1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [cuddApprox.c] |
---|
4 | |
---|
5 | PackageName [cudd] |
---|
6 | |
---|
7 | Synopsis [Procedures to approximate a given BDD.] |
---|
8 | |
---|
9 | Description [External procedures provided by this module: |
---|
10 | <ul> |
---|
11 | <li> Cudd_UnderApprox() |
---|
12 | <li> Cudd_OverApprox() |
---|
13 | <li> Cudd_RemapUnderApprox() |
---|
14 | <li> Cudd_RemapOverApprox() |
---|
15 | <li> Cudd_BiasedUnderApprox() |
---|
16 | <li> Cudd_BiasedOverApprox() |
---|
17 | </ul> |
---|
18 | Internal procedures included in this module: |
---|
19 | <ul> |
---|
20 | <li> cuddUnderApprox() |
---|
21 | <li> cuddRemapUnderApprox() |
---|
22 | <li> cuddBiasedUnderApprox() |
---|
23 | </ul> |
---|
24 | Static procedures included in this module: |
---|
25 | <ul> |
---|
26 | <li> gatherInfoAux() |
---|
27 | <li> gatherInfo() |
---|
28 | <li> computeSavings() |
---|
29 | <li> UAmarkNodes() |
---|
30 | <li> UAbuildSubset() |
---|
31 | <li> updateRefs() |
---|
32 | <li> RAmarkNodes() |
---|
33 | <li> BAmarkNodes() |
---|
34 | <li> RAbuildSubset() |
---|
35 | </ul> |
---|
36 | ] |
---|
37 | |
---|
38 | SeeAlso [cuddSubsetHB.c cuddSubsetSP.c cuddGenCof.c] |
---|
39 | |
---|
40 | Author [Fabio Somenzi] |
---|
41 | |
---|
42 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
43 | |
---|
44 | All rights reserved. |
---|
45 | |
---|
46 | Redistribution and use in source and binary forms, with or without |
---|
47 | modification, are permitted provided that the following conditions |
---|
48 | are met: |
---|
49 | |
---|
50 | Redistributions of source code must retain the above copyright |
---|
51 | notice, this list of conditions and the following disclaimer. |
---|
52 | |
---|
53 | Redistributions in binary form must reproduce the above copyright |
---|
54 | notice, this list of conditions and the following disclaimer in the |
---|
55 | documentation and/or other materials provided with the distribution. |
---|
56 | |
---|
57 | Neither the name of the University of Colorado nor the names of its |
---|
58 | contributors may be used to endorse or promote products derived from |
---|
59 | this software without specific prior written permission. |
---|
60 | |
---|
61 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
62 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
63 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
64 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
65 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
66 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
67 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
68 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
69 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
70 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
71 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
72 | POSSIBILITY OF SUCH DAMAGE.] |
---|
73 | |
---|
74 | ******************************************************************************/ |
---|
75 | |
---|
76 | #ifdef __STDC__ |
---|
77 | #include <float.h> |
---|
78 | #else |
---|
79 | #define DBL_MAX_EXP 1024 |
---|
80 | #endif |
---|
81 | #include "util.h" |
---|
82 | #include "cuddInt.h" |
---|
83 | |
---|
84 | /*---------------------------------------------------------------------------*/ |
---|
85 | /* Constant declarations */ |
---|
86 | /*---------------------------------------------------------------------------*/ |
---|
87 | |
---|
88 | #define NOTHING 0 |
---|
89 | #define REPLACE_T 1 |
---|
90 | #define REPLACE_E 2 |
---|
91 | #define REPLACE_N 3 |
---|
92 | #define REPLACE_TT 4 |
---|
93 | #define REPLACE_TE 5 |
---|
94 | |
---|
95 | #define DONT_CARE 0 |
---|
96 | #define CARE 1 |
---|
97 | #define TOTAL_CARE 2 |
---|
98 | #define CARE_ERROR 3 |
---|
99 | |
---|
100 | /*---------------------------------------------------------------------------*/ |
---|
101 | /* Stucture declarations */ |
---|
102 | /*---------------------------------------------------------------------------*/ |
---|
103 | |
---|
104 | /*---------------------------------------------------------------------------*/ |
---|
105 | /* Type declarations */ |
---|
106 | /*---------------------------------------------------------------------------*/ |
---|
107 | |
---|
108 | /* Data structure to store the information on each node. It keeps the |
---|
109 | ** number of minterms of the function rooted at this node in terms of |
---|
110 | ** the number of variables specified by the user; the number of |
---|
111 | ** minterms of the complement; the impact of the number of minterms of |
---|
112 | ** this function on the number of minterms of the root function; the |
---|
113 | ** reference count of the node from within the root function; the |
---|
114 | ** reference count of the node from an internal node; and the flag |
---|
115 | ** that says whether the node should be replaced and how. */ |
---|
116 | typedef struct NodeData { |
---|
117 | double mintermsP; /* minterms for the regular node */ |
---|
118 | double mintermsN; /* minterms for the complemented node */ |
---|
119 | int functionRef; /* references from within this function */ |
---|
120 | char care; /* node intersects care set */ |
---|
121 | char replace; /* replacement decision */ |
---|
122 | short int parity; /* 1: even; 2: odd; 3: both */ |
---|
123 | DdNode *resultP; /* result for even parity */ |
---|
124 | DdNode *resultN; /* result for odd parity */ |
---|
125 | } NodeData; |
---|
126 | |
---|
127 | typedef struct ApproxInfo { |
---|
128 | DdNode *one; /* one constant */ |
---|
129 | DdNode *zero; /* BDD zero constant */ |
---|
130 | NodeData *page; /* per-node information */ |
---|
131 | st_table *table; /* hash table to access the per-node info */ |
---|
132 | int index; /* index of the current node */ |
---|
133 | double max; /* max number of minterms */ |
---|
134 | int size; /* how many nodes are left */ |
---|
135 | double minterms; /* how many minterms are left */ |
---|
136 | } ApproxInfo; |
---|
137 | |
---|
138 | /* Item of the queue used in the levelized traversal of the BDD. */ |
---|
139 | #ifdef __osf__ |
---|
140 | #pragma pointer_size save |
---|
141 | #pragma pointer_size short |
---|
142 | #endif |
---|
143 | typedef struct GlobalQueueItem { |
---|
144 | struct GlobalQueueItem *next; |
---|
145 | struct GlobalQueueItem *cnext; |
---|
146 | DdNode *node; |
---|
147 | double impactP; |
---|
148 | double impactN; |
---|
149 | } GlobalQueueItem; |
---|
150 | |
---|
151 | typedef struct LocalQueueItem { |
---|
152 | struct LocalQueueItem *next; |
---|
153 | struct LocalQueueItem *cnext; |
---|
154 | DdNode *node; |
---|
155 | int localRef; |
---|
156 | } LocalQueueItem; |
---|
157 | #ifdef __osf__ |
---|
158 | #pragma pointer_size restore |
---|
159 | #endif |
---|
160 | |
---|
161 | |
---|
162 | /*---------------------------------------------------------------------------*/ |
---|
163 | /* Variable declarations */ |
---|
164 | /*---------------------------------------------------------------------------*/ |
---|
165 | |
---|
166 | #ifndef lint |
---|
167 | static char rcsid[] DD_UNUSED = "$Id: cuddApprox.c,v 1.27 2009/02/19 16:16:51 fabio Exp $"; |
---|
168 | #endif |
---|
169 | |
---|
170 | /*---------------------------------------------------------------------------*/ |
---|
171 | /* Macro declarations */ |
---|
172 | /*---------------------------------------------------------------------------*/ |
---|
173 | |
---|
174 | /**AutomaticStart*************************************************************/ |
---|
175 | |
---|
176 | /*---------------------------------------------------------------------------*/ |
---|
177 | /* Static function prototypes */ |
---|
178 | /*---------------------------------------------------------------------------*/ |
---|
179 | |
---|
180 | static void updateParity (DdNode *node, ApproxInfo *info, int newparity); |
---|
181 | static NodeData * gatherInfoAux (DdNode *node, ApproxInfo *info, int parity); |
---|
182 | static ApproxInfo * gatherInfo (DdManager *dd, DdNode *node, int numVars, int parity); |
---|
183 | static int computeSavings (DdManager *dd, DdNode *f, DdNode *skip, ApproxInfo *info, DdLevelQueue *queue); |
---|
184 | static int updateRefs (DdManager *dd, DdNode *f, DdNode *skip, ApproxInfo *info, DdLevelQueue *queue); |
---|
185 | static int UAmarkNodes (DdManager *dd, DdNode *f, ApproxInfo *info, int threshold, int safe, double quality); |
---|
186 | static DdNode * UAbuildSubset (DdManager *dd, DdNode *node, ApproxInfo *info); |
---|
187 | static int RAmarkNodes (DdManager *dd, DdNode *f, ApproxInfo *info, int threshold, double quality); |
---|
188 | static int BAmarkNodes (DdManager *dd, DdNode *f, ApproxInfo *info, int threshold, double quality1, double quality0); |
---|
189 | static DdNode * RAbuildSubset (DdManager *dd, DdNode *node, ApproxInfo *info); |
---|
190 | static int BAapplyBias (DdManager *dd, DdNode *f, DdNode *b, ApproxInfo *info, DdHashTable *cache); |
---|
191 | |
---|
192 | /**AutomaticEnd***************************************************************/ |
---|
193 | |
---|
194 | |
---|
195 | /*---------------------------------------------------------------------------*/ |
---|
196 | /* Definition of exported functions */ |
---|
197 | /*---------------------------------------------------------------------------*/ |
---|
198 | |
---|
199 | /**Function******************************************************************** |
---|
200 | |
---|
201 | Synopsis [Extracts a dense subset from a BDD with Shiple's |
---|
202 | underapproximation method.] |
---|
203 | |
---|
204 | Description [Extracts a dense subset from a BDD. This procedure uses |
---|
205 | a variant of Tom Shiple's underapproximation method. The main |
---|
206 | difference from the original method is that density is used as cost |
---|
207 | function. Returns a pointer to the BDD of the subset if |
---|
208 | successful. NULL if the procedure runs out of memory. The parameter |
---|
209 | numVars is the maximum number of variables to be used in minterm |
---|
210 | calculation. The optimal number should be as close as possible to |
---|
211 | the size of the support of f. However, it is safe to pass the value |
---|
212 | returned by Cudd_ReadSize for numVars when the number of variables |
---|
213 | is under 1023. If numVars is larger than 1023, it will cause |
---|
214 | overflow. If a 0 parameter is passed then the procedure will compute |
---|
215 | a value which will avoid overflow but will cause underflow with 2046 |
---|
216 | variables or more.] |
---|
217 | |
---|
218 | SideEffects [None] |
---|
219 | |
---|
220 | SeeAlso [Cudd_SubsetShortPaths Cudd_SubsetHeavyBranch Cudd_ReadSize] |
---|
221 | |
---|
222 | ******************************************************************************/ |
---|
223 | DdNode * |
---|
224 | Cudd_UnderApprox( |
---|
225 | DdManager * dd /* manager */, |
---|
226 | DdNode * f /* function to be subset */, |
---|
227 | int numVars /* number of variables in the support of f */, |
---|
228 | int threshold /* when to stop approximation */, |
---|
229 | int safe /* enforce safe approximation */, |
---|
230 | double quality /* minimum improvement for accepted changes */) |
---|
231 | { |
---|
232 | DdNode *subset; |
---|
233 | |
---|
234 | do { |
---|
235 | dd->reordered = 0; |
---|
236 | subset = cuddUnderApprox(dd, f, numVars, threshold, safe, quality); |
---|
237 | } while (dd->reordered == 1); |
---|
238 | |
---|
239 | return(subset); |
---|
240 | |
---|
241 | } /* end of Cudd_UnderApprox */ |
---|
242 | |
---|
243 | |
---|
244 | /**Function******************************************************************** |
---|
245 | |
---|
246 | Synopsis [Extracts a dense superset from a BDD with Shiple's |
---|
247 | underapproximation method.] |
---|
248 | |
---|
249 | Description [Extracts a dense superset from a BDD. The procedure is |
---|
250 | identical to the underapproximation procedure except for the fact that it |
---|
251 | works on the complement of the given function. Extracting the subset |
---|
252 | of the complement function is equivalent to extracting the superset |
---|
253 | of the function. |
---|
254 | Returns a pointer to the BDD of the superset if successful. NULL if |
---|
255 | intermediate result causes the procedure to run out of memory. The |
---|
256 | parameter numVars is the maximum number of variables to be used in |
---|
257 | minterm calculation. The optimal number |
---|
258 | should be as close as possible to the size of the support of f. |
---|
259 | However, it is safe to pass the value returned by Cudd_ReadSize for |
---|
260 | numVars when the number of variables is under 1023. If numVars is |
---|
261 | larger than 1023, it will overflow. If a 0 parameter is passed then |
---|
262 | the procedure will compute a value which will avoid overflow but |
---|
263 | will cause underflow with 2046 variables or more.] |
---|
264 | |
---|
265 | SideEffects [None] |
---|
266 | |
---|
267 | SeeAlso [Cudd_SupersetHeavyBranch Cudd_SupersetShortPaths Cudd_ReadSize] |
---|
268 | |
---|
269 | ******************************************************************************/ |
---|
270 | DdNode * |
---|
271 | Cudd_OverApprox( |
---|
272 | DdManager * dd /* manager */, |
---|
273 | DdNode * f /* function to be superset */, |
---|
274 | int numVars /* number of variables in the support of f */, |
---|
275 | int threshold /* when to stop approximation */, |
---|
276 | int safe /* enforce safe approximation */, |
---|
277 | double quality /* minimum improvement for accepted changes */) |
---|
278 | { |
---|
279 | DdNode *subset, *g; |
---|
280 | |
---|
281 | g = Cudd_Not(f); |
---|
282 | do { |
---|
283 | dd->reordered = 0; |
---|
284 | subset = cuddUnderApprox(dd, g, numVars, threshold, safe, quality); |
---|
285 | } while (dd->reordered == 1); |
---|
286 | |
---|
287 | return(Cudd_NotCond(subset, (subset != NULL))); |
---|
288 | |
---|
289 | } /* end of Cudd_OverApprox */ |
---|
290 | |
---|
291 | |
---|
292 | /**Function******************************************************************** |
---|
293 | |
---|
294 | Synopsis [Extracts a dense subset from a BDD with the remapping |
---|
295 | underapproximation method.] |
---|
296 | |
---|
297 | Description [Extracts a dense subset from a BDD. This procedure uses |
---|
298 | a remapping technique and density as the cost function. |
---|
299 | Returns a pointer to the BDD of the subset if |
---|
300 | successful. NULL if the procedure runs out of memory. The parameter |
---|
301 | numVars is the maximum number of variables to be used in minterm |
---|
302 | calculation. The optimal number should be as close as possible to |
---|
303 | the size of the support of f. However, it is safe to pass the value |
---|
304 | returned by Cudd_ReadSize for numVars when the number of variables |
---|
305 | is under 1023. If numVars is larger than 1023, it will cause |
---|
306 | overflow. If a 0 parameter is passed then the procedure will compute |
---|
307 | a value which will avoid overflow but will cause underflow with 2046 |
---|
308 | variables or more.] |
---|
309 | |
---|
310 | SideEffects [None] |
---|
311 | |
---|
312 | SeeAlso [Cudd_SubsetShortPaths Cudd_SubsetHeavyBranch Cudd_UnderApprox Cudd_ReadSize] |
---|
313 | |
---|
314 | ******************************************************************************/ |
---|
315 | DdNode * |
---|
316 | Cudd_RemapUnderApprox( |
---|
317 | DdManager * dd /* manager */, |
---|
318 | DdNode * f /* function to be subset */, |
---|
319 | int numVars /* number of variables in the support of f */, |
---|
320 | int threshold /* when to stop approximation */, |
---|
321 | double quality /* minimum improvement for accepted changes */) |
---|
322 | { |
---|
323 | DdNode *subset; |
---|
324 | |
---|
325 | do { |
---|
326 | dd->reordered = 0; |
---|
327 | subset = cuddRemapUnderApprox(dd, f, numVars, threshold, quality); |
---|
328 | } while (dd->reordered == 1); |
---|
329 | |
---|
330 | return(subset); |
---|
331 | |
---|
332 | } /* end of Cudd_RemapUnderApprox */ |
---|
333 | |
---|
334 | |
---|
335 | /**Function******************************************************************** |
---|
336 | |
---|
337 | Synopsis [Extracts a dense superset from a BDD with the remapping |
---|
338 | underapproximation method.] |
---|
339 | |
---|
340 | Description [Extracts a dense superset from a BDD. The procedure is |
---|
341 | identical to the underapproximation procedure except for the fact that it |
---|
342 | works on the complement of the given function. Extracting the subset |
---|
343 | of the complement function is equivalent to extracting the superset |
---|
344 | of the function. |
---|
345 | Returns a pointer to the BDD of the superset if successful. NULL if |
---|
346 | intermediate result causes the procedure to run out of memory. The |
---|
347 | parameter numVars is the maximum number of variables to be used in |
---|
348 | minterm calculation. The optimal number |
---|
349 | should be as close as possible to the size of the support of f. |
---|
350 | However, it is safe to pass the value returned by Cudd_ReadSize for |
---|
351 | numVars when the number of variables is under 1023. If numVars is |
---|
352 | larger than 1023, it will overflow. If a 0 parameter is passed then |
---|
353 | the procedure will compute a value which will avoid overflow but |
---|
354 | will cause underflow with 2046 variables or more.] |
---|
355 | |
---|
356 | SideEffects [None] |
---|
357 | |
---|
358 | SeeAlso [Cudd_SupersetHeavyBranch Cudd_SupersetShortPaths Cudd_ReadSize] |
---|
359 | |
---|
360 | ******************************************************************************/ |
---|
361 | DdNode * |
---|
362 | Cudd_RemapOverApprox( |
---|
363 | DdManager * dd /* manager */, |
---|
364 | DdNode * f /* function to be superset */, |
---|
365 | int numVars /* number of variables in the support of f */, |
---|
366 | int threshold /* when to stop approximation */, |
---|
367 | double quality /* minimum improvement for accepted changes */) |
---|
368 | { |
---|
369 | DdNode *subset, *g; |
---|
370 | |
---|
371 | g = Cudd_Not(f); |
---|
372 | do { |
---|
373 | dd->reordered = 0; |
---|
374 | subset = cuddRemapUnderApprox(dd, g, numVars, threshold, quality); |
---|
375 | } while (dd->reordered == 1); |
---|
376 | |
---|
377 | return(Cudd_NotCond(subset, (subset != NULL))); |
---|
378 | |
---|
379 | } /* end of Cudd_RemapOverApprox */ |
---|
380 | |
---|
381 | |
---|
382 | /**Function******************************************************************** |
---|
383 | |
---|
384 | Synopsis [Extracts a dense subset from a BDD with the biased |
---|
385 | underapproximation method.] |
---|
386 | |
---|
387 | Description [Extracts a dense subset from a BDD. This procedure uses |
---|
388 | a biased remapping technique and density as the cost function. The bias |
---|
389 | is a function. This procedure tries to approximate where the bias is 0 |
---|
390 | and preserve the given function where the bias is 1. |
---|
391 | Returns a pointer to the BDD of the subset if |
---|
392 | successful. NULL if the procedure runs out of memory. The parameter |
---|
393 | numVars is the maximum number of variables to be used in minterm |
---|
394 | calculation. The optimal number should be as close as possible to |
---|
395 | the size of the support of f. However, it is safe to pass the value |
---|
396 | returned by Cudd_ReadSize for numVars when the number of variables |
---|
397 | is under 1023. If numVars is larger than 1023, it will cause |
---|
398 | overflow. If a 0 parameter is passed then the procedure will compute |
---|
399 | a value which will avoid overflow but will cause underflow with 2046 |
---|
400 | variables or more.] |
---|
401 | |
---|
402 | SideEffects [None] |
---|
403 | |
---|
404 | SeeAlso [Cudd_SubsetShortPaths Cudd_SubsetHeavyBranch Cudd_UnderApprox |
---|
405 | Cudd_RemapUnderApprox Cudd_ReadSize] |
---|
406 | |
---|
407 | ******************************************************************************/ |
---|
408 | DdNode * |
---|
409 | Cudd_BiasedUnderApprox( |
---|
410 | DdManager *dd /* manager */, |
---|
411 | DdNode *f /* function to be subset */, |
---|
412 | DdNode *b /* bias function */, |
---|
413 | int numVars /* number of variables in the support of f */, |
---|
414 | int threshold /* when to stop approximation */, |
---|
415 | double quality1 /* minimum improvement for accepted changes when b=1 */, |
---|
416 | double quality0 /* minimum improvement for accepted changes when b=0 */) |
---|
417 | { |
---|
418 | DdNode *subset; |
---|
419 | |
---|
420 | do { |
---|
421 | dd->reordered = 0; |
---|
422 | subset = cuddBiasedUnderApprox(dd, f, b, numVars, threshold, quality1, |
---|
423 | quality0); |
---|
424 | } while (dd->reordered == 1); |
---|
425 | |
---|
426 | return(subset); |
---|
427 | |
---|
428 | } /* end of Cudd_BiasedUnderApprox */ |
---|
429 | |
---|
430 | |
---|
431 | /**Function******************************************************************** |
---|
432 | |
---|
433 | Synopsis [Extracts a dense superset from a BDD with the biased |
---|
434 | underapproximation method.] |
---|
435 | |
---|
436 | Description [Extracts a dense superset from a BDD. The procedure is |
---|
437 | identical to the underapproximation procedure except for the fact that it |
---|
438 | works on the complement of the given function. Extracting the subset |
---|
439 | of the complement function is equivalent to extracting the superset |
---|
440 | of the function. |
---|
441 | Returns a pointer to the BDD of the superset if successful. NULL if |
---|
442 | intermediate result causes the procedure to run out of memory. The |
---|
443 | parameter numVars is the maximum number of variables to be used in |
---|
444 | minterm calculation. The optimal number |
---|
445 | should be as close as possible to the size of the support of f. |
---|
446 | However, it is safe to pass the value returned by Cudd_ReadSize for |
---|
447 | numVars when the number of variables is under 1023. If numVars is |
---|
448 | larger than 1023, it will overflow. If a 0 parameter is passed then |
---|
449 | the procedure will compute a value which will avoid overflow but |
---|
450 | will cause underflow with 2046 variables or more.] |
---|
451 | |
---|
452 | SideEffects [None] |
---|
453 | |
---|
454 | SeeAlso [Cudd_SupersetHeavyBranch Cudd_SupersetShortPaths |
---|
455 | Cudd_RemapOverApprox Cudd_BiasedUnderApprox Cudd_ReadSize] |
---|
456 | |
---|
457 | ******************************************************************************/ |
---|
458 | DdNode * |
---|
459 | Cudd_BiasedOverApprox( |
---|
460 | DdManager *dd /* manager */, |
---|
461 | DdNode *f /* function to be superset */, |
---|
462 | DdNode *b /* bias function */, |
---|
463 | int numVars /* number of variables in the support of f */, |
---|
464 | int threshold /* when to stop approximation */, |
---|
465 | double quality1 /* minimum improvement for accepted changes when b=1*/, |
---|
466 | double quality0 /* minimum improvement for accepted changes when b=0 */) |
---|
467 | { |
---|
468 | DdNode *subset, *g; |
---|
469 | |
---|
470 | g = Cudd_Not(f); |
---|
471 | do { |
---|
472 | dd->reordered = 0; |
---|
473 | subset = cuddBiasedUnderApprox(dd, g, b, numVars, threshold, quality1, |
---|
474 | quality0); |
---|
475 | } while (dd->reordered == 1); |
---|
476 | |
---|
477 | return(Cudd_NotCond(subset, (subset != NULL))); |
---|
478 | |
---|
479 | } /* end of Cudd_BiasedOverApprox */ |
---|
480 | |
---|
481 | |
---|
482 | /*---------------------------------------------------------------------------*/ |
---|
483 | /* Definition of internal functions */ |
---|
484 | /*---------------------------------------------------------------------------*/ |
---|
485 | |
---|
486 | |
---|
487 | /**Function******************************************************************** |
---|
488 | |
---|
489 | Synopsis [Applies Tom Shiple's underappoximation algorithm.] |
---|
490 | |
---|
491 | Description [Applies Tom Shiple's underappoximation algorithm. Proceeds |
---|
492 | in three phases: |
---|
493 | <ul> |
---|
494 | <li> collect information on each node in the BDD; this is done via DFS. |
---|
495 | <li> traverse the BDD in top-down fashion and compute for each node |
---|
496 | whether its elimination increases density. |
---|
497 | <li> traverse the BDD via DFS and actually perform the elimination. |
---|
498 | </ul> |
---|
499 | Returns the approximated BDD if successful; NULL otherwise.] |
---|
500 | |
---|
501 | SideEffects [None] |
---|
502 | |
---|
503 | SeeAlso [Cudd_UnderApprox] |
---|
504 | |
---|
505 | ******************************************************************************/ |
---|
506 | DdNode * |
---|
507 | cuddUnderApprox( |
---|
508 | DdManager * dd /* DD manager */, |
---|
509 | DdNode * f /* current DD */, |
---|
510 | int numVars /* maximum number of variables */, |
---|
511 | int threshold /* threshold under which approximation stops */, |
---|
512 | int safe /* enforce safe approximation */, |
---|
513 | double quality /* minimum improvement for accepted changes */) |
---|
514 | { |
---|
515 | ApproxInfo *info; |
---|
516 | DdNode *subset; |
---|
517 | int result; |
---|
518 | |
---|
519 | if (f == NULL) { |
---|
520 | fprintf(dd->err, "Cannot subset, nil object\n"); |
---|
521 | return(NULL); |
---|
522 | } |
---|
523 | |
---|
524 | if (Cudd_IsConstant(f)) { |
---|
525 | return(f); |
---|
526 | } |
---|
527 | |
---|
528 | /* Create table where node data are accessible via a hash table. */ |
---|
529 | info = gatherInfo(dd, f, numVars, safe); |
---|
530 | if (info == NULL) { |
---|
531 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
532 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
533 | return(NULL); |
---|
534 | } |
---|
535 | |
---|
536 | /* Mark nodes that should be replaced by zero. */ |
---|
537 | result = UAmarkNodes(dd, f, info, threshold, safe, quality); |
---|
538 | if (result == 0) { |
---|
539 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
540 | FREE(info->page); |
---|
541 | st_free_table(info->table); |
---|
542 | FREE(info); |
---|
543 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
544 | return(NULL); |
---|
545 | } |
---|
546 | |
---|
547 | /* Build the result. */ |
---|
548 | subset = UAbuildSubset(dd, f, info); |
---|
549 | #if 1 |
---|
550 | if (subset && info->size < Cudd_DagSize(subset)) |
---|
551 | (void) fprintf(dd->err, "Wrong prediction: %d versus actual %d\n", |
---|
552 | info->size, Cudd_DagSize(subset)); |
---|
553 | #endif |
---|
554 | FREE(info->page); |
---|
555 | st_free_table(info->table); |
---|
556 | FREE(info); |
---|
557 | |
---|
558 | #ifdef DD_DEBUG |
---|
559 | if (subset != NULL) { |
---|
560 | cuddRef(subset); |
---|
561 | #if 0 |
---|
562 | (void) Cudd_DebugCheck(dd); |
---|
563 | (void) Cudd_CheckKeys(dd); |
---|
564 | #endif |
---|
565 | if (!Cudd_bddLeq(dd, subset, f)) { |
---|
566 | (void) fprintf(dd->err, "Wrong subset\n"); |
---|
567 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
568 | } |
---|
569 | cuddDeref(subset); |
---|
570 | } |
---|
571 | #endif |
---|
572 | return(subset); |
---|
573 | |
---|
574 | } /* end of cuddUnderApprox */ |
---|
575 | |
---|
576 | |
---|
577 | /**Function******************************************************************** |
---|
578 | |
---|
579 | Synopsis [Applies the remapping underappoximation algorithm.] |
---|
580 | |
---|
581 | Description [Applies the remapping underappoximation algorithm. |
---|
582 | Proceeds in three phases: |
---|
583 | <ul> |
---|
584 | <li> collect information on each node in the BDD; this is done via DFS. |
---|
585 | <li> traverse the BDD in top-down fashion and compute for each node |
---|
586 | whether remapping increases density. |
---|
587 | <li> traverse the BDD via DFS and actually perform the elimination. |
---|
588 | </ul> |
---|
589 | Returns the approximated BDD if successful; NULL otherwise.] |
---|
590 | |
---|
591 | SideEffects [None] |
---|
592 | |
---|
593 | SeeAlso [Cudd_RemapUnderApprox] |
---|
594 | |
---|
595 | ******************************************************************************/ |
---|
596 | DdNode * |
---|
597 | cuddRemapUnderApprox( |
---|
598 | DdManager * dd /* DD manager */, |
---|
599 | DdNode * f /* current DD */, |
---|
600 | int numVars /* maximum number of variables */, |
---|
601 | int threshold /* threshold under which approximation stops */, |
---|
602 | double quality /* minimum improvement for accepted changes */) |
---|
603 | { |
---|
604 | ApproxInfo *info; |
---|
605 | DdNode *subset; |
---|
606 | int result; |
---|
607 | |
---|
608 | if (f == NULL) { |
---|
609 | fprintf(dd->err, "Cannot subset, nil object\n"); |
---|
610 | dd->errorCode = CUDD_INVALID_ARG; |
---|
611 | return(NULL); |
---|
612 | } |
---|
613 | |
---|
614 | if (Cudd_IsConstant(f)) { |
---|
615 | return(f); |
---|
616 | } |
---|
617 | |
---|
618 | /* Create table where node data are accessible via a hash table. */ |
---|
619 | info = gatherInfo(dd, f, numVars, TRUE); |
---|
620 | if (info == NULL) { |
---|
621 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
622 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
623 | return(NULL); |
---|
624 | } |
---|
625 | |
---|
626 | /* Mark nodes that should be replaced by zero. */ |
---|
627 | result = RAmarkNodes(dd, f, info, threshold, quality); |
---|
628 | if (result == 0) { |
---|
629 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
630 | FREE(info->page); |
---|
631 | st_free_table(info->table); |
---|
632 | FREE(info); |
---|
633 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
634 | return(NULL); |
---|
635 | } |
---|
636 | |
---|
637 | /* Build the result. */ |
---|
638 | subset = RAbuildSubset(dd, f, info); |
---|
639 | #if 1 |
---|
640 | if (subset && info->size < Cudd_DagSize(subset)) |
---|
641 | (void) fprintf(dd->err, "Wrong prediction: %d versus actual %d\n", |
---|
642 | info->size, Cudd_DagSize(subset)); |
---|
643 | #endif |
---|
644 | FREE(info->page); |
---|
645 | st_free_table(info->table); |
---|
646 | FREE(info); |
---|
647 | |
---|
648 | #ifdef DD_DEBUG |
---|
649 | if (subset != NULL) { |
---|
650 | cuddRef(subset); |
---|
651 | #if 0 |
---|
652 | (void) Cudd_DebugCheck(dd); |
---|
653 | (void) Cudd_CheckKeys(dd); |
---|
654 | #endif |
---|
655 | if (!Cudd_bddLeq(dd, subset, f)) { |
---|
656 | (void) fprintf(dd->err, "Wrong subset\n"); |
---|
657 | } |
---|
658 | cuddDeref(subset); |
---|
659 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
660 | } |
---|
661 | #endif |
---|
662 | return(subset); |
---|
663 | |
---|
664 | } /* end of cuddRemapUnderApprox */ |
---|
665 | |
---|
666 | |
---|
667 | /**Function******************************************************************** |
---|
668 | |
---|
669 | Synopsis [Applies the biased remapping underappoximation algorithm.] |
---|
670 | |
---|
671 | Description [Applies the biased remapping underappoximation algorithm. |
---|
672 | Proceeds in three phases: |
---|
673 | <ul> |
---|
674 | <li> collect information on each node in the BDD; this is done via DFS. |
---|
675 | <li> traverse the BDD in top-down fashion and compute for each node |
---|
676 | whether remapping increases density. |
---|
677 | <li> traverse the BDD via DFS and actually perform the elimination. |
---|
678 | </ul> |
---|
679 | Returns the approximated BDD if successful; NULL otherwise.] |
---|
680 | |
---|
681 | SideEffects [None] |
---|
682 | |
---|
683 | SeeAlso [Cudd_BiasedUnderApprox] |
---|
684 | |
---|
685 | ******************************************************************************/ |
---|
686 | DdNode * |
---|
687 | cuddBiasedUnderApprox( |
---|
688 | DdManager *dd /* DD manager */, |
---|
689 | DdNode *f /* current DD */, |
---|
690 | DdNode *b /* bias function */, |
---|
691 | int numVars /* maximum number of variables */, |
---|
692 | int threshold /* threshold under which approximation stops */, |
---|
693 | double quality1 /* minimum improvement for accepted changes when b=1 */, |
---|
694 | double quality0 /* minimum improvement for accepted changes when b=0 */) |
---|
695 | { |
---|
696 | ApproxInfo *info; |
---|
697 | DdNode *subset; |
---|
698 | int result; |
---|
699 | DdHashTable *cache; |
---|
700 | |
---|
701 | if (f == NULL) { |
---|
702 | fprintf(dd->err, "Cannot subset, nil object\n"); |
---|
703 | dd->errorCode = CUDD_INVALID_ARG; |
---|
704 | return(NULL); |
---|
705 | } |
---|
706 | |
---|
707 | if (Cudd_IsConstant(f)) { |
---|
708 | return(f); |
---|
709 | } |
---|
710 | |
---|
711 | /* Create table where node data are accessible via a hash table. */ |
---|
712 | info = gatherInfo(dd, f, numVars, TRUE); |
---|
713 | if (info == NULL) { |
---|
714 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
715 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
716 | return(NULL); |
---|
717 | } |
---|
718 | |
---|
719 | cache = cuddHashTableInit(dd,2,2); |
---|
720 | result = BAapplyBias(dd, Cudd_Regular(f), b, info, cache); |
---|
721 | if (result == CARE_ERROR) { |
---|
722 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
723 | cuddHashTableQuit(cache); |
---|
724 | FREE(info->page); |
---|
725 | st_free_table(info->table); |
---|
726 | FREE(info); |
---|
727 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
728 | return(NULL); |
---|
729 | } |
---|
730 | cuddHashTableQuit(cache); |
---|
731 | |
---|
732 | /* Mark nodes that should be replaced by zero. */ |
---|
733 | result = BAmarkNodes(dd, f, info, threshold, quality1, quality0); |
---|
734 | if (result == 0) { |
---|
735 | (void) fprintf(dd->err, "Out-of-memory; Cannot subset\n"); |
---|
736 | FREE(info->page); |
---|
737 | st_free_table(info->table); |
---|
738 | FREE(info); |
---|
739 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
740 | return(NULL); |
---|
741 | } |
---|
742 | |
---|
743 | /* Build the result. */ |
---|
744 | subset = RAbuildSubset(dd, f, info); |
---|
745 | #if 1 |
---|
746 | if (subset && info->size < Cudd_DagSize(subset)) |
---|
747 | (void) fprintf(dd->err, "Wrong prediction: %d versus actual %d\n", |
---|
748 | info->size, Cudd_DagSize(subset)); |
---|
749 | #endif |
---|
750 | FREE(info->page); |
---|
751 | st_free_table(info->table); |
---|
752 | FREE(info); |
---|
753 | |
---|
754 | #ifdef DD_DEBUG |
---|
755 | if (subset != NULL) { |
---|
756 | cuddRef(subset); |
---|
757 | #if 0 |
---|
758 | (void) Cudd_DebugCheck(dd); |
---|
759 | (void) Cudd_CheckKeys(dd); |
---|
760 | #endif |
---|
761 | if (!Cudd_bddLeq(dd, subset, f)) { |
---|
762 | (void) fprintf(dd->err, "Wrong subset\n"); |
---|
763 | } |
---|
764 | cuddDeref(subset); |
---|
765 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
766 | } |
---|
767 | #endif |
---|
768 | return(subset); |
---|
769 | |
---|
770 | } /* end of cuddBiasedUnderApprox */ |
---|
771 | |
---|
772 | |
---|
773 | /*---------------------------------------------------------------------------*/ |
---|
774 | /* Definition of static functions */ |
---|
775 | /*---------------------------------------------------------------------------*/ |
---|
776 | |
---|
777 | |
---|
778 | /**Function******************************************************************** |
---|
779 | |
---|
780 | Synopsis [Recursively update the parity of the paths reaching a node.] |
---|
781 | |
---|
782 | Description [Recursively update the parity of the paths reaching a node. |
---|
783 | Assumes that node is regular and propagates the invariant.] |
---|
784 | |
---|
785 | SideEffects [None] |
---|
786 | |
---|
787 | SeeAlso [gatherInfoAux] |
---|
788 | |
---|
789 | ******************************************************************************/ |
---|
790 | static void |
---|
791 | updateParity( |
---|
792 | DdNode * node /* function to analyze */, |
---|
793 | ApproxInfo * info /* info on BDD */, |
---|
794 | int newparity /* new parity for node */) |
---|
795 | { |
---|
796 | NodeData *infoN; |
---|
797 | DdNode *E; |
---|
798 | |
---|
799 | if (!st_lookup(info->table, node, &infoN)) return; |
---|
800 | if ((infoN->parity & newparity) != 0) return; |
---|
801 | infoN->parity |= (short) newparity; |
---|
802 | if (Cudd_IsConstant(node)) return; |
---|
803 | updateParity(cuddT(node),info,newparity); |
---|
804 | E = cuddE(node); |
---|
805 | if (Cudd_IsComplement(E)) { |
---|
806 | updateParity(Cudd_Not(E),info,3-newparity); |
---|
807 | } else { |
---|
808 | updateParity(E,info,newparity); |
---|
809 | } |
---|
810 | return; |
---|
811 | |
---|
812 | } /* end of updateParity */ |
---|
813 | |
---|
814 | |
---|
815 | /**Function******************************************************************** |
---|
816 | |
---|
817 | Synopsis [Recursively counts minterms and computes reference counts |
---|
818 | of each node in the BDD.] |
---|
819 | |
---|
820 | Description [Recursively counts minterms and computes reference |
---|
821 | counts of each node in the BDD. Similar to the cuddCountMintermAux |
---|
822 | which recursively counts the number of minterms for the dag rooted |
---|
823 | at each node in terms of the total number of variables (max). It assumes |
---|
824 | that the node pointer passed to it is regular and it maintains the |
---|
825 | invariant.] |
---|
826 | |
---|
827 | SideEffects [None] |
---|
828 | |
---|
829 | SeeAlso [gatherInfo] |
---|
830 | |
---|
831 | ******************************************************************************/ |
---|
832 | static NodeData * |
---|
833 | gatherInfoAux( |
---|
834 | DdNode * node /* function to analyze */, |
---|
835 | ApproxInfo * info /* info on BDD */, |
---|
836 | int parity /* gather parity information */) |
---|
837 | { |
---|
838 | DdNode *N, *Nt, *Ne; |
---|
839 | NodeData *infoN, *infoT, *infoE; |
---|
840 | |
---|
841 | N = Cudd_Regular(node); |
---|
842 | |
---|
843 | /* Check whether entry for this node exists. */ |
---|
844 | if (st_lookup(info->table, N, &infoN)) { |
---|
845 | if (parity) { |
---|
846 | /* Update parity and propagate. */ |
---|
847 | updateParity(N, info, 1 + (int) Cudd_IsComplement(node)); |
---|
848 | } |
---|
849 | return(infoN); |
---|
850 | } |
---|
851 | |
---|
852 | /* Compute the cofactors. */ |
---|
853 | Nt = Cudd_NotCond(cuddT(N), N != node); |
---|
854 | Ne = Cudd_NotCond(cuddE(N), N != node); |
---|
855 | |
---|
856 | infoT = gatherInfoAux(Nt, info, parity); |
---|
857 | if (infoT == NULL) return(NULL); |
---|
858 | infoE = gatherInfoAux(Ne, info, parity); |
---|
859 | if (infoE == NULL) return(NULL); |
---|
860 | |
---|
861 | infoT->functionRef++; |
---|
862 | infoE->functionRef++; |
---|
863 | |
---|
864 | /* Point to the correct location in the page. */ |
---|
865 | infoN = &(info->page[info->index++]); |
---|
866 | infoN->parity |= (short) (1 + Cudd_IsComplement(node)); |
---|
867 | |
---|
868 | infoN->mintermsP = infoT->mintermsP/2; |
---|
869 | infoN->mintermsN = infoT->mintermsN/2; |
---|
870 | if (Cudd_IsComplement(Ne) ^ Cudd_IsComplement(node)) { |
---|
871 | infoN->mintermsP += infoE->mintermsN/2; |
---|
872 | infoN->mintermsN += infoE->mintermsP/2; |
---|
873 | } else { |
---|
874 | infoN->mintermsP += infoE->mintermsP/2; |
---|
875 | infoN->mintermsN += infoE->mintermsN/2; |
---|
876 | } |
---|
877 | |
---|
878 | /* Insert entry for the node in the table. */ |
---|
879 | if (st_insert(info->table,(char *)N, (char *)infoN) == ST_OUT_OF_MEM) { |
---|
880 | return(NULL); |
---|
881 | } |
---|
882 | return(infoN); |
---|
883 | |
---|
884 | } /* end of gatherInfoAux */ |
---|
885 | |
---|
886 | |
---|
887 | /**Function******************************************************************** |
---|
888 | |
---|
889 | Synopsis [Gathers information about each node.] |
---|
890 | |
---|
891 | Description [Counts minterms and computes reference counts of each |
---|
892 | node in the BDD . The minterm count is separately computed for the |
---|
893 | node and its complement. This is to avoid cancellation |
---|
894 | errors. Returns a pointer to the data structure holding the |
---|
895 | information gathered if successful; NULL otherwise.] |
---|
896 | |
---|
897 | SideEffects [None] |
---|
898 | |
---|
899 | SeeAlso [cuddUnderApprox gatherInfoAux] |
---|
900 | |
---|
901 | ******************************************************************************/ |
---|
902 | static ApproxInfo * |
---|
903 | gatherInfo( |
---|
904 | DdManager * dd /* manager */, |
---|
905 | DdNode * node /* function to be analyzed */, |
---|
906 | int numVars /* number of variables node depends on */, |
---|
907 | int parity /* gather parity information */) |
---|
908 | { |
---|
909 | ApproxInfo *info; |
---|
910 | NodeData *infoTop; |
---|
911 | |
---|
912 | /* If user did not give numVars value, set it to the maximum |
---|
913 | ** exponent that the pow function can take. The -1 is due to the |
---|
914 | ** discrepancy in the value that pow takes and the value that |
---|
915 | ** log gives. |
---|
916 | */ |
---|
917 | if (numVars == 0) { |
---|
918 | numVars = DBL_MAX_EXP - 1; |
---|
919 | } |
---|
920 | |
---|
921 | info = ALLOC(ApproxInfo,1); |
---|
922 | if (info == NULL) { |
---|
923 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
924 | return(NULL); |
---|
925 | } |
---|
926 | info->max = pow(2.0,(double) numVars); |
---|
927 | info->one = DD_ONE(dd); |
---|
928 | info->zero = Cudd_Not(info->one); |
---|
929 | info->size = Cudd_DagSize(node); |
---|
930 | /* All the information gathered will be stored in a contiguous |
---|
931 | ** piece of memory, which is allocated here. This can be done |
---|
932 | ** efficiently because we have counted the number of nodes of the |
---|
933 | ** BDD. info->index points to the next available entry in the array |
---|
934 | ** that stores the per-node information. */ |
---|
935 | info->page = ALLOC(NodeData,info->size); |
---|
936 | if (info->page == NULL) { |
---|
937 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
938 | FREE(info); |
---|
939 | return(NULL); |
---|
940 | } |
---|
941 | memset(info->page, 0, info->size * sizeof(NodeData)); /* clear all page */ |
---|
942 | info->table = st_init_table(st_ptrcmp,st_ptrhash); |
---|
943 | if (info->table == NULL) { |
---|
944 | FREE(info->page); |
---|
945 | FREE(info); |
---|
946 | return(NULL); |
---|
947 | } |
---|
948 | /* We visit the DAG in post-order DFS. Hence, the constant node is |
---|
949 | ** in first position, and the root of the DAG is in last position. */ |
---|
950 | |
---|
951 | /* Info for the constant node: Initialize only fields different from 0. */ |
---|
952 | if (st_insert(info->table, (char *)info->one, (char *)info->page) == ST_OUT_OF_MEM) { |
---|
953 | FREE(info->page); |
---|
954 | FREE(info); |
---|
955 | st_free_table(info->table); |
---|
956 | return(NULL); |
---|
957 | } |
---|
958 | info->page[0].mintermsP = info->max; |
---|
959 | info->index = 1; |
---|
960 | |
---|
961 | infoTop = gatherInfoAux(node,info,parity); |
---|
962 | if (infoTop == NULL) { |
---|
963 | FREE(info->page); |
---|
964 | st_free_table(info->table); |
---|
965 | FREE(info); |
---|
966 | return(NULL); |
---|
967 | } |
---|
968 | if (Cudd_IsComplement(node)) { |
---|
969 | info->minterms = infoTop->mintermsN; |
---|
970 | } else { |
---|
971 | info->minterms = infoTop->mintermsP; |
---|
972 | } |
---|
973 | |
---|
974 | infoTop->functionRef = 1; |
---|
975 | return(info); |
---|
976 | |
---|
977 | } /* end of gatherInfo */ |
---|
978 | |
---|
979 | |
---|
980 | /**Function******************************************************************** |
---|
981 | |
---|
982 | Synopsis [Counts the nodes that would be eliminated if a given node |
---|
983 | were replaced by zero.] |
---|
984 | |
---|
985 | Description [Counts the nodes that would be eliminated if a given |
---|
986 | node were replaced by zero. This procedure uses a queue passed by |
---|
987 | the caller for efficiency: since the queue is left empty at the |
---|
988 | endof the search, it can be reused as is by the next search. Returns |
---|
989 | the count (always striclty positive) if successful; 0 otherwise.] |
---|
990 | |
---|
991 | SideEffects [None] |
---|
992 | |
---|
993 | SeeAlso [cuddUnderApprox] |
---|
994 | |
---|
995 | ******************************************************************************/ |
---|
996 | static int |
---|
997 | computeSavings( |
---|
998 | DdManager * dd, |
---|
999 | DdNode * f, |
---|
1000 | DdNode * skip, |
---|
1001 | ApproxInfo * info, |
---|
1002 | DdLevelQueue * queue) |
---|
1003 | { |
---|
1004 | NodeData *infoN; |
---|
1005 | LocalQueueItem *item; |
---|
1006 | DdNode *node; |
---|
1007 | int savings = 0; |
---|
1008 | |
---|
1009 | node = Cudd_Regular(f); |
---|
1010 | skip = Cudd_Regular(skip); |
---|
1011 | /* Insert the given node in the level queue. Its local reference |
---|
1012 | ** count is set equal to the function reference count so that the |
---|
1013 | ** search will continue from it when it is retrieved. */ |
---|
1014 | item = (LocalQueueItem *) |
---|
1015 | cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); |
---|
1016 | if (item == NULL) |
---|
1017 | return(0); |
---|
1018 | (void) st_lookup(info->table, node, &infoN); |
---|
1019 | item->localRef = infoN->functionRef; |
---|
1020 | |
---|
1021 | /* Process the queue. */ |
---|
1022 | while (queue->first != NULL) { |
---|
1023 | item = (LocalQueueItem *) queue->first; |
---|
1024 | node = item->node; |
---|
1025 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
1026 | if (node == skip) continue; |
---|
1027 | (void) st_lookup(info->table, node, &infoN); |
---|
1028 | if (item->localRef != infoN->functionRef) { |
---|
1029 | /* This node is shared. */ |
---|
1030 | continue; |
---|
1031 | } |
---|
1032 | savings++; |
---|
1033 | if (!cuddIsConstant(cuddT(node))) { |
---|
1034 | item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), |
---|
1035 | cuddI(dd,cuddT(node)->index)); |
---|
1036 | if (item == NULL) return(0); |
---|
1037 | item->localRef++; |
---|
1038 | } |
---|
1039 | if (!Cudd_IsConstant(cuddE(node))) { |
---|
1040 | item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), |
---|
1041 | cuddI(dd,Cudd_Regular(cuddE(node))->index)); |
---|
1042 | if (item == NULL) return(0); |
---|
1043 | item->localRef++; |
---|
1044 | } |
---|
1045 | } |
---|
1046 | |
---|
1047 | #ifdef DD_DEBUG |
---|
1048 | /* At the end of a local search the queue should be empty. */ |
---|
1049 | assert(queue->size == 0); |
---|
1050 | #endif |
---|
1051 | return(savings); |
---|
1052 | |
---|
1053 | } /* end of computeSavings */ |
---|
1054 | |
---|
1055 | |
---|
1056 | /**Function******************************************************************** |
---|
1057 | |
---|
1058 | Synopsis [Update function reference counts.] |
---|
1059 | |
---|
1060 | Description [Update function reference counts to account for replacement. |
---|
1061 | Returns the number of nodes saved if successful; 0 otherwise.] |
---|
1062 | |
---|
1063 | SideEffects [None] |
---|
1064 | |
---|
1065 | SeeAlso [UAmarkNodes RAmarkNodes] |
---|
1066 | |
---|
1067 | ******************************************************************************/ |
---|
1068 | static int |
---|
1069 | updateRefs( |
---|
1070 | DdManager * dd, |
---|
1071 | DdNode * f, |
---|
1072 | DdNode * skip, |
---|
1073 | ApproxInfo * info, |
---|
1074 | DdLevelQueue * queue) |
---|
1075 | { |
---|
1076 | NodeData *infoN; |
---|
1077 | LocalQueueItem *item; |
---|
1078 | DdNode *node; |
---|
1079 | int savings = 0; |
---|
1080 | |
---|
1081 | node = Cudd_Regular(f); |
---|
1082 | /* Insert the given node in the level queue. Its function reference |
---|
1083 | ** count is set equal to 0 so that the search will continue from it |
---|
1084 | ** when it is retrieved. */ |
---|
1085 | item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); |
---|
1086 | if (item == NULL) |
---|
1087 | return(0); |
---|
1088 | (void) st_lookup(info->table, node, &infoN); |
---|
1089 | infoN->functionRef = 0; |
---|
1090 | |
---|
1091 | if (skip != NULL) { |
---|
1092 | /* Increase the function reference count of the node to be skipped |
---|
1093 | ** by 1 to account for the node pointing to it that will be created. */ |
---|
1094 | skip = Cudd_Regular(skip); |
---|
1095 | (void) st_lookup(info->table, skip, &infoN); |
---|
1096 | infoN->functionRef++; |
---|
1097 | } |
---|
1098 | |
---|
1099 | /* Process the queue. */ |
---|
1100 | while (queue->first != NULL) { |
---|
1101 | item = (LocalQueueItem *) queue->first; |
---|
1102 | node = item->node; |
---|
1103 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
1104 | (void) st_lookup(info->table, node, &infoN); |
---|
1105 | if (infoN->functionRef != 0) { |
---|
1106 | /* This node is shared or must be skipped. */ |
---|
1107 | continue; |
---|
1108 | } |
---|
1109 | savings++; |
---|
1110 | if (!cuddIsConstant(cuddT(node))) { |
---|
1111 | item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), |
---|
1112 | cuddI(dd,cuddT(node)->index)); |
---|
1113 | if (item == NULL) return(0); |
---|
1114 | (void) st_lookup(info->table, cuddT(node), &infoN); |
---|
1115 | infoN->functionRef--; |
---|
1116 | } |
---|
1117 | if (!Cudd_IsConstant(cuddE(node))) { |
---|
1118 | item = (LocalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), |
---|
1119 | cuddI(dd,Cudd_Regular(cuddE(node))->index)); |
---|
1120 | if (item == NULL) return(0); |
---|
1121 | (void) st_lookup(info->table, Cudd_Regular(cuddE(node)), &infoN); |
---|
1122 | infoN->functionRef--; |
---|
1123 | } |
---|
1124 | } |
---|
1125 | |
---|
1126 | #ifdef DD_DEBUG |
---|
1127 | /* At the end of a local search the queue should be empty. */ |
---|
1128 | assert(queue->size == 0); |
---|
1129 | #endif |
---|
1130 | return(savings); |
---|
1131 | |
---|
1132 | } /* end of updateRefs */ |
---|
1133 | |
---|
1134 | |
---|
1135 | /**Function******************************************************************** |
---|
1136 | |
---|
1137 | Synopsis [Marks nodes for replacement by zero.] |
---|
1138 | |
---|
1139 | Description [Marks nodes for replacement by zero. Returns 1 if successful; |
---|
1140 | 0 otherwise.] |
---|
1141 | |
---|
1142 | SideEffects [None] |
---|
1143 | |
---|
1144 | SeeAlso [cuddUnderApprox] |
---|
1145 | |
---|
1146 | ******************************************************************************/ |
---|
1147 | static int |
---|
1148 | UAmarkNodes( |
---|
1149 | DdManager * dd /* manager */, |
---|
1150 | DdNode * f /* function to be analyzed */, |
---|
1151 | ApproxInfo * info /* info on BDD */, |
---|
1152 | int threshold /* when to stop approximating */, |
---|
1153 | int safe /* enforce safe approximation */, |
---|
1154 | double quality /* minimum improvement for accepted changes */) |
---|
1155 | { |
---|
1156 | DdLevelQueue *queue; |
---|
1157 | DdLevelQueue *localQueue; |
---|
1158 | NodeData *infoN; |
---|
1159 | GlobalQueueItem *item; |
---|
1160 | DdNode *node; |
---|
1161 | double numOnset; |
---|
1162 | double impactP, impactN; |
---|
1163 | int savings; |
---|
1164 | |
---|
1165 | #if 0 |
---|
1166 | (void) printf("initial size = %d initial minterms = %g\n", |
---|
1167 | info->size, info->minterms); |
---|
1168 | #endif |
---|
1169 | queue = cuddLevelQueueInit(dd->size,sizeof(GlobalQueueItem),info->size); |
---|
1170 | if (queue == NULL) { |
---|
1171 | return(0); |
---|
1172 | } |
---|
1173 | localQueue = cuddLevelQueueInit(dd->size,sizeof(LocalQueueItem), |
---|
1174 | dd->initSlots); |
---|
1175 | if (localQueue == NULL) { |
---|
1176 | cuddLevelQueueQuit(queue); |
---|
1177 | return(0); |
---|
1178 | } |
---|
1179 | node = Cudd_Regular(f); |
---|
1180 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); |
---|
1181 | if (item == NULL) { |
---|
1182 | cuddLevelQueueQuit(queue); |
---|
1183 | cuddLevelQueueQuit(localQueue); |
---|
1184 | return(0); |
---|
1185 | } |
---|
1186 | if (Cudd_IsComplement(f)) { |
---|
1187 | item->impactP = 0.0; |
---|
1188 | item->impactN = 1.0; |
---|
1189 | } else { |
---|
1190 | item->impactP = 1.0; |
---|
1191 | item->impactN = 0.0; |
---|
1192 | } |
---|
1193 | while (queue->first != NULL) { |
---|
1194 | /* If the size of the subset is below the threshold, quit. */ |
---|
1195 | if (info->size <= threshold) |
---|
1196 | break; |
---|
1197 | item = (GlobalQueueItem *) queue->first; |
---|
1198 | node = item->node; |
---|
1199 | node = Cudd_Regular(node); |
---|
1200 | (void) st_lookup(info->table, node, &infoN); |
---|
1201 | if (safe && infoN->parity == 3) { |
---|
1202 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
1203 | continue; |
---|
1204 | } |
---|
1205 | impactP = item->impactP; |
---|
1206 | impactN = item->impactN; |
---|
1207 | numOnset = infoN->mintermsP * impactP + infoN->mintermsN * impactN; |
---|
1208 | savings = computeSavings(dd,node,NULL,info,localQueue); |
---|
1209 | if (savings == 0) { |
---|
1210 | cuddLevelQueueQuit(queue); |
---|
1211 | cuddLevelQueueQuit(localQueue); |
---|
1212 | return(0); |
---|
1213 | } |
---|
1214 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
1215 | #if 0 |
---|
1216 | (void) printf("node %p: impact = %g/%g numOnset = %g savings %d\n", |
---|
1217 | node, impactP, impactN, numOnset, savings); |
---|
1218 | #endif |
---|
1219 | if ((1 - numOnset / info->minterms) > |
---|
1220 | quality * (1 - (double) savings / info->size)) { |
---|
1221 | infoN->replace = TRUE; |
---|
1222 | info->size -= savings; |
---|
1223 | info->minterms -=numOnset; |
---|
1224 | #if 0 |
---|
1225 | (void) printf("replace: new size = %d new minterms = %g\n", |
---|
1226 | info->size, info->minterms); |
---|
1227 | #endif |
---|
1228 | savings -= updateRefs(dd,node,NULL,info,localQueue); |
---|
1229 | assert(savings == 0); |
---|
1230 | continue; |
---|
1231 | } |
---|
1232 | if (!cuddIsConstant(cuddT(node))) { |
---|
1233 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), |
---|
1234 | cuddI(dd,cuddT(node)->index)); |
---|
1235 | item->impactP += impactP/2.0; |
---|
1236 | item->impactN += impactN/2.0; |
---|
1237 | } |
---|
1238 | if (!Cudd_IsConstant(cuddE(node))) { |
---|
1239 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), |
---|
1240 | cuddI(dd,Cudd_Regular(cuddE(node))->index)); |
---|
1241 | if (Cudd_IsComplement(cuddE(node))) { |
---|
1242 | item->impactP += impactN/2.0; |
---|
1243 | item->impactN += impactP/2.0; |
---|
1244 | } else { |
---|
1245 | item->impactP += impactP/2.0; |
---|
1246 | item->impactN += impactN/2.0; |
---|
1247 | } |
---|
1248 | } |
---|
1249 | } |
---|
1250 | |
---|
1251 | cuddLevelQueueQuit(queue); |
---|
1252 | cuddLevelQueueQuit(localQueue); |
---|
1253 | return(1); |
---|
1254 | |
---|
1255 | } /* end of UAmarkNodes */ |
---|
1256 | |
---|
1257 | |
---|
1258 | /**Function******************************************************************** |
---|
1259 | |
---|
1260 | Synopsis [Builds the subset BDD.] |
---|
1261 | |
---|
1262 | Description [Builds the subset BDD. Based on the info table, |
---|
1263 | replaces selected nodes by zero. Returns a pointer to the result if |
---|
1264 | successful; NULL otherwise.] |
---|
1265 | |
---|
1266 | SideEffects [None] |
---|
1267 | |
---|
1268 | SeeAlso [cuddUnderApprox] |
---|
1269 | |
---|
1270 | ******************************************************************************/ |
---|
1271 | static DdNode * |
---|
1272 | UAbuildSubset( |
---|
1273 | DdManager * dd /* DD manager */, |
---|
1274 | DdNode * node /* current node */, |
---|
1275 | ApproxInfo * info /* node info */) |
---|
1276 | { |
---|
1277 | |
---|
1278 | DdNode *Nt, *Ne, *N, *t, *e, *r; |
---|
1279 | NodeData *infoN; |
---|
1280 | |
---|
1281 | if (Cudd_IsConstant(node)) |
---|
1282 | return(node); |
---|
1283 | |
---|
1284 | N = Cudd_Regular(node); |
---|
1285 | |
---|
1286 | if (st_lookup(info->table, N, &infoN)) { |
---|
1287 | if (infoN->replace == TRUE) { |
---|
1288 | return(info->zero); |
---|
1289 | } |
---|
1290 | if (N == node ) { |
---|
1291 | if (infoN->resultP != NULL) { |
---|
1292 | return(infoN->resultP); |
---|
1293 | } |
---|
1294 | } else { |
---|
1295 | if (infoN->resultN != NULL) { |
---|
1296 | return(infoN->resultN); |
---|
1297 | } |
---|
1298 | } |
---|
1299 | } else { |
---|
1300 | (void) fprintf(dd->err, |
---|
1301 | "Something is wrong, ought to be in info table\n"); |
---|
1302 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
1303 | return(NULL); |
---|
1304 | } |
---|
1305 | |
---|
1306 | Nt = Cudd_NotCond(cuddT(N), Cudd_IsComplement(node)); |
---|
1307 | Ne = Cudd_NotCond(cuddE(N), Cudd_IsComplement(node)); |
---|
1308 | |
---|
1309 | t = UAbuildSubset(dd, Nt, info); |
---|
1310 | if (t == NULL) { |
---|
1311 | return(NULL); |
---|
1312 | } |
---|
1313 | cuddRef(t); |
---|
1314 | |
---|
1315 | e = UAbuildSubset(dd, Ne, info); |
---|
1316 | if (e == NULL) { |
---|
1317 | Cudd_RecursiveDeref(dd,t); |
---|
1318 | return(NULL); |
---|
1319 | } |
---|
1320 | cuddRef(e); |
---|
1321 | |
---|
1322 | if (Cudd_IsComplement(t)) { |
---|
1323 | t = Cudd_Not(t); |
---|
1324 | e = Cudd_Not(e); |
---|
1325 | r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); |
---|
1326 | if (r == NULL) { |
---|
1327 | Cudd_RecursiveDeref(dd, e); |
---|
1328 | Cudd_RecursiveDeref(dd, t); |
---|
1329 | return(NULL); |
---|
1330 | } |
---|
1331 | r = Cudd_Not(r); |
---|
1332 | } else { |
---|
1333 | r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); |
---|
1334 | if (r == NULL) { |
---|
1335 | Cudd_RecursiveDeref(dd, e); |
---|
1336 | Cudd_RecursiveDeref(dd, t); |
---|
1337 | return(NULL); |
---|
1338 | } |
---|
1339 | } |
---|
1340 | cuddDeref(t); |
---|
1341 | cuddDeref(e); |
---|
1342 | |
---|
1343 | if (N == node) { |
---|
1344 | infoN->resultP = r; |
---|
1345 | } else { |
---|
1346 | infoN->resultN = r; |
---|
1347 | } |
---|
1348 | |
---|
1349 | return(r); |
---|
1350 | |
---|
1351 | } /* end of UAbuildSubset */ |
---|
1352 | |
---|
1353 | |
---|
1354 | /**Function******************************************************************** |
---|
1355 | |
---|
1356 | Synopsis [Marks nodes for remapping.] |
---|
1357 | |
---|
1358 | Description [Marks nodes for remapping. Returns 1 if successful; 0 |
---|
1359 | otherwise.] |
---|
1360 | |
---|
1361 | SideEffects [None] |
---|
1362 | |
---|
1363 | SeeAlso [cuddRemapUnderApprox] |
---|
1364 | |
---|
1365 | ******************************************************************************/ |
---|
1366 | static int |
---|
1367 | RAmarkNodes( |
---|
1368 | DdManager * dd /* manager */, |
---|
1369 | DdNode * f /* function to be analyzed */, |
---|
1370 | ApproxInfo * info /* info on BDD */, |
---|
1371 | int threshold /* when to stop approximating */, |
---|
1372 | double quality /* minimum improvement for accepted changes */) |
---|
1373 | { |
---|
1374 | DdLevelQueue *queue; |
---|
1375 | DdLevelQueue *localQueue; |
---|
1376 | NodeData *infoN, *infoT, *infoE; |
---|
1377 | GlobalQueueItem *item; |
---|
1378 | DdNode *node, *T, *E; |
---|
1379 | DdNode *shared; /* grandchild shared by the two children of node */ |
---|
1380 | double numOnset; |
---|
1381 | double impact, impactP, impactN; |
---|
1382 | double minterms; |
---|
1383 | int savings; |
---|
1384 | int replace; |
---|
1385 | |
---|
1386 | #if 0 |
---|
1387 | (void) fprintf(dd->out,"initial size = %d initial minterms = %g\n", |
---|
1388 | info->size, info->minterms); |
---|
1389 | #endif |
---|
1390 | queue = cuddLevelQueueInit(dd->size,sizeof(GlobalQueueItem),info->size); |
---|
1391 | if (queue == NULL) { |
---|
1392 | return(0); |
---|
1393 | } |
---|
1394 | localQueue = cuddLevelQueueInit(dd->size,sizeof(LocalQueueItem), |
---|
1395 | dd->initSlots); |
---|
1396 | if (localQueue == NULL) { |
---|
1397 | cuddLevelQueueQuit(queue); |
---|
1398 | return(0); |
---|
1399 | } |
---|
1400 | /* Enqueue regular pointer to root and initialize impact. */ |
---|
1401 | node = Cudd_Regular(f); |
---|
1402 | item = (GlobalQueueItem *) |
---|
1403 | cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); |
---|
1404 | if (item == NULL) { |
---|
1405 | cuddLevelQueueQuit(queue); |
---|
1406 | cuddLevelQueueQuit(localQueue); |
---|
1407 | return(0); |
---|
1408 | } |
---|
1409 | if (Cudd_IsComplement(f)) { |
---|
1410 | item->impactP = 0.0; |
---|
1411 | item->impactN = 1.0; |
---|
1412 | } else { |
---|
1413 | item->impactP = 1.0; |
---|
1414 | item->impactN = 0.0; |
---|
1415 | } |
---|
1416 | /* The nodes retrieved here are guaranteed to be non-terminal. |
---|
1417 | ** The initial node is not terminal because constant nodes are |
---|
1418 | ** dealt with in the calling procedure. Subsequent nodes are inserted |
---|
1419 | ** only if they are not terminal. */ |
---|
1420 | while (queue->first != NULL) { |
---|
1421 | /* If the size of the subset is below the threshold, quit. */ |
---|
1422 | if (info->size <= threshold) |
---|
1423 | break; |
---|
1424 | item = (GlobalQueueItem *) queue->first; |
---|
1425 | node = item->node; |
---|
1426 | #ifdef DD_DEBUG |
---|
1427 | assert(item->impactP >= 0 && item->impactP <= 1.0); |
---|
1428 | assert(item->impactN >= 0 && item->impactN <= 1.0); |
---|
1429 | assert(!Cudd_IsComplement(node)); |
---|
1430 | assert(!Cudd_IsConstant(node)); |
---|
1431 | #endif |
---|
1432 | if (!st_lookup(info->table, node, &infoN)) { |
---|
1433 | cuddLevelQueueQuit(queue); |
---|
1434 | cuddLevelQueueQuit(localQueue); |
---|
1435 | return(0); |
---|
1436 | } |
---|
1437 | #ifdef DD_DEBUG |
---|
1438 | assert(infoN->parity >= 1 && infoN->parity <= 3); |
---|
1439 | #endif |
---|
1440 | if (infoN->parity == 3) { |
---|
1441 | /* This node can be reached through paths of different parity. |
---|
1442 | ** It is not safe to replace it, because remapping will give |
---|
1443 | ** an incorrect result, while replacement by 0 may cause node |
---|
1444 | ** splitting. */ |
---|
1445 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
1446 | continue; |
---|
1447 | } |
---|
1448 | T = cuddT(node); |
---|
1449 | E = cuddE(node); |
---|
1450 | shared = NULL; |
---|
1451 | impactP = item->impactP; |
---|
1452 | impactN = item->impactN; |
---|
1453 | if (Cudd_bddLeq(dd,T,E)) { |
---|
1454 | /* Here we know that E is regular. */ |
---|
1455 | #ifdef DD_DEBUG |
---|
1456 | assert(!Cudd_IsComplement(E)); |
---|
1457 | #endif |
---|
1458 | (void) st_lookup(info->table, T, &infoT); |
---|
1459 | (void) st_lookup(info->table, E, &infoE); |
---|
1460 | if (infoN->parity == 1) { |
---|
1461 | impact = impactP; |
---|
1462 | minterms = infoE->mintermsP/2.0 - infoT->mintermsP/2.0; |
---|
1463 | if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { |
---|
1464 | savings = 1 + computeSavings(dd,E,NULL,info,localQueue); |
---|
1465 | if (savings == 1) { |
---|
1466 | cuddLevelQueueQuit(queue); |
---|
1467 | cuddLevelQueueQuit(localQueue); |
---|
1468 | return(0); |
---|
1469 | } |
---|
1470 | } else { |
---|
1471 | savings = 1; |
---|
1472 | } |
---|
1473 | replace = REPLACE_E; |
---|
1474 | } else { |
---|
1475 | #ifdef DD_DEBUG |
---|
1476 | assert(infoN->parity == 2); |
---|
1477 | #endif |
---|
1478 | impact = impactN; |
---|
1479 | minterms = infoT->mintermsN/2.0 - infoE->mintermsN/2.0; |
---|
1480 | if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { |
---|
1481 | savings = 1 + computeSavings(dd,T,NULL,info,localQueue); |
---|
1482 | if (savings == 1) { |
---|
1483 | cuddLevelQueueQuit(queue); |
---|
1484 | cuddLevelQueueQuit(localQueue); |
---|
1485 | return(0); |
---|
1486 | } |
---|
1487 | } else { |
---|
1488 | savings = 1; |
---|
1489 | } |
---|
1490 | replace = REPLACE_T; |
---|
1491 | } |
---|
1492 | numOnset = impact * minterms; |
---|
1493 | } else if (Cudd_bddLeq(dd,E,T)) { |
---|
1494 | /* Here E may be complemented. */ |
---|
1495 | DdNode *Ereg = Cudd_Regular(E); |
---|
1496 | (void) st_lookup(info->table, T, &infoT); |
---|
1497 | (void) st_lookup(info->table, Ereg, &infoE); |
---|
1498 | if (infoN->parity == 1) { |
---|
1499 | impact = impactP; |
---|
1500 | minterms = infoT->mintermsP/2.0 - |
---|
1501 | ((E == Ereg) ? infoE->mintermsP : infoE->mintermsN)/2.0; |
---|
1502 | if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { |
---|
1503 | savings = 1 + computeSavings(dd,T,NULL,info,localQueue); |
---|
1504 | if (savings == 1) { |
---|
1505 | cuddLevelQueueQuit(queue); |
---|
1506 | cuddLevelQueueQuit(localQueue); |
---|
1507 | return(0); |
---|
1508 | } |
---|
1509 | } else { |
---|
1510 | savings = 1; |
---|
1511 | } |
---|
1512 | replace = REPLACE_T; |
---|
1513 | } else { |
---|
1514 | #ifdef DD_DEBUG |
---|
1515 | assert(infoN->parity == 2); |
---|
1516 | #endif |
---|
1517 | impact = impactN; |
---|
1518 | minterms = ((E == Ereg) ? infoE->mintermsN : |
---|
1519 | infoE->mintermsP)/2.0 - infoT->mintermsN/2.0; |
---|
1520 | if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { |
---|
1521 | savings = 1 + computeSavings(dd,E,NULL,info,localQueue); |
---|
1522 | if (savings == 1) { |
---|
1523 | cuddLevelQueueQuit(queue); |
---|
1524 | cuddLevelQueueQuit(localQueue); |
---|
1525 | return(0); |
---|
1526 | } |
---|
1527 | } else { |
---|
1528 | savings = 1; |
---|
1529 | } |
---|
1530 | replace = REPLACE_E; |
---|
1531 | } |
---|
1532 | numOnset = impact * minterms; |
---|
1533 | } else { |
---|
1534 | DdNode *Ereg = Cudd_Regular(E); |
---|
1535 | DdNode *TT = cuddT(T); |
---|
1536 | DdNode *ET = Cudd_NotCond(cuddT(Ereg), Cudd_IsComplement(E)); |
---|
1537 | if (T->index == Ereg->index && TT == ET) { |
---|
1538 | shared = TT; |
---|
1539 | replace = REPLACE_TT; |
---|
1540 | } else { |
---|
1541 | DdNode *TE = cuddE(T); |
---|
1542 | DdNode *EE = Cudd_NotCond(cuddE(Ereg), Cudd_IsComplement(E)); |
---|
1543 | if (T->index == Ereg->index && TE == EE) { |
---|
1544 | shared = TE; |
---|
1545 | replace = REPLACE_TE; |
---|
1546 | } else { |
---|
1547 | replace = REPLACE_N; |
---|
1548 | } |
---|
1549 | } |
---|
1550 | numOnset = infoN->mintermsP * impactP + infoN->mintermsN * impactN; |
---|
1551 | savings = computeSavings(dd,node,shared,info,localQueue); |
---|
1552 | if (shared != NULL) { |
---|
1553 | NodeData *infoS; |
---|
1554 | (void) st_lookup(info->table, Cudd_Regular(shared), &infoS); |
---|
1555 | if (Cudd_IsComplement(shared)) { |
---|
1556 | numOnset -= (infoS->mintermsN * impactP + |
---|
1557 | infoS->mintermsP * impactN)/2.0; |
---|
1558 | } else { |
---|
1559 | numOnset -= (infoS->mintermsP * impactP + |
---|
1560 | infoS->mintermsN * impactN)/2.0; |
---|
1561 | } |
---|
1562 | savings--; |
---|
1563 | } |
---|
1564 | } |
---|
1565 | |
---|
1566 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
1567 | #if 0 |
---|
1568 | if (replace == REPLACE_T || replace == REPLACE_E) |
---|
1569 | (void) printf("node %p: impact = %g numOnset = %g savings %d\n", |
---|
1570 | node, impact, numOnset, savings); |
---|
1571 | else |
---|
1572 | (void) printf("node %p: impact = %g/%g numOnset = %g savings %d\n", |
---|
1573 | node, impactP, impactN, numOnset, savings); |
---|
1574 | #endif |
---|
1575 | if ((1 - numOnset / info->minterms) > |
---|
1576 | quality * (1 - (double) savings / info->size)) { |
---|
1577 | infoN->replace = (char) replace; |
---|
1578 | info->size -= savings; |
---|
1579 | info->minterms -=numOnset; |
---|
1580 | #if 0 |
---|
1581 | (void) printf("remap(%d): new size = %d new minterms = %g\n", |
---|
1582 | replace, info->size, info->minterms); |
---|
1583 | #endif |
---|
1584 | if (replace == REPLACE_N) { |
---|
1585 | savings -= updateRefs(dd,node,NULL,info,localQueue); |
---|
1586 | } else if (replace == REPLACE_T) { |
---|
1587 | savings -= updateRefs(dd,node,E,info,localQueue); |
---|
1588 | } else if (replace == REPLACE_E) { |
---|
1589 | savings -= updateRefs(dd,node,T,info,localQueue); |
---|
1590 | } else { |
---|
1591 | #ifdef DD_DEBUG |
---|
1592 | assert(replace == REPLACE_TT || replace == REPLACE_TE); |
---|
1593 | #endif |
---|
1594 | savings -= updateRefs(dd,node,shared,info,localQueue) - 1; |
---|
1595 | } |
---|
1596 | assert(savings == 0); |
---|
1597 | } else { |
---|
1598 | replace = NOTHING; |
---|
1599 | } |
---|
1600 | if (replace == REPLACE_N) continue; |
---|
1601 | if ((replace == REPLACE_E || replace == NOTHING) && |
---|
1602 | !cuddIsConstant(cuddT(node))) { |
---|
1603 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), |
---|
1604 | cuddI(dd,cuddT(node)->index)); |
---|
1605 | if (replace == REPLACE_E) { |
---|
1606 | item->impactP += impactP; |
---|
1607 | item->impactN += impactN; |
---|
1608 | } else { |
---|
1609 | item->impactP += impactP/2.0; |
---|
1610 | item->impactN += impactN/2.0; |
---|
1611 | } |
---|
1612 | } |
---|
1613 | if ((replace == REPLACE_T || replace == NOTHING) && |
---|
1614 | !Cudd_IsConstant(cuddE(node))) { |
---|
1615 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), |
---|
1616 | cuddI(dd,Cudd_Regular(cuddE(node))->index)); |
---|
1617 | if (Cudd_IsComplement(cuddE(node))) { |
---|
1618 | if (replace == REPLACE_T) { |
---|
1619 | item->impactP += impactN; |
---|
1620 | item->impactN += impactP; |
---|
1621 | } else { |
---|
1622 | item->impactP += impactN/2.0; |
---|
1623 | item->impactN += impactP/2.0; |
---|
1624 | } |
---|
1625 | } else { |
---|
1626 | if (replace == REPLACE_T) { |
---|
1627 | item->impactP += impactP; |
---|
1628 | item->impactN += impactN; |
---|
1629 | } else { |
---|
1630 | item->impactP += impactP/2.0; |
---|
1631 | item->impactN += impactN/2.0; |
---|
1632 | } |
---|
1633 | } |
---|
1634 | } |
---|
1635 | if ((replace == REPLACE_TT || replace == REPLACE_TE) && |
---|
1636 | !Cudd_IsConstant(shared)) { |
---|
1637 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(shared), |
---|
1638 | cuddI(dd,Cudd_Regular(shared)->index)); |
---|
1639 | if (Cudd_IsComplement(shared)) { |
---|
1640 | item->impactP += impactN; |
---|
1641 | item->impactN += impactP; |
---|
1642 | } else { |
---|
1643 | item->impactP += impactP; |
---|
1644 | item->impactN += impactN; |
---|
1645 | } |
---|
1646 | } |
---|
1647 | } |
---|
1648 | |
---|
1649 | cuddLevelQueueQuit(queue); |
---|
1650 | cuddLevelQueueQuit(localQueue); |
---|
1651 | return(1); |
---|
1652 | |
---|
1653 | } /* end of RAmarkNodes */ |
---|
1654 | |
---|
1655 | |
---|
1656 | /**Function******************************************************************** |
---|
1657 | |
---|
1658 | Synopsis [Marks nodes for remapping.] |
---|
1659 | |
---|
1660 | Description [Marks nodes for remapping. Returns 1 if successful; 0 |
---|
1661 | otherwise.] |
---|
1662 | |
---|
1663 | SideEffects [None] |
---|
1664 | |
---|
1665 | SeeAlso [cuddRemapUnderApprox] |
---|
1666 | |
---|
1667 | ******************************************************************************/ |
---|
1668 | static int |
---|
1669 | BAmarkNodes( |
---|
1670 | DdManager *dd /* manager */, |
---|
1671 | DdNode *f /* function to be analyzed */, |
---|
1672 | ApproxInfo *info /* info on BDD */, |
---|
1673 | int threshold /* when to stop approximating */, |
---|
1674 | double quality1 /* minimum improvement for accepted changes when b=1 */, |
---|
1675 | double quality0 /* minimum improvement for accepted changes when b=0 */) |
---|
1676 | { |
---|
1677 | DdLevelQueue *queue; |
---|
1678 | DdLevelQueue *localQueue; |
---|
1679 | NodeData *infoN, *infoT, *infoE; |
---|
1680 | GlobalQueueItem *item; |
---|
1681 | DdNode *node, *T, *E; |
---|
1682 | DdNode *shared; /* grandchild shared by the two children of node */ |
---|
1683 | double numOnset; |
---|
1684 | double impact, impactP, impactN; |
---|
1685 | double minterms; |
---|
1686 | double quality; |
---|
1687 | int savings; |
---|
1688 | int replace; |
---|
1689 | |
---|
1690 | #if 0 |
---|
1691 | (void) fprintf(dd->out,"initial size = %d initial minterms = %g\n", |
---|
1692 | info->size, info->minterms); |
---|
1693 | #endif |
---|
1694 | queue = cuddLevelQueueInit(dd->size,sizeof(GlobalQueueItem),info->size); |
---|
1695 | if (queue == NULL) { |
---|
1696 | return(0); |
---|
1697 | } |
---|
1698 | localQueue = cuddLevelQueueInit(dd->size,sizeof(LocalQueueItem), |
---|
1699 | dd->initSlots); |
---|
1700 | if (localQueue == NULL) { |
---|
1701 | cuddLevelQueueQuit(queue); |
---|
1702 | return(0); |
---|
1703 | } |
---|
1704 | /* Enqueue regular pointer to root and initialize impact. */ |
---|
1705 | node = Cudd_Regular(f); |
---|
1706 | item = (GlobalQueueItem *) |
---|
1707 | cuddLevelQueueEnqueue(queue,node,cuddI(dd,node->index)); |
---|
1708 | if (item == NULL) { |
---|
1709 | cuddLevelQueueQuit(queue); |
---|
1710 | cuddLevelQueueQuit(localQueue); |
---|
1711 | return(0); |
---|
1712 | } |
---|
1713 | if (Cudd_IsComplement(f)) { |
---|
1714 | item->impactP = 0.0; |
---|
1715 | item->impactN = 1.0; |
---|
1716 | } else { |
---|
1717 | item->impactP = 1.0; |
---|
1718 | item->impactN = 0.0; |
---|
1719 | } |
---|
1720 | /* The nodes retrieved here are guaranteed to be non-terminal. |
---|
1721 | ** The initial node is not terminal because constant nodes are |
---|
1722 | ** dealt with in the calling procedure. Subsequent nodes are inserted |
---|
1723 | ** only if they are not terminal. */ |
---|
1724 | while (queue->first != NULL) { |
---|
1725 | /* If the size of the subset is below the threshold, quit. */ |
---|
1726 | if (info->size <= threshold) |
---|
1727 | break; |
---|
1728 | item = (GlobalQueueItem *) queue->first; |
---|
1729 | node = item->node; |
---|
1730 | #ifdef DD_DEBUG |
---|
1731 | assert(item->impactP >= 0 && item->impactP <= 1.0); |
---|
1732 | assert(item->impactN >= 0 && item->impactN <= 1.0); |
---|
1733 | assert(!Cudd_IsComplement(node)); |
---|
1734 | assert(!Cudd_IsConstant(node)); |
---|
1735 | #endif |
---|
1736 | if (!st_lookup(info->table, node, &infoN)) { |
---|
1737 | cuddLevelQueueQuit(queue); |
---|
1738 | cuddLevelQueueQuit(localQueue); |
---|
1739 | return(0); |
---|
1740 | } |
---|
1741 | quality = infoN->care ? quality1 : quality0; |
---|
1742 | #ifdef DD_DEBUG |
---|
1743 | assert(infoN->parity >= 1 && infoN->parity <= 3); |
---|
1744 | #endif |
---|
1745 | if (infoN->parity == 3) { |
---|
1746 | /* This node can be reached through paths of different parity. |
---|
1747 | ** It is not safe to replace it, because remapping will give |
---|
1748 | ** an incorrect result, while replacement by 0 may cause node |
---|
1749 | ** splitting. */ |
---|
1750 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
1751 | continue; |
---|
1752 | } |
---|
1753 | T = cuddT(node); |
---|
1754 | E = cuddE(node); |
---|
1755 | shared = NULL; |
---|
1756 | impactP = item->impactP; |
---|
1757 | impactN = item->impactN; |
---|
1758 | if (Cudd_bddLeq(dd,T,E)) { |
---|
1759 | /* Here we know that E is regular. */ |
---|
1760 | #ifdef DD_DEBUG |
---|
1761 | assert(!Cudd_IsComplement(E)); |
---|
1762 | #endif |
---|
1763 | (void) st_lookup(info->table, T, &infoT); |
---|
1764 | (void) st_lookup(info->table, E, &infoE); |
---|
1765 | if (infoN->parity == 1) { |
---|
1766 | impact = impactP; |
---|
1767 | minterms = infoE->mintermsP/2.0 - infoT->mintermsP/2.0; |
---|
1768 | if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { |
---|
1769 | savings = 1 + computeSavings(dd,E,NULL,info,localQueue); |
---|
1770 | if (savings == 1) { |
---|
1771 | cuddLevelQueueQuit(queue); |
---|
1772 | cuddLevelQueueQuit(localQueue); |
---|
1773 | return(0); |
---|
1774 | } |
---|
1775 | } else { |
---|
1776 | savings = 1; |
---|
1777 | } |
---|
1778 | replace = REPLACE_E; |
---|
1779 | } else { |
---|
1780 | #ifdef DD_DEBUG |
---|
1781 | assert(infoN->parity == 2); |
---|
1782 | #endif |
---|
1783 | impact = impactN; |
---|
1784 | minterms = infoT->mintermsN/2.0 - infoE->mintermsN/2.0; |
---|
1785 | if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { |
---|
1786 | savings = 1 + computeSavings(dd,T,NULL,info,localQueue); |
---|
1787 | if (savings == 1) { |
---|
1788 | cuddLevelQueueQuit(queue); |
---|
1789 | cuddLevelQueueQuit(localQueue); |
---|
1790 | return(0); |
---|
1791 | } |
---|
1792 | } else { |
---|
1793 | savings = 1; |
---|
1794 | } |
---|
1795 | replace = REPLACE_T; |
---|
1796 | } |
---|
1797 | numOnset = impact * minterms; |
---|
1798 | } else if (Cudd_bddLeq(dd,E,T)) { |
---|
1799 | /* Here E may be complemented. */ |
---|
1800 | DdNode *Ereg = Cudd_Regular(E); |
---|
1801 | (void) st_lookup(info->table, T, &infoT); |
---|
1802 | (void) st_lookup(info->table, Ereg, &infoE); |
---|
1803 | if (infoN->parity == 1) { |
---|
1804 | impact = impactP; |
---|
1805 | minterms = infoT->mintermsP/2.0 - |
---|
1806 | ((E == Ereg) ? infoE->mintermsP : infoE->mintermsN)/2.0; |
---|
1807 | if (infoT->functionRef == 1 && !Cudd_IsConstant(T)) { |
---|
1808 | savings = 1 + computeSavings(dd,T,NULL,info,localQueue); |
---|
1809 | if (savings == 1) { |
---|
1810 | cuddLevelQueueQuit(queue); |
---|
1811 | cuddLevelQueueQuit(localQueue); |
---|
1812 | return(0); |
---|
1813 | } |
---|
1814 | } else { |
---|
1815 | savings = 1; |
---|
1816 | } |
---|
1817 | replace = REPLACE_T; |
---|
1818 | } else { |
---|
1819 | #ifdef DD_DEBUG |
---|
1820 | assert(infoN->parity == 2); |
---|
1821 | #endif |
---|
1822 | impact = impactN; |
---|
1823 | minterms = ((E == Ereg) ? infoE->mintermsN : |
---|
1824 | infoE->mintermsP)/2.0 - infoT->mintermsN/2.0; |
---|
1825 | if (infoE->functionRef == 1 && !Cudd_IsConstant(E)) { |
---|
1826 | savings = 1 + computeSavings(dd,E,NULL,info,localQueue); |
---|
1827 | if (savings == 1) { |
---|
1828 | cuddLevelQueueQuit(queue); |
---|
1829 | cuddLevelQueueQuit(localQueue); |
---|
1830 | return(0); |
---|
1831 | } |
---|
1832 | } else { |
---|
1833 | savings = 1; |
---|
1834 | } |
---|
1835 | replace = REPLACE_E; |
---|
1836 | } |
---|
1837 | numOnset = impact * minterms; |
---|
1838 | } else { |
---|
1839 | DdNode *Ereg = Cudd_Regular(E); |
---|
1840 | DdNode *TT = cuddT(T); |
---|
1841 | DdNode *ET = Cudd_NotCond(cuddT(Ereg), Cudd_IsComplement(E)); |
---|
1842 | if (T->index == Ereg->index && TT == ET) { |
---|
1843 | shared = TT; |
---|
1844 | replace = REPLACE_TT; |
---|
1845 | } else { |
---|
1846 | DdNode *TE = cuddE(T); |
---|
1847 | DdNode *EE = Cudd_NotCond(cuddE(Ereg), Cudd_IsComplement(E)); |
---|
1848 | if (T->index == Ereg->index && TE == EE) { |
---|
1849 | shared = TE; |
---|
1850 | replace = REPLACE_TE; |
---|
1851 | } else { |
---|
1852 | replace = REPLACE_N; |
---|
1853 | } |
---|
1854 | } |
---|
1855 | numOnset = infoN->mintermsP * impactP + infoN->mintermsN * impactN; |
---|
1856 | savings = computeSavings(dd,node,shared,info,localQueue); |
---|
1857 | if (shared != NULL) { |
---|
1858 | NodeData *infoS; |
---|
1859 | (void) st_lookup(info->table, Cudd_Regular(shared), &infoS); |
---|
1860 | if (Cudd_IsComplement(shared)) { |
---|
1861 | numOnset -= (infoS->mintermsN * impactP + |
---|
1862 | infoS->mintermsP * impactN)/2.0; |
---|
1863 | } else { |
---|
1864 | numOnset -= (infoS->mintermsP * impactP + |
---|
1865 | infoS->mintermsN * impactN)/2.0; |
---|
1866 | } |
---|
1867 | savings--; |
---|
1868 | } |
---|
1869 | } |
---|
1870 | |
---|
1871 | cuddLevelQueueDequeue(queue,cuddI(dd,node->index)); |
---|
1872 | #if 0 |
---|
1873 | if (replace == REPLACE_T || replace == REPLACE_E) |
---|
1874 | (void) printf("node %p: impact = %g numOnset = %g savings %d\n", |
---|
1875 | node, impact, numOnset, savings); |
---|
1876 | else |
---|
1877 | (void) printf("node %p: impact = %g/%g numOnset = %g savings %d\n", |
---|
1878 | node, impactP, impactN, numOnset, savings); |
---|
1879 | #endif |
---|
1880 | if ((1 - numOnset / info->minterms) > |
---|
1881 | quality * (1 - (double) savings / info->size)) { |
---|
1882 | infoN->replace = (char) replace; |
---|
1883 | info->size -= savings; |
---|
1884 | info->minterms -=numOnset; |
---|
1885 | #if 0 |
---|
1886 | (void) printf("remap(%d): new size = %d new minterms = %g\n", |
---|
1887 | replace, info->size, info->minterms); |
---|
1888 | #endif |
---|
1889 | if (replace == REPLACE_N) { |
---|
1890 | savings -= updateRefs(dd,node,NULL,info,localQueue); |
---|
1891 | } else if (replace == REPLACE_T) { |
---|
1892 | savings -= updateRefs(dd,node,E,info,localQueue); |
---|
1893 | } else if (replace == REPLACE_E) { |
---|
1894 | savings -= updateRefs(dd,node,T,info,localQueue); |
---|
1895 | } else { |
---|
1896 | #ifdef DD_DEBUG |
---|
1897 | assert(replace == REPLACE_TT || replace == REPLACE_TE); |
---|
1898 | #endif |
---|
1899 | savings -= updateRefs(dd,node,shared,info,localQueue) - 1; |
---|
1900 | } |
---|
1901 | assert(savings == 0); |
---|
1902 | } else { |
---|
1903 | replace = NOTHING; |
---|
1904 | } |
---|
1905 | if (replace == REPLACE_N) continue; |
---|
1906 | if ((replace == REPLACE_E || replace == NOTHING) && |
---|
1907 | !cuddIsConstant(cuddT(node))) { |
---|
1908 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,cuddT(node), |
---|
1909 | cuddI(dd,cuddT(node)->index)); |
---|
1910 | if (replace == REPLACE_E) { |
---|
1911 | item->impactP += impactP; |
---|
1912 | item->impactN += impactN; |
---|
1913 | } else { |
---|
1914 | item->impactP += impactP/2.0; |
---|
1915 | item->impactN += impactN/2.0; |
---|
1916 | } |
---|
1917 | } |
---|
1918 | if ((replace == REPLACE_T || replace == NOTHING) && |
---|
1919 | !Cudd_IsConstant(cuddE(node))) { |
---|
1920 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(cuddE(node)), |
---|
1921 | cuddI(dd,Cudd_Regular(cuddE(node))->index)); |
---|
1922 | if (Cudd_IsComplement(cuddE(node))) { |
---|
1923 | if (replace == REPLACE_T) { |
---|
1924 | item->impactP += impactN; |
---|
1925 | item->impactN += impactP; |
---|
1926 | } else { |
---|
1927 | item->impactP += impactN/2.0; |
---|
1928 | item->impactN += impactP/2.0; |
---|
1929 | } |
---|
1930 | } else { |
---|
1931 | if (replace == REPLACE_T) { |
---|
1932 | item->impactP += impactP; |
---|
1933 | item->impactN += impactN; |
---|
1934 | } else { |
---|
1935 | item->impactP += impactP/2.0; |
---|
1936 | item->impactN += impactN/2.0; |
---|
1937 | } |
---|
1938 | } |
---|
1939 | } |
---|
1940 | if ((replace == REPLACE_TT || replace == REPLACE_TE) && |
---|
1941 | !Cudd_IsConstant(shared)) { |
---|
1942 | item = (GlobalQueueItem *) cuddLevelQueueEnqueue(queue,Cudd_Regular(shared), |
---|
1943 | cuddI(dd,Cudd_Regular(shared)->index)); |
---|
1944 | if (Cudd_IsComplement(shared)) { |
---|
1945 | if (replace == REPLACE_T) { |
---|
1946 | item->impactP += impactN; |
---|
1947 | item->impactN += impactP; |
---|
1948 | } else { |
---|
1949 | item->impactP += impactN/2.0; |
---|
1950 | item->impactN += impactP/2.0; |
---|
1951 | } |
---|
1952 | } else { |
---|
1953 | if (replace == REPLACE_T) { |
---|
1954 | item->impactP += impactP; |
---|
1955 | item->impactN += impactN; |
---|
1956 | } else { |
---|
1957 | item->impactP += impactP/2.0; |
---|
1958 | item->impactN += impactN/2.0; |
---|
1959 | } |
---|
1960 | } |
---|
1961 | } |
---|
1962 | } |
---|
1963 | |
---|
1964 | cuddLevelQueueQuit(queue); |
---|
1965 | cuddLevelQueueQuit(localQueue); |
---|
1966 | return(1); |
---|
1967 | |
---|
1968 | } /* end of BAmarkNodes */ |
---|
1969 | |
---|
1970 | |
---|
1971 | /**Function******************************************************************** |
---|
1972 | |
---|
1973 | Synopsis [Builds the subset BDD for cuddRemapUnderApprox.] |
---|
1974 | |
---|
1975 | Description [Builds the subset BDDfor cuddRemapUnderApprox. Based |
---|
1976 | on the info table, performs remapping or replacement at selected |
---|
1977 | nodes. Returns a pointer to the result if successful; NULL |
---|
1978 | otherwise.] |
---|
1979 | |
---|
1980 | SideEffects [None] |
---|
1981 | |
---|
1982 | SeeAlso [cuddRemapUnderApprox] |
---|
1983 | |
---|
1984 | ******************************************************************************/ |
---|
1985 | static DdNode * |
---|
1986 | RAbuildSubset( |
---|
1987 | DdManager * dd /* DD manager */, |
---|
1988 | DdNode * node /* current node */, |
---|
1989 | ApproxInfo * info /* node info */) |
---|
1990 | { |
---|
1991 | DdNode *Nt, *Ne, *N, *t, *e, *r; |
---|
1992 | NodeData *infoN; |
---|
1993 | |
---|
1994 | if (Cudd_IsConstant(node)) |
---|
1995 | return(node); |
---|
1996 | |
---|
1997 | N = Cudd_Regular(node); |
---|
1998 | |
---|
1999 | Nt = Cudd_NotCond(cuddT(N), Cudd_IsComplement(node)); |
---|
2000 | Ne = Cudd_NotCond(cuddE(N), Cudd_IsComplement(node)); |
---|
2001 | |
---|
2002 | if (st_lookup(info->table, N, &infoN)) { |
---|
2003 | if (N == node ) { |
---|
2004 | if (infoN->resultP != NULL) { |
---|
2005 | return(infoN->resultP); |
---|
2006 | } |
---|
2007 | } else { |
---|
2008 | if (infoN->resultN != NULL) { |
---|
2009 | return(infoN->resultN); |
---|
2010 | } |
---|
2011 | } |
---|
2012 | if (infoN->replace == REPLACE_T) { |
---|
2013 | r = RAbuildSubset(dd, Ne, info); |
---|
2014 | return(r); |
---|
2015 | } else if (infoN->replace == REPLACE_E) { |
---|
2016 | r = RAbuildSubset(dd, Nt, info); |
---|
2017 | return(r); |
---|
2018 | } else if (infoN->replace == REPLACE_N) { |
---|
2019 | return(info->zero); |
---|
2020 | } else if (infoN->replace == REPLACE_TT) { |
---|
2021 | DdNode *Ntt = Cudd_NotCond(cuddT(cuddT(N)), |
---|
2022 | Cudd_IsComplement(node)); |
---|
2023 | int index = cuddT(N)->index; |
---|
2024 | e = info->zero; |
---|
2025 | t = RAbuildSubset(dd, Ntt, info); |
---|
2026 | if (t == NULL) { |
---|
2027 | return(NULL); |
---|
2028 | } |
---|
2029 | cuddRef(t); |
---|
2030 | if (Cudd_IsComplement(t)) { |
---|
2031 | t = Cudd_Not(t); |
---|
2032 | e = Cudd_Not(e); |
---|
2033 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
2034 | if (r == NULL) { |
---|
2035 | Cudd_RecursiveDeref(dd, t); |
---|
2036 | return(NULL); |
---|
2037 | } |
---|
2038 | r = Cudd_Not(r); |
---|
2039 | } else { |
---|
2040 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
2041 | if (r == NULL) { |
---|
2042 | Cudd_RecursiveDeref(dd, t); |
---|
2043 | return(NULL); |
---|
2044 | } |
---|
2045 | } |
---|
2046 | cuddDeref(t); |
---|
2047 | return(r); |
---|
2048 | } else if (infoN->replace == REPLACE_TE) { |
---|
2049 | DdNode *Nte = Cudd_NotCond(cuddE(cuddT(N)), |
---|
2050 | Cudd_IsComplement(node)); |
---|
2051 | int index = cuddT(N)->index; |
---|
2052 | t = info->one; |
---|
2053 | e = RAbuildSubset(dd, Nte, info); |
---|
2054 | if (e == NULL) { |
---|
2055 | return(NULL); |
---|
2056 | } |
---|
2057 | cuddRef(e); |
---|
2058 | e = Cudd_Not(e); |
---|
2059 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
2060 | if (r == NULL) { |
---|
2061 | Cudd_RecursiveDeref(dd, e); |
---|
2062 | return(NULL); |
---|
2063 | } |
---|
2064 | r =Cudd_Not(r); |
---|
2065 | cuddDeref(e); |
---|
2066 | return(r); |
---|
2067 | } |
---|
2068 | } else { |
---|
2069 | (void) fprintf(dd->err, |
---|
2070 | "Something is wrong, ought to be in info table\n"); |
---|
2071 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
2072 | return(NULL); |
---|
2073 | } |
---|
2074 | |
---|
2075 | t = RAbuildSubset(dd, Nt, info); |
---|
2076 | if (t == NULL) { |
---|
2077 | return(NULL); |
---|
2078 | } |
---|
2079 | cuddRef(t); |
---|
2080 | |
---|
2081 | e = RAbuildSubset(dd, Ne, info); |
---|
2082 | if (e == NULL) { |
---|
2083 | Cudd_RecursiveDeref(dd,t); |
---|
2084 | return(NULL); |
---|
2085 | } |
---|
2086 | cuddRef(e); |
---|
2087 | |
---|
2088 | if (Cudd_IsComplement(t)) { |
---|
2089 | t = Cudd_Not(t); |
---|
2090 | e = Cudd_Not(e); |
---|
2091 | r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); |
---|
2092 | if (r == NULL) { |
---|
2093 | Cudd_RecursiveDeref(dd, e); |
---|
2094 | Cudd_RecursiveDeref(dd, t); |
---|
2095 | return(NULL); |
---|
2096 | } |
---|
2097 | r = Cudd_Not(r); |
---|
2098 | } else { |
---|
2099 | r = (t == e) ? t : cuddUniqueInter(dd, N->index, t, e); |
---|
2100 | if (r == NULL) { |
---|
2101 | Cudd_RecursiveDeref(dd, e); |
---|
2102 | Cudd_RecursiveDeref(dd, t); |
---|
2103 | return(NULL); |
---|
2104 | } |
---|
2105 | } |
---|
2106 | cuddDeref(t); |
---|
2107 | cuddDeref(e); |
---|
2108 | |
---|
2109 | if (N == node) { |
---|
2110 | infoN->resultP = r; |
---|
2111 | } else { |
---|
2112 | infoN->resultN = r; |
---|
2113 | } |
---|
2114 | |
---|
2115 | return(r); |
---|
2116 | |
---|
2117 | } /* end of RAbuildSubset */ |
---|
2118 | |
---|
2119 | |
---|
2120 | /**Function******************************************************************** |
---|
2121 | |
---|
2122 | Synopsis [Finds don't care nodes.] |
---|
2123 | |
---|
2124 | Description [Finds don't care nodes by traversing f and b in parallel. |
---|
2125 | Returns the care status of the visited f node if successful; CARE_ERROR |
---|
2126 | otherwise.] |
---|
2127 | |
---|
2128 | SideEffects [None] |
---|
2129 | |
---|
2130 | SeeAlso [cuddBiasedUnderApprox] |
---|
2131 | |
---|
2132 | ******************************************************************************/ |
---|
2133 | static int |
---|
2134 | BAapplyBias( |
---|
2135 | DdManager *dd, |
---|
2136 | DdNode *f, |
---|
2137 | DdNode *b, |
---|
2138 | ApproxInfo *info, |
---|
2139 | DdHashTable *cache) |
---|
2140 | { |
---|
2141 | DdNode *one, *zero, *res; |
---|
2142 | DdNode *Ft, *Fe, *B, *Bt, *Be; |
---|
2143 | unsigned int topf, topb; |
---|
2144 | NodeData *infoF; |
---|
2145 | int careT, careE; |
---|
2146 | |
---|
2147 | one = DD_ONE(dd); |
---|
2148 | zero = Cudd_Not(one); |
---|
2149 | |
---|
2150 | if (!st_lookup(info->table, f, &infoF)) |
---|
2151 | return(CARE_ERROR); |
---|
2152 | if (f == one) return(TOTAL_CARE); |
---|
2153 | if (b == zero) return(infoF->care); |
---|
2154 | if (infoF->care == TOTAL_CARE) return(TOTAL_CARE); |
---|
2155 | |
---|
2156 | if ((f->ref != 1 || Cudd_Regular(b)->ref != 1) && |
---|
2157 | (res = cuddHashTableLookup2(cache,f,b)) != NULL) { |
---|
2158 | if (res->ref == 0) { |
---|
2159 | cache->manager->dead++; |
---|
2160 | cache->manager->constants.dead++; |
---|
2161 | } |
---|
2162 | return(infoF->care); |
---|
2163 | } |
---|
2164 | |
---|
2165 | topf = dd->perm[f->index]; |
---|
2166 | B = Cudd_Regular(b); |
---|
2167 | topb = cuddI(dd,B->index); |
---|
2168 | if (topf <= topb) { |
---|
2169 | Ft = cuddT(f); Fe = cuddE(f); |
---|
2170 | } else { |
---|
2171 | Ft = Fe = f; |
---|
2172 | } |
---|
2173 | if (topb <= topf) { |
---|
2174 | /* We know that b is not constant because f is not. */ |
---|
2175 | Bt = cuddT(B); Be = cuddE(B); |
---|
2176 | if (Cudd_IsComplement(b)) { |
---|
2177 | Bt = Cudd_Not(Bt); |
---|
2178 | Be = Cudd_Not(Be); |
---|
2179 | } |
---|
2180 | } else { |
---|
2181 | Bt = Be = b; |
---|
2182 | } |
---|
2183 | |
---|
2184 | careT = BAapplyBias(dd, Ft, Bt, info, cache); |
---|
2185 | if (careT == CARE_ERROR) |
---|
2186 | return(CARE_ERROR); |
---|
2187 | careE = BAapplyBias(dd, Cudd_Regular(Fe), Be, info, cache); |
---|
2188 | if (careE == CARE_ERROR) |
---|
2189 | return(CARE_ERROR); |
---|
2190 | if (careT == TOTAL_CARE && careE == TOTAL_CARE) { |
---|
2191 | infoF->care = TOTAL_CARE; |
---|
2192 | } else { |
---|
2193 | infoF->care = CARE; |
---|
2194 | } |
---|
2195 | |
---|
2196 | if (f->ref != 1 || Cudd_Regular(b)->ref != 1) { |
---|
2197 | ptrint fanout = (ptrint) f->ref * Cudd_Regular(b)->ref; |
---|
2198 | cuddSatDec(fanout); |
---|
2199 | if (!cuddHashTableInsert2(cache,f,b,one,fanout)) { |
---|
2200 | return(CARE_ERROR); |
---|
2201 | } |
---|
2202 | } |
---|
2203 | return(infoF->care); |
---|
2204 | |
---|
2205 | } /* end of BAapplyBias */ |
---|