
| 1188 | unused BDDs and MTBDDs should be freed whenever possible. For |
---|
| 1189 | example: |
---|
| 1190 | |
---|
| 1191 | .nf |
---|
| 1192 | bdd |
---|
| 1193 | f_or_g_and_h(bddm, f, g, h) |
---|
| 1194 | bdd_manager bddm; |
---|
| 1195 | bdd f, g, h; |
---|
| 1196 | { |
---|
| 1197 | bdd temp, result; |
---|
| 1198 | temp=bdd_and(bddm, g, h); |
---|
| 1199 | result=bdd_or(bddm, f, temp); |
---|
| 1200 | bdd_free(bddm, temp); /* Free intermediate */ |
---|
| 1201 | return (result); |
---|
| 1202 | } |
---|
| 1203 | .fi |
---|
| 1204 | .LP |
---|
| 1205 | .B void |
---|
| 1206 | .br |
---|
| 1207 | .B bdd_unfree(bddm, f) |
---|
| 1208 | .br |
---|
| 1209 | .B bdd_manager bddm; |
---|
| 1210 | .br |
---|
| 1211 | .B bdd f; |
---|
| 1212 | .in +4 |
---|
| 1213 | Increases the reference count of |
---|
| 1214 | .B f |
---|
| 1215 | by one. This is usually used in conjunction with |
---|
| 1216 | \fBbdd_clear_refs\fR. Works with MTBDDs. |
---|
| 1217 | .LP |
---|
| 1218 | .B void |
---|
| 1219 | .br |
---|
| 1220 | .B bdd_clear_refs(bddm) |
---|
| 1221 | .br |
---|
| 1222 | .B bdd_manager bddm; |
---|
| 1223 | .in +4 |
---|
| 1224 | Sets the reference counts of all BDD and MTBDD nodes (except for the |
---|
| 1225 | node for TRUE/FALSE) to 0. Calling this routine and then immediately |
---|
| 1226 | calling |
---|
| 1227 | .B bdd_unfree |
---|
| 1228 | on a set of BDDs has the effect of disposing of all BDDs except those |
---|
| 1229 | in the set. |
---|
| 1230 | .LP |
---|
| 1231 | .B void |
---|
| 1232 | .br |
---|
| 1233 | .B bdd_gc(bddm) |
---|
| 1234 | .br |
---|
| 1235 | .B bdd_manager bddm; |
---|
| 1236 | .in +4 |
---|
| 1237 | Forces a BDD garbage collection; all nodes not reachable from a node |
---|
| 1238 | with a nonzero reference count are disposed of. (Garbage collections |
---|
| 1239 | also occur internally at various times.) |
---|
| 1240 | .LP |
---|
| 1241 | .B long |
---|
| 1242 | .br |
---|
| 1243 | .B bdd_total_size(bddm) |
---|
| 1244 | .br |
---|
| 1245 | .B bdd_manager bddm; |
---|
| 1246 | .in +4 |
---|
| 1247 | Returns the number of BDD and MTBDD nodes in existence (including |
---|
| 1248 | those which are eligible for garbage collection). |
---|
| 1249 | .LP |
---|
| 1250 | .B long |
---|
| 1251 | .br |
---|
| 1252 | .B bdd_vars(bddm) |
---|
| 1253 | .br |
---|
| 1254 | .B bdd_manager bddm; |
---|
| 1255 | .in +4 |
---|
| 1256 | Returns the number of variables in existence. |
---|
| 1257 | .LP |
---|
| 1258 | .B int |
---|
| 1259 | .br |
---|
| 1260 | .B bdd_cache_ratio(bddm, ratio) |
---|
| 1261 | .br |
---|
| 1262 | .B bdd_manager bddm; |
---|
| 1263 | .br |
---|
| 1264 | .B int ratio; |
---|
| 1265 | .in +4 |
---|
| 1266 | Sets the BDD operation cache size ratio to |
---|
| 1267 | .B ratio |
---|
| 1268 | and returns the old cache size ratio. The number of cache entries is |
---|
| 1269 | constrained to be (roughly) less than the cache size ratio divided by |
---|
| 1270 | 16 times the number of BDD nodes in existence. The default size ratio |
---|
| 1271 | is 4, which gives about 1 cache entry per 4 BDD nodes. The amount of |
---|
| 1272 | memory required per node will be about 17+(\fBratio\fR/16)*20 bytes on |
---|
| 1273 | a machine with 32-bit words. |
---|
| 1274 | .LP |
---|
| 1275 | .B void |
---|
| 1276 | .br |
---|
| 1277 | .B bdd_node_limit(bddm, limit) |
---|
| 1278 | .br |
---|
| 1279 | .B bdd_manager bddm; |
---|
| 1280 | .br |
---|
| 1281 | .B long limit; |
---|
| 1282 | .in +4 |
---|
| 1283 | Sets the number of allowed BDD nodes to |
---|
| 1284 | .B limit |
---|
| 1285 | and returns the old limit. A value of 0 specifies no limit. If in |
---|
| 1286 | the course of an operation, the number of nodes reaches the limit, an |
---|
| 1287 | internal garbage collection takes place. If this does not free enough |
---|
| 1288 | nodes to continue, the operation is aborted and a null value is |
---|
| 1289 | returned. When dynamic reordering is used to shift around large |
---|
| 1290 | variable block, this limit may be exceeded during reordering. |
---|
| 1291 | .LP |
---|
| 1292 | .B int |
---|
| 1293 | .br |
---|
| 1294 | .B bdd_overflow(bddm) |
---|
| 1295 | .br |
---|
| 1296 | .B bdd_manager bddm; |
---|
| 1297 | .in +4 |
---|
| 1298 | Returns 1 if any operation has caused an overflow in the number of |
---|
| 1299 | nodes, and 0 otherwise. Calling this routine clears the internal |
---|
| 1300 | overflow flag, so subsequent calls will return 0 until the next |
---|
| 1301 | overflow occurs. |
---|
| 1302 | .LP |
---|
| 1303 | .B void |
---|
| 1304 | .br |
---|
| 1305 | .B bdd_overflow_closure(bddm, overflow_fn, overflow_env) |
---|
| 1306 | .br |
---|
| 1307 | .B bdd_manager bddm; |
---|
| 1308 | .br |
---|
| 1309 | .B void (*overflow_fn)(); |
---|
| 1310 | .br |
---|
| 1311 | .B pointer overflow_env; |
---|
| 1312 | .in +4 |
---|
| 1313 | Sets the closure to invoke when an overflow occurs. The function |
---|
| 1314 | given by |
---|
| 1315 | .B overflow_fn |
---|
| 1316 | will be invoked as the last stage in the cleanup after the overflow. |
---|
| 1317 | The function is passed the BDD manager and the pointer given by |
---|
| 1318 | \fBoverflow_env\fR. Typically, the function will jump to a |
---|
| 1319 | user-provided error recovery routine. |
---|
| 1320 | .LP |
---|
| 1321 | .B void |
---|
| 1322 | .br |
---|
| 1323 | .B bdd_abort_closure(bddm, abort_fn, abort_env) |
---|
| 1324 | .br |
---|
| 1325 | .B bdd_manager bddm; |
---|
| 1326 | .br |
---|
| 1327 | .B void (*abort_fn)(); |
---|
| 1328 | .br |
---|
| 1329 | .B pointer abort_env; |
---|
| 1330 | .in +4 |
---|
| 1331 | Sets a closure to invoke when the next node creation is attempted. |
---|
| 1332 | All temporary results will be cleaned up just before the function |
---|
| 1333 | given by |
---|
| 1334 | .B abort_fn |
---|
| 1335 | is called. The function is passed the BDD manager and the pointer |
---|
| 1336 | given by \fBabort_env\fR. Typically, the function will jump to a |
---|
| 1337 | user-provided error recovery routine. This functionality is intended |
---|
| 1338 | to be used to cleanly interrupt BDD operations. Typically, |
---|
| 1339 | .B bdd_abort_closure |
---|
| 1340 | will be called within a signal handler. |
---|
| 1341 | .LP |
---|
| 1342 | .B void |
---|
| 1343 | .br |
---|
| 1344 | .B bdd_stats(bddm, fp) |
---|
| 1345 | .br |
---|
| 1346 | .B bdd_manager bddm; |
---|
| 1347 | .br |
---|
| 1348 | .B FILE *fp; |
---|
| 1349 | .in +4 |
---|
| 1350 | Prints some statistics to the file given by \fBfp\fR. |
---|
| 1351 | .LP |
---|
| 1352 | .B void |
---|
| 1353 | .br |
---|
| 1354 | .B bdd_dynamic_reordering(bddm, reorder_fn) |
---|
| 1355 | .br |
---|
| 1356 | .B bdd_manager bddm; |
---|
| 1357 | .br |
---|
| 1358 | .B void (*reorder_fn)(); |
---|
| 1359 | .in +4 |
---|
| 1360 | Selects the method for dynamic reordering. When dynamic reordering is |
---|
| 1361 | being used, the library may attempt to rearrange the BDD variable |
---|
| 1362 | ordering in the midst of an operation so as to reduce the number of |
---|
| 1363 | nodes in use. There are currently two available reordering methods. |
---|
| 1364 | The first, \fBbdd_reorder_stable_window3\fR, permutes the variables |
---|
| 1365 | within windows of three adjacent variables so as to minimize the |
---|
| 1366 | overall BDD size. This process is repeated until no more reduction in |
---|
| 1367 | size occurs. The second method, \fBbdd_reorder_sift\fR, moves each |
---|
| 1368 | variable throughout the order to find an optimal position for that |
---|
| 1369 | variable (assuming all other variables are fixed). This generally |
---|
| 1370 | achieves greater size reductions than the window-based method, but is |
---|
| 1371 | slower. The |
---|
| 1372 | .B reorder_fn |
---|
| 1373 | may also be |
---|
| 1374 | .B bdd_reorder_none |
---|
| 1375 | (an appropriately cast null pointer), in which case dynamic reordering |
---|
| 1376 | is turned off. Also see the discussion on variable blocks in |
---|
| 1377 | \fBbdd_new_var_block\fR. |
---|
| 1378 | .LP |
---|
| 1379 | .B void |
---|
| 1380 | .br |
---|
| 1381 | .B bdd_reorder(bddm) |
---|
| 1382 | .br |
---|
| 1383 | .B bdd_manager bddm; |
---|
| 1384 | .in +4 |
---|
| 1385 | Invoke the current dynamic reordering method. |
---|
| 1386 | .LP |
---|
| 1387 | .B block |
---|
| 1388 | .br |
---|
| 1389 | .B bdd_new_var_block(bddm, v, n) |
---|
| 1390 | .br |
---|
| 1391 | .B bdd_manager bddm; |
---|
| 1392 | .br |
---|
| 1393 | .B bdd v; |
---|
| 1394 | .br |
---|
| 1395 | .B long n; |
---|
| 1396 | .in +4 |
---|
| 1397 | Groups the variable |
---|
| 1398 | .B v |
---|
| 1399 | and the \fBn\fR-1 variables after it in the ordering into a single |
---|
| 1400 | block for purposes of dynamic reordering. The purpose of blocks is to |
---|
| 1401 | provide control over the possible orders that dynamic reordering will |
---|
| 1402 | consider. In general, the variable blocks form a hierarchy. For |
---|
| 1403 | example, a block consisting of the variables with indexes 0 through 3 |
---|
| 1404 | might be made up of two sub-blocks, one for the variables with index 0 |
---|
| 1405 | and 1, and one for the variables with index 2 and 3. When dynamic |
---|
| 1406 | reordering is invoked, it is actually applied to each block within the |
---|
| 1407 | hierarchy. Reordering a block involves shuffling around the |
---|
| 1408 | sub-blocks within it. Thus, dynamic reordering actually moves groups |
---|
| 1409 | of variables rather than single variables. If you know that a group |
---|
| 1410 | of variables should be together in the ordering, you should collect |
---|
| 1411 | them together into a block. As an example, in BDD-based sequential |
---|
| 1412 | verification algorithms, the variables representing the current state |
---|
| 1413 | and next state of a state-holding element should generally be adjacent |
---|
| 1414 | in a good ordering. By grouping these variables into a block, we can |
---|
| 1415 | ensure that only orderings with this property are considered. After a |
---|
| 1416 | block has been reordered, each sub-block within it is recursively |
---|
| 1417 | reordered as well. You can also specify that certain blocks should |
---|
| 1418 | not be reordered (see |
---|
| 1419 | .B bdd_var_block_reorderable |
---|
| 1420 | below). |
---|
| 1421 | .LP |
---|
| 1422 | .B void |
---|
| 1423 | .br |
---|
| 1424 | .B bdd_var_block_reorderable(bddm, b, reorderable) |
---|
| 1425 | .br |
---|
| 1426 | .B bdd_manager bddm; |
---|
| 1427 | .br |
---|
| 1428 | .B block b; |
---|
| 1429 | .br |
---|
| 1430 | .B int reorderable; |
---|
| 1431 | .in +4 |
---|
| 1432 | If |
---|
| 1433 | .B reorderable |
---|
| 1434 | is non-zero, turns on reordering for the given block, otherwise turns |
---|
| 1435 | it off. By default, blocks are not reorderable. As an example, |
---|
| 1436 | suppose we are building the BDDs representing a circuit with distinct |
---|
| 1437 | control and data path. In such a case, we typically want to have the |
---|
| 1438 | control variables at the top of the ordering. For the data path, we |
---|
| 1439 | probably want to have the variables for each bit slice grouped |
---|
| 1440 | together, and we want the bit slices to be ordered from |
---|
| 1441 | most-significant to least-significant. However, we want to allow |
---|
| 1442 | reordering within the control part and within each slice. To do this, |
---|
| 1443 | we create the variables in the following order: control variables |
---|
| 1444 | first, down to LSB slice variables. Then we create separate variable |
---|
| 1445 | blocks for the control part and for each slice. We then turn on |
---|
| 1446 | reordering for these blocks. Next, we create a block containing all |
---|
| 1447 | of the variables, and we leave reordering off for this block. When |
---|
| 1448 | dynamic reordering is invoked, it will rearrange the control variables |
---|
| 1449 | and the variables within each slice, but will not move the control |
---|
| 1450 | variables or the slices in relation to each other. |
---|
| 1451 | .LP |
---|
| 1452 | .B void |
---|
| 1453 | .br |
---|
| 1454 | .B bdd_free_terminal_closure(bddm, free_terminal_fn, free_terminal_env) |
---|
| 1455 | .br |
---|
| 1456 | .B bdd_manager bddm; |
---|
| 1457 | .br |
---|
| 1458 | .B void (*free_terminal_fn)(); |
---|
| 1459 | .br |
---|
| 1460 | .B pointer free_terminal_env; |
---|
| 1461 | .in +4 |
---|
| 1462 | Sets a closure to invoke when freeing an MTBDD terminal node. The |
---|
| 1463 | function receives the BDD manager, two longs representing the value of |
---|
| 1464 | the terminal, and the pointer given by \fBfree_terminal_env\fR. If |
---|
| 1465 | you using the terminal value to hold pointers to other data |
---|
| 1466 | structures, you can set up this routine to free those structures. |
---|
| 1467 | .LP |
---|
| 1468 | .B bdd |
---|
| 1469 | .br |
---|
| 1470 | .B mtbdd_get_terminal(bddm, value1, value2) |
---|
| 1471 | .br |
---|
| 1472 | .B bdd_manager bddm; |
---|
| 1473 | .br |
---|
| 1474 | .B long value1; |
---|
| 1475 | .br |
---|
| 1476 | .B long value2; |
---|
| 1477 | .in +4 |
---|
| 1478 | Creates an MTBDD terminal node corresponding to the value given by |
---|
| 1479 | .B value1 |
---|
| 1480 | and \fBvalue2\fR. If a terminal node with the value already exists, |
---|
| 1481 | its reference count is increased. See also |
---|
| 1482 | \fBbdd_free_terminal_closure\fR. |
---|
| 1483 | .LP |
---|
| 1484 | .B void |
---|
| 1485 | .br |
---|
| 1486 | .B mtbdd_terminal_value(bddm, f, value1, value2) |
---|
| 1487 | .br |
---|
| 1488 | .B bdd_manager bddm; |
---|
| 1489 | .br |
---|
| 1490 | .B bdd f; |
---|
| 1491 | .br |
---|
| 1492 | .B long *value1; |
---|
| 1493 | .br |
---|
| 1494 | .B long *value2; |
---|
| 1495 | .in +4 |
---|
| 1496 | .B f |
---|
| 1497 | should be an MTBDD terminal node. The value of the node is stored in |
---|
| 1498 | .B value1 |
---|
| 1499 | and \fBvalue2\fR. |
---|
| 1500 | .LP |
---|
| 1501 | .B bdd |
---|
| 1502 | .br |
---|
| 1503 | .B mtbdd_ite(bddm, f, g, h) |
---|
| 1504 | .br |
---|
| 1505 | .B bdd_manager bddm; |
---|
| 1506 | .br |
---|
| 1507 | .B bdd f; |
---|
| 1508 | .br |
---|
| 1509 | .B bdd g; |
---|
| 1510 | .br |
---|
| 1511 | .B bdd h; |
---|
| 1512 | .in +4 |
---|
| 1513 | .B f |
---|
| 1514 | should be a BDD and |
---|
| 1515 | .B g |
---|
| 1516 | and |
---|
| 1517 | .B h |
---|
| 1518 | should be MTBDDs. Returns the MTBDD for the operation IF |
---|
| 1519 | .B f |
---|
| 1520 | THEN |
---|
| 1521 | .B g |
---|
| 1522 | ELSE \fBh\fR. |
---|
| 1523 | .LP |
---|
| 1524 | .B bdd |
---|
| 1525 | .br |
---|
| 1526 | .B mtbdd_substitute(bddm, f) |
---|
| 1527 | .br |
---|
| 1528 | .B bdd_manager bddm; |
---|
| 1529 | .br |
---|
| 1530 | .B bdd f; |
---|
| 1531 | .in +4 |
---|
| 1532 | Does the analog of |
---|
| 1533 | .B bdd_substitute |
---|
| 1534 | for the MTBDD \fBf\fR. The elements in the variable association must |
---|
| 1535 | be BDDs. |
---|
| 1536 | .LP |
---|
| 1537 | .B bdd |
---|
| 1538 | .br |
---|
| 1539 | .B mtbdd_equal(bddm, f, g) |
---|
| 1540 | .br |
---|
| 1541 | .B bdd_manager bddm; |
---|
| 1542 | .br |
---|
| 1543 | .B bdd f; |
---|
| 1544 | .br |
---|
| 1545 | .B bdd g; |
---|
| 1546 | .in +4 |
---|
| 1547 | Returns the BDD which is true for those valuations on which the MTBDDs |
---|
| 1548 | .B f |
---|
| 1549 | and |
---|
| 1550 | .B g |
---|
| 1551 | are equal. That is, this is the analog of a logical XNOR for MTBDDs. |
---|
| 1552 | .LP |
---|
| 1553 | .B bdd |
---|
| 1554 | .br |
---|
| 1555 | .B mtbdd_transform(bddm, f) |
---|
| 1556 | .br |
---|
| 1557 | .B bdd_manager bddm; |
---|
| 1558 | .br |
---|
| 1559 | .B bdd f; |
---|
| 1560 | .in +4 |
---|
| 1561 | Conceptually applies the user-defined transform to all terminals of |
---|
| 1562 | the specified MTBDD. (This is actually done by just flipping the |
---|
| 1563 | pointer flag, so this routine is really a macro for \fBbdd_not\fR.) |
---|
| 1564 | See \fBmtbdd_transform_closure\fR. |
---|
| 1565 | .LP |
---|
| 1566 | .B void |
---|
| 1567 | .br |
---|
| 1568 | .B mtbdd_transform_closure(bddm, canonical_fn, transform_fn, env) |
---|
| 1569 | .br |
---|
| 1570 | .B bdd_manager bddm; |
---|
| 1571 | .br |
---|
| 1572 | .B int (*canonical_fn)(); |
---|
| 1573 | .br |
---|
| 1574 | .B void (*transform_fn)(); |
---|
| 1575 | .br |
---|
| 1576 | .B pointer env; |
---|
| 1577 | .in +4 |
---|
| 1578 | Sets the MTBDD terminal transformation closure. Currently in the |
---|
| 1579 | library, the pointer representing a boolean function and the pointer |
---|
| 1580 | representing the negation of that function are identical except for |
---|
| 1581 | the low-order bit. Complementing a function is done by simply |
---|
| 1582 | toggling that bit. The MTBDD terminal transformation allows this |
---|
| 1583 | mechanism to be extended to MTBDDs. Whenever a terminal is created, |
---|
| 1584 | .B canonical_fn |
---|
| 1585 | will be called. It is passed the BDD manager, two longs representing |
---|
| 1586 | the terminal being created, and the pointer given by \fBenv\fR. The |
---|
| 1587 | function should return zero if the value is already canonical, and a |
---|
| 1588 | non-zero result if it needs to be transformed. If the value needs to |
---|
| 1589 | be transformed, then |
---|
| 1590 | .B transform_fn |
---|
| 1591 | will be called, with the BDD manager, two longs representing the value |
---|
| 1592 | to be transformed, pointers to two longs to hold the result, and the |
---|
| 1593 | pointer given by \fBenv\fR. The actual terminal node that is created |
---|
| 1594 | will contain the transformed value. The original terminal requested |
---|
| 1595 | will be represented by a pointer to this node, with the low-order bit |
---|
| 1596 | of the pointer set. Also see \fBmtbdd_one_data\fR. If you are going |
---|
| 1597 | to call this function, you should do it before creating any MTBDD |
---|
| 1598 | terminals. |
---|
| 1599 | .LP |
---|
| 1600 | .B void |
---|
| 1601 | .br |
---|
| 1602 | .B mtbdd_one_data(bddm, value1, value2) |
---|
| 1603 | .br |
---|
| 1604 | .B bdd_manager bddm; |
---|
| 1605 | .br |
---|
| 1606 | .B long value1; |
---|
| 1607 | .br |
---|
| 1608 | .B long value2; |
---|
| 1609 | .in +4 |
---|
| 1610 | If you are planning to use MTBDDs that contain TRUE and FALSE as well |
---|
| 1611 | as other values, you may need to use this function to set the MTBDD |
---|
| 1612 | value for the node representing TRUE. In this case, also keep in mind |
---|
| 1613 | that the when the transformation function is applied to this value, it |
---|
| 1614 | should yield the value that you want for FALSE. Also, the value for |
---|
| 1615 | TRUE should be regarding as canonical, i.e., TRUE must be represented |
---|
| 1616 | by a pointer with the low-order bit cleared. As an example, suppose |
---|
| 1617 | that we are planning to use MTBDDs to represent spectral transforms of |
---|
| 1618 | boolean functions [4]. In this case, the MTBDD terminal values will |
---|
| 1619 | conceptually be integers. Further, it is convenient for TRUE to be |
---|
| 1620 | represented by the value -1, and FALSE to be represented by +1. We |
---|
| 1621 | will represent terminal values using two longs, with the first long |
---|
| 1622 | representing the most-significant part of the integer. We will also |
---|
| 1623 | assume a 2's complement representation, so TRUE should be represented |
---|
| 1624 | by the data values -1 and -1. Since the value for FALSE is the |
---|
| 1625 | negation of that for TRUE, we will have our transform function |
---|
| 1626 | represent integer negation. Also, since we want the value for TRUE to |
---|
| 1627 | be canonical, we will regard nonnegative values as canonical. Thus, |
---|
| 1628 | we define |
---|
| 1629 | |
---|
| 1630 | .nf |
---|
| 1631 | int |
---|
| 1632 | canonical_fn(bddm, value1, value2, env) |
---|
| 1633 | bdd_manager bddm; |
---|
| 1634 | long value1; |
---|
| 1635 | long value2; |
---|
| 1636 | pointer env; |
---|
| 1637 | { |
---|
| 1638 | return (value1 > 0 || (!value1 && value2 > 0)); |
---|
| 1639 | } |
---|
| 1640 | |
---|
| 1641 | void |
---|
| 1642 | transform_fn(bddm, value1, value2, result1, result2, env) |
---|
| 1643 | bdd_manager bddm; |
---|
| 1644 | long value1; |
---|
| 1645 | long value2; |
---|
| 1646 | long *result1; |
---|
| 1647 | long *result2; |
---|
| 1648 | pointer env; |
---|
| 1649 | { |
---|
| 1650 | if (!value2) |
---|
| 1651 | /* Will be a carry when taking 2's complement of value2. Thus, */ |
---|
| 1652 | /* take 2's complement of high part. */ |
---|
| 1653 | value1= -value1; |
---|
| 1654 | else |
---|
| 1655 | { |
---|
| 1656 | value2= -value2; |
---|
| 1657 | value1= ~value1; |
---|
| 1658 | } |
---|
| 1659 | *result1=value1; |
---|
| 1660 | *result2=value2; |
---|
| 1661 | } |
---|
| 1662 | .fi |
---|
| 1663 | |
---|
| 1664 | We then call |
---|
| 1665 | .B mtbdd_transform_closure |
---|
| 1666 | to register these functions, and use |
---|
| 1667 | |
---|
| 1668 | .nf |
---|
| 1669 | bdd_one_data(bddm, -1l, -1l); |
---|
| 1670 | .fi |
---|
| 1671 | |
---|
| 1672 | to set the value for TRUE to -1. (The default canonical checking and |
---|
| 1673 | transformation functions and the default MTBDD values for TRUE and |
---|
| 1674 | FALSE are actually as given in this example.) If you are going to |
---|
| 1675 | call \fBbdd_one_data\fR, you should do it before creating any MTBDD |
---|
| 1676 | terminals. |
---|
| 1677 | .SH "ADDING NEW ROUTINES" |
---|
| 1678 | If you want to add new routines to the library, you would be |
---|
| 1679 | well-advised to look at some of the existing ones to get a feel for |
---|
| 1680 | how they operate. Good ones include \fBbdd_ite\fR (the basic logical |
---|
| 1681 | operation) and \fBbdd_exists\fR (a routine using variable |
---|
| 1682 | associations). Some basic points are explained below. To get the |
---|
| 1683 | declarations of the internal library data structures and routines, you |
---|
| 1684 | should |
---|
| 1685 | .B #include <bddint.h> |
---|
| 1686 | instead of using \fBbdduser.h\fR. You will probably want to study |
---|
| 1687 | this file to become familiar with the data structures. |
---|
| 1688 | |
---|
| 1689 | Pointers to BDD nodes and cache entries are tagged using the low three |
---|
| 1690 | bits of the pointer. Because of this, all structures must be aligned |
---|
| 1691 | on eight byte boundaries. The storage allocation routines guarantee |
---|
| 1692 | this alignment. The tag field of a tagged pointer is extracted with |
---|
| 1693 | the |
---|
| 1694 | .B TAG |
---|
| 1695 | macro. The |
---|
| 1696 | .B POINTER |
---|
| 1697 | macro masks off the tag to get the actual pointer. If the pointer is |
---|
| 1698 | a pointer to a BDD node, you can use |
---|
| 1699 | .B BDD_POINTER |
---|
| 1700 | instead; this just casts the result to a |
---|
| 1701 | .B bdd |
---|
| 1702 | after masking off the tag. The tag can be set using \fBSET_TAG\fR, and |
---|
| 1703 | individual tag bits can be manipulated with \fBTAG0\fR, |
---|
| 1704 | .B FLIP_TAG0 |
---|
| 1705 | and \fBSET_TAG0\fR for tag bit 0, and the analogous macros for tag |
---|
| 1706 | bits 1 and 2. More commonly, slightly higher level macros are used |
---|
| 1707 | for manipulating tags. For BDD nodes, there is only one tag bit that |
---|
| 1708 | is actually used. When it is set, it indicates the pointer should be |
---|
| 1709 | interpreted as representing the complement of the node that it points |
---|
| 1710 | to. (Or for MTBDDs, that it should be interpreted as transformed |
---|
| 1711 | using the user-definable transformation function). There are macros |
---|
| 1712 | for testing, clearing, and flipping the negation flag. |
---|
| 1713 | |
---|
| 1714 | Before using the macros below on a pointer \fBf\fR, you need to use |
---|
| 1715 | \fBBDD_SETUP(f)\fR. This actually declares a new variable to hold the |
---|
| 1716 | masked pointer \fBBDD_POINTER(f)\fR. Hence, it needs to be placed at |
---|
| 1717 | some point where a variable declaration could legally go. If you |
---|
| 1718 | change \fBf\fR, you can reset this internal variable using |
---|
| 1719 | \fBBDD_RESET\fR. |
---|
| 1720 | |
---|
| 1721 | BDD pointers are generally manipulated using the following macros. |
---|
| 1722 | Below, ``node'' refers to the node referenced by the pointer. |
---|
| 1723 | .LP |
---|
| 1724 | .B BDD_IS_CONST |
---|
| 1725 | .in +4 |
---|
| 1726 | Tests if the node represents the constant TRUE or FALSE or an MTBDD |
---|
| 1727 | terminal node. |
---|
| 1728 | .LP |
---|
| 1729 | .B BDD_INDEX |
---|
| 1730 | .in +4 |
---|
| 1731 | Returns the index of the node, or |
---|
| 1732 | .B BDD_MAX_INDEX |
---|
| 1733 | if given a constant node. |
---|
| 1734 | .LP |
---|
| 1735 | .B BDD_INDEXINDEX |
---|
| 1736 | .in +4 |
---|
| 1737 | Returns the index index of a node. This field is the value returned |
---|
| 1738 | by \fBbdd_if_id\fR and is invariant; when you create a new variable, |
---|
| 1739 | the index of old nodes may change, but the index index stays the same. |
---|
| 1740 | When you call \fBbdd_find\fR, you pass the desired index index of the |
---|
| 1741 | new node, not the index. |
---|
| 1742 | .LP |
---|
| 1743 | .B BDD_NOT |
---|
| 1744 | .in +4 |
---|
| 1745 | Flips the negation flag on a pointer. |
---|
| 1746 | .LP |
---|
| 1747 | .B BDD_THEN, BDD_ELSE |
---|
| 1748 | .in +4 |
---|
| 1749 | Return the THEN and ELSE pointers of a node, taking proper account of |
---|
| 1750 | pointer flags. These are used for doing Shannon expansions on a node. |
---|
| 1751 | .LP |
---|
| 1752 | .B BDD_TOP_VAR2 |
---|
| 1753 | Takes a \fBbdd_manager\fR, a variable that can hold an index index, |
---|
| 1754 | and two \fBbdd\fRs. Sets the index index variable to the index index |
---|
| 1755 | of the variable with the lowest index among the variables at the roots |
---|
| 1756 | of the BDDs. This index index can then be used with... |
---|
| 1757 | .LP |
---|
| 1758 | .B BDD_COFACTOR |
---|
| 1759 | Takes an index index, a BDD, and two variables of type \fBbdd\fR, and |
---|
| 1760 | sets the two variables either to the original BDD or to the cofactors |
---|
| 1761 | of the original BDD with respect to its top variable, depending on |
---|
| 1762 | whether the index index of the first BDD matches that specified. You |
---|
| 1763 | can do a Shannon expansion on the top variable of two BDDs by using |
---|
| 1764 | .B BDD_TOP_VAR2 |
---|
| 1765 | to get the index index of the highest variable and then using |
---|
| 1766 | .B BDD_COFACTOR |
---|
| 1767 | to take the appropriate cofactors. |
---|
| 1768 | .LP |
---|
| 1769 | .B BDD_MARK |
---|
| 1770 | .in +4 |
---|
| 1771 | Accesses the mark field of a node. This expands to a l-value, so you |
---|
| 1772 | can set the mark with this as well. (But see BDD_TEMP_REFS below.) |
---|
| 1773 | .LP |
---|
| 1774 | .B BDD_ONE, BDD_ZERO |
---|
| 1775 | .in +4 |
---|
| 1776 | Take a BDD manager and give back the BDDs for TRUE and FALSE. |
---|
| 1777 | .LP |
---|
| 1778 | .B BDD_REFS |
---|
| 1779 | .in +4 |
---|
| 1780 | Accesses the reference count field of a node. |
---|
| 1781 | .LP |
---|
| 1782 | .B BDD_INCREFS, BDD_DECREFS |
---|
| 1783 | .in +4 |
---|
| 1784 | Increment and decrement the reference count. |
---|
| 1785 | .LP |
---|
| 1786 | .B BDD_TEMP_REFS |
---|
| 1787 | .in +4 |
---|
| 1788 | Accesses the temporary reference count field of a node. The temporary |
---|
| 1789 | reference count and the mark actually share storage, so you can't use |
---|
| 1790 | both at once! That is, unless you are very clever, you can't write a |
---|
| 1791 | routine that builds temporary nodes and uses the marks. |
---|
| 1792 | .LP |
---|
| 1793 | .B BDD_TEMP_INCREFS, BDD_TEMP_DECREFS |
---|
| 1794 | .in +4 |
---|
| 1795 | Increment and decrement the temporary reference count. |
---|
| 1796 | .LP |
---|
| 1797 | |
---|
| 1798 | New BDD nodes are created using \fBbdd_find\fR. This routine takes a |
---|
| 1799 | BDD manager, an index index, and two subBDDs as arguments. New MTBDD |
---|
| 1800 | terminals can be created with \fBbdd_find_terminal\fR. The result |
---|
| 1801 | cache is manipulated using the |
---|
| 1802 | .B bdd_lookup_in_cache |
---|
| 1803 | and |
---|
| 1804 | .B bdd_insert_in_cache |
---|
| 1805 | routines. There are different versions of these routines depending on |
---|
| 1806 | exactly what is being cached. The basic ones are |
---|
| 1807 | \fBbdd_lookup_in_cache31\fR and \fBbdd_insert_in_cache31\fR. |
---|
| 1808 | The first of these takes a cache entry type (CACHE_TYPE_ITE, |
---|
| 1809 | CACHE_TYPE_TWO, etc.), three arguments of unspecified type (passed as |
---|
| 1810 | longs), and a pointer to an unspecified type of result (a pointer to a |
---|
| 1811 | long). It returns a nonzero result if the lookup succeeds. The |
---|
| 1812 | corresponding insert routine is similar except that the result is |
---|
| 1813 | passed in as a long, and nothing is returned. There are similar |
---|
| 1814 | functions that are for routines that take two arguments and return two |
---|
| 1815 | results (or a single double-word result), or for routines that take |
---|
| 1816 | one argument and return three results. There are also macros such as |
---|
| 1817 | \fBbdd_lookup_in_cache2\fR that are wrappers for things like |
---|
| 1818 | two-argument functions, etc. In general, some action must be taken |
---|
| 1819 | when results are returned from the cache, when entries are purged from |
---|
| 1820 | the cache, when entries are garbage collected, and when a variable |
---|
| 1821 | association ID is reclaimed. For the built-in cache entry types, |
---|
| 1822 | these actions are done automatically. For example, when a BDD is |
---|
| 1823 | returned from an entry with CACHE_TYPE_TWO, the temporary reference |
---|
| 1824 | count of the BDD is incremented. Some of the entry types are |
---|
| 1825 | available for customization. The actions to take for these entry |
---|
| 1826 | types are specified by calling \fBbdd_cache_functions\fR. This |
---|
| 1827 | function takes a BDD manager, an integer between 1 and 3 specifying |
---|
| 1828 | the number of arguments you want to cache on, and four function |
---|
| 1829 | pointers. When returning a result, purging an entry, garbage |
---|
| 1830 | collecting, or reclaiming an association ID, these functions are |
---|
| 1831 | called. The first three functions are passed the BDD manager and the |
---|
| 1832 | entry. (The tag bits will have already been masked off the entry |
---|
| 1833 | pointer.) The last receives these plus the association ID being freed |
---|
| 1834 | (cast to a pointer). The garbage collection function should return a |
---|
| 1835 | nonzero result if the entry should be garbage collected. If the entry |
---|
| 1836 | contains some BDD nodes, they should be tested with \fBBDD_IS_USED\fR. |
---|
| 1837 | The function called when an association ID is reclaimed should return |
---|
| 1838 | a nonzero result if the entry should be flushed from the cache. This |
---|
| 1839 | function and the purge function and return functions may be null, |
---|
| 1840 | specifying that no action need be taken. \fBbdd_cache_functions\fR |
---|
| 1841 | returns an integer that represents a tag to use with the cache |
---|
| 1842 | insertion and lookup routines, or -1 if there are no more free tags |
---|
| 1843 | available. The routine \fBbdd_free_cache_tag\fR makes a tag available |
---|
| 1844 | again. |
---|
| 1845 | |
---|
| 1846 | Routines that build new BDD nodes must take into account the |
---|
| 1847 | possibility of running into the node limit. The package is set up to |
---|
| 1848 | make this easy if you use the following strategy. Organize your |
---|
| 1849 | routine as a top-level (user-callable) procedure and an internal |
---|
| 1850 | procedure for performing the actual computation. The top-level |
---|
| 1851 | procedure should check its arguments before calling the internal |
---|
| 1852 | routine. The |
---|
| 1853 | .B bdd_check_arguments |
---|
| 1854 | function can be used to test for null arguments (indicating a prior |
---|
| 1855 | overflow) or arguments with a zero reference count (indicating a bug). |
---|
| 1856 | It should also use the |
---|
| 1857 | .B FIREWALL |
---|
| 1858 | macro to set up an overflow trap. The internal routine should use |
---|
| 1859 | temporary reference counts to keep track of the nodes it is using. |
---|
| 1860 | When a node is returned from the internal routine, increment its |
---|
| 1861 | temporary reference count once. (You don't have to do this for the |
---|
| 1862 | constants or for variables, since they can't be garbage collected.) |
---|
| 1863 | When you pass a node to \fBbdd_find\fR, its temporary reference count |
---|
| 1864 | is decremented once automatically, and its reference count is |
---|
| 1865 | incremented. Also, the result of \fBbdd_find\fR has its temporary |
---|
| 1866 | reference count incremented once automatically. Hence, if you your |
---|
| 1867 | routine has the standard organization (Shannon's expansion followed by |
---|
| 1868 | \fBbdd_find\fR on the subresults), you usually don't have to worry |
---|
| 1869 | about incrementing or decrementing the reference counts yourself. If |
---|
| 1870 | you don't use a subresult, or if you want a subresult to stick around |
---|
| 1871 | after calling \fBbdd_find\fR, you'll have to do the appropriate |
---|
| 1872 | twiddling. When the internal routine finally returns, you should have |
---|
| 1873 | a BDD with a single temporary reference count. Use |
---|
| 1874 | .B RETURN_BDD |
---|
| 1875 | to convert this temporary reference count to an external one and |
---|
| 1876 | return the result to the user. If you follow this strategy, you won't |
---|
| 1877 | have to deal with overflow; when the node limit is reached, |
---|
| 1878 | \fBbdd_find\fR will try garbage collecting, and if that doesn't work, |
---|
| 1879 | will call the overflow trap set up by \fBFIREWALL\fR. The overflow |
---|
| 1880 | trap handler will automatically zero all temporary reference counts |
---|
| 1881 | and return a null pointer to the user. Note: if you want to call |
---|
| 1882 | other routines, such as the IF-THEN-ELSE routine, within your internal |
---|
| 1883 | procedure, you should call the internal procedure for the routine. |
---|
| 1884 | That way, the overflow handler will give control back to the user |
---|
| 1885 | if the routine you are calling causes an overflow. |
---|
| 1886 | |
---|
| 1887 | A typical routine looks like: |
---|
| 1888 | |
---|
| 1889 | .nf |
---|
| 1890 | bdd |
---|
| 1891 | foo_step(bddm, f, g) |
---|
| 1892 | bdd_manager bddm; |
---|
| 1893 | bdd f, g; |
---|
| 1894 | { |
---|
| 1895 | bdd_indexindex_type top_indexindex; |
---|
| 1896 | bdd f1, f2; |
---|
| 1897 | bdd g1, g2; |
---|
| 1898 | bdd temp1, temp2; |
---|
| 1899 | bdd result; |
---|
| 1900 | |
---|
| 1901 | BDD_SETUP(f); |
---|
| 1902 | BDD_SETUP(g); |
---|
| 1903 | if (<terminal case>) |
---|
| 1904 | { |
---|
| 1905 | BDD_TEMP_INCREFS(f); |
---|
| 1906 | return (f); |
---|
| 1907 | } |
---|
| 1908 | if (bdd_lookup_in_cache2(bddm, <op>, f, g, &result)) |
---|
| 1909 | return (result); |
---|
| 1910 | BDD_TOP_VAR2(top_indexindex, bddm, f, g); |
---|
| 1911 | BDD_COFACTOR(top_indexindex, f, f1, f2); |
---|
| 1912 | BDD_COFACTOR(top_indexindex, g, g1, g2); |
---|
| 1913 | temp1=foo_step(bddm, f1, g1); |
---|
| 1914 | temp2=foo_step(bddm, f2, g2); |
---|
| 1915 | result=bdd_find(bddm, top_indexindex, temp1, temp2); |
---|
| 1916 | bdd_insert_in_cache2(bddm, <op>, f, g, result); |
---|
| 1917 | return (result); |
---|
| 1918 | } |
---|
| 1919 | |
---|
| 1920 | bdd |
---|
| 1921 | foo(bddm, f, g) |
---|
| 1922 | bdd_manager bddm; |
---|
| 1923 | bdd f, g; |
---|
| 1924 | { |
---|
| 1925 | if (bdd_check_arguments(2, f, g)) |
---|
| 1926 | { |
---|
| 1927 | FIREWALL(bddm); |
---|
| 1928 | RETURN_BDD(foo_step(bddm, f, g)); |
---|
| 1929 | } |
---|
| 1930 | return ((bdd)0); |
---|
| 1931 | } |
---|
| 1932 | .fi |
---|
| 1933 | |
---|
| 1934 | In the case of dynamic variable reordering, the same abort mechanism |
---|
| 1935 | is used. After reordering, all reference counts are reset to their |
---|
| 1936 | original values and the operation is retried. This is handled |
---|
| 1937 | automatically by the FIREWALL macro. (The operation is aborted since |
---|
| 1938 | after reordering, the implicit ordering represented in the C |
---|
| 1939 | subroutine call stack may be different from the new variable order. |
---|
| 1940 | Reordering occurs before freeing the temporaries, since we want to |
---|
| 1941 | minimize the aggregate size of the operands plus the result that is |
---|
| 1942 | being constructed.) |
---|
| 1943 | |
---|
| 1944 | Storage can be allocated through a number of mechanisms. The routines |
---|
| 1945 | \fBmem_get_block\fR, \fBmem_free_block\fR, and \fBmem_resize_block\fR |
---|
| 1946 | are generally used for large single items. For smaller uniformly |
---|
| 1947 | sized items, you probably should use a record manager. |
---|
| 1948 | .B mem_new_rec_mgr |
---|
| 1949 | will return a record manager that handles blocks of a given size. |
---|
| 1950 | Use |
---|
| 1951 | .B mem_new_rec |
---|
| 1952 | and |
---|
| 1953 | .B mem_free_rec |
---|
| 1954 | to obtain and free individual records. Finally, |
---|
| 1955 | .B mem_free_rec_mgr |
---|
| 1956 | will dispose of the record manager and all of its associated records. |
---|
| 1957 | These routines are documented in more detail in the storage management |
---|
| 1958 | library man page. If your structures are at most 64 bytes in size, |
---|
| 1959 | you can use the macros |
---|
| 1960 | .B BDD_NEW_REC |
---|
| 1961 | and \fBBDD_FREE_REC\fR. These obtain records from the internal BDD |
---|
| 1962 | record managers. |
---|
| 1963 | .SH "PORTABILITY NOTES" |
---|
| 1964 | Since pointer tagging is heavily used, you'll have major problems if |
---|
| 1965 | you can't cast back and forth between pointers and longs without |
---|
| 1966 | losing something. The low-level storage management routines are |
---|
| 1967 | fairly UNIX specific; they call |
---|
| 1968 | .B sbrk |
---|
| 1969 | directly. If you don't have something similar, you may have to |
---|
| 1970 | rewrite them. The storage management routines also need to be able to |
---|
| 1971 | move and clear blocks of memory whose size is given by a long. You |
---|
| 1972 | may have to fiddle with these, especially if you have a machine where |
---|
| 1973 | int and long are different. If you encounter portability problems, |
---|
| 1974 | let me know; maybe the next release will be able to accommodate your |
---|
| 1975 | machine. |
---|
| 1976 | .SH "SEE ALSO" |
---|
| 1977 | mem(3) |
---|
| 1978 | .SH BUGS |
---|
| 1979 | Surely you're joking. |
---|
| 1980 | .SH REFERENCES |
---|
| 1981 | [1] R. E. Bryant. Graph Based Algorithms for Boolean Function |
---|
| 1982 | Manipulation. \fIIEEE Transactions on Computers\fR, C-35(8):677-691, |
---|
| 1983 | August 1986. |
---|
| 1984 | .LP |
---|
| 1985 | [2] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. |
---|
| 1986 | Sangiovanni-Vincentelli. Implicit State Enumeration of Finite State |
---|
| 1987 | Machines using BDD's. In \fIProceedings of the 1990 IEEE |
---|
| 1988 | International Conference on Computer-Aided Design\fR, November, 1990. |
---|
| 1989 | .LP |
---|
| 1990 | [3] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient |
---|
| 1991 | Implementation of a BDD Package. In \fIProceedings of the 27th |
---|
| 1992 | ACM/IEEE Design Automation Conference\fR, June, 1990. |
---|
| 1993 | .LP |
---|
| 1994 | [4] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. C.-Y. |
---|
| 1995 | Yang. Spectral Transforms for Large Boolean Functions with |
---|
| 1996 | Applications to Technology Mapping. In \fIProceedings of the 30th |
---|
| 1997 | ACM/IEEE Design Automation Conference\fR, June, 1993. |
---|
| 1998 | .SH AUTHOR |
---|
| 1999 | David E. Long |
---|
| 2000 | .br |
---|
| 2001 | long@research.att.com |
---|