1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [cuddDecomp.c] |
---|
4 | |
---|
5 | PackageName [cudd] |
---|
6 | |
---|
7 | Synopsis [Functions for BDD decomposition.] |
---|
8 | |
---|
9 | Description [External procedures included in this file: |
---|
10 | <ul> |
---|
11 | <li> Cudd_bddApproxConjDecomp() |
---|
12 | <li> Cudd_bddApproxDisjDecomp() |
---|
13 | <li> Cudd_bddIterConjDecomp() |
---|
14 | <li> Cudd_bddIterDisjDecomp() |
---|
15 | <li> Cudd_bddGenConjDecomp() |
---|
16 | <li> Cudd_bddGenDisjDecomp() |
---|
17 | <li> Cudd_bddVarConjDecomp() |
---|
18 | <li> Cudd_bddVarDisjDecomp() |
---|
19 | </ul> |
---|
20 | Static procedures included in this module: |
---|
21 | <ul> |
---|
22 | <li> cuddConjunctsAux() |
---|
23 | <li> CreateBotDist() |
---|
24 | <li> BuildConjuncts() |
---|
25 | <li> ConjunctsFree() |
---|
26 | </ul>] |
---|
27 | |
---|
28 | Author [Kavita Ravi, Fabio Somenzi] |
---|
29 | |
---|
30 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
31 | |
---|
32 | All rights reserved. |
---|
33 | |
---|
34 | Redistribution and use in source and binary forms, with or without |
---|
35 | modification, are permitted provided that the following conditions |
---|
36 | are met: |
---|
37 | |
---|
38 | Redistributions of source code must retain the above copyright |
---|
39 | notice, this list of conditions and the following disclaimer. |
---|
40 | |
---|
41 | Redistributions in binary form must reproduce the above copyright |
---|
42 | notice, this list of conditions and the following disclaimer in the |
---|
43 | documentation and/or other materials provided with the distribution. |
---|
44 | |
---|
45 | Neither the name of the University of Colorado nor the names of its |
---|
46 | contributors may be used to endorse or promote products derived from |
---|
47 | this software without specific prior written permission. |
---|
48 | |
---|
49 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
50 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
51 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
52 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
53 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
54 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
55 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
56 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
57 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
58 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
59 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
60 | POSSIBILITY OF SUCH DAMAGE.] |
---|
61 | |
---|
62 | ******************************************************************************/ |
---|
63 | |
---|
64 | #include "util.h" |
---|
65 | #include "cuddInt.h" |
---|
66 | |
---|
67 | /*---------------------------------------------------------------------------*/ |
---|
68 | /* Constant declarations */ |
---|
69 | /*---------------------------------------------------------------------------*/ |
---|
70 | #define DEPTH 5 |
---|
71 | #define THRESHOLD 10 |
---|
72 | #define NONE 0 |
---|
73 | #define PAIR_ST 1 |
---|
74 | #define PAIR_CR 2 |
---|
75 | #define G_ST 3 |
---|
76 | #define G_CR 4 |
---|
77 | #define H_ST 5 |
---|
78 | #define H_CR 6 |
---|
79 | #define BOTH_G 7 |
---|
80 | #define BOTH_H 8 |
---|
81 | |
---|
82 | /*---------------------------------------------------------------------------*/ |
---|
83 | /* Stucture declarations */ |
---|
84 | /*---------------------------------------------------------------------------*/ |
---|
85 | |
---|
86 | /*---------------------------------------------------------------------------*/ |
---|
87 | /* Type declarations */ |
---|
88 | /*---------------------------------------------------------------------------*/ |
---|
89 | typedef struct Conjuncts { |
---|
90 | DdNode *g; |
---|
91 | DdNode *h; |
---|
92 | } Conjuncts; |
---|
93 | |
---|
94 | typedef struct NodeStat { |
---|
95 | int distance; |
---|
96 | int localRef; |
---|
97 | } NodeStat; |
---|
98 | |
---|
99 | |
---|
100 | /*---------------------------------------------------------------------------*/ |
---|
101 | /* Variable declarations */ |
---|
102 | /*---------------------------------------------------------------------------*/ |
---|
103 | |
---|
104 | #ifndef lint |
---|
105 | static char rcsid[] DD_UNUSED = "$Id: cuddDecomp.c,v 1.44 2004/08/13 18:04:47 fabio Exp $"; |
---|
106 | #endif |
---|
107 | |
---|
108 | static DdNode *one, *zero; |
---|
109 | long lastTimeG; |
---|
110 | |
---|
111 | /*---------------------------------------------------------------------------*/ |
---|
112 | /* Macro declarations */ |
---|
113 | /*---------------------------------------------------------------------------*/ |
---|
114 | |
---|
115 | |
---|
116 | #define FactorsNotStored(factors) ((int)((long)(factors) & 01)) |
---|
117 | |
---|
118 | #define FactorsComplement(factors) ((Conjuncts *)((long)(factors) | 01)) |
---|
119 | |
---|
120 | #define FactorsUncomplement(factors) ((Conjuncts *)((long)(factors) ^ 01)) |
---|
121 | |
---|
122 | /**AutomaticStart*************************************************************/ |
---|
123 | |
---|
124 | /*---------------------------------------------------------------------------*/ |
---|
125 | /* Static function prototypes */ |
---|
126 | /*---------------------------------------------------------------------------*/ |
---|
127 | |
---|
128 | static NodeStat * CreateBotDist (DdNode * node, st_table * distanceTable); |
---|
129 | static double CountMinterms (DdNode * node, double max, st_table * mintermTable, FILE *fp); |
---|
130 | static void ConjunctsFree (DdManager * dd, Conjuncts * factors); |
---|
131 | static int PairInTables (DdNode * g, DdNode * h, st_table * ghTable); |
---|
132 | static Conjuncts * CheckTablesCacheAndReturn (DdNode * node, DdNode * g, DdNode * h, st_table * ghTable, st_table * cacheTable); |
---|
133 | static Conjuncts * PickOnePair (DdNode * node, DdNode * g1, DdNode * h1, DdNode * g2, DdNode * h2, st_table * ghTable, st_table * cacheTable); |
---|
134 | static Conjuncts * CheckInTables (DdNode * node, DdNode * g1, DdNode * h1, DdNode * g2, DdNode * h2, st_table * ghTable, st_table * cacheTable, int * outOfMem); |
---|
135 | static Conjuncts * ZeroCase (DdManager * dd, DdNode * node, Conjuncts * factorsNv, st_table * ghTable, st_table * cacheTable, int switched); |
---|
136 | static Conjuncts * BuildConjuncts (DdManager * dd, DdNode * node, st_table * distanceTable, st_table * cacheTable, int approxDistance, int maxLocalRef, st_table * ghTable, st_table * mintermTable); |
---|
137 | static int cuddConjunctsAux (DdManager * dd, DdNode * f, DdNode ** c1, DdNode ** c2); |
---|
138 | |
---|
139 | /**AutomaticEnd***************************************************************/ |
---|
140 | |
---|
141 | |
---|
142 | /*---------------------------------------------------------------------------*/ |
---|
143 | /* Definition of exported functions */ |
---|
144 | /*---------------------------------------------------------------------------*/ |
---|
145 | |
---|
146 | |
---|
147 | /**Function******************************************************************** |
---|
148 | |
---|
149 | Synopsis [Performs two-way conjunctive decomposition of a BDD.] |
---|
150 | |
---|
151 | Description [Performs two-way conjunctive decomposition of a |
---|
152 | BDD. This procedure owes its name to the use of supersetting to |
---|
153 | obtain an initial factor of the given function. Returns the number |
---|
154 | of conjuncts produced, that is, 2 if successful; 1 if no meaningful |
---|
155 | decomposition was found; 0 otherwise. The conjuncts produced by this |
---|
156 | procedure tend to be imbalanced.] |
---|
157 | |
---|
158 | SideEffects [The factors are returned in an array as side effects. |
---|
159 | The array is allocated by this function. It is the caller's responsibility |
---|
160 | to free it. On successful completion, the conjuncts are already |
---|
161 | referenced. If the function returns 0, the array for the conjuncts is |
---|
162 | not allocated. If the function returns 1, the only factor equals the |
---|
163 | function to be decomposed.] |
---|
164 | |
---|
165 | SeeAlso [Cudd_bddApproxDisjDecomp Cudd_bddIterConjDecomp |
---|
166 | Cudd_bddGenConjDecomp Cudd_bddVarConjDecomp Cudd_RemapOverApprox |
---|
167 | Cudd_bddSqueeze Cudd_bddLICompaction] |
---|
168 | |
---|
169 | ******************************************************************************/ |
---|
170 | int |
---|
171 | Cudd_bddApproxConjDecomp( |
---|
172 | DdManager * dd /* manager */, |
---|
173 | DdNode * f /* function to be decomposed */, |
---|
174 | DdNode *** conjuncts /* address of the first factor */) |
---|
175 | { |
---|
176 | DdNode *superset1, *superset2, *glocal, *hlocal; |
---|
177 | int nvars = Cudd_SupportSize(dd,f); |
---|
178 | |
---|
179 | /* Find a tentative first factor by overapproximation and minimization. */ |
---|
180 | superset1 = Cudd_RemapOverApprox(dd,f,nvars,0,1.0); |
---|
181 | if (superset1 == NULL) return(0); |
---|
182 | cuddRef(superset1); |
---|
183 | superset2 = Cudd_bddSqueeze(dd,f,superset1); |
---|
184 | if (superset2 == NULL) { |
---|
185 | Cudd_RecursiveDeref(dd,superset1); |
---|
186 | return(0); |
---|
187 | } |
---|
188 | cuddRef(superset2); |
---|
189 | Cudd_RecursiveDeref(dd,superset1); |
---|
190 | |
---|
191 | /* Compute the second factor by minimization. */ |
---|
192 | hlocal = Cudd_bddLICompaction(dd,f,superset2); |
---|
193 | if (hlocal == NULL) { |
---|
194 | Cudd_RecursiveDeref(dd,superset2); |
---|
195 | return(0); |
---|
196 | } |
---|
197 | cuddRef(hlocal); |
---|
198 | |
---|
199 | /* Refine the first factor by minimization. If h turns out to be f, this |
---|
200 | ** step guarantees that g will be 1. */ |
---|
201 | glocal = Cudd_bddLICompaction(dd,superset2,hlocal); |
---|
202 | if (glocal == NULL) { |
---|
203 | Cudd_RecursiveDeref(dd,superset2); |
---|
204 | Cudd_RecursiveDeref(dd,hlocal); |
---|
205 | return(0); |
---|
206 | } |
---|
207 | cuddRef(glocal); |
---|
208 | Cudd_RecursiveDeref(dd,superset2); |
---|
209 | |
---|
210 | if (glocal != DD_ONE(dd)) { |
---|
211 | if (hlocal != DD_ONE(dd)) { |
---|
212 | *conjuncts = ALLOC(DdNode *,2); |
---|
213 | if (*conjuncts == NULL) { |
---|
214 | Cudd_RecursiveDeref(dd,glocal); |
---|
215 | Cudd_RecursiveDeref(dd,hlocal); |
---|
216 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
217 | return(0); |
---|
218 | } |
---|
219 | (*conjuncts)[0] = glocal; |
---|
220 | (*conjuncts)[1] = hlocal; |
---|
221 | return(2); |
---|
222 | } else { |
---|
223 | Cudd_RecursiveDeref(dd,hlocal); |
---|
224 | *conjuncts = ALLOC(DdNode *,1); |
---|
225 | if (*conjuncts == NULL) { |
---|
226 | Cudd_RecursiveDeref(dd,glocal); |
---|
227 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
228 | return(0); |
---|
229 | } |
---|
230 | (*conjuncts)[0] = glocal; |
---|
231 | return(1); |
---|
232 | } |
---|
233 | } else { |
---|
234 | Cudd_RecursiveDeref(dd,glocal); |
---|
235 | *conjuncts = ALLOC(DdNode *,1); |
---|
236 | if (*conjuncts == NULL) { |
---|
237 | Cudd_RecursiveDeref(dd,hlocal); |
---|
238 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
239 | return(0); |
---|
240 | } |
---|
241 | (*conjuncts)[0] = hlocal; |
---|
242 | return(1); |
---|
243 | } |
---|
244 | |
---|
245 | } /* end of Cudd_bddApproxConjDecomp */ |
---|
246 | |
---|
247 | |
---|
248 | /**Function******************************************************************** |
---|
249 | |
---|
250 | Synopsis [Performs two-way disjunctive decomposition of a BDD.] |
---|
251 | |
---|
252 | Description [Performs two-way disjunctive decomposition of a BDD. |
---|
253 | Returns the number of disjuncts produced, that is, 2 if successful; |
---|
254 | 1 if no meaningful decomposition was found; 0 otherwise. The |
---|
255 | disjuncts produced by this procedure tend to be imbalanced.] |
---|
256 | |
---|
257 | SideEffects [The two disjuncts are returned in an array as side effects. |
---|
258 | The array is allocated by this function. It is the caller's responsibility |
---|
259 | to free it. On successful completion, the disjuncts are already |
---|
260 | referenced. If the function returns 0, the array for the disjuncts is |
---|
261 | not allocated. If the function returns 1, the only factor equals the |
---|
262 | function to be decomposed.] |
---|
263 | |
---|
264 | SeeAlso [Cudd_bddApproxConjDecomp Cudd_bddIterDisjDecomp |
---|
265 | Cudd_bddGenDisjDecomp Cudd_bddVarDisjDecomp] |
---|
266 | |
---|
267 | ******************************************************************************/ |
---|
268 | int |
---|
269 | Cudd_bddApproxDisjDecomp( |
---|
270 | DdManager * dd /* manager */, |
---|
271 | DdNode * f /* function to be decomposed */, |
---|
272 | DdNode *** disjuncts /* address of the array of the disjuncts */) |
---|
273 | { |
---|
274 | int result, i; |
---|
275 | |
---|
276 | result = Cudd_bddApproxConjDecomp(dd,Cudd_Not(f),disjuncts); |
---|
277 | for (i = 0; i < result; i++) { |
---|
278 | (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); |
---|
279 | } |
---|
280 | return(result); |
---|
281 | |
---|
282 | } /* end of Cudd_bddApproxDisjDecomp */ |
---|
283 | |
---|
284 | |
---|
285 | /**Function******************************************************************** |
---|
286 | |
---|
287 | Synopsis [Performs two-way conjunctive decomposition of a BDD.] |
---|
288 | |
---|
289 | Description [Performs two-way conjunctive decomposition of a |
---|
290 | BDD. This procedure owes its name to the iterated use of |
---|
291 | supersetting to obtain a factor of the given function. Returns the |
---|
292 | number of conjuncts produced, that is, 2 if successful; 1 if no |
---|
293 | meaningful decomposition was found; 0 otherwise. The conjuncts |
---|
294 | produced by this procedure tend to be imbalanced.] |
---|
295 | |
---|
296 | SideEffects [The factors are returned in an array as side effects. |
---|
297 | The array is allocated by this function. It is the caller's responsibility |
---|
298 | to free it. On successful completion, the conjuncts are already |
---|
299 | referenced. If the function returns 0, the array for the conjuncts is |
---|
300 | not allocated. If the function returns 1, the only factor equals the |
---|
301 | function to be decomposed.] |
---|
302 | |
---|
303 | SeeAlso [Cudd_bddIterDisjDecomp Cudd_bddApproxConjDecomp |
---|
304 | Cudd_bddGenConjDecomp Cudd_bddVarConjDecomp Cudd_RemapOverApprox |
---|
305 | Cudd_bddSqueeze Cudd_bddLICompaction] |
---|
306 | |
---|
307 | ******************************************************************************/ |
---|
308 | int |
---|
309 | Cudd_bddIterConjDecomp( |
---|
310 | DdManager * dd /* manager */, |
---|
311 | DdNode * f /* function to be decomposed */, |
---|
312 | DdNode *** conjuncts /* address of the array of conjuncts */) |
---|
313 | { |
---|
314 | DdNode *superset1, *superset2, *old[2], *res[2]; |
---|
315 | int sizeOld, sizeNew; |
---|
316 | int nvars = Cudd_SupportSize(dd,f); |
---|
317 | |
---|
318 | old[0] = DD_ONE(dd); |
---|
319 | cuddRef(old[0]); |
---|
320 | old[1] = f; |
---|
321 | cuddRef(old[1]); |
---|
322 | sizeOld = Cudd_SharingSize(old,2); |
---|
323 | |
---|
324 | do { |
---|
325 | /* Find a tentative first factor by overapproximation and |
---|
326 | ** minimization. */ |
---|
327 | superset1 = Cudd_RemapOverApprox(dd,old[1],nvars,0,1.0); |
---|
328 | if (superset1 == NULL) { |
---|
329 | Cudd_RecursiveDeref(dd,old[0]); |
---|
330 | Cudd_RecursiveDeref(dd,old[1]); |
---|
331 | return(0); |
---|
332 | } |
---|
333 | cuddRef(superset1); |
---|
334 | superset2 = Cudd_bddSqueeze(dd,old[1],superset1); |
---|
335 | if (superset2 == NULL) { |
---|
336 | Cudd_RecursiveDeref(dd,old[0]); |
---|
337 | Cudd_RecursiveDeref(dd,old[1]); |
---|
338 | Cudd_RecursiveDeref(dd,superset1); |
---|
339 | return(0); |
---|
340 | } |
---|
341 | cuddRef(superset2); |
---|
342 | Cudd_RecursiveDeref(dd,superset1); |
---|
343 | res[0] = Cudd_bddAnd(dd,old[0],superset2); |
---|
344 | if (res[0] == NULL) { |
---|
345 | Cudd_RecursiveDeref(dd,superset2); |
---|
346 | Cudd_RecursiveDeref(dd,old[0]); |
---|
347 | Cudd_RecursiveDeref(dd,old[1]); |
---|
348 | return(0); |
---|
349 | } |
---|
350 | cuddRef(res[0]); |
---|
351 | Cudd_RecursiveDeref(dd,superset2); |
---|
352 | if (res[0] == old[0]) { |
---|
353 | Cudd_RecursiveDeref(dd,res[0]); |
---|
354 | break; /* avoid infinite loop */ |
---|
355 | } |
---|
356 | |
---|
357 | /* Compute the second factor by minimization. */ |
---|
358 | res[1] = Cudd_bddLICompaction(dd,old[1],res[0]); |
---|
359 | if (res[1] == NULL) { |
---|
360 | Cudd_RecursiveDeref(dd,old[0]); |
---|
361 | Cudd_RecursiveDeref(dd,old[1]); |
---|
362 | return(0); |
---|
363 | } |
---|
364 | cuddRef(res[1]); |
---|
365 | |
---|
366 | sizeNew = Cudd_SharingSize(res,2); |
---|
367 | if (sizeNew <= sizeOld) { |
---|
368 | Cudd_RecursiveDeref(dd,old[0]); |
---|
369 | old[0] = res[0]; |
---|
370 | Cudd_RecursiveDeref(dd,old[1]); |
---|
371 | old[1] = res[1]; |
---|
372 | sizeOld = sizeNew; |
---|
373 | } else { |
---|
374 | Cudd_RecursiveDeref(dd,res[0]); |
---|
375 | Cudd_RecursiveDeref(dd,res[1]); |
---|
376 | break; |
---|
377 | } |
---|
378 | |
---|
379 | } while (1); |
---|
380 | |
---|
381 | /* Refine the first factor by minimization. If h turns out to |
---|
382 | ** be f, this step guarantees that g will be 1. */ |
---|
383 | superset1 = Cudd_bddLICompaction(dd,old[0],old[1]); |
---|
384 | if (superset1 == NULL) { |
---|
385 | Cudd_RecursiveDeref(dd,old[0]); |
---|
386 | Cudd_RecursiveDeref(dd,old[1]); |
---|
387 | return(0); |
---|
388 | } |
---|
389 | cuddRef(superset1); |
---|
390 | Cudd_RecursiveDeref(dd,old[0]); |
---|
391 | old[0] = superset1; |
---|
392 | |
---|
393 | if (old[0] != DD_ONE(dd)) { |
---|
394 | if (old[1] != DD_ONE(dd)) { |
---|
395 | *conjuncts = ALLOC(DdNode *,2); |
---|
396 | if (*conjuncts == NULL) { |
---|
397 | Cudd_RecursiveDeref(dd,old[0]); |
---|
398 | Cudd_RecursiveDeref(dd,old[1]); |
---|
399 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
400 | return(0); |
---|
401 | } |
---|
402 | (*conjuncts)[0] = old[0]; |
---|
403 | (*conjuncts)[1] = old[1]; |
---|
404 | return(2); |
---|
405 | } else { |
---|
406 | Cudd_RecursiveDeref(dd,old[1]); |
---|
407 | *conjuncts = ALLOC(DdNode *,1); |
---|
408 | if (*conjuncts == NULL) { |
---|
409 | Cudd_RecursiveDeref(dd,old[0]); |
---|
410 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
411 | return(0); |
---|
412 | } |
---|
413 | (*conjuncts)[0] = old[0]; |
---|
414 | return(1); |
---|
415 | } |
---|
416 | } else { |
---|
417 | Cudd_RecursiveDeref(dd,old[0]); |
---|
418 | *conjuncts = ALLOC(DdNode *,1); |
---|
419 | if (*conjuncts == NULL) { |
---|
420 | Cudd_RecursiveDeref(dd,old[1]); |
---|
421 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
422 | return(0); |
---|
423 | } |
---|
424 | (*conjuncts)[0] = old[1]; |
---|
425 | return(1); |
---|
426 | } |
---|
427 | |
---|
428 | } /* end of Cudd_bddIterConjDecomp */ |
---|
429 | |
---|
430 | |
---|
431 | /**Function******************************************************************** |
---|
432 | |
---|
433 | Synopsis [Performs two-way disjunctive decomposition of a BDD.] |
---|
434 | |
---|
435 | Description [Performs two-way disjunctive decomposition of a BDD. |
---|
436 | Returns the number of disjuncts produced, that is, 2 if successful; |
---|
437 | 1 if no meaningful decomposition was found; 0 otherwise. The |
---|
438 | disjuncts produced by this procedure tend to be imbalanced.] |
---|
439 | |
---|
440 | SideEffects [The two disjuncts are returned in an array as side effects. |
---|
441 | The array is allocated by this function. It is the caller's responsibility |
---|
442 | to free it. On successful completion, the disjuncts are already |
---|
443 | referenced. If the function returns 0, the array for the disjuncts is |
---|
444 | not allocated. If the function returns 1, the only factor equals the |
---|
445 | function to be decomposed.] |
---|
446 | |
---|
447 | SeeAlso [Cudd_bddIterConjDecomp Cudd_bddApproxDisjDecomp |
---|
448 | Cudd_bddGenDisjDecomp Cudd_bddVarDisjDecomp] |
---|
449 | |
---|
450 | ******************************************************************************/ |
---|
451 | int |
---|
452 | Cudd_bddIterDisjDecomp( |
---|
453 | DdManager * dd /* manager */, |
---|
454 | DdNode * f /* function to be decomposed */, |
---|
455 | DdNode *** disjuncts /* address of the array of the disjuncts */) |
---|
456 | { |
---|
457 | int result, i; |
---|
458 | |
---|
459 | result = Cudd_bddIterConjDecomp(dd,Cudd_Not(f),disjuncts); |
---|
460 | for (i = 0; i < result; i++) { |
---|
461 | (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); |
---|
462 | } |
---|
463 | return(result); |
---|
464 | |
---|
465 | } /* end of Cudd_bddIterDisjDecomp */ |
---|
466 | |
---|
467 | |
---|
468 | /**Function******************************************************************** |
---|
469 | |
---|
470 | Synopsis [Performs two-way conjunctive decomposition of a BDD.] |
---|
471 | |
---|
472 | Description [Performs two-way conjunctive decomposition of a |
---|
473 | BDD. This procedure owes its name to the fact tht it generalizes the |
---|
474 | decomposition based on the cofactors with respect to one |
---|
475 | variable. Returns the number of conjuncts produced, that is, 2 if |
---|
476 | successful; 1 if no meaningful decomposition was found; 0 |
---|
477 | otherwise. The conjuncts produced by this procedure tend to be |
---|
478 | balanced.] |
---|
479 | |
---|
480 | SideEffects [The two factors are returned in an array as side effects. |
---|
481 | The array is allocated by this function. It is the caller's responsibility |
---|
482 | to free it. On successful completion, the conjuncts are already |
---|
483 | referenced. If the function returns 0, the array for the conjuncts is |
---|
484 | not allocated. If the function returns 1, the only factor equals the |
---|
485 | function to be decomposed.] |
---|
486 | |
---|
487 | SeeAlso [Cudd_bddGenDisjDecomp Cudd_bddApproxConjDecomp |
---|
488 | Cudd_bddIterConjDecomp Cudd_bddVarConjDecomp] |
---|
489 | |
---|
490 | ******************************************************************************/ |
---|
491 | int |
---|
492 | Cudd_bddGenConjDecomp( |
---|
493 | DdManager * dd /* manager */, |
---|
494 | DdNode * f /* function to be decomposed */, |
---|
495 | DdNode *** conjuncts /* address of the array of conjuncts */) |
---|
496 | { |
---|
497 | int result; |
---|
498 | DdNode *glocal, *hlocal; |
---|
499 | |
---|
500 | one = DD_ONE(dd); |
---|
501 | zero = Cudd_Not(one); |
---|
502 | |
---|
503 | do { |
---|
504 | dd->reordered = 0; |
---|
505 | result = cuddConjunctsAux(dd, f, &glocal, &hlocal); |
---|
506 | } while (dd->reordered == 1); |
---|
507 | |
---|
508 | if (result == 0) { |
---|
509 | return(0); |
---|
510 | } |
---|
511 | |
---|
512 | if (glocal != one) { |
---|
513 | if (hlocal != one) { |
---|
514 | *conjuncts = ALLOC(DdNode *,2); |
---|
515 | if (*conjuncts == NULL) { |
---|
516 | Cudd_RecursiveDeref(dd,glocal); |
---|
517 | Cudd_RecursiveDeref(dd,hlocal); |
---|
518 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
519 | return(0); |
---|
520 | } |
---|
521 | (*conjuncts)[0] = glocal; |
---|
522 | (*conjuncts)[1] = hlocal; |
---|
523 | return(2); |
---|
524 | } else { |
---|
525 | Cudd_RecursiveDeref(dd,hlocal); |
---|
526 | *conjuncts = ALLOC(DdNode *,1); |
---|
527 | if (*conjuncts == NULL) { |
---|
528 | Cudd_RecursiveDeref(dd,glocal); |
---|
529 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
530 | return(0); |
---|
531 | } |
---|
532 | (*conjuncts)[0] = glocal; |
---|
533 | return(1); |
---|
534 | } |
---|
535 | } else { |
---|
536 | Cudd_RecursiveDeref(dd,glocal); |
---|
537 | *conjuncts = ALLOC(DdNode *,1); |
---|
538 | if (*conjuncts == NULL) { |
---|
539 | Cudd_RecursiveDeref(dd,hlocal); |
---|
540 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
541 | return(0); |
---|
542 | } |
---|
543 | (*conjuncts)[0] = hlocal; |
---|
544 | return(1); |
---|
545 | } |
---|
546 | |
---|
547 | } /* end of Cudd_bddGenConjDecomp */ |
---|
548 | |
---|
549 | |
---|
550 | /**Function******************************************************************** |
---|
551 | |
---|
552 | Synopsis [Performs two-way disjunctive decomposition of a BDD.] |
---|
553 | |
---|
554 | Description [Performs two-way disjunctive decomposition of a BDD. |
---|
555 | Returns the number of disjuncts produced, that is, 2 if successful; |
---|
556 | 1 if no meaningful decomposition was found; 0 otherwise. The |
---|
557 | disjuncts produced by this procedure tend to be balanced.] |
---|
558 | |
---|
559 | SideEffects [The two disjuncts are returned in an array as side effects. |
---|
560 | The array is allocated by this function. It is the caller's responsibility |
---|
561 | to free it. On successful completion, the disjuncts are already |
---|
562 | referenced. If the function returns 0, the array for the disjuncts is |
---|
563 | not allocated. If the function returns 1, the only factor equals the |
---|
564 | function to be decomposed.] |
---|
565 | |
---|
566 | SeeAlso [Cudd_bddGenConjDecomp Cudd_bddApproxDisjDecomp |
---|
567 | Cudd_bddIterDisjDecomp Cudd_bddVarDisjDecomp] |
---|
568 | |
---|
569 | ******************************************************************************/ |
---|
570 | int |
---|
571 | Cudd_bddGenDisjDecomp( |
---|
572 | DdManager * dd /* manager */, |
---|
573 | DdNode * f /* function to be decomposed */, |
---|
574 | DdNode *** disjuncts /* address of the array of the disjuncts */) |
---|
575 | { |
---|
576 | int result, i; |
---|
577 | |
---|
578 | result = Cudd_bddGenConjDecomp(dd,Cudd_Not(f),disjuncts); |
---|
579 | for (i = 0; i < result; i++) { |
---|
580 | (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); |
---|
581 | } |
---|
582 | return(result); |
---|
583 | |
---|
584 | } /* end of Cudd_bddGenDisjDecomp */ |
---|
585 | |
---|
586 | |
---|
587 | /**Function******************************************************************** |
---|
588 | |
---|
589 | Synopsis [Performs two-way conjunctive decomposition of a BDD.] |
---|
590 | |
---|
591 | Description [Conjunctively decomposes one BDD according to a |
---|
592 | variable. If <code>f</code> is the function of the BDD and |
---|
593 | <code>x</code> is the variable, the decomposition is |
---|
594 | <code>(f+x)(f+x')</code>. The variable is chosen so as to balance |
---|
595 | the sizes of the two conjuncts and to keep them small. Returns the |
---|
596 | number of conjuncts produced, that is, 2 if successful; 1 if no |
---|
597 | meaningful decomposition was found; 0 otherwise.] |
---|
598 | |
---|
599 | SideEffects [The two factors are returned in an array as side effects. |
---|
600 | The array is allocated by this function. It is the caller's responsibility |
---|
601 | to free it. On successful completion, the conjuncts are already |
---|
602 | referenced. If the function returns 0, the array for the conjuncts is |
---|
603 | not allocated. If the function returns 1, the only factor equals the |
---|
604 | function to be decomposed.] |
---|
605 | |
---|
606 | SeeAlso [Cudd_bddVarDisjDecomp Cudd_bddGenConjDecomp |
---|
607 | Cudd_bddApproxConjDecomp Cudd_bddIterConjDecomp] |
---|
608 | |
---|
609 | *****************************************************************************/ |
---|
610 | int |
---|
611 | Cudd_bddVarConjDecomp( |
---|
612 | DdManager * dd /* manager */, |
---|
613 | DdNode * f /* function to be decomposed */, |
---|
614 | DdNode *** conjuncts /* address of the array of conjuncts */) |
---|
615 | { |
---|
616 | int best; |
---|
617 | int min; |
---|
618 | DdNode *support, *scan, *var, *glocal, *hlocal; |
---|
619 | |
---|
620 | /* Find best cofactoring variable. */ |
---|
621 | support = Cudd_Support(dd,f); |
---|
622 | if (support == NULL) return(0); |
---|
623 | if (Cudd_IsConstant(support)) { |
---|
624 | *conjuncts = ALLOC(DdNode *,1); |
---|
625 | if (*conjuncts == NULL) { |
---|
626 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
627 | return(0); |
---|
628 | } |
---|
629 | (*conjuncts)[0] = f; |
---|
630 | cuddRef((*conjuncts)[0]); |
---|
631 | return(1); |
---|
632 | } |
---|
633 | cuddRef(support); |
---|
634 | min = 1000000000; |
---|
635 | best = -1; |
---|
636 | scan = support; |
---|
637 | while (!Cudd_IsConstant(scan)) { |
---|
638 | int i = scan->index; |
---|
639 | int est1 = Cudd_EstimateCofactor(dd,f,i,1); |
---|
640 | int est0 = Cudd_EstimateCofactor(dd,f,i,0); |
---|
641 | /* Minimize the size of the larger of the two cofactors. */ |
---|
642 | int est = (est1 > est0) ? est1 : est0; |
---|
643 | if (est < min) { |
---|
644 | min = est; |
---|
645 | best = i; |
---|
646 | } |
---|
647 | scan = cuddT(scan); |
---|
648 | } |
---|
649 | #ifdef DD_DEBUG |
---|
650 | assert(best >= 0 && best < dd->size); |
---|
651 | #endif |
---|
652 | Cudd_RecursiveDeref(dd,support); |
---|
653 | |
---|
654 | var = Cudd_bddIthVar(dd,best); |
---|
655 | glocal = Cudd_bddOr(dd,f,var); |
---|
656 | if (glocal == NULL) { |
---|
657 | return(0); |
---|
658 | } |
---|
659 | cuddRef(glocal); |
---|
660 | hlocal = Cudd_bddOr(dd,f,Cudd_Not(var)); |
---|
661 | if (hlocal == NULL) { |
---|
662 | Cudd_RecursiveDeref(dd,glocal); |
---|
663 | return(0); |
---|
664 | } |
---|
665 | cuddRef(hlocal); |
---|
666 | |
---|
667 | if (glocal != DD_ONE(dd)) { |
---|
668 | if (hlocal != DD_ONE(dd)) { |
---|
669 | *conjuncts = ALLOC(DdNode *,2); |
---|
670 | if (*conjuncts == NULL) { |
---|
671 | Cudd_RecursiveDeref(dd,glocal); |
---|
672 | Cudd_RecursiveDeref(dd,hlocal); |
---|
673 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
674 | return(0); |
---|
675 | } |
---|
676 | (*conjuncts)[0] = glocal; |
---|
677 | (*conjuncts)[1] = hlocal; |
---|
678 | return(2); |
---|
679 | } else { |
---|
680 | Cudd_RecursiveDeref(dd,hlocal); |
---|
681 | *conjuncts = ALLOC(DdNode *,1); |
---|
682 | if (*conjuncts == NULL) { |
---|
683 | Cudd_RecursiveDeref(dd,glocal); |
---|
684 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
685 | return(0); |
---|
686 | } |
---|
687 | (*conjuncts)[0] = glocal; |
---|
688 | return(1); |
---|
689 | } |
---|
690 | } else { |
---|
691 | Cudd_RecursiveDeref(dd,glocal); |
---|
692 | *conjuncts = ALLOC(DdNode *,1); |
---|
693 | if (*conjuncts == NULL) { |
---|
694 | Cudd_RecursiveDeref(dd,hlocal); |
---|
695 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
696 | return(0); |
---|
697 | } |
---|
698 | (*conjuncts)[0] = hlocal; |
---|
699 | return(1); |
---|
700 | } |
---|
701 | |
---|
702 | } /* end of Cudd_bddVarConjDecomp */ |
---|
703 | |
---|
704 | |
---|
705 | /**Function******************************************************************** |
---|
706 | |
---|
707 | Synopsis [Performs two-way disjunctive decomposition of a BDD.] |
---|
708 | |
---|
709 | Description [Performs two-way disjunctive decomposition of a BDD |
---|
710 | according to a variable. If <code>f</code> is the function of the |
---|
711 | BDD and <code>x</code> is the variable, the decomposition is |
---|
712 | <code>f*x + f*x'</code>. The variable is chosen so as to balance |
---|
713 | the sizes of the two disjuncts and to keep them small. Returns the |
---|
714 | number of disjuncts produced, that is, 2 if successful; 1 if no |
---|
715 | meaningful decomposition was found; 0 otherwise.] |
---|
716 | |
---|
717 | SideEffects [The two disjuncts are returned in an array as side effects. |
---|
718 | The array is allocated by this function. It is the caller's responsibility |
---|
719 | to free it. On successful completion, the disjuncts are already |
---|
720 | referenced. If the function returns 0, the array for the disjuncts is |
---|
721 | not allocated. If the function returns 1, the only factor equals the |
---|
722 | function to be decomposed.] |
---|
723 | |
---|
724 | SeeAlso [Cudd_bddVarConjDecomp Cudd_bddApproxDisjDecomp |
---|
725 | Cudd_bddIterDisjDecomp Cudd_bddGenDisjDecomp] |
---|
726 | |
---|
727 | ******************************************************************************/ |
---|
728 | int |
---|
729 | Cudd_bddVarDisjDecomp( |
---|
730 | DdManager * dd /* manager */, |
---|
731 | DdNode * f /* function to be decomposed */, |
---|
732 | DdNode *** disjuncts /* address of the array of the disjuncts */) |
---|
733 | { |
---|
734 | int result, i; |
---|
735 | |
---|
736 | result = Cudd_bddVarConjDecomp(dd,Cudd_Not(f),disjuncts); |
---|
737 | for (i = 0; i < result; i++) { |
---|
738 | (*disjuncts)[i] = Cudd_Not((*disjuncts)[i]); |
---|
739 | } |
---|
740 | return(result); |
---|
741 | |
---|
742 | } /* end of Cudd_bddVarDisjDecomp */ |
---|
743 | |
---|
744 | |
---|
745 | /*---------------------------------------------------------------------------*/ |
---|
746 | /* Definition of internal functions */ |
---|
747 | /*---------------------------------------------------------------------------*/ |
---|
748 | |
---|
749 | /*---------------------------------------------------------------------------*/ |
---|
750 | /* Definition of static functions */ |
---|
751 | /*---------------------------------------------------------------------------*/ |
---|
752 | |
---|
753 | |
---|
754 | /**Function******************************************************************** |
---|
755 | |
---|
756 | Synopsis [Get longest distance of node from constant.] |
---|
757 | |
---|
758 | Description [Get longest distance of node from constant. Returns the |
---|
759 | distance of the root from the constant if successful; CUDD_OUT_OF_MEM |
---|
760 | otherwise.] |
---|
761 | |
---|
762 | SideEffects [None] |
---|
763 | |
---|
764 | SeeAlso [] |
---|
765 | |
---|
766 | ******************************************************************************/ |
---|
767 | static NodeStat * |
---|
768 | CreateBotDist( |
---|
769 | DdNode * node, |
---|
770 | st_table * distanceTable) |
---|
771 | { |
---|
772 | DdNode *N, *Nv, *Nnv; |
---|
773 | int distance, distanceNv, distanceNnv; |
---|
774 | NodeStat *nodeStat, *nodeStatNv, *nodeStatNnv; |
---|
775 | |
---|
776 | #if 0 |
---|
777 | if (Cudd_IsConstant(node)) { |
---|
778 | return(0); |
---|
779 | } |
---|
780 | #endif |
---|
781 | |
---|
782 | /* Return the entry in the table if found. */ |
---|
783 | N = Cudd_Regular(node); |
---|
784 | if (st_lookup(distanceTable, N, &nodeStat)) { |
---|
785 | nodeStat->localRef++; |
---|
786 | return(nodeStat); |
---|
787 | } |
---|
788 | |
---|
789 | Nv = cuddT(N); |
---|
790 | Nnv = cuddE(N); |
---|
791 | Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); |
---|
792 | Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); |
---|
793 | |
---|
794 | /* Recur on the children. */ |
---|
795 | nodeStatNv = CreateBotDist(Nv, distanceTable); |
---|
796 | if (nodeStatNv == NULL) return(NULL); |
---|
797 | distanceNv = nodeStatNv->distance; |
---|
798 | |
---|
799 | nodeStatNnv = CreateBotDist(Nnv, distanceTable); |
---|
800 | if (nodeStatNnv == NULL) return(NULL); |
---|
801 | distanceNnv = nodeStatNnv->distance; |
---|
802 | /* Store max distance from constant; note sometimes this distance |
---|
803 | ** may be to 0. |
---|
804 | */ |
---|
805 | distance = (distanceNv > distanceNnv) ? (distanceNv+1) : (distanceNnv + 1); |
---|
806 | |
---|
807 | nodeStat = ALLOC(NodeStat, 1); |
---|
808 | if (nodeStat == NULL) { |
---|
809 | return(0); |
---|
810 | } |
---|
811 | nodeStat->distance = distance; |
---|
812 | nodeStat->localRef = 1; |
---|
813 | |
---|
814 | if (st_insert(distanceTable, (char *)N, (char *)nodeStat) == |
---|
815 | ST_OUT_OF_MEM) { |
---|
816 | return(0); |
---|
817 | |
---|
818 | } |
---|
819 | return(nodeStat); |
---|
820 | |
---|
821 | } /* end of CreateBotDist */ |
---|
822 | |
---|
823 | |
---|
824 | /**Function******************************************************************** |
---|
825 | |
---|
826 | Synopsis [Count the number of minterms of each node ina a BDD and |
---|
827 | store it in a hash table.] |
---|
828 | |
---|
829 | Description [] |
---|
830 | |
---|
831 | SideEffects [None] |
---|
832 | |
---|
833 | SeeAlso [] |
---|
834 | |
---|
835 | ******************************************************************************/ |
---|
836 | static double |
---|
837 | CountMinterms( |
---|
838 | DdNode * node, |
---|
839 | double max, |
---|
840 | st_table * mintermTable, |
---|
841 | FILE *fp) |
---|
842 | { |
---|
843 | DdNode *N, *Nv, *Nnv; |
---|
844 | double min, minNv, minNnv; |
---|
845 | double *dummy; |
---|
846 | |
---|
847 | N = Cudd_Regular(node); |
---|
848 | |
---|
849 | if (cuddIsConstant(N)) { |
---|
850 | if (node == zero) { |
---|
851 | return(0); |
---|
852 | } else { |
---|
853 | return(max); |
---|
854 | } |
---|
855 | } |
---|
856 | |
---|
857 | /* Return the entry in the table if found. */ |
---|
858 | if (st_lookup(mintermTable, node, &dummy)) { |
---|
859 | min = *dummy; |
---|
860 | return(min); |
---|
861 | } |
---|
862 | |
---|
863 | Nv = cuddT(N); |
---|
864 | Nnv = cuddE(N); |
---|
865 | Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); |
---|
866 | Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); |
---|
867 | |
---|
868 | /* Recur on the children. */ |
---|
869 | minNv = CountMinterms(Nv, max, mintermTable, fp); |
---|
870 | if (minNv == -1.0) return(-1.0); |
---|
871 | minNnv = CountMinterms(Nnv, max, mintermTable, fp); |
---|
872 | if (minNnv == -1.0) return(-1.0); |
---|
873 | min = minNv / 2.0 + minNnv / 2.0; |
---|
874 | /* store |
---|
875 | */ |
---|
876 | |
---|
877 | dummy = ALLOC(double, 1); |
---|
878 | if (dummy == NULL) return(-1.0); |
---|
879 | *dummy = min; |
---|
880 | if (st_insert(mintermTable, (char *)node, (char *)dummy) == ST_OUT_OF_MEM) { |
---|
881 | (void) fprintf(fp, "st table insert failed\n"); |
---|
882 | } |
---|
883 | return(min); |
---|
884 | |
---|
885 | } /* end of CountMinterms */ |
---|
886 | |
---|
887 | |
---|
888 | /**Function******************************************************************** |
---|
889 | |
---|
890 | Synopsis [Free factors structure] |
---|
891 | |
---|
892 | Description [] |
---|
893 | |
---|
894 | SideEffects [None] |
---|
895 | |
---|
896 | SeeAlso [] |
---|
897 | |
---|
898 | ******************************************************************************/ |
---|
899 | static void |
---|
900 | ConjunctsFree( |
---|
901 | DdManager * dd, |
---|
902 | Conjuncts * factors) |
---|
903 | { |
---|
904 | Cudd_RecursiveDeref(dd, factors->g); |
---|
905 | Cudd_RecursiveDeref(dd, factors->h); |
---|
906 | FREE(factors); |
---|
907 | return; |
---|
908 | |
---|
909 | } /* end of ConjunctsFree */ |
---|
910 | |
---|
911 | |
---|
912 | /**Function******************************************************************** |
---|
913 | |
---|
914 | Synopsis [Check whether the given pair is in the tables.] |
---|
915 | |
---|
916 | Description [.Check whether the given pair is in the tables. gTable |
---|
917 | and hTable are combined. |
---|
918 | absence in both is indicated by 0, |
---|
919 | presence in gTable is indicated by 1, |
---|
920 | presence in hTable by 2 and |
---|
921 | presence in both by 3. |
---|
922 | The values returned by this function are PAIR_ST, |
---|
923 | PAIR_CR, G_ST, G_CR, H_ST, H_CR, BOTH_G, BOTH_H, NONE. |
---|
924 | PAIR_ST implies g in gTable and h in hTable |
---|
925 | PAIR_CR implies g in hTable and h in gTable |
---|
926 | G_ST implies g in gTable and h not in any table |
---|
927 | G_CR implies g in hTable and h not in any table |
---|
928 | H_ST implies h in hTable and g not in any table |
---|
929 | H_CR implies h in gTable and g not in any table |
---|
930 | BOTH_G implies both in gTable |
---|
931 | BOTH_H implies both in hTable |
---|
932 | NONE implies none in table; ] |
---|
933 | |
---|
934 | SideEffects [] |
---|
935 | |
---|
936 | SeeAlso [CheckTablesCacheAndReturn CheckInTables] |
---|
937 | |
---|
938 | ******************************************************************************/ |
---|
939 | static int |
---|
940 | PairInTables( |
---|
941 | DdNode * g, |
---|
942 | DdNode * h, |
---|
943 | st_table * ghTable) |
---|
944 | { |
---|
945 | int valueG, valueH, gPresent, hPresent; |
---|
946 | |
---|
947 | valueG = valueH = gPresent = hPresent = 0; |
---|
948 | |
---|
949 | gPresent = st_lookup_int(ghTable, (char *)Cudd_Regular(g), &valueG); |
---|
950 | hPresent = st_lookup_int(ghTable, (char *)Cudd_Regular(h), &valueH); |
---|
951 | |
---|
952 | if (!gPresent && !hPresent) return(NONE); |
---|
953 | |
---|
954 | if (!hPresent) { |
---|
955 | if (valueG & 1) return(G_ST); |
---|
956 | if (valueG & 2) return(G_CR); |
---|
957 | } |
---|
958 | if (!gPresent) { |
---|
959 | if (valueH & 1) return(H_CR); |
---|
960 | if (valueH & 2) return(H_ST); |
---|
961 | } |
---|
962 | /* both in tables */ |
---|
963 | if ((valueG & 1) && (valueH & 2)) return(PAIR_ST); |
---|
964 | if ((valueG & 2) && (valueH & 1)) return(PAIR_CR); |
---|
965 | |
---|
966 | if (valueG & 1) { |
---|
967 | return(BOTH_G); |
---|
968 | } else { |
---|
969 | return(BOTH_H); |
---|
970 | } |
---|
971 | |
---|
972 | } /* end of PairInTables */ |
---|
973 | |
---|
974 | |
---|
975 | /**Function******************************************************************** |
---|
976 | |
---|
977 | Synopsis [Check the tables for the existence of pair and return one |
---|
978 | combination, cache the result.] |
---|
979 | |
---|
980 | Description [Check the tables for the existence of pair and return |
---|
981 | one combination, cache the result. The assumption is that one of the |
---|
982 | conjuncts is already in the tables.] |
---|
983 | |
---|
984 | SideEffects [g and h referenced for the cache] |
---|
985 | |
---|
986 | SeeAlso [ZeroCase] |
---|
987 | |
---|
988 | ******************************************************************************/ |
---|
989 | static Conjuncts * |
---|
990 | CheckTablesCacheAndReturn( |
---|
991 | DdNode * node, |
---|
992 | DdNode * g, |
---|
993 | DdNode * h, |
---|
994 | st_table * ghTable, |
---|
995 | st_table * cacheTable) |
---|
996 | { |
---|
997 | int pairValue; |
---|
998 | int value; |
---|
999 | Conjuncts *factors; |
---|
1000 | |
---|
1001 | value = 0; |
---|
1002 | /* check tables */ |
---|
1003 | pairValue = PairInTables(g, h, ghTable); |
---|
1004 | assert(pairValue != NONE); |
---|
1005 | /* if both dont exist in table, we know one exists(either g or h). |
---|
1006 | * Therefore store the other and proceed |
---|
1007 | */ |
---|
1008 | factors = ALLOC(Conjuncts, 1); |
---|
1009 | if (factors == NULL) return(NULL); |
---|
1010 | if ((pairValue == BOTH_H) || (pairValue == H_ST)) { |
---|
1011 | if (g != one) { |
---|
1012 | value = 0; |
---|
1013 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(g), &value)) { |
---|
1014 | value |= 1; |
---|
1015 | } else { |
---|
1016 | value = 1; |
---|
1017 | } |
---|
1018 | if (st_insert(ghTable, (char *)Cudd_Regular(g), |
---|
1019 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1020 | return(NULL); |
---|
1021 | } |
---|
1022 | } |
---|
1023 | factors->g = g; |
---|
1024 | factors->h = h; |
---|
1025 | } else if ((pairValue == BOTH_G) || (pairValue == G_ST)) { |
---|
1026 | if (h != one) { |
---|
1027 | value = 0; |
---|
1028 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(h), &value)) { |
---|
1029 | value |= 2; |
---|
1030 | } else { |
---|
1031 | value = 2; |
---|
1032 | } |
---|
1033 | if (st_insert(ghTable, (char *)Cudd_Regular(h), |
---|
1034 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1035 | return(NULL); |
---|
1036 | } |
---|
1037 | } |
---|
1038 | factors->g = g; |
---|
1039 | factors->h = h; |
---|
1040 | } else if (pairValue == H_CR) { |
---|
1041 | if (g != one) { |
---|
1042 | value = 2; |
---|
1043 | if (st_insert(ghTable, (char *)Cudd_Regular(g), |
---|
1044 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1045 | return(NULL); |
---|
1046 | } |
---|
1047 | } |
---|
1048 | factors->g = h; |
---|
1049 | factors->h = g; |
---|
1050 | } else if (pairValue == G_CR) { |
---|
1051 | if (h != one) { |
---|
1052 | value = 1; |
---|
1053 | if (st_insert(ghTable, (char *)Cudd_Regular(h), |
---|
1054 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1055 | return(NULL); |
---|
1056 | } |
---|
1057 | } |
---|
1058 | factors->g = h; |
---|
1059 | factors->h = g; |
---|
1060 | } else if (pairValue == PAIR_CR) { |
---|
1061 | /* pair exists in table */ |
---|
1062 | factors->g = h; |
---|
1063 | factors->h = g; |
---|
1064 | } else if (pairValue == PAIR_ST) { |
---|
1065 | factors->g = g; |
---|
1066 | factors->h = h; |
---|
1067 | } |
---|
1068 | |
---|
1069 | /* cache the result for this node */ |
---|
1070 | if (st_insert(cacheTable, (char *)node, (char *)factors) == ST_OUT_OF_MEM) { |
---|
1071 | FREE(factors); |
---|
1072 | return(NULL); |
---|
1073 | } |
---|
1074 | |
---|
1075 | return(factors); |
---|
1076 | |
---|
1077 | } /* end of CheckTablesCacheAndReturn */ |
---|
1078 | |
---|
1079 | /**Function******************************************************************** |
---|
1080 | |
---|
1081 | Synopsis [Check the tables for the existence of pair and return one |
---|
1082 | combination, store in cache.] |
---|
1083 | |
---|
1084 | Description [Check the tables for the existence of pair and return |
---|
1085 | one combination, store in cache. The pair that has more pointers to |
---|
1086 | it is picked. An approximation of the number of local pointers is |
---|
1087 | made by taking the reference count of the pairs sent. ] |
---|
1088 | |
---|
1089 | SideEffects [] |
---|
1090 | |
---|
1091 | SeeAlso [ZeroCase BuildConjuncts] |
---|
1092 | |
---|
1093 | ******************************************************************************/ |
---|
1094 | static Conjuncts * |
---|
1095 | PickOnePair( |
---|
1096 | DdNode * node, |
---|
1097 | DdNode * g1, |
---|
1098 | DdNode * h1, |
---|
1099 | DdNode * g2, |
---|
1100 | DdNode * h2, |
---|
1101 | st_table * ghTable, |
---|
1102 | st_table * cacheTable) |
---|
1103 | { |
---|
1104 | int value; |
---|
1105 | Conjuncts *factors; |
---|
1106 | int oneRef, twoRef; |
---|
1107 | |
---|
1108 | factors = ALLOC(Conjuncts, 1); |
---|
1109 | if (factors == NULL) return(NULL); |
---|
1110 | |
---|
1111 | /* count the number of pointers to pair 2 */ |
---|
1112 | if (h2 == one) { |
---|
1113 | twoRef = (Cudd_Regular(g2))->ref; |
---|
1114 | } else if (g2 == one) { |
---|
1115 | twoRef = (Cudd_Regular(h2))->ref; |
---|
1116 | } else { |
---|
1117 | twoRef = ((Cudd_Regular(g2))->ref + (Cudd_Regular(h2))->ref)/2; |
---|
1118 | } |
---|
1119 | |
---|
1120 | /* count the number of pointers to pair 1 */ |
---|
1121 | if (h1 == one) { |
---|
1122 | oneRef = (Cudd_Regular(g1))->ref; |
---|
1123 | } else if (g1 == one) { |
---|
1124 | oneRef = (Cudd_Regular(h1))->ref; |
---|
1125 | } else { |
---|
1126 | oneRef = ((Cudd_Regular(g1))->ref + (Cudd_Regular(h1))->ref)/2; |
---|
1127 | } |
---|
1128 | |
---|
1129 | /* pick the pair with higher reference count */ |
---|
1130 | if (oneRef >= twoRef) { |
---|
1131 | factors->g = g1; |
---|
1132 | factors->h = h1; |
---|
1133 | } else { |
---|
1134 | factors->g = g2; |
---|
1135 | factors->h = h2; |
---|
1136 | } |
---|
1137 | |
---|
1138 | /* |
---|
1139 | * Store computed factors in respective tables to encourage |
---|
1140 | * recombination. |
---|
1141 | */ |
---|
1142 | if (factors->g != one) { |
---|
1143 | /* insert g in htable */ |
---|
1144 | value = 0; |
---|
1145 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(factors->g), &value)) { |
---|
1146 | if (value == 2) { |
---|
1147 | value |= 1; |
---|
1148 | if (st_insert(ghTable, (char *)Cudd_Regular(factors->g), |
---|
1149 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1150 | FREE(factors); |
---|
1151 | return(NULL); |
---|
1152 | } |
---|
1153 | } |
---|
1154 | } else { |
---|
1155 | value = 1; |
---|
1156 | if (st_insert(ghTable, (char *)Cudd_Regular(factors->g), |
---|
1157 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1158 | FREE(factors); |
---|
1159 | return(NULL); |
---|
1160 | } |
---|
1161 | } |
---|
1162 | } |
---|
1163 | |
---|
1164 | if (factors->h != one) { |
---|
1165 | /* insert h in htable */ |
---|
1166 | value = 0; |
---|
1167 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(factors->h), &value)) { |
---|
1168 | if (value == 1) { |
---|
1169 | value |= 2; |
---|
1170 | if (st_insert(ghTable, (char *)Cudd_Regular(factors->h), |
---|
1171 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1172 | FREE(factors); |
---|
1173 | return(NULL); |
---|
1174 | } |
---|
1175 | } |
---|
1176 | } else { |
---|
1177 | value = 2; |
---|
1178 | if (st_insert(ghTable, (char *)Cudd_Regular(factors->h), |
---|
1179 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1180 | FREE(factors); |
---|
1181 | return(NULL); |
---|
1182 | } |
---|
1183 | } |
---|
1184 | } |
---|
1185 | |
---|
1186 | /* Store factors in cache table for later use. */ |
---|
1187 | if (st_insert(cacheTable, (char *)node, (char *)factors) == |
---|
1188 | ST_OUT_OF_MEM) { |
---|
1189 | FREE(factors); |
---|
1190 | return(NULL); |
---|
1191 | } |
---|
1192 | |
---|
1193 | return(factors); |
---|
1194 | |
---|
1195 | } /* end of PickOnePair */ |
---|
1196 | |
---|
1197 | |
---|
1198 | /**Function******************************************************************** |
---|
1199 | |
---|
1200 | Synopsis [Check if the two pairs exist in the table, If any of the |
---|
1201 | conjuncts do exist, store in the cache and return the corresponding pair.] |
---|
1202 | |
---|
1203 | Description [Check if the two pairs exist in the table. If any of |
---|
1204 | the conjuncts do exist, store in the cache and return the |
---|
1205 | corresponding pair.] |
---|
1206 | |
---|
1207 | SideEffects [] |
---|
1208 | |
---|
1209 | SeeAlso [ZeroCase BuildConjuncts] |
---|
1210 | |
---|
1211 | ******************************************************************************/ |
---|
1212 | static Conjuncts * |
---|
1213 | CheckInTables( |
---|
1214 | DdNode * node, |
---|
1215 | DdNode * g1, |
---|
1216 | DdNode * h1, |
---|
1217 | DdNode * g2, |
---|
1218 | DdNode * h2, |
---|
1219 | st_table * ghTable, |
---|
1220 | st_table * cacheTable, |
---|
1221 | int * outOfMem) |
---|
1222 | { |
---|
1223 | int pairValue1, pairValue2; |
---|
1224 | Conjuncts *factors; |
---|
1225 | int value; |
---|
1226 | |
---|
1227 | *outOfMem = 0; |
---|
1228 | |
---|
1229 | /* check existence of pair in table */ |
---|
1230 | pairValue1 = PairInTables(g1, h1, ghTable); |
---|
1231 | pairValue2 = PairInTables(g2, h2, ghTable); |
---|
1232 | |
---|
1233 | /* if none of the 4 exist in the gh tables, return NULL */ |
---|
1234 | if ((pairValue1 == NONE) && (pairValue2 == NONE)) { |
---|
1235 | return NULL; |
---|
1236 | } |
---|
1237 | |
---|
1238 | factors = ALLOC(Conjuncts, 1); |
---|
1239 | if (factors == NULL) { |
---|
1240 | *outOfMem = 1; |
---|
1241 | return NULL; |
---|
1242 | } |
---|
1243 | |
---|
1244 | /* pairs that already exist in the table get preference. */ |
---|
1245 | if (pairValue1 == PAIR_ST) { |
---|
1246 | factors->g = g1; |
---|
1247 | factors->h = h1; |
---|
1248 | } else if (pairValue2 == PAIR_ST) { |
---|
1249 | factors->g = g2; |
---|
1250 | factors->h = h2; |
---|
1251 | } else if (pairValue1 == PAIR_CR) { |
---|
1252 | factors->g = h1; |
---|
1253 | factors->h = g1; |
---|
1254 | } else if (pairValue2 == PAIR_CR) { |
---|
1255 | factors->g = h2; |
---|
1256 | factors->h = g2; |
---|
1257 | } else if (pairValue1 == G_ST) { |
---|
1258 | /* g exists in the table, h is not found in either table */ |
---|
1259 | factors->g = g1; |
---|
1260 | factors->h = h1; |
---|
1261 | if (h1 != one) { |
---|
1262 | value = 2; |
---|
1263 | if (st_insert(ghTable, (char *)Cudd_Regular(h1), |
---|
1264 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1265 | *outOfMem = 1; |
---|
1266 | FREE(factors); |
---|
1267 | return(NULL); |
---|
1268 | } |
---|
1269 | } |
---|
1270 | } else if (pairValue1 == BOTH_G) { |
---|
1271 | /* g and h are found in the g table */ |
---|
1272 | factors->g = g1; |
---|
1273 | factors->h = h1; |
---|
1274 | if (h1 != one) { |
---|
1275 | value = 3; |
---|
1276 | if (st_insert(ghTable, (char *)Cudd_Regular(h1), |
---|
1277 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1278 | *outOfMem = 1; |
---|
1279 | FREE(factors); |
---|
1280 | return(NULL); |
---|
1281 | } |
---|
1282 | } |
---|
1283 | } else if (pairValue1 == H_ST) { |
---|
1284 | /* h exists in the table, g is not found in either table */ |
---|
1285 | factors->g = g1; |
---|
1286 | factors->h = h1; |
---|
1287 | if (g1 != one) { |
---|
1288 | value = 1; |
---|
1289 | if (st_insert(ghTable, (char *)Cudd_Regular(g1), |
---|
1290 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1291 | *outOfMem = 1; |
---|
1292 | FREE(factors); |
---|
1293 | return(NULL); |
---|
1294 | } |
---|
1295 | } |
---|
1296 | } else if (pairValue1 == BOTH_H) { |
---|
1297 | /* g and h are found in the h table */ |
---|
1298 | factors->g = g1; |
---|
1299 | factors->h = h1; |
---|
1300 | if (g1 != one) { |
---|
1301 | value = 3; |
---|
1302 | if (st_insert(ghTable, (char *)Cudd_Regular(g1), |
---|
1303 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1304 | *outOfMem = 1; |
---|
1305 | FREE(factors); |
---|
1306 | return(NULL); |
---|
1307 | } |
---|
1308 | } |
---|
1309 | } else if (pairValue2 == G_ST) { |
---|
1310 | /* g exists in the table, h is not found in either table */ |
---|
1311 | factors->g = g2; |
---|
1312 | factors->h = h2; |
---|
1313 | if (h2 != one) { |
---|
1314 | value = 2; |
---|
1315 | if (st_insert(ghTable, (char *)Cudd_Regular(h2), |
---|
1316 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1317 | *outOfMem = 1; |
---|
1318 | FREE(factors); |
---|
1319 | return(NULL); |
---|
1320 | } |
---|
1321 | } |
---|
1322 | } else if (pairValue2 == BOTH_G) { |
---|
1323 | /* g and h are found in the g table */ |
---|
1324 | factors->g = g2; |
---|
1325 | factors->h = h2; |
---|
1326 | if (h2 != one) { |
---|
1327 | value = 3; |
---|
1328 | if (st_insert(ghTable, (char *)Cudd_Regular(h2), |
---|
1329 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1330 | *outOfMem = 1; |
---|
1331 | FREE(factors); |
---|
1332 | return(NULL); |
---|
1333 | } |
---|
1334 | } |
---|
1335 | } else if (pairValue2 == H_ST) { |
---|
1336 | /* h exists in the table, g is not found in either table */ |
---|
1337 | factors->g = g2; |
---|
1338 | factors->h = h2; |
---|
1339 | if (g2 != one) { |
---|
1340 | value = 1; |
---|
1341 | if (st_insert(ghTable, (char *)Cudd_Regular(g2), |
---|
1342 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1343 | *outOfMem = 1; |
---|
1344 | FREE(factors); |
---|
1345 | return(NULL); |
---|
1346 | } |
---|
1347 | } |
---|
1348 | } else if (pairValue2 == BOTH_H) { |
---|
1349 | /* g and h are found in the h table */ |
---|
1350 | factors->g = g2; |
---|
1351 | factors->h = h2; |
---|
1352 | if (g2 != one) { |
---|
1353 | value = 3; |
---|
1354 | if (st_insert(ghTable, (char *)Cudd_Regular(g2), |
---|
1355 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1356 | *outOfMem = 1; |
---|
1357 | FREE(factors); |
---|
1358 | return(NULL); |
---|
1359 | } |
---|
1360 | } |
---|
1361 | } else if (pairValue1 == G_CR) { |
---|
1362 | /* g found in h table and h in none */ |
---|
1363 | factors->g = h1; |
---|
1364 | factors->h = g1; |
---|
1365 | if (h1 != one) { |
---|
1366 | value = 1; |
---|
1367 | if (st_insert(ghTable, (char *)Cudd_Regular(h1), |
---|
1368 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1369 | *outOfMem = 1; |
---|
1370 | FREE(factors); |
---|
1371 | return(NULL); |
---|
1372 | } |
---|
1373 | } |
---|
1374 | } else if (pairValue1 == H_CR) { |
---|
1375 | /* h found in g table and g in none */ |
---|
1376 | factors->g = h1; |
---|
1377 | factors->h = g1; |
---|
1378 | if (g1 != one) { |
---|
1379 | value = 2; |
---|
1380 | if (st_insert(ghTable, (char *)Cudd_Regular(g1), |
---|
1381 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1382 | *outOfMem = 1; |
---|
1383 | FREE(factors); |
---|
1384 | return(NULL); |
---|
1385 | } |
---|
1386 | } |
---|
1387 | } else if (pairValue2 == G_CR) { |
---|
1388 | /* g found in h table and h in none */ |
---|
1389 | factors->g = h2; |
---|
1390 | factors->h = g2; |
---|
1391 | if (h2 != one) { |
---|
1392 | value = 1; |
---|
1393 | if (st_insert(ghTable, (char *)Cudd_Regular(h2), |
---|
1394 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1395 | *outOfMem = 1; |
---|
1396 | FREE(factors); |
---|
1397 | return(NULL); |
---|
1398 | } |
---|
1399 | } |
---|
1400 | } else if (pairValue2 == H_CR) { |
---|
1401 | /* h found in g table and g in none */ |
---|
1402 | factors->g = h2; |
---|
1403 | factors->h = g2; |
---|
1404 | if (g2 != one) { |
---|
1405 | value = 2; |
---|
1406 | if (st_insert(ghTable, (char *)Cudd_Regular(g2), |
---|
1407 | (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1408 | *outOfMem = 1; |
---|
1409 | FREE(factors); |
---|
1410 | return(NULL); |
---|
1411 | } |
---|
1412 | } |
---|
1413 | } |
---|
1414 | |
---|
1415 | /* Store factors in cache table for later use. */ |
---|
1416 | if (st_insert(cacheTable, (char *)node, (char *)factors) == |
---|
1417 | ST_OUT_OF_MEM) { |
---|
1418 | *outOfMem = 1; |
---|
1419 | FREE(factors); |
---|
1420 | return(NULL); |
---|
1421 | } |
---|
1422 | return factors; |
---|
1423 | } /* end of CheckInTables */ |
---|
1424 | |
---|
1425 | |
---|
1426 | |
---|
1427 | /**Function******************************************************************** |
---|
1428 | |
---|
1429 | Synopsis [If one child is zero, do explicitly what Restrict does or better] |
---|
1430 | |
---|
1431 | Description [If one child is zero, do explicitly what Restrict does or better. |
---|
1432 | First separate a variable and its child in the base case. In case of a cube |
---|
1433 | times a function, separate the cube and function. As a last resort, look in |
---|
1434 | tables.] |
---|
1435 | |
---|
1436 | SideEffects [Frees the BDDs in factorsNv. factorsNv itself is not freed |
---|
1437 | because it is freed above.] |
---|
1438 | |
---|
1439 | SeeAlso [BuildConjuncts] |
---|
1440 | |
---|
1441 | ******************************************************************************/ |
---|
1442 | static Conjuncts * |
---|
1443 | ZeroCase( |
---|
1444 | DdManager * dd, |
---|
1445 | DdNode * node, |
---|
1446 | Conjuncts * factorsNv, |
---|
1447 | st_table * ghTable, |
---|
1448 | st_table * cacheTable, |
---|
1449 | int switched) |
---|
1450 | { |
---|
1451 | int topid; |
---|
1452 | DdNode *g, *h, *g1, *g2, *h1, *h2, *x, *N, *G, *H, *Gv, *Gnv; |
---|
1453 | DdNode *Hv, *Hnv; |
---|
1454 | int value; |
---|
1455 | int outOfMem; |
---|
1456 | Conjuncts *factors; |
---|
1457 | |
---|
1458 | /* get var at this node */ |
---|
1459 | N = Cudd_Regular(node); |
---|
1460 | topid = N->index; |
---|
1461 | x = dd->vars[topid]; |
---|
1462 | x = (switched) ? Cudd_Not(x): x; |
---|
1463 | cuddRef(x); |
---|
1464 | |
---|
1465 | /* Seprate variable and child */ |
---|
1466 | if (factorsNv->g == one) { |
---|
1467 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1468 | factors = ALLOC(Conjuncts, 1); |
---|
1469 | if (factors == NULL) { |
---|
1470 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1471 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1472 | Cudd_RecursiveDeref(dd, x); |
---|
1473 | return(NULL); |
---|
1474 | } |
---|
1475 | factors->g = x; |
---|
1476 | factors->h = factorsNv->h; |
---|
1477 | /* cache the result*/ |
---|
1478 | if (st_insert(cacheTable, (char *)node, (char *)factors) == ST_OUT_OF_MEM) { |
---|
1479 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1480 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1481 | Cudd_RecursiveDeref(dd, x); |
---|
1482 | FREE(factors); |
---|
1483 | return NULL; |
---|
1484 | } |
---|
1485 | |
---|
1486 | /* store x in g table, the other node is already in the table */ |
---|
1487 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(x), &value)) { |
---|
1488 | value |= 1; |
---|
1489 | } else { |
---|
1490 | value = 1; |
---|
1491 | } |
---|
1492 | if (st_insert(ghTable, (char *)Cudd_Regular(x), (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1493 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1494 | return NULL; |
---|
1495 | } |
---|
1496 | return(factors); |
---|
1497 | } |
---|
1498 | |
---|
1499 | /* Seprate variable and child */ |
---|
1500 | if (factorsNv->h == one) { |
---|
1501 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1502 | factors = ALLOC(Conjuncts, 1); |
---|
1503 | if (factors == NULL) { |
---|
1504 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1505 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1506 | Cudd_RecursiveDeref(dd, x); |
---|
1507 | return(NULL); |
---|
1508 | } |
---|
1509 | factors->g = factorsNv->g; |
---|
1510 | factors->h = x; |
---|
1511 | /* cache the result. */ |
---|
1512 | if (st_insert(cacheTable, (char *)node, (char *)factors) == ST_OUT_OF_MEM) { |
---|
1513 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1514 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1515 | Cudd_RecursiveDeref(dd, x); |
---|
1516 | FREE(factors); |
---|
1517 | return(NULL); |
---|
1518 | } |
---|
1519 | /* store x in h table, the other node is already in the table */ |
---|
1520 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(x), &value)) { |
---|
1521 | value |= 2; |
---|
1522 | } else { |
---|
1523 | value = 2; |
---|
1524 | } |
---|
1525 | if (st_insert(ghTable, (char *)Cudd_Regular(x), (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1526 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1527 | return NULL; |
---|
1528 | } |
---|
1529 | return(factors); |
---|
1530 | } |
---|
1531 | |
---|
1532 | G = Cudd_Regular(factorsNv->g); |
---|
1533 | Gv = cuddT(G); |
---|
1534 | Gnv = cuddE(G); |
---|
1535 | Gv = Cudd_NotCond(Gv, Cudd_IsComplement(node)); |
---|
1536 | Gnv = Cudd_NotCond(Gnv, Cudd_IsComplement(node)); |
---|
1537 | /* if the child below is a variable */ |
---|
1538 | if ((Gv == zero) || (Gnv == zero)) { |
---|
1539 | h = factorsNv->h; |
---|
1540 | g = cuddBddAndRecur(dd, x, factorsNv->g); |
---|
1541 | if (g != NULL) cuddRef(g); |
---|
1542 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1543 | Cudd_RecursiveDeref(dd, x); |
---|
1544 | if (g == NULL) { |
---|
1545 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1546 | return NULL; |
---|
1547 | } |
---|
1548 | /* CheckTablesCacheAndReturn responsible for allocating |
---|
1549 | * factors structure., g,h referenced for cache store the |
---|
1550 | */ |
---|
1551 | factors = CheckTablesCacheAndReturn(node, |
---|
1552 | g, |
---|
1553 | h, |
---|
1554 | ghTable, |
---|
1555 | cacheTable); |
---|
1556 | if (factors == NULL) { |
---|
1557 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1558 | Cudd_RecursiveDeref(dd, g); |
---|
1559 | Cudd_RecursiveDeref(dd, h); |
---|
1560 | } |
---|
1561 | return(factors); |
---|
1562 | } |
---|
1563 | |
---|
1564 | H = Cudd_Regular(factorsNv->h); |
---|
1565 | Hv = cuddT(H); |
---|
1566 | Hnv = cuddE(H); |
---|
1567 | Hv = Cudd_NotCond(Hv, Cudd_IsComplement(node)); |
---|
1568 | Hnv = Cudd_NotCond(Hnv, Cudd_IsComplement(node)); |
---|
1569 | /* if the child below is a variable */ |
---|
1570 | if ((Hv == zero) || (Hnv == zero)) { |
---|
1571 | g = factorsNv->g; |
---|
1572 | h = cuddBddAndRecur(dd, x, factorsNv->h); |
---|
1573 | if (h!= NULL) cuddRef(h); |
---|
1574 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1575 | Cudd_RecursiveDeref(dd, x); |
---|
1576 | if (h == NULL) { |
---|
1577 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1578 | return NULL; |
---|
1579 | } |
---|
1580 | /* CheckTablesCacheAndReturn responsible for allocating |
---|
1581 | * factors structure.g,h referenced for table store |
---|
1582 | */ |
---|
1583 | factors = CheckTablesCacheAndReturn(node, |
---|
1584 | g, |
---|
1585 | h, |
---|
1586 | ghTable, |
---|
1587 | cacheTable); |
---|
1588 | if (factors == NULL) { |
---|
1589 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1590 | Cudd_RecursiveDeref(dd, g); |
---|
1591 | Cudd_RecursiveDeref(dd, h); |
---|
1592 | } |
---|
1593 | return(factors); |
---|
1594 | } |
---|
1595 | |
---|
1596 | /* build g1 = x*g; h1 = h */ |
---|
1597 | /* build g2 = g; h2 = x*h */ |
---|
1598 | Cudd_RecursiveDeref(dd, x); |
---|
1599 | h1 = factorsNv->h; |
---|
1600 | g1 = cuddBddAndRecur(dd, x, factorsNv->g); |
---|
1601 | if (g1 != NULL) cuddRef(g1); |
---|
1602 | if (g1 == NULL) { |
---|
1603 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1604 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1605 | return NULL; |
---|
1606 | } |
---|
1607 | |
---|
1608 | g2 = factorsNv->g; |
---|
1609 | h2 = cuddBddAndRecur(dd, x, factorsNv->h); |
---|
1610 | if (h2 != NULL) cuddRef(h2); |
---|
1611 | if (h2 == NULL) { |
---|
1612 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1613 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1614 | return NULL; |
---|
1615 | } |
---|
1616 | |
---|
1617 | /* check whether any pair is in tables */ |
---|
1618 | factors = CheckInTables(node, g1, h1, g2, h2, ghTable, cacheTable, &outOfMem); |
---|
1619 | if (outOfMem) { |
---|
1620 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1621 | Cudd_RecursiveDeref(dd, g1); |
---|
1622 | Cudd_RecursiveDeref(dd, h1); |
---|
1623 | Cudd_RecursiveDeref(dd, g2); |
---|
1624 | Cudd_RecursiveDeref(dd, h2); |
---|
1625 | return NULL; |
---|
1626 | } |
---|
1627 | if (factors != NULL) { |
---|
1628 | if ((factors->g == g1) || (factors->g == h1)) { |
---|
1629 | Cudd_RecursiveDeref(dd, g2); |
---|
1630 | Cudd_RecursiveDeref(dd, h2); |
---|
1631 | } else { |
---|
1632 | Cudd_RecursiveDeref(dd, g1); |
---|
1633 | Cudd_RecursiveDeref(dd, h1); |
---|
1634 | } |
---|
1635 | return factors; |
---|
1636 | } |
---|
1637 | |
---|
1638 | /* check for each pair in tables and choose one */ |
---|
1639 | factors = PickOnePair(node,g1, h1, g2, h2, ghTable, cacheTable); |
---|
1640 | if (factors == NULL) { |
---|
1641 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1642 | Cudd_RecursiveDeref(dd, g1); |
---|
1643 | Cudd_RecursiveDeref(dd, h1); |
---|
1644 | Cudd_RecursiveDeref(dd, g2); |
---|
1645 | Cudd_RecursiveDeref(dd, h2); |
---|
1646 | } else { |
---|
1647 | /* now free what was created and not used */ |
---|
1648 | if ((factors->g == g1) || (factors->g == h1)) { |
---|
1649 | Cudd_RecursiveDeref(dd, g2); |
---|
1650 | Cudd_RecursiveDeref(dd, h2); |
---|
1651 | } else { |
---|
1652 | Cudd_RecursiveDeref(dd, g1); |
---|
1653 | Cudd_RecursiveDeref(dd, h1); |
---|
1654 | } |
---|
1655 | } |
---|
1656 | |
---|
1657 | return(factors); |
---|
1658 | } /* end of ZeroCase */ |
---|
1659 | |
---|
1660 | |
---|
1661 | /**Function******************************************************************** |
---|
1662 | |
---|
1663 | Synopsis [Builds the conjuncts recursively, bottom up.] |
---|
1664 | |
---|
1665 | Description [Builds the conjuncts recursively, bottom up. Constants |
---|
1666 | are returned as (f, f). The cache is checked for previously computed |
---|
1667 | result. The decomposition points are determined by the local |
---|
1668 | reference count of this node and the longest distance from the |
---|
1669 | constant. At the decomposition point, the factors returned are (f, |
---|
1670 | 1). Recur on the two children. The order is determined by the |
---|
1671 | heavier branch. Combine the factors of the two children and pick the |
---|
1672 | one that already occurs in the gh table. Occurence in g is indicated |
---|
1673 | by value 1, occurence in h by 2, occurence in both 3.] |
---|
1674 | |
---|
1675 | SideEffects [] |
---|
1676 | |
---|
1677 | SeeAlso [cuddConjunctsAux] |
---|
1678 | |
---|
1679 | ******************************************************************************/ |
---|
1680 | static Conjuncts * |
---|
1681 | BuildConjuncts( |
---|
1682 | DdManager * dd, |
---|
1683 | DdNode * node, |
---|
1684 | st_table * distanceTable, |
---|
1685 | st_table * cacheTable, |
---|
1686 | int approxDistance, |
---|
1687 | int maxLocalRef, |
---|
1688 | st_table * ghTable, |
---|
1689 | st_table * mintermTable) |
---|
1690 | { |
---|
1691 | int topid, distance; |
---|
1692 | Conjuncts *factorsNv, *factorsNnv, *factors; |
---|
1693 | Conjuncts *dummy; |
---|
1694 | DdNode *N, *Nv, *Nnv, *temp, *g1, *g2, *h1, *h2, *topv; |
---|
1695 | double minNv = 0.0, minNnv = 0.0; |
---|
1696 | double *doubleDummy; |
---|
1697 | int switched =0; |
---|
1698 | int outOfMem; |
---|
1699 | int freeNv = 0, freeNnv = 0, freeTemp; |
---|
1700 | NodeStat *nodeStat; |
---|
1701 | int value; |
---|
1702 | |
---|
1703 | /* if f is constant, return (f,f) */ |
---|
1704 | if (Cudd_IsConstant(node)) { |
---|
1705 | factors = ALLOC(Conjuncts, 1); |
---|
1706 | if (factors == NULL) { |
---|
1707 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1708 | return(NULL); |
---|
1709 | } |
---|
1710 | factors->g = node; |
---|
1711 | factors->h = node; |
---|
1712 | return(FactorsComplement(factors)); |
---|
1713 | } |
---|
1714 | |
---|
1715 | /* If result (a pair of conjuncts) in cache, return the factors. */ |
---|
1716 | if (st_lookup(cacheTable, node, &dummy)) { |
---|
1717 | factors = dummy; |
---|
1718 | return(factors); |
---|
1719 | } |
---|
1720 | |
---|
1721 | /* check distance and local reference count of this node */ |
---|
1722 | N = Cudd_Regular(node); |
---|
1723 | if (!st_lookup(distanceTable, N, &nodeStat)) { |
---|
1724 | (void) fprintf(dd->err, "Not in table, Something wrong\n"); |
---|
1725 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
1726 | return(NULL); |
---|
1727 | } |
---|
1728 | distance = nodeStat->distance; |
---|
1729 | |
---|
1730 | /* at or below decomposition point, return (f, 1) */ |
---|
1731 | if (((nodeStat->localRef > maxLocalRef*2/3) && |
---|
1732 | (distance < approxDistance*2/3)) || |
---|
1733 | (distance <= approxDistance/4)) { |
---|
1734 | factors = ALLOC(Conjuncts, 1); |
---|
1735 | if (factors == NULL) { |
---|
1736 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1737 | return(NULL); |
---|
1738 | } |
---|
1739 | /* alternate assigning (f,1) */ |
---|
1740 | value = 0; |
---|
1741 | if (st_lookup_int(ghTable, (char *)Cudd_Regular(node), &value)) { |
---|
1742 | if (value == 3) { |
---|
1743 | if (!lastTimeG) { |
---|
1744 | factors->g = node; |
---|
1745 | factors->h = one; |
---|
1746 | lastTimeG = 1; |
---|
1747 | } else { |
---|
1748 | factors->g = one; |
---|
1749 | factors->h = node; |
---|
1750 | lastTimeG = 0; |
---|
1751 | } |
---|
1752 | } else if (value == 1) { |
---|
1753 | factors->g = node; |
---|
1754 | factors->h = one; |
---|
1755 | } else { |
---|
1756 | factors->g = one; |
---|
1757 | factors->h = node; |
---|
1758 | } |
---|
1759 | } else if (!lastTimeG) { |
---|
1760 | factors->g = node; |
---|
1761 | factors->h = one; |
---|
1762 | lastTimeG = 1; |
---|
1763 | value = 1; |
---|
1764 | if (st_insert(ghTable, (char *)Cudd_Regular(node), (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1765 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1766 | FREE(factors); |
---|
1767 | return NULL; |
---|
1768 | } |
---|
1769 | } else { |
---|
1770 | factors->g = one; |
---|
1771 | factors->h = node; |
---|
1772 | lastTimeG = 0; |
---|
1773 | value = 2; |
---|
1774 | if (st_insert(ghTable, (char *)Cudd_Regular(node), (char *)(long)value) == ST_OUT_OF_MEM) { |
---|
1775 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1776 | FREE(factors); |
---|
1777 | return NULL; |
---|
1778 | } |
---|
1779 | } |
---|
1780 | return(FactorsComplement(factors)); |
---|
1781 | } |
---|
1782 | |
---|
1783 | /* get the children and recur */ |
---|
1784 | Nv = cuddT(N); |
---|
1785 | Nnv = cuddE(N); |
---|
1786 | Nv = Cudd_NotCond(Nv, Cudd_IsComplement(node)); |
---|
1787 | Nnv = Cudd_NotCond(Nnv, Cudd_IsComplement(node)); |
---|
1788 | |
---|
1789 | /* Choose which subproblem to solve first based on the number of |
---|
1790 | * minterms. We go first where there are more minterms. |
---|
1791 | */ |
---|
1792 | if (!Cudd_IsConstant(Nv)) { |
---|
1793 | if (!st_lookup(mintermTable, Nv, &doubleDummy)) { |
---|
1794 | (void) fprintf(dd->err, "Not in table: Something wrong\n"); |
---|
1795 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
1796 | return(NULL); |
---|
1797 | } |
---|
1798 | minNv = *doubleDummy; |
---|
1799 | } |
---|
1800 | |
---|
1801 | if (!Cudd_IsConstant(Nnv)) { |
---|
1802 | if (!st_lookup(mintermTable, Nnv, &doubleDummy)) { |
---|
1803 | (void) fprintf(dd->err, "Not in table: Something wrong\n"); |
---|
1804 | dd->errorCode = CUDD_INTERNAL_ERROR; |
---|
1805 | return(NULL); |
---|
1806 | } |
---|
1807 | minNnv = *doubleDummy; |
---|
1808 | } |
---|
1809 | |
---|
1810 | if (minNv < minNnv) { |
---|
1811 | temp = Nv; |
---|
1812 | Nv = Nnv; |
---|
1813 | Nnv = temp; |
---|
1814 | switched = 1; |
---|
1815 | } |
---|
1816 | |
---|
1817 | /* build gt, ht recursively */ |
---|
1818 | if (Nv != zero) { |
---|
1819 | factorsNv = BuildConjuncts(dd, Nv, distanceTable, |
---|
1820 | cacheTable, approxDistance, maxLocalRef, |
---|
1821 | ghTable, mintermTable); |
---|
1822 | if (factorsNv == NULL) return(NULL); |
---|
1823 | freeNv = FactorsNotStored(factorsNv); |
---|
1824 | factorsNv = (freeNv) ? FactorsUncomplement(factorsNv) : factorsNv; |
---|
1825 | cuddRef(factorsNv->g); |
---|
1826 | cuddRef(factorsNv->h); |
---|
1827 | |
---|
1828 | /* Deal with the zero case */ |
---|
1829 | if (Nnv == zero) { |
---|
1830 | /* is responsible for freeing factorsNv */ |
---|
1831 | factors = ZeroCase(dd, node, factorsNv, ghTable, |
---|
1832 | cacheTable, switched); |
---|
1833 | if (freeNv) FREE(factorsNv); |
---|
1834 | return(factors); |
---|
1835 | } |
---|
1836 | } |
---|
1837 | |
---|
1838 | /* build ge, he recursively */ |
---|
1839 | if (Nnv != zero) { |
---|
1840 | factorsNnv = BuildConjuncts(dd, Nnv, distanceTable, |
---|
1841 | cacheTable, approxDistance, maxLocalRef, |
---|
1842 | ghTable, mintermTable); |
---|
1843 | if (factorsNnv == NULL) { |
---|
1844 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1845 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1846 | if (freeNv) FREE(factorsNv); |
---|
1847 | return(NULL); |
---|
1848 | } |
---|
1849 | freeNnv = FactorsNotStored(factorsNnv); |
---|
1850 | factorsNnv = (freeNnv) ? FactorsUncomplement(factorsNnv) : factorsNnv; |
---|
1851 | cuddRef(factorsNnv->g); |
---|
1852 | cuddRef(factorsNnv->h); |
---|
1853 | |
---|
1854 | /* Deal with the zero case */ |
---|
1855 | if (Nv == zero) { |
---|
1856 | /* is responsible for freeing factorsNv */ |
---|
1857 | factors = ZeroCase(dd, node, factorsNnv, ghTable, |
---|
1858 | cacheTable, switched); |
---|
1859 | if (freeNnv) FREE(factorsNnv); |
---|
1860 | return(factors); |
---|
1861 | } |
---|
1862 | } |
---|
1863 | |
---|
1864 | /* construct the 2 pairs */ |
---|
1865 | /* g1 = x*gt + x'*ge; h1 = x*ht + x'*he; */ |
---|
1866 | /* g2 = x*gt + x'*he; h2 = x*ht + x'*ge */ |
---|
1867 | if (switched) { |
---|
1868 | factors = factorsNnv; |
---|
1869 | factorsNnv = factorsNv; |
---|
1870 | factorsNv = factors; |
---|
1871 | freeTemp = freeNv; |
---|
1872 | freeNv = freeNnv; |
---|
1873 | freeNnv = freeTemp; |
---|
1874 | } |
---|
1875 | |
---|
1876 | /* Build the factors for this node. */ |
---|
1877 | topid = N->index; |
---|
1878 | topv = dd->vars[topid]; |
---|
1879 | |
---|
1880 | g1 = cuddBddIteRecur(dd, topv, factorsNv->g, factorsNnv->g); |
---|
1881 | if (g1 == NULL) { |
---|
1882 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1883 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1884 | Cudd_RecursiveDeref(dd, factorsNnv->g); |
---|
1885 | Cudd_RecursiveDeref(dd, factorsNnv->h); |
---|
1886 | if (freeNv) FREE(factorsNv); |
---|
1887 | if (freeNnv) FREE(factorsNnv); |
---|
1888 | return(NULL); |
---|
1889 | } |
---|
1890 | |
---|
1891 | cuddRef(g1); |
---|
1892 | |
---|
1893 | h1 = cuddBddIteRecur(dd, topv, factorsNv->h, factorsNnv->h); |
---|
1894 | if (h1 == NULL) { |
---|
1895 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1896 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1897 | Cudd_RecursiveDeref(dd, factorsNnv->g); |
---|
1898 | Cudd_RecursiveDeref(dd, factorsNnv->h); |
---|
1899 | Cudd_RecursiveDeref(dd, g1); |
---|
1900 | if (freeNv) FREE(factorsNv); |
---|
1901 | if (freeNnv) FREE(factorsNnv); |
---|
1902 | return(NULL); |
---|
1903 | } |
---|
1904 | |
---|
1905 | cuddRef(h1); |
---|
1906 | |
---|
1907 | g2 = cuddBddIteRecur(dd, topv, factorsNv->g, factorsNnv->h); |
---|
1908 | if (g2 == NULL) { |
---|
1909 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1910 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1911 | Cudd_RecursiveDeref(dd, factorsNnv->g); |
---|
1912 | Cudd_RecursiveDeref(dd, factorsNnv->h); |
---|
1913 | Cudd_RecursiveDeref(dd, g1); |
---|
1914 | Cudd_RecursiveDeref(dd, h1); |
---|
1915 | if (freeNv) FREE(factorsNv); |
---|
1916 | if (freeNnv) FREE(factorsNnv); |
---|
1917 | return(NULL); |
---|
1918 | } |
---|
1919 | cuddRef(g2); |
---|
1920 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1921 | Cudd_RecursiveDeref(dd, factorsNnv->h); |
---|
1922 | |
---|
1923 | h2 = cuddBddIteRecur(dd, topv, factorsNv->h, factorsNnv->g); |
---|
1924 | if (h2 == NULL) { |
---|
1925 | Cudd_RecursiveDeref(dd, factorsNv->g); |
---|
1926 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1927 | Cudd_RecursiveDeref(dd, factorsNnv->g); |
---|
1928 | Cudd_RecursiveDeref(dd, factorsNnv->h); |
---|
1929 | Cudd_RecursiveDeref(dd, g1); |
---|
1930 | Cudd_RecursiveDeref(dd, h1); |
---|
1931 | Cudd_RecursiveDeref(dd, g2); |
---|
1932 | if (freeNv) FREE(factorsNv); |
---|
1933 | if (freeNnv) FREE(factorsNnv); |
---|
1934 | return(NULL); |
---|
1935 | } |
---|
1936 | cuddRef(h2); |
---|
1937 | Cudd_RecursiveDeref(dd, factorsNv->h); |
---|
1938 | Cudd_RecursiveDeref(dd, factorsNnv->g); |
---|
1939 | if (freeNv) FREE(factorsNv); |
---|
1940 | if (freeNnv) FREE(factorsNnv); |
---|
1941 | |
---|
1942 | /* check for each pair in tables and choose one */ |
---|
1943 | factors = CheckInTables(node, g1, h1, g2, h2, ghTable, cacheTable, &outOfMem); |
---|
1944 | if (outOfMem) { |
---|
1945 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1946 | Cudd_RecursiveDeref(dd, g1); |
---|
1947 | Cudd_RecursiveDeref(dd, h1); |
---|
1948 | Cudd_RecursiveDeref(dd, g2); |
---|
1949 | Cudd_RecursiveDeref(dd, h2); |
---|
1950 | return(NULL); |
---|
1951 | } |
---|
1952 | if (factors != NULL) { |
---|
1953 | if ((factors->g == g1) || (factors->g == h1)) { |
---|
1954 | Cudd_RecursiveDeref(dd, g2); |
---|
1955 | Cudd_RecursiveDeref(dd, h2); |
---|
1956 | } else { |
---|
1957 | Cudd_RecursiveDeref(dd, g1); |
---|
1958 | Cudd_RecursiveDeref(dd, h1); |
---|
1959 | } |
---|
1960 | return(factors); |
---|
1961 | } |
---|
1962 | |
---|
1963 | /* if not in tables, pick one pair */ |
---|
1964 | factors = PickOnePair(node,g1, h1, g2, h2, ghTable, cacheTable); |
---|
1965 | if (factors == NULL) { |
---|
1966 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1967 | Cudd_RecursiveDeref(dd, g1); |
---|
1968 | Cudd_RecursiveDeref(dd, h1); |
---|
1969 | Cudd_RecursiveDeref(dd, g2); |
---|
1970 | Cudd_RecursiveDeref(dd, h2); |
---|
1971 | } else { |
---|
1972 | /* now free what was created and not used */ |
---|
1973 | if ((factors->g == g1) || (factors->g == h1)) { |
---|
1974 | Cudd_RecursiveDeref(dd, g2); |
---|
1975 | Cudd_RecursiveDeref(dd, h2); |
---|
1976 | } else { |
---|
1977 | Cudd_RecursiveDeref(dd, g1); |
---|
1978 | Cudd_RecursiveDeref(dd, h1); |
---|
1979 | } |
---|
1980 | } |
---|
1981 | |
---|
1982 | return(factors); |
---|
1983 | |
---|
1984 | } /* end of BuildConjuncts */ |
---|
1985 | |
---|
1986 | |
---|
1987 | /**Function******************************************************************** |
---|
1988 | |
---|
1989 | Synopsis [Procedure to compute two conjunctive factors of f and place in *c1 and *c2.] |
---|
1990 | |
---|
1991 | Description [Procedure to compute two conjunctive factors of f and |
---|
1992 | place in *c1 and *c2. Sets up the required data - table of distances |
---|
1993 | from the constant and local reference count. Also minterm table. ] |
---|
1994 | |
---|
1995 | SideEffects [] |
---|
1996 | |
---|
1997 | SeeAlso [] |
---|
1998 | |
---|
1999 | ******************************************************************************/ |
---|
2000 | static int |
---|
2001 | cuddConjunctsAux( |
---|
2002 | DdManager * dd, |
---|
2003 | DdNode * f, |
---|
2004 | DdNode ** c1, |
---|
2005 | DdNode ** c2) |
---|
2006 | { |
---|
2007 | st_table *distanceTable = NULL; |
---|
2008 | st_table *cacheTable = NULL; |
---|
2009 | st_table *mintermTable = NULL; |
---|
2010 | st_table *ghTable = NULL; |
---|
2011 | st_generator *stGen; |
---|
2012 | char *key, *value; |
---|
2013 | Conjuncts *factors; |
---|
2014 | int distance, approxDistance; |
---|
2015 | double max, minterms; |
---|
2016 | int freeFactors; |
---|
2017 | NodeStat *nodeStat; |
---|
2018 | int maxLocalRef; |
---|
2019 | |
---|
2020 | /* initialize */ |
---|
2021 | *c1 = NULL; |
---|
2022 | *c2 = NULL; |
---|
2023 | |
---|
2024 | /* initialize distances table */ |
---|
2025 | distanceTable = st_init_table(st_ptrcmp,st_ptrhash); |
---|
2026 | if (distanceTable == NULL) goto outOfMem; |
---|
2027 | |
---|
2028 | /* make the entry for the constant */ |
---|
2029 | nodeStat = ALLOC(NodeStat, 1); |
---|
2030 | if (nodeStat == NULL) goto outOfMem; |
---|
2031 | nodeStat->distance = 0; |
---|
2032 | nodeStat->localRef = 1; |
---|
2033 | if (st_insert(distanceTable, (char *)one, (char *)nodeStat) == ST_OUT_OF_MEM) { |
---|
2034 | goto outOfMem; |
---|
2035 | } |
---|
2036 | |
---|
2037 | /* Count node distances from constant. */ |
---|
2038 | nodeStat = CreateBotDist(f, distanceTable); |
---|
2039 | if (nodeStat == NULL) goto outOfMem; |
---|
2040 | |
---|
2041 | /* set the distance for the decomposition points */ |
---|
2042 | approxDistance = (DEPTH < nodeStat->distance) ? nodeStat->distance : DEPTH; |
---|
2043 | distance = nodeStat->distance; |
---|
2044 | |
---|
2045 | if (distance < approxDistance) { |
---|
2046 | /* Too small to bother. */ |
---|
2047 | *c1 = f; |
---|
2048 | *c2 = DD_ONE(dd); |
---|
2049 | cuddRef(*c1); cuddRef(*c2); |
---|
2050 | stGen = st_init_gen(distanceTable); |
---|
2051 | if (stGen == NULL) goto outOfMem; |
---|
2052 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
2053 | FREE(value); |
---|
2054 | } |
---|
2055 | st_free_gen(stGen); stGen = NULL; |
---|
2056 | st_free_table(distanceTable); |
---|
2057 | return(1); |
---|
2058 | } |
---|
2059 | |
---|
2060 | /* record the maximum local reference count */ |
---|
2061 | maxLocalRef = 0; |
---|
2062 | stGen = st_init_gen(distanceTable); |
---|
2063 | if (stGen == NULL) goto outOfMem; |
---|
2064 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
2065 | nodeStat = (NodeStat *)value; |
---|
2066 | maxLocalRef = (nodeStat->localRef > maxLocalRef) ? |
---|
2067 | nodeStat->localRef : maxLocalRef; |
---|
2068 | } |
---|
2069 | st_free_gen(stGen); stGen = NULL; |
---|
2070 | |
---|
2071 | |
---|
2072 | /* Count minterms for each node. */ |
---|
2073 | max = pow(2.0, (double)Cudd_SupportSize(dd,f)); /* potential overflow */ |
---|
2074 | mintermTable = st_init_table(st_ptrcmp,st_ptrhash); |
---|
2075 | if (mintermTable == NULL) goto outOfMem; |
---|
2076 | minterms = CountMinterms(f, max, mintermTable, dd->err); |
---|
2077 | if (minterms == -1.0) goto outOfMem; |
---|
2078 | |
---|
2079 | lastTimeG = Cudd_Random() & 1; |
---|
2080 | cacheTable = st_init_table(st_ptrcmp, st_ptrhash); |
---|
2081 | if (cacheTable == NULL) goto outOfMem; |
---|
2082 | ghTable = st_init_table(st_ptrcmp, st_ptrhash); |
---|
2083 | if (ghTable == NULL) goto outOfMem; |
---|
2084 | |
---|
2085 | /* Build conjuncts. */ |
---|
2086 | factors = BuildConjuncts(dd, f, distanceTable, cacheTable, |
---|
2087 | approxDistance, maxLocalRef, ghTable, mintermTable); |
---|
2088 | if (factors == NULL) goto outOfMem; |
---|
2089 | |
---|
2090 | /* free up tables */ |
---|
2091 | stGen = st_init_gen(distanceTable); |
---|
2092 | if (stGen == NULL) goto outOfMem; |
---|
2093 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
2094 | FREE(value); |
---|
2095 | } |
---|
2096 | st_free_gen(stGen); stGen = NULL; |
---|
2097 | st_free_table(distanceTable); distanceTable = NULL; |
---|
2098 | st_free_table(ghTable); ghTable = NULL; |
---|
2099 | |
---|
2100 | stGen = st_init_gen(mintermTable); |
---|
2101 | if (stGen == NULL) goto outOfMem; |
---|
2102 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
2103 | FREE(value); |
---|
2104 | } |
---|
2105 | st_free_gen(stGen); stGen = NULL; |
---|
2106 | st_free_table(mintermTable); mintermTable = NULL; |
---|
2107 | |
---|
2108 | freeFactors = FactorsNotStored(factors); |
---|
2109 | factors = (freeFactors) ? FactorsUncomplement(factors) : factors; |
---|
2110 | if (factors != NULL) { |
---|
2111 | *c1 = factors->g; |
---|
2112 | *c2 = factors->h; |
---|
2113 | cuddRef(*c1); |
---|
2114 | cuddRef(*c2); |
---|
2115 | if (freeFactors) FREE(factors); |
---|
2116 | |
---|
2117 | #if 0 |
---|
2118 | if ((*c1 == f) && (!Cudd_IsConstant(f))) { |
---|
2119 | assert(*c2 == one); |
---|
2120 | } |
---|
2121 | if ((*c2 == f) && (!Cudd_IsConstant(f))) { |
---|
2122 | assert(*c1 == one); |
---|
2123 | } |
---|
2124 | |
---|
2125 | if ((*c1 != one) && (!Cudd_IsConstant(f))) { |
---|
2126 | assert(!Cudd_bddLeq(dd, *c2, *c1)); |
---|
2127 | } |
---|
2128 | if ((*c2 != one) && (!Cudd_IsConstant(f))) { |
---|
2129 | assert(!Cudd_bddLeq(dd, *c1, *c2)); |
---|
2130 | } |
---|
2131 | #endif |
---|
2132 | } |
---|
2133 | |
---|
2134 | stGen = st_init_gen(cacheTable); |
---|
2135 | if (stGen == NULL) goto outOfMem; |
---|
2136 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
2137 | ConjunctsFree(dd, (Conjuncts *)value); |
---|
2138 | } |
---|
2139 | st_free_gen(stGen); stGen = NULL; |
---|
2140 | |
---|
2141 | st_free_table(cacheTable); cacheTable = NULL; |
---|
2142 | |
---|
2143 | return(1); |
---|
2144 | |
---|
2145 | outOfMem: |
---|
2146 | if (distanceTable != NULL) { |
---|
2147 | stGen = st_init_gen(distanceTable); |
---|
2148 | if (stGen == NULL) goto outOfMem; |
---|
2149 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
2150 | FREE(value); |
---|
2151 | } |
---|
2152 | st_free_gen(stGen); stGen = NULL; |
---|
2153 | st_free_table(distanceTable); distanceTable = NULL; |
---|
2154 | } |
---|
2155 | if (mintermTable != NULL) { |
---|
2156 | stGen = st_init_gen(mintermTable); |
---|
2157 | if (stGen == NULL) goto outOfMem; |
---|
2158 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
2159 | FREE(value); |
---|
2160 | } |
---|
2161 | st_free_gen(stGen); stGen = NULL; |
---|
2162 | st_free_table(mintermTable); mintermTable = NULL; |
---|
2163 | } |
---|
2164 | if (ghTable != NULL) st_free_table(ghTable); |
---|
2165 | if (cacheTable != NULL) { |
---|
2166 | stGen = st_init_gen(cacheTable); |
---|
2167 | if (stGen == NULL) goto outOfMem; |
---|
2168 | while(st_gen(stGen, (char **)&key, (char **)&value)) { |
---|
2169 | ConjunctsFree(dd, (Conjuncts *)value); |
---|
2170 | } |
---|
2171 | st_free_gen(stGen); stGen = NULL; |
---|
2172 | st_free_table(cacheTable); cacheTable = NULL; |
---|
2173 | } |
---|
2174 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
2175 | return(0); |
---|
2176 | |
---|
2177 | } /* end of cuddConjunctsAux */ |
---|