[13] | 1 | /**CFile*********************************************************************** |
---|
| 2 | |
---|
| 3 | FileName [cuddEssent.c] |
---|
| 4 | |
---|
| 5 | PackageName [cudd] |
---|
| 6 | |
---|
| 7 | Synopsis [Functions for the detection of essential variables.] |
---|
| 8 | |
---|
| 9 | Description [External procedures included in this file: |
---|
| 10 | <ul> |
---|
| 11 | <li> Cudd_FindEssential() |
---|
| 12 | <li> Cudd_bddIsVarEssential() |
---|
| 13 | <li> Cudd_FindTwoLiteralClauses() |
---|
| 14 | <li> Cudd_ReadIthClause() |
---|
| 15 | <li> Cudd_PrintTwoLiteralClauses() |
---|
| 16 | <li> Cudd_tlcInfoFree() |
---|
| 17 | </ul> |
---|
| 18 | Static procedures included in this module: |
---|
| 19 | <ul> |
---|
| 20 | <li> ddFindEssentialRecur() |
---|
| 21 | <li> ddFindTwoLiteralClausesRecur() |
---|
| 22 | <li> computeClauses() |
---|
| 23 | <li> computeClausesWithUniverse() |
---|
| 24 | <li> emptyClauseSet() |
---|
| 25 | <li> sentinelp() |
---|
| 26 | <li> equalp() |
---|
| 27 | <li> beforep() |
---|
| 28 | <li> oneliteralp() |
---|
| 29 | <li> impliedp() |
---|
| 30 | <li> bitVectorAlloc() |
---|
| 31 | <li> bitVectorClear() |
---|
| 32 | <li> bitVectorFree() |
---|
| 33 | <li> bitVectorRead() |
---|
| 34 | <li> bitVectorSet() |
---|
| 35 | <li> tlcInfoAlloc() |
---|
| 36 | </ul>] |
---|
| 37 | |
---|
| 38 | Author [Fabio Somenzi] |
---|
| 39 | |
---|
| 40 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
| 41 | |
---|
| 42 | All rights reserved. |
---|
| 43 | |
---|
| 44 | Redistribution and use in source and binary forms, with or without |
---|
| 45 | modification, are permitted provided that the following conditions |
---|
| 46 | are met: |
---|
| 47 | |
---|
| 48 | Redistributions of source code must retain the above copyright |
---|
| 49 | notice, this list of conditions and the following disclaimer. |
---|
| 50 | |
---|
| 51 | Redistributions in binary form must reproduce the above copyright |
---|
| 52 | notice, this list of conditions and the following disclaimer in the |
---|
| 53 | documentation and/or other materials provided with the distribution. |
---|
| 54 | |
---|
| 55 | Neither the name of the University of Colorado nor the names of its |
---|
| 56 | contributors may be used to endorse or promote products derived from |
---|
| 57 | this software without specific prior written permission. |
---|
| 58 | |
---|
| 59 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 60 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 61 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
| 62 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
| 63 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
| 64 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
| 65 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
| 66 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
| 67 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
| 68 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
| 69 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
| 70 | POSSIBILITY OF SUCH DAMAGE.] |
---|
| 71 | |
---|
| 72 | ******************************************************************************/ |
---|
| 73 | |
---|
| 74 | #include "util.h" |
---|
| 75 | #include "cuddInt.h" |
---|
| 76 | |
---|
| 77 | /*---------------------------------------------------------------------------*/ |
---|
| 78 | /* Constant declarations */ |
---|
| 79 | /*---------------------------------------------------------------------------*/ |
---|
| 80 | |
---|
| 81 | /* These definitions are for the bit vectors. */ |
---|
| 82 | #if SIZEOF_LONG == 8 |
---|
| 83 | #define BPL 64 |
---|
| 84 | #define LOGBPL 6 |
---|
| 85 | #else |
---|
| 86 | #define BPL 32 |
---|
| 87 | #define LOGBPL 5 |
---|
| 88 | #endif |
---|
| 89 | |
---|
| 90 | /*---------------------------------------------------------------------------*/ |
---|
| 91 | /* Stucture declarations */ |
---|
| 92 | /*---------------------------------------------------------------------------*/ |
---|
| 93 | |
---|
| 94 | /* This structure holds the set of clauses for a node. Each clause consists |
---|
| 95 | ** of two literals. For one-literal clauses, the second lietral is FALSE. |
---|
| 96 | ** Each literal is composed of a variable and a phase. A variable is a node |
---|
| 97 | ** index, and requires sizeof(DdHalfWord) bytes. The constant literals use |
---|
| 98 | ** CUDD_MAXINDEX as variable indicator. Each phase is a bit: 0 for positive |
---|
| 99 | ** phase, and 1 for negative phase. |
---|
| 100 | ** Variables and phases are stored separately for the sake of compactness. |
---|
| 101 | ** The variables are stored in an array of DdHalfWord's terminated by a |
---|
| 102 | ** sentinel (a pair of zeroes). The phases are stored in a bit vector. |
---|
| 103 | ** The cnt field holds, at the end, the number of clauses. |
---|
| 104 | ** The clauses of the set are kept sorted. For each clause, the first literal |
---|
| 105 | ** is the one of least index. So, the clause with literals +2 and -4 is stored |
---|
| 106 | ** as (+2,-4). A one-literal clause with literal +3 is stored as |
---|
| 107 | ** (+3,-CUDD_MAXINDEX). Clauses are sorted in decreasing order as follows: |
---|
| 108 | ** (+5,-7) |
---|
| 109 | ** (+5,+6) |
---|
| 110 | ** (-5,+7) |
---|
| 111 | ** (-4,FALSE) |
---|
| 112 | ** (-4,+8) |
---|
| 113 | ** ... |
---|
| 114 | ** That is, one first looks at the variable of the first literal, then at the |
---|
| 115 | ** phase of the first litral, then at the variable of the second literal, |
---|
| 116 | ** and finally at the phase of the second literal. |
---|
| 117 | */ |
---|
| 118 | struct DdTlcInfo { |
---|
| 119 | DdHalfWord *vars; |
---|
| 120 | long *phases; |
---|
| 121 | DdHalfWord cnt; |
---|
| 122 | }; |
---|
| 123 | |
---|
| 124 | /* This structure is for temporary representation of sets of clauses. It is |
---|
| 125 | ** meant to be used in link lists, when the number of clauses is not yet |
---|
| 126 | ** known. The encoding of a clause is the same as in DdTlcInfo, though |
---|
| 127 | ** the phase information is not stored in a bit array. */ |
---|
| 128 | struct TlClause { |
---|
| 129 | DdHalfWord v1, v2; |
---|
| 130 | short p1, p2; |
---|
| 131 | struct TlClause *next; |
---|
| 132 | }; |
---|
| 133 | |
---|
| 134 | /*---------------------------------------------------------------------------*/ |
---|
| 135 | /* Type declarations */ |
---|
| 136 | /*---------------------------------------------------------------------------*/ |
---|
| 137 | |
---|
| 138 | typedef long BitVector; |
---|
| 139 | typedef struct TlClause TlClause; |
---|
| 140 | |
---|
| 141 | /*---------------------------------------------------------------------------*/ |
---|
| 142 | /* Variable declarations */ |
---|
| 143 | /*---------------------------------------------------------------------------*/ |
---|
| 144 | |
---|
| 145 | #ifndef lint |
---|
| 146 | static char rcsid[] DD_UNUSED = "$Id: cuddEssent.c,v 1.24 2009/02/21 18:24:10 fabio Exp $"; |
---|
| 147 | #endif |
---|
| 148 | |
---|
| 149 | static BitVector *Tolv; |
---|
| 150 | static BitVector *Tolp; |
---|
| 151 | static BitVector *Eolv; |
---|
| 152 | static BitVector *Eolp; |
---|
| 153 | |
---|
| 154 | /*---------------------------------------------------------------------------*/ |
---|
| 155 | /* Macro declarations */ |
---|
| 156 | /*---------------------------------------------------------------------------*/ |
---|
| 157 | |
---|
| 158 | /**AutomaticStart*************************************************************/ |
---|
| 159 | |
---|
| 160 | /*---------------------------------------------------------------------------*/ |
---|
| 161 | /* Static function prototypes */ |
---|
| 162 | /*---------------------------------------------------------------------------*/ |
---|
| 163 | |
---|
| 164 | static DdNode * ddFindEssentialRecur (DdManager *dd, DdNode *f); |
---|
| 165 | static DdTlcInfo * ddFindTwoLiteralClausesRecur (DdManager * dd, DdNode * f, st_table *table); |
---|
| 166 | static DdTlcInfo * computeClauses (DdTlcInfo *Tres, DdTlcInfo *Eres, DdHalfWord label, int size); |
---|
| 167 | static DdTlcInfo * computeClausesWithUniverse (DdTlcInfo *Cres, DdHalfWord label, short phase); |
---|
| 168 | static DdTlcInfo * emptyClauseSet (void); |
---|
| 169 | static int sentinelp (DdHalfWord var1, DdHalfWord var2); |
---|
| 170 | static int equalp (DdHalfWord var1a, short phase1a, DdHalfWord var1b, short phase1b, DdHalfWord var2a, short phase2a, DdHalfWord var2b, short phase2b); |
---|
| 171 | static int beforep (DdHalfWord var1a, short phase1a, DdHalfWord var1b, short phase1b, DdHalfWord var2a, short phase2a, DdHalfWord var2b, short phase2b); |
---|
| 172 | static int oneliteralp (DdHalfWord var); |
---|
| 173 | static int impliedp (DdHalfWord var1, short phase1, DdHalfWord var2, short phase2, BitVector *olv, BitVector *olp); |
---|
| 174 | static BitVector * bitVectorAlloc (int size); |
---|
| 175 | DD_INLINE static void bitVectorClear (BitVector *vector, int size); |
---|
| 176 | static void bitVectorFree (BitVector *vector); |
---|
| 177 | DD_INLINE static short bitVectorRead (BitVector *vector, int i); |
---|
| 178 | DD_INLINE static void bitVectorSet (BitVector * vector, int i, short val); |
---|
| 179 | static DdTlcInfo * tlcInfoAlloc (void); |
---|
| 180 | |
---|
| 181 | /**AutomaticEnd***************************************************************/ |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | /*---------------------------------------------------------------------------*/ |
---|
| 185 | /* Definition of exported functions */ |
---|
| 186 | /*---------------------------------------------------------------------------*/ |
---|
| 187 | |
---|
| 188 | |
---|
| 189 | /**Function******************************************************************** |
---|
| 190 | |
---|
| 191 | Synopsis [Finds the essential variables of a DD.] |
---|
| 192 | |
---|
| 193 | Description [Returns the cube of the essential variables. A positive |
---|
| 194 | literal means that the variable must be set to 1 for the function to be |
---|
| 195 | 1. A negative literal means that the variable must be set to 0 for the |
---|
| 196 | function to be 1. Returns a pointer to the cube BDD if successful; |
---|
| 197 | NULL otherwise.] |
---|
| 198 | |
---|
| 199 | SideEffects [None] |
---|
| 200 | |
---|
| 201 | SeeAlso [Cudd_bddIsVarEssential] |
---|
| 202 | |
---|
| 203 | ******************************************************************************/ |
---|
| 204 | DdNode * |
---|
| 205 | Cudd_FindEssential( |
---|
| 206 | DdManager * dd, |
---|
| 207 | DdNode * f) |
---|
| 208 | { |
---|
| 209 | DdNode *res; |
---|
| 210 | |
---|
| 211 | do { |
---|
| 212 | dd->reordered = 0; |
---|
| 213 | res = ddFindEssentialRecur(dd,f); |
---|
| 214 | } while (dd->reordered == 1); |
---|
| 215 | return(res); |
---|
| 216 | |
---|
| 217 | } /* end of Cudd_FindEssential */ |
---|
| 218 | |
---|
| 219 | |
---|
| 220 | /**Function******************************************************************** |
---|
| 221 | |
---|
| 222 | Synopsis [Determines whether a given variable is essential with a |
---|
| 223 | given phase in a BDD.] |
---|
| 224 | |
---|
| 225 | Description [Determines whether a given variable is essential with a |
---|
| 226 | given phase in a BDD. Uses Cudd_bddIteConstant. Returns 1 if phase == 1 |
---|
| 227 | and f-->x_id, or if phase == 0 and f-->x_id'.] |
---|
| 228 | |
---|
| 229 | SideEffects [None] |
---|
| 230 | |
---|
| 231 | SeeAlso [Cudd_FindEssential] |
---|
| 232 | |
---|
| 233 | ******************************************************************************/ |
---|
| 234 | int |
---|
| 235 | Cudd_bddIsVarEssential( |
---|
| 236 | DdManager * manager, |
---|
| 237 | DdNode * f, |
---|
| 238 | int id, |
---|
| 239 | int phase) |
---|
| 240 | { |
---|
| 241 | DdNode *var; |
---|
| 242 | int res; |
---|
| 243 | |
---|
| 244 | var = Cudd_bddIthVar(manager, id); |
---|
| 245 | |
---|
| 246 | var = Cudd_NotCond(var,phase == 0); |
---|
| 247 | |
---|
| 248 | res = Cudd_bddLeq(manager, f, var); |
---|
| 249 | |
---|
| 250 | return(res); |
---|
| 251 | |
---|
| 252 | } /* end of Cudd_bddIsVarEssential */ |
---|
| 253 | |
---|
| 254 | |
---|
| 255 | /**Function******************************************************************** |
---|
| 256 | |
---|
| 257 | Synopsis [Finds the two literal clauses of a DD.] |
---|
| 258 | |
---|
| 259 | Description [Returns the one- and two-literal clauses of a DD. |
---|
| 260 | Returns a pointer to the structure holding the clauses if |
---|
| 261 | successful; NULL otherwise. For a constant DD, the empty set of clauses |
---|
| 262 | is returned. This is obviously correct for a non-zero constant. For the |
---|
| 263 | constant zero, it is based on the assumption that only those clauses |
---|
| 264 | containing variables in the support of the function are considered. Since |
---|
| 265 | the support of a constant function is empty, no clauses are returned.] |
---|
| 266 | |
---|
| 267 | SideEffects [None] |
---|
| 268 | |
---|
| 269 | SeeAlso [Cudd_FindEssential] |
---|
| 270 | |
---|
| 271 | ******************************************************************************/ |
---|
| 272 | DdTlcInfo * |
---|
| 273 | Cudd_FindTwoLiteralClauses( |
---|
| 274 | DdManager * dd, |
---|
| 275 | DdNode * f) |
---|
| 276 | { |
---|
| 277 | DdTlcInfo *res; |
---|
| 278 | st_table *table; |
---|
| 279 | st_generator *gen; |
---|
| 280 | DdTlcInfo *tlc; |
---|
| 281 | DdNode *node; |
---|
| 282 | int size = dd->size; |
---|
| 283 | |
---|
| 284 | if (Cudd_IsConstant(f)) { |
---|
| 285 | res = emptyClauseSet(); |
---|
| 286 | return(res); |
---|
| 287 | } |
---|
| 288 | table = st_init_table(st_ptrcmp,st_ptrhash); |
---|
| 289 | if (table == NULL) return(NULL); |
---|
| 290 | Tolv = bitVectorAlloc(size); |
---|
| 291 | if (Tolv == NULL) { |
---|
| 292 | st_free_table(table); |
---|
| 293 | return(NULL); |
---|
| 294 | } |
---|
| 295 | Tolp = bitVectorAlloc(size); |
---|
| 296 | if (Tolp == NULL) { |
---|
| 297 | st_free_table(table); |
---|
| 298 | bitVectorFree(Tolv); |
---|
| 299 | return(NULL); |
---|
| 300 | } |
---|
| 301 | Eolv = bitVectorAlloc(size); |
---|
| 302 | if (Eolv == NULL) { |
---|
| 303 | st_free_table(table); |
---|
| 304 | bitVectorFree(Tolv); |
---|
| 305 | bitVectorFree(Tolp); |
---|
| 306 | return(NULL); |
---|
| 307 | } |
---|
| 308 | Eolp = bitVectorAlloc(size); |
---|
| 309 | if (Eolp == NULL) { |
---|
| 310 | st_free_table(table); |
---|
| 311 | bitVectorFree(Tolv); |
---|
| 312 | bitVectorFree(Tolp); |
---|
| 313 | bitVectorFree(Eolv); |
---|
| 314 | return(NULL); |
---|
| 315 | } |
---|
| 316 | |
---|
| 317 | res = ddFindTwoLiteralClausesRecur(dd,f,table); |
---|
| 318 | /* Dispose of table contents and free table. */ |
---|
| 319 | st_foreach_item(table, gen, &node, &tlc) { |
---|
| 320 | if (node != f) { |
---|
| 321 | Cudd_tlcInfoFree(tlc); |
---|
| 322 | } |
---|
| 323 | } |
---|
| 324 | st_free_table(table); |
---|
| 325 | bitVectorFree(Tolv); |
---|
| 326 | bitVectorFree(Tolp); |
---|
| 327 | bitVectorFree(Eolv); |
---|
| 328 | bitVectorFree(Eolp); |
---|
| 329 | |
---|
| 330 | if (res != NULL) { |
---|
| 331 | int i; |
---|
| 332 | for (i = 0; !sentinelp(res->vars[i], res->vars[i+1]); i += 2); |
---|
| 333 | res->cnt = i >> 1; |
---|
| 334 | } |
---|
| 335 | |
---|
| 336 | return(res); |
---|
| 337 | |
---|
| 338 | } /* end of Cudd_FindTwoLiteralClauses */ |
---|
| 339 | |
---|
| 340 | |
---|
| 341 | /**Function******************************************************************** |
---|
| 342 | |
---|
| 343 | Synopsis [Accesses the i-th clause of a DD.] |
---|
| 344 | |
---|
| 345 | Description [Accesses the i-th clause of a DD given the clause set which |
---|
| 346 | must be already computed. Returns 1 if successful; 0 if i is out of range, |
---|
| 347 | or in case of error.] |
---|
| 348 | |
---|
| 349 | SideEffects [the four components of a clause are returned as side effects.] |
---|
| 350 | |
---|
| 351 | SeeAlso [Cudd_FindTwoLiteralClauses] |
---|
| 352 | |
---|
| 353 | ******************************************************************************/ |
---|
| 354 | int |
---|
| 355 | Cudd_ReadIthClause( |
---|
| 356 | DdTlcInfo * tlc, |
---|
| 357 | int i, |
---|
| 358 | DdHalfWord *var1, |
---|
| 359 | DdHalfWord *var2, |
---|
| 360 | int *phase1, |
---|
| 361 | int *phase2) |
---|
| 362 | { |
---|
| 363 | if (tlc == NULL) return(0); |
---|
| 364 | if (tlc->vars == NULL || tlc->phases == NULL) return(0); |
---|
| 365 | if (i < 0 || (unsigned) i >= tlc->cnt) return(0); |
---|
| 366 | *var1 = tlc->vars[2*i]; |
---|
| 367 | *var2 = tlc->vars[2*i+1]; |
---|
| 368 | *phase1 = (int) bitVectorRead(tlc->phases, 2*i); |
---|
| 369 | *phase2 = (int) bitVectorRead(tlc->phases, 2*i+1); |
---|
| 370 | return(1); |
---|
| 371 | |
---|
| 372 | } /* end of Cudd_ReadIthClause */ |
---|
| 373 | |
---|
| 374 | |
---|
| 375 | /**Function******************************************************************** |
---|
| 376 | |
---|
| 377 | Synopsis [Prints the two literal clauses of a DD.] |
---|
| 378 | |
---|
| 379 | Description [Prints the one- and two-literal clauses. Returns 1 if |
---|
| 380 | successful; 0 otherwise. The argument "names" can be NULL, in which case |
---|
| 381 | the variable indices are printed.] |
---|
| 382 | |
---|
| 383 | SideEffects [None] |
---|
| 384 | |
---|
| 385 | SeeAlso [Cudd_FindTwoLiteralClauses] |
---|
| 386 | |
---|
| 387 | ******************************************************************************/ |
---|
| 388 | int |
---|
| 389 | Cudd_PrintTwoLiteralClauses( |
---|
| 390 | DdManager * dd, |
---|
| 391 | DdNode * f, |
---|
| 392 | char **names, |
---|
| 393 | FILE *fp) |
---|
| 394 | { |
---|
| 395 | DdHalfWord *vars; |
---|
| 396 | BitVector *phases; |
---|
| 397 | int i; |
---|
| 398 | DdTlcInfo *res = Cudd_FindTwoLiteralClauses(dd, f); |
---|
| 399 | FILE *ifp = fp == NULL ? dd->out : fp; |
---|
| 400 | |
---|
| 401 | if (res == NULL) return(0); |
---|
| 402 | vars = res->vars; |
---|
| 403 | phases = res->phases; |
---|
| 404 | for (i = 0; !sentinelp(vars[i], vars[i+1]); i += 2) { |
---|
| 405 | if (names != NULL) { |
---|
| 406 | if (vars[i+1] == CUDD_MAXINDEX) { |
---|
| 407 | (void) fprintf(ifp, "%s%s\n", |
---|
| 408 | bitVectorRead(phases, i) ? "~" : " ", |
---|
| 409 | names[vars[i]]); |
---|
| 410 | } else { |
---|
| 411 | (void) fprintf(ifp, "%s%s | %s%s\n", |
---|
| 412 | bitVectorRead(phases, i) ? "~" : " ", |
---|
| 413 | names[vars[i]], |
---|
| 414 | bitVectorRead(phases, i+1) ? "~" : " ", |
---|
| 415 | names[vars[i+1]]); |
---|
| 416 | } |
---|
| 417 | } else { |
---|
| 418 | if (vars[i+1] == CUDD_MAXINDEX) { |
---|
| 419 | (void) fprintf(ifp, "%s%d\n", |
---|
| 420 | bitVectorRead(phases, i) ? "~" : " ", |
---|
| 421 | (int) vars[i]); |
---|
| 422 | } else { |
---|
| 423 | (void) fprintf(ifp, "%s%d | %s%d\n", |
---|
| 424 | bitVectorRead(phases, i) ? "~" : " ", |
---|
| 425 | (int) vars[i], |
---|
| 426 | bitVectorRead(phases, i+1) ? "~" : " ", |
---|
| 427 | (int) vars[i+1]); |
---|
| 428 | } |
---|
| 429 | } |
---|
| 430 | } |
---|
| 431 | Cudd_tlcInfoFree(res); |
---|
| 432 | |
---|
| 433 | return(1); |
---|
| 434 | |
---|
| 435 | } /* end of Cudd_PrintTwoLiteralClauses */ |
---|
| 436 | |
---|
| 437 | |
---|
| 438 | /**Function******************************************************************** |
---|
| 439 | |
---|
| 440 | Synopsis [Frees a DdTlcInfo Structure.] |
---|
| 441 | |
---|
| 442 | Description [Frees a DdTlcInfo Structure as well as the memory pointed |
---|
| 443 | by it.] |
---|
| 444 | |
---|
| 445 | SideEffects [None] |
---|
| 446 | |
---|
| 447 | SeeAlso [] |
---|
| 448 | |
---|
| 449 | ******************************************************************************/ |
---|
| 450 | void |
---|
| 451 | Cudd_tlcInfoFree( |
---|
| 452 | DdTlcInfo * t) |
---|
| 453 | { |
---|
| 454 | if (t->vars != NULL) FREE(t->vars); |
---|
| 455 | if (t->phases != NULL) FREE(t->phases); |
---|
| 456 | FREE(t); |
---|
| 457 | |
---|
| 458 | } /* end of Cudd_tlcInfoFree */ |
---|
| 459 | |
---|
| 460 | |
---|
| 461 | /*---------------------------------------------------------------------------*/ |
---|
| 462 | /* Definition of internal functions */ |
---|
| 463 | /*---------------------------------------------------------------------------*/ |
---|
| 464 | |
---|
| 465 | |
---|
| 466 | /*---------------------------------------------------------------------------*/ |
---|
| 467 | /* Definition of static functions */ |
---|
| 468 | /*---------------------------------------------------------------------------*/ |
---|
| 469 | |
---|
| 470 | |
---|
| 471 | /**Function******************************************************************** |
---|
| 472 | |
---|
| 473 | Synopsis [Implements the recursive step of Cudd_FindEssential.] |
---|
| 474 | |
---|
| 475 | Description [Implements the recursive step of Cudd_FindEssential. |
---|
| 476 | Returns a pointer to the cube BDD if successful; NULL otherwise.] |
---|
| 477 | |
---|
| 478 | SideEffects [None] |
---|
| 479 | |
---|
| 480 | ******************************************************************************/ |
---|
| 481 | static DdNode * |
---|
| 482 | ddFindEssentialRecur( |
---|
| 483 | DdManager * dd, |
---|
| 484 | DdNode * f) |
---|
| 485 | { |
---|
| 486 | DdNode *T, *E, *F; |
---|
| 487 | DdNode *essT, *essE, *res; |
---|
| 488 | int index; |
---|
| 489 | DdNode *one, *lzero, *azero; |
---|
| 490 | |
---|
| 491 | one = DD_ONE(dd); |
---|
| 492 | F = Cudd_Regular(f); |
---|
| 493 | /* If f is constant the set of essential variables is empty. */ |
---|
| 494 | if (cuddIsConstant(F)) return(one); |
---|
| 495 | |
---|
| 496 | res = cuddCacheLookup1(dd,Cudd_FindEssential,f); |
---|
| 497 | if (res != NULL) { |
---|
| 498 | return(res); |
---|
| 499 | } |
---|
| 500 | |
---|
| 501 | lzero = Cudd_Not(one); |
---|
| 502 | azero = DD_ZERO(dd); |
---|
| 503 | /* Find cofactors: here f is non-constant. */ |
---|
| 504 | T = cuddT(F); |
---|
| 505 | E = cuddE(F); |
---|
| 506 | if (Cudd_IsComplement(f)) { |
---|
| 507 | T = Cudd_Not(T); E = Cudd_Not(E); |
---|
| 508 | } |
---|
| 509 | |
---|
| 510 | index = F->index; |
---|
| 511 | if (Cudd_IsConstant(T) && T != lzero && T != azero) { |
---|
| 512 | /* if E is zero, index is essential, otherwise there are no |
---|
| 513 | ** essentials, because index is not essential and no other variable |
---|
| 514 | ** can be, since setting index = 1 makes the function constant and |
---|
| 515 | ** different from 0. |
---|
| 516 | */ |
---|
| 517 | if (E == lzero || E == azero) { |
---|
| 518 | res = dd->vars[index]; |
---|
| 519 | } else { |
---|
| 520 | res = one; |
---|
| 521 | } |
---|
| 522 | } else if (T == lzero || T == azero) { |
---|
| 523 | if (Cudd_IsConstant(E)) { /* E cannot be zero here */ |
---|
| 524 | res = Cudd_Not(dd->vars[index]); |
---|
| 525 | } else { /* E == non-constant */ |
---|
| 526 | /* find essentials in the else branch */ |
---|
| 527 | essE = ddFindEssentialRecur(dd,E); |
---|
| 528 | if (essE == NULL) { |
---|
| 529 | return(NULL); |
---|
| 530 | } |
---|
| 531 | cuddRef(essE); |
---|
| 532 | |
---|
| 533 | /* add index to the set with negative phase */ |
---|
| 534 | res = cuddUniqueInter(dd,index,one,Cudd_Not(essE)); |
---|
| 535 | if (res == NULL) { |
---|
| 536 | Cudd_RecursiveDeref(dd,essE); |
---|
| 537 | return(NULL); |
---|
| 538 | } |
---|
| 539 | res = Cudd_Not(res); |
---|
| 540 | cuddDeref(essE); |
---|
| 541 | } |
---|
| 542 | } else { /* T == non-const */ |
---|
| 543 | if (E == lzero || E == azero) { |
---|
| 544 | /* find essentials in the then branch */ |
---|
| 545 | essT = ddFindEssentialRecur(dd,T); |
---|
| 546 | if (essT == NULL) { |
---|
| 547 | return(NULL); |
---|
| 548 | } |
---|
| 549 | cuddRef(essT); |
---|
| 550 | |
---|
| 551 | /* add index to the set with positive phase */ |
---|
| 552 | /* use And because essT may be complemented */ |
---|
| 553 | res = cuddBddAndRecur(dd,dd->vars[index],essT); |
---|
| 554 | if (res == NULL) { |
---|
| 555 | Cudd_RecursiveDeref(dd,essT); |
---|
| 556 | return(NULL); |
---|
| 557 | } |
---|
| 558 | cuddDeref(essT); |
---|
| 559 | } else if (!Cudd_IsConstant(E)) { |
---|
| 560 | /* if E is a non-zero constant there are no essentials |
---|
| 561 | ** because T is non-constant. |
---|
| 562 | */ |
---|
| 563 | essT = ddFindEssentialRecur(dd,T); |
---|
| 564 | if (essT == NULL) { |
---|
| 565 | return(NULL); |
---|
| 566 | } |
---|
| 567 | if (essT == one) { |
---|
| 568 | res = one; |
---|
| 569 | } else { |
---|
| 570 | cuddRef(essT); |
---|
| 571 | essE = ddFindEssentialRecur(dd,E); |
---|
| 572 | if (essE == NULL) { |
---|
| 573 | Cudd_RecursiveDeref(dd,essT); |
---|
| 574 | return(NULL); |
---|
| 575 | } |
---|
| 576 | cuddRef(essE); |
---|
| 577 | |
---|
| 578 | /* res = intersection(essT, essE) */ |
---|
| 579 | res = cuddBddLiteralSetIntersectionRecur(dd,essT,essE); |
---|
| 580 | if (res == NULL) { |
---|
| 581 | Cudd_RecursiveDeref(dd,essT); |
---|
| 582 | Cudd_RecursiveDeref(dd,essE); |
---|
| 583 | return(NULL); |
---|
| 584 | } |
---|
| 585 | cuddRef(res); |
---|
| 586 | Cudd_RecursiveDeref(dd,essT); |
---|
| 587 | Cudd_RecursiveDeref(dd,essE); |
---|
| 588 | cuddDeref(res); |
---|
| 589 | } |
---|
| 590 | } else { /* E is a non-zero constant */ |
---|
| 591 | res = one; |
---|
| 592 | } |
---|
| 593 | } |
---|
| 594 | |
---|
| 595 | cuddCacheInsert1(dd,Cudd_FindEssential, f, res); |
---|
| 596 | return(res); |
---|
| 597 | |
---|
| 598 | } /* end of ddFindEssentialRecur */ |
---|
| 599 | |
---|
| 600 | |
---|
| 601 | /**Function******************************************************************** |
---|
| 602 | |
---|
| 603 | Synopsis [Implements the recursive step of Cudd_FindTwoLiteralClauses.] |
---|
| 604 | |
---|
| 605 | Description [Implements the recursive step of |
---|
| 606 | Cudd_FindTwoLiteralClauses. The DD node is assumed to be not |
---|
| 607 | constant. Returns a pointer to a set of clauses if successful; NULL |
---|
| 608 | otherwise.] |
---|
| 609 | |
---|
| 610 | SideEffects [None] |
---|
| 611 | |
---|
| 612 | SeeAlso [Cudd_FindTwoLiteralClauses] |
---|
| 613 | |
---|
| 614 | ******************************************************************************/ |
---|
| 615 | static DdTlcInfo * |
---|
| 616 | ddFindTwoLiteralClausesRecur( |
---|
| 617 | DdManager * dd, |
---|
| 618 | DdNode * f, |
---|
| 619 | st_table *table) |
---|
| 620 | { |
---|
| 621 | DdNode *T, *E, *F; |
---|
| 622 | DdNode *one, *lzero, *azero; |
---|
| 623 | DdTlcInfo *res, *Tres, *Eres; |
---|
| 624 | DdHalfWord index; |
---|
| 625 | |
---|
| 626 | F = Cudd_Regular(f); |
---|
| 627 | |
---|
| 628 | assert(!cuddIsConstant(F)); |
---|
| 629 | |
---|
| 630 | /* Check computed table. Separate entries are necessary for |
---|
| 631 | ** a node and its complement. We should update the counter here. */ |
---|
| 632 | if (st_lookup(table, f, &res)) { |
---|
| 633 | return(res); |
---|
| 634 | } |
---|
| 635 | |
---|
| 636 | /* Easy access to the constants for BDDs and ADDs. */ |
---|
| 637 | one = DD_ONE(dd); |
---|
| 638 | lzero = Cudd_Not(one); |
---|
| 639 | azero = DD_ZERO(dd); |
---|
| 640 | |
---|
| 641 | /* Find cofactors and variable labeling the top node. */ |
---|
| 642 | T = cuddT(F); E = cuddE(F); |
---|
| 643 | if (Cudd_IsComplement(f)) { |
---|
| 644 | T = Cudd_Not(T); E = Cudd_Not(E); |
---|
| 645 | } |
---|
| 646 | index = F->index; |
---|
| 647 | |
---|
| 648 | if (Cudd_IsConstant(T) && T != lzero && T != azero) { |
---|
| 649 | /* T is a non-zero constant. If E is zero, then this node's index |
---|
| 650 | ** is a one-literal clause. Otherwise, if E is a non-zero |
---|
| 651 | ** constant, there are no clauses for this node. Finally, |
---|
| 652 | ** if E is not constant, we recursively compute its clauses, and then |
---|
| 653 | ** merge using the empty set for T. */ |
---|
| 654 | if (E == lzero || E == azero) { |
---|
| 655 | /* Create the clause (index + 0). */ |
---|
| 656 | res = tlcInfoAlloc(); |
---|
| 657 | if (res == NULL) return(NULL); |
---|
| 658 | res->vars = ALLOC(DdHalfWord,4); |
---|
| 659 | if (res->vars == NULL) { |
---|
| 660 | FREE(res); |
---|
| 661 | return(NULL); |
---|
| 662 | } |
---|
| 663 | res->phases = bitVectorAlloc(2); |
---|
| 664 | if (res->phases == NULL) { |
---|
| 665 | FREE(res->vars); |
---|
| 666 | FREE(res); |
---|
| 667 | return(NULL); |
---|
| 668 | } |
---|
| 669 | res->vars[0] = index; |
---|
| 670 | res->vars[1] = CUDD_MAXINDEX; |
---|
| 671 | res->vars[2] = 0; |
---|
| 672 | res->vars[3] = 0; |
---|
| 673 | bitVectorSet(res->phases, 0, 0); /* positive phase */ |
---|
| 674 | bitVectorSet(res->phases, 1, 1); /* negative phase */ |
---|
| 675 | } else if (Cudd_IsConstant(E)) { |
---|
| 676 | /* If E is a non-zero constant, no clauses. */ |
---|
| 677 | res = emptyClauseSet(); |
---|
| 678 | } else { |
---|
| 679 | /* E is non-constant */ |
---|
| 680 | Tres = emptyClauseSet(); |
---|
| 681 | if (Tres == NULL) return(NULL); |
---|
| 682 | Eres = ddFindTwoLiteralClausesRecur(dd, E, table); |
---|
| 683 | if (Eres == NULL) { |
---|
| 684 | Cudd_tlcInfoFree(Tres); |
---|
| 685 | return(NULL); |
---|
| 686 | } |
---|
| 687 | res = computeClauses(Tres, Eres, index, dd->size); |
---|
| 688 | Cudd_tlcInfoFree(Tres); |
---|
| 689 | } |
---|
| 690 | } else if (T == lzero || T == azero) { |
---|
| 691 | /* T is zero. If E is a non-zero constant, then the |
---|
| 692 | ** complement of this node's index is a one-literal clause. |
---|
| 693 | ** Otherwise, if E is not constant, we recursively compute its |
---|
| 694 | ** clauses, and then merge using the universal set for T. */ |
---|
| 695 | if (Cudd_IsConstant(E)) { /* E cannot be zero here */ |
---|
| 696 | /* Create the clause (!index + 0). */ |
---|
| 697 | res = tlcInfoAlloc(); |
---|
| 698 | if (res == NULL) return(NULL); |
---|
| 699 | res->vars = ALLOC(DdHalfWord,4); |
---|
| 700 | if (res->vars == NULL) { |
---|
| 701 | FREE(res); |
---|
| 702 | return(NULL); |
---|
| 703 | } |
---|
| 704 | res->phases = bitVectorAlloc(2); |
---|
| 705 | if (res->phases == NULL) { |
---|
| 706 | FREE(res->vars); |
---|
| 707 | FREE(res); |
---|
| 708 | return(NULL); |
---|
| 709 | } |
---|
| 710 | res->vars[0] = index; |
---|
| 711 | res->vars[1] = CUDD_MAXINDEX; |
---|
| 712 | res->vars[2] = 0; |
---|
| 713 | res->vars[3] = 0; |
---|
| 714 | bitVectorSet(res->phases, 0, 1); /* negative phase */ |
---|
| 715 | bitVectorSet(res->phases, 1, 1); /* negative phase */ |
---|
| 716 | } else { /* E == non-constant */ |
---|
| 717 | Eres = ddFindTwoLiteralClausesRecur(dd, E, table); |
---|
| 718 | if (Eres == NULL) return(NULL); |
---|
| 719 | res = computeClausesWithUniverse(Eres, index, 1); |
---|
| 720 | } |
---|
| 721 | } else { /* T == non-const */ |
---|
| 722 | Tres = ddFindTwoLiteralClausesRecur(dd, T, table); |
---|
| 723 | if (Tres == NULL) return(NULL); |
---|
| 724 | if (Cudd_IsConstant(E)) { |
---|
| 725 | if (E == lzero || E == azero) { |
---|
| 726 | res = computeClausesWithUniverse(Tres, index, 0); |
---|
| 727 | } else { |
---|
| 728 | Eres = emptyClauseSet(); |
---|
| 729 | if (Eres == NULL) return(NULL); |
---|
| 730 | res = computeClauses(Tres, Eres, index, dd->size); |
---|
| 731 | Cudd_tlcInfoFree(Eres); |
---|
| 732 | } |
---|
| 733 | } else { |
---|
| 734 | Eres = ddFindTwoLiteralClausesRecur(dd, E, table); |
---|
| 735 | if (Eres == NULL) return(NULL); |
---|
| 736 | res = computeClauses(Tres, Eres, index, dd->size); |
---|
| 737 | } |
---|
| 738 | } |
---|
| 739 | |
---|
| 740 | /* Cache results. */ |
---|
| 741 | if (st_add_direct(table, (char *)f, (char *)res) == ST_OUT_OF_MEM) { |
---|
| 742 | FREE(res); |
---|
| 743 | return(NULL); |
---|
| 744 | } |
---|
| 745 | return(res); |
---|
| 746 | |
---|
| 747 | } /* end of ddFindTwoLiteralClausesRecur */ |
---|
| 748 | |
---|
| 749 | |
---|
| 750 | /**Function******************************************************************** |
---|
| 751 | |
---|
| 752 | Synopsis [Computes the two-literal clauses for a node.] |
---|
| 753 | |
---|
| 754 | Description [Computes the two-literal clauses for a node given the |
---|
| 755 | clauses for its children and the label of the node. Returns a |
---|
| 756 | pointer to a TclInfo structure if successful; NULL otherwise.] |
---|
| 757 | |
---|
| 758 | SideEffects [None] |
---|
| 759 | |
---|
| 760 | SeeAlso [computeClausesWithUniverse] |
---|
| 761 | |
---|
| 762 | ******************************************************************************/ |
---|
| 763 | static DdTlcInfo * |
---|
| 764 | computeClauses( |
---|
| 765 | DdTlcInfo *Tres /* list of clauses for T child */, |
---|
| 766 | DdTlcInfo *Eres /* list of clauses for E child */, |
---|
| 767 | DdHalfWord label /* variable labeling the current node */, |
---|
| 768 | int size /* number of variables in the manager */) |
---|
| 769 | { |
---|
| 770 | DdHalfWord *Tcv = Tres->vars; /* variables of clauses for the T child */ |
---|
| 771 | BitVector *Tcp = Tres->phases; /* phases of clauses for the T child */ |
---|
| 772 | DdHalfWord *Ecv = Eres->vars; /* variables of clauses for the E child */ |
---|
| 773 | BitVector *Ecp = Eres->phases; /* phases of clauses for the E child */ |
---|
| 774 | DdHalfWord *Vcv = NULL; /* pointer to variables of the clauses for v */ |
---|
| 775 | BitVector *Vcp = NULL; /* pointer to phases of the clauses for v */ |
---|
| 776 | DdTlcInfo *res = NULL; /* the set of clauses to be returned */ |
---|
| 777 | int pt = 0; /* index in the list of clauses of T */ |
---|
| 778 | int pe = 0; /* index in the list of clauses of E */ |
---|
| 779 | int cv = 0; /* counter of the clauses for this node */ |
---|
| 780 | TlClause *iclauses = NULL; /* list of inherited clauses */ |
---|
| 781 | TlClause *tclauses = NULL; /* list of 1-literal clauses of T */ |
---|
| 782 | TlClause *eclauses = NULL; /* list of 1-literal clauses of E */ |
---|
| 783 | TlClause *nclauses = NULL; /* list of new (non-inherited) clauses */ |
---|
| 784 | TlClause *lnclause = NULL; /* pointer to last new clause */ |
---|
| 785 | TlClause *newclause; /* temporary pointer to new clauses */ |
---|
| 786 | |
---|
| 787 | /* Initialize sets of one-literal clauses. The one-literal clauses |
---|
| 788 | ** are stored redundantly. These sets allow constant-time lookup, which |
---|
| 789 | ** we need when we check for implication of a two-literal clause by a |
---|
| 790 | ** one-literal clause. The linked lists allow fast sequential |
---|
| 791 | ** processing. */ |
---|
| 792 | bitVectorClear(Tolv, size); |
---|
| 793 | bitVectorClear(Tolp, size); |
---|
| 794 | bitVectorClear(Eolv, size); |
---|
| 795 | bitVectorClear(Eolp, size); |
---|
| 796 | |
---|
| 797 | /* Initialize result structure. */ |
---|
| 798 | res = tlcInfoAlloc(); |
---|
| 799 | if (res == NULL) goto cleanup; |
---|
| 800 | |
---|
| 801 | /* Scan the two input list. Extract inherited two-literal clauses |
---|
| 802 | ** and set aside one-literal clauses from each list. The incoming lists |
---|
| 803 | ** are sorted in the order defined by beforep. The three linked list |
---|
| 804 | ** produced by this loop are sorted in the reverse order because we |
---|
| 805 | ** always append to the front of the lists. |
---|
| 806 | ** The inherited clauses are those clauses (both one- and two-literal) |
---|
| 807 | ** that are common to both children; and the two-literal clauses of |
---|
| 808 | ** one child that are implied by a one-literal clause of the other |
---|
| 809 | ** child. */ |
---|
| 810 | while (!sentinelp(Tcv[pt], Tcv[pt+1]) || !sentinelp(Ecv[pe], Ecv[pe+1])) { |
---|
| 811 | if (equalp(Tcv[pt], bitVectorRead(Tcp, pt), |
---|
| 812 | Tcv[pt+1], bitVectorRead(Tcp, pt+1), |
---|
| 813 | Ecv[pe], bitVectorRead(Ecp, pe), |
---|
| 814 | Ecv[pe+1], bitVectorRead(Ecp, pe+1))) { |
---|
| 815 | /* Add clause to inherited list. */ |
---|
| 816 | newclause = ALLOC(TlClause,1); |
---|
| 817 | if (newclause == NULL) goto cleanup; |
---|
| 818 | newclause->v1 = Tcv[pt]; |
---|
| 819 | newclause->v2 = Tcv[pt+1]; |
---|
| 820 | newclause->p1 = bitVectorRead(Tcp, pt); |
---|
| 821 | newclause->p2 = bitVectorRead(Tcp, pt+1); |
---|
| 822 | newclause->next = iclauses; |
---|
| 823 | iclauses = newclause; |
---|
| 824 | pt += 2; pe += 2; cv++; |
---|
| 825 | } else if (beforep(Tcv[pt], bitVectorRead(Tcp, pt), |
---|
| 826 | Tcv[pt+1], bitVectorRead(Tcp, pt+1), |
---|
| 827 | Ecv[pe], bitVectorRead(Ecp, pe), |
---|
| 828 | Ecv[pe+1], bitVectorRead(Ecp, pe+1))) { |
---|
| 829 | if (oneliteralp(Tcv[pt+1])) { |
---|
| 830 | /* Add this one-literal clause to the T set. */ |
---|
| 831 | newclause = ALLOC(TlClause,1); |
---|
| 832 | if (newclause == NULL) goto cleanup; |
---|
| 833 | newclause->v1 = Tcv[pt]; |
---|
| 834 | newclause->v2 = CUDD_MAXINDEX; |
---|
| 835 | newclause->p1 = bitVectorRead(Tcp, pt); |
---|
| 836 | newclause->p2 = 1; |
---|
| 837 | newclause->next = tclauses; |
---|
| 838 | tclauses = newclause; |
---|
| 839 | bitVectorSet(Tolv, Tcv[pt], 1); |
---|
| 840 | bitVectorSet(Tolp, Tcv[pt], bitVectorRead(Tcp, pt)); |
---|
| 841 | } else { |
---|
| 842 | if (impliedp(Tcv[pt], bitVectorRead(Tcp, pt), |
---|
| 843 | Tcv[pt+1], bitVectorRead(Tcp, pt+1), |
---|
| 844 | Eolv, Eolp)) { |
---|
| 845 | /* Add clause to inherited list. */ |
---|
| 846 | newclause = ALLOC(TlClause,1); |
---|
| 847 | if (newclause == NULL) goto cleanup; |
---|
| 848 | newclause->v1 = Tcv[pt]; |
---|
| 849 | newclause->v2 = Tcv[pt+1]; |
---|
| 850 | newclause->p1 = bitVectorRead(Tcp, pt); |
---|
| 851 | newclause->p2 = bitVectorRead(Tcp, pt+1); |
---|
| 852 | newclause->next = iclauses; |
---|
| 853 | iclauses = newclause; |
---|
| 854 | cv++; |
---|
| 855 | } |
---|
| 856 | } |
---|
| 857 | pt += 2; |
---|
| 858 | } else { /* !beforep() */ |
---|
| 859 | if (oneliteralp(Ecv[pe+1])) { |
---|
| 860 | /* Add this one-literal clause to the E set. */ |
---|
| 861 | newclause = ALLOC(TlClause,1); |
---|
| 862 | if (newclause == NULL) goto cleanup; |
---|
| 863 | newclause->v1 = Ecv[pe]; |
---|
| 864 | newclause->v2 = CUDD_MAXINDEX; |
---|
| 865 | newclause->p1 = bitVectorRead(Ecp, pe); |
---|
| 866 | newclause->p2 = 1; |
---|
| 867 | newclause->next = eclauses; |
---|
| 868 | eclauses = newclause; |
---|
| 869 | bitVectorSet(Eolv, Ecv[pe], 1); |
---|
| 870 | bitVectorSet(Eolp, Ecv[pe], bitVectorRead(Ecp, pe)); |
---|
| 871 | } else { |
---|
| 872 | if (impliedp(Ecv[pe], bitVectorRead(Ecp, pe), |
---|
| 873 | Ecv[pe+1], bitVectorRead(Ecp, pe+1), |
---|
| 874 | Tolv, Tolp)) { |
---|
| 875 | /* Add clause to inherited list. */ |
---|
| 876 | newclause = ALLOC(TlClause,1); |
---|
| 877 | if (newclause == NULL) goto cleanup; |
---|
| 878 | newclause->v1 = Ecv[pe]; |
---|
| 879 | newclause->v2 = Ecv[pe+1]; |
---|
| 880 | newclause->p1 = bitVectorRead(Ecp, pe); |
---|
| 881 | newclause->p2 = bitVectorRead(Ecp, pe+1); |
---|
| 882 | newclause->next = iclauses; |
---|
| 883 | iclauses = newclause; |
---|
| 884 | cv++; |
---|
| 885 | } |
---|
| 886 | } |
---|
| 887 | pe += 2; |
---|
| 888 | } |
---|
| 889 | } |
---|
| 890 | |
---|
| 891 | /* Add one-literal clauses for the label variable to the front of |
---|
| 892 | ** the two lists. */ |
---|
| 893 | newclause = ALLOC(TlClause,1); |
---|
| 894 | if (newclause == NULL) goto cleanup; |
---|
| 895 | newclause->v1 = label; |
---|
| 896 | newclause->v2 = CUDD_MAXINDEX; |
---|
| 897 | newclause->p1 = 0; |
---|
| 898 | newclause->p2 = 1; |
---|
| 899 | newclause->next = tclauses; |
---|
| 900 | tclauses = newclause; |
---|
| 901 | newclause = ALLOC(TlClause,1); |
---|
| 902 | if (newclause == NULL) goto cleanup; |
---|
| 903 | newclause->v1 = label; |
---|
| 904 | newclause->v2 = CUDD_MAXINDEX; |
---|
| 905 | newclause->p1 = 1; |
---|
| 906 | newclause->p2 = 1; |
---|
| 907 | newclause->next = eclauses; |
---|
| 908 | eclauses = newclause; |
---|
| 909 | |
---|
| 910 | /* Produce the non-inherited clauses. We preserve the "reverse" |
---|
| 911 | ** order of the two input lists by appending to the end of the |
---|
| 912 | ** list. In this way, iclauses and nclauses are consistent. */ |
---|
| 913 | while (tclauses != NULL && eclauses != NULL) { |
---|
| 914 | if (beforep(eclauses->v1, eclauses->p1, eclauses->v2, eclauses->p2, |
---|
| 915 | tclauses->v1, tclauses->p1, tclauses->v2, tclauses->p2)) { |
---|
| 916 | TlClause *nextclause = tclauses->next; |
---|
| 917 | TlClause *otherclauses = eclauses; |
---|
| 918 | while (otherclauses != NULL) { |
---|
| 919 | if (tclauses->v1 != otherclauses->v1) { |
---|
| 920 | newclause = ALLOC(TlClause,1); |
---|
| 921 | if (newclause == NULL) goto cleanup; |
---|
| 922 | newclause->v1 = tclauses->v1; |
---|
| 923 | newclause->v2 = otherclauses->v1; |
---|
| 924 | newclause->p1 = tclauses->p1; |
---|
| 925 | newclause->p2 = otherclauses->p1; |
---|
| 926 | newclause->next = NULL; |
---|
| 927 | if (nclauses == NULL) { |
---|
| 928 | nclauses = newclause; |
---|
| 929 | lnclause = newclause; |
---|
| 930 | } else { |
---|
| 931 | lnclause->next = newclause; |
---|
| 932 | lnclause = newclause; |
---|
| 933 | } |
---|
| 934 | cv++; |
---|
| 935 | } |
---|
| 936 | otherclauses = otherclauses->next; |
---|
| 937 | } |
---|
| 938 | FREE(tclauses); |
---|
| 939 | tclauses = nextclause; |
---|
| 940 | } else { |
---|
| 941 | TlClause *nextclause = eclauses->next; |
---|
| 942 | TlClause *otherclauses = tclauses; |
---|
| 943 | while (otherclauses != NULL) { |
---|
| 944 | if (eclauses->v1 != otherclauses->v1) { |
---|
| 945 | newclause = ALLOC(TlClause,1); |
---|
| 946 | if (newclause == NULL) goto cleanup; |
---|
| 947 | newclause->v1 = eclauses->v1; |
---|
| 948 | newclause->v2 = otherclauses->v1; |
---|
| 949 | newclause->p1 = eclauses->p1; |
---|
| 950 | newclause->p2 = otherclauses->p1; |
---|
| 951 | newclause->next = NULL; |
---|
| 952 | if (nclauses == NULL) { |
---|
| 953 | nclauses = newclause; |
---|
| 954 | lnclause = newclause; |
---|
| 955 | } else { |
---|
| 956 | lnclause->next = newclause; |
---|
| 957 | lnclause = newclause; |
---|
| 958 | } |
---|
| 959 | cv++; |
---|
| 960 | } |
---|
| 961 | otherclauses = otherclauses->next; |
---|
| 962 | } |
---|
| 963 | FREE(eclauses); |
---|
| 964 | eclauses = nextclause; |
---|
| 965 | } |
---|
| 966 | } |
---|
| 967 | while (tclauses != NULL) { |
---|
| 968 | TlClause *nextclause = tclauses->next; |
---|
| 969 | FREE(tclauses); |
---|
| 970 | tclauses = nextclause; |
---|
| 971 | } |
---|
| 972 | while (eclauses != NULL) { |
---|
| 973 | TlClause *nextclause = eclauses->next; |
---|
| 974 | FREE(eclauses); |
---|
| 975 | eclauses = nextclause; |
---|
| 976 | } |
---|
| 977 | |
---|
| 978 | /* Merge inherited and non-inherited clauses. Now that we know the |
---|
| 979 | ** total number, we allocate the arrays, and we fill them bottom-up |
---|
| 980 | ** to restore the proper ordering. */ |
---|
| 981 | Vcv = ALLOC(DdHalfWord, 2*(cv+1)); |
---|
| 982 | if (Vcv == NULL) goto cleanup; |
---|
| 983 | if (cv > 0) { |
---|
| 984 | Vcp = bitVectorAlloc(2*cv); |
---|
| 985 | if (Vcp == NULL) goto cleanup; |
---|
| 986 | } else { |
---|
| 987 | Vcp = NULL; |
---|
| 988 | } |
---|
| 989 | res->vars = Vcv; |
---|
| 990 | res->phases = Vcp; |
---|
| 991 | /* Add sentinel. */ |
---|
| 992 | Vcv[2*cv] = 0; |
---|
| 993 | Vcv[2*cv+1] = 0; |
---|
| 994 | while (iclauses != NULL || nclauses != NULL) { |
---|
| 995 | TlClause *nextclause; |
---|
| 996 | cv--; |
---|
| 997 | if (nclauses == NULL || (iclauses != NULL && |
---|
| 998 | beforep(nclauses->v1, nclauses->p1, nclauses->v2, nclauses->p2, |
---|
| 999 | iclauses->v1, iclauses->p1, iclauses->v2, iclauses->p2))) { |
---|
| 1000 | Vcv[2*cv] = iclauses->v1; |
---|
| 1001 | Vcv[2*cv+1] = iclauses->v2; |
---|
| 1002 | bitVectorSet(Vcp, 2*cv, iclauses->p1); |
---|
| 1003 | bitVectorSet(Vcp, 2*cv+1, iclauses->p2); |
---|
| 1004 | nextclause = iclauses->next; |
---|
| 1005 | FREE(iclauses); |
---|
| 1006 | iclauses = nextclause; |
---|
| 1007 | } else { |
---|
| 1008 | Vcv[2*cv] = nclauses->v1; |
---|
| 1009 | Vcv[2*cv+1] = nclauses->v2; |
---|
| 1010 | bitVectorSet(Vcp, 2*cv, nclauses->p1); |
---|
| 1011 | bitVectorSet(Vcp, 2*cv+1, nclauses->p2); |
---|
| 1012 | nextclause = nclauses->next; |
---|
| 1013 | FREE(nclauses); |
---|
| 1014 | nclauses = nextclause; |
---|
| 1015 | } |
---|
| 1016 | } |
---|
| 1017 | assert(cv == 0); |
---|
| 1018 | |
---|
| 1019 | return(res); |
---|
| 1020 | |
---|
| 1021 | cleanup: |
---|
| 1022 | if (res != NULL) Cudd_tlcInfoFree(res); |
---|
| 1023 | while (iclauses != NULL) { |
---|
| 1024 | TlClause *nextclause = iclauses->next; |
---|
| 1025 | FREE(iclauses); |
---|
| 1026 | iclauses = nextclause; |
---|
| 1027 | } |
---|
| 1028 | while (nclauses != NULL) { |
---|
| 1029 | TlClause *nextclause = nclauses->next; |
---|
| 1030 | FREE(nclauses); |
---|
| 1031 | nclauses = nextclause; |
---|
| 1032 | } |
---|
| 1033 | while (tclauses != NULL) { |
---|
| 1034 | TlClause *nextclause = tclauses->next; |
---|
| 1035 | FREE(tclauses); |
---|
| 1036 | tclauses = nextclause; |
---|
| 1037 | } |
---|
| 1038 | while (eclauses != NULL) { |
---|
| 1039 | TlClause *nextclause = eclauses->next; |
---|
| 1040 | FREE(eclauses); |
---|
| 1041 | eclauses = nextclause; |
---|
| 1042 | } |
---|
| 1043 | |
---|
| 1044 | return(NULL); |
---|
| 1045 | |
---|
| 1046 | } /* end of computeClauses */ |
---|
| 1047 | |
---|
| 1048 | |
---|
| 1049 | /**Function******************************************************************** |
---|
| 1050 | |
---|
| 1051 | Synopsis [Computes the two-literal clauses for a node.] |
---|
| 1052 | |
---|
| 1053 | Description [Computes the two-literal clauses for a node with a zero |
---|
| 1054 | child, given the clauses for its other child and the label of the |
---|
| 1055 | node. Returns a pointer to a TclInfo structure if successful; NULL |
---|
| 1056 | otherwise.] |
---|
| 1057 | |
---|
| 1058 | SideEffects [None] |
---|
| 1059 | |
---|
| 1060 | SeeAlso [computeClauses] |
---|
| 1061 | |
---|
| 1062 | ******************************************************************************/ |
---|
| 1063 | static DdTlcInfo * |
---|
| 1064 | computeClausesWithUniverse( |
---|
| 1065 | DdTlcInfo *Cres /* list of clauses for child */, |
---|
| 1066 | DdHalfWord label /* variable labeling the current node */, |
---|
| 1067 | short phase /* 0 if E child is zero; 1 if T child is zero */) |
---|
| 1068 | { |
---|
| 1069 | DdHalfWord *Ccv = Cres->vars; /* variables of clauses for child */ |
---|
| 1070 | BitVector *Ccp = Cres->phases; /* phases of clauses for child */ |
---|
| 1071 | DdHalfWord *Vcv = NULL; /* pointer to the variables of the clauses for v */ |
---|
| 1072 | BitVector *Vcp = NULL; /* pointer to the phases of the clauses for v */ |
---|
| 1073 | DdTlcInfo *res = NULL; /* the set of clauses to be returned */ |
---|
| 1074 | int i; |
---|
| 1075 | |
---|
| 1076 | /* Initialize result. */ |
---|
| 1077 | res = tlcInfoAlloc(); |
---|
| 1078 | if (res == NULL) goto cleanup; |
---|
| 1079 | /* Count entries for new list and allocate accordingly. */ |
---|
| 1080 | for (i = 0; !sentinelp(Ccv[i], Ccv[i+1]); i += 2); |
---|
| 1081 | /* At this point, i is twice the number of clauses in the child's |
---|
| 1082 | ** list. We need four more entries for this node: 2 for the one-literal |
---|
| 1083 | ** clause for the label, and 2 for the sentinel. */ |
---|
| 1084 | Vcv = ALLOC(DdHalfWord,i+4); |
---|
| 1085 | if (Vcv == NULL) goto cleanup; |
---|
| 1086 | Vcp = bitVectorAlloc(i+4); |
---|
| 1087 | if (Vcp == NULL) goto cleanup; |
---|
| 1088 | res->vars = Vcv; |
---|
| 1089 | res->phases = Vcp; |
---|
| 1090 | /* Copy old list into new. */ |
---|
| 1091 | for (i = 0; !sentinelp(Ccv[i], Ccv[i+1]); i += 2) { |
---|
| 1092 | Vcv[i] = Ccv[i]; |
---|
| 1093 | Vcv[i+1] = Ccv[i+1]; |
---|
| 1094 | bitVectorSet(Vcp, i, bitVectorRead(Ccp, i)); |
---|
| 1095 | bitVectorSet(Vcp, i+1, bitVectorRead(Ccp, i+1)); |
---|
| 1096 | } |
---|
| 1097 | /* Add clause corresponding to label. */ |
---|
| 1098 | Vcv[i] = label; |
---|
| 1099 | bitVectorSet(Vcp, i, phase); |
---|
| 1100 | i++; |
---|
| 1101 | Vcv[i] = CUDD_MAXINDEX; |
---|
| 1102 | bitVectorSet(Vcp, i, 1); |
---|
| 1103 | i++; |
---|
| 1104 | /* Add sentinel. */ |
---|
| 1105 | Vcv[i] = 0; |
---|
| 1106 | Vcv[i+1] = 0; |
---|
| 1107 | bitVectorSet(Vcp, i, 0); |
---|
| 1108 | bitVectorSet(Vcp, i+1, 0); |
---|
| 1109 | |
---|
| 1110 | return(res); |
---|
| 1111 | |
---|
| 1112 | cleanup: |
---|
| 1113 | /* Vcp is guaranteed to be NULL here. Hence, we do not try to free it. */ |
---|
| 1114 | if (Vcv != NULL) FREE(Vcv); |
---|
| 1115 | if (res != NULL) Cudd_tlcInfoFree(res); |
---|
| 1116 | |
---|
| 1117 | return(NULL); |
---|
| 1118 | |
---|
| 1119 | } /* end of computeClausesWithUniverse */ |
---|
| 1120 | |
---|
| 1121 | |
---|
| 1122 | /**Function******************************************************************** |
---|
| 1123 | |
---|
| 1124 | Synopsis [Returns an enpty set of clauses.] |
---|
| 1125 | |
---|
| 1126 | Description [Returns a pointer to an empty set of clauses if |
---|
| 1127 | successful; NULL otherwise. No bit vector for the phases is |
---|
| 1128 | allocated.] |
---|
| 1129 | |
---|
| 1130 | SideEffects [None] |
---|
| 1131 | |
---|
| 1132 | SeeAlso [] |
---|
| 1133 | |
---|
| 1134 | ******************************************************************************/ |
---|
| 1135 | static DdTlcInfo * |
---|
| 1136 | emptyClauseSet(void) |
---|
| 1137 | { |
---|
| 1138 | DdTlcInfo *eset; |
---|
| 1139 | |
---|
| 1140 | eset = ALLOC(DdTlcInfo,1); |
---|
| 1141 | if (eset == NULL) return(NULL); |
---|
| 1142 | eset->vars = ALLOC(DdHalfWord,2); |
---|
| 1143 | if (eset->vars == NULL) { |
---|
| 1144 | FREE(eset); |
---|
| 1145 | return(NULL); |
---|
| 1146 | } |
---|
| 1147 | /* Sentinel */ |
---|
| 1148 | eset->vars[0] = 0; |
---|
| 1149 | eset->vars[1] = 0; |
---|
| 1150 | eset->phases = NULL; /* does not matter */ |
---|
| 1151 | eset->cnt = 0; |
---|
| 1152 | return(eset); |
---|
| 1153 | |
---|
| 1154 | } /* end of emptyClauseSet */ |
---|
| 1155 | |
---|
| 1156 | |
---|
| 1157 | /**Function******************************************************************** |
---|
| 1158 | |
---|
| 1159 | Synopsis [Returns true iff the argument is the sentinel clause.] |
---|
| 1160 | |
---|
| 1161 | Description [Returns true iff the argument is the sentinel clause. |
---|
| 1162 | A sentinel clause has both variables equal to 0.] |
---|
| 1163 | |
---|
| 1164 | SideEffects [None] |
---|
| 1165 | |
---|
| 1166 | SeeAlso [] |
---|
| 1167 | |
---|
| 1168 | ******************************************************************************/ |
---|
| 1169 | static int |
---|
| 1170 | sentinelp( |
---|
| 1171 | DdHalfWord var1, |
---|
| 1172 | DdHalfWord var2) |
---|
| 1173 | { |
---|
| 1174 | return(var1 == 0 && var2 == 0); |
---|
| 1175 | |
---|
| 1176 | } /* end of sentinelp */ |
---|
| 1177 | |
---|
| 1178 | |
---|
| 1179 | /**Function******************************************************************** |
---|
| 1180 | |
---|
| 1181 | Synopsis [Returns true iff the two arguments are identical clauses.] |
---|
| 1182 | |
---|
| 1183 | Description [Returns true iff the two arguments are identical |
---|
| 1184 | clauses. Since literals are sorted, we only need to compare |
---|
| 1185 | literals in the same position.] |
---|
| 1186 | |
---|
| 1187 | SideEffects [None] |
---|
| 1188 | |
---|
| 1189 | SeeAlso [beforep] |
---|
| 1190 | |
---|
| 1191 | ******************************************************************************/ |
---|
| 1192 | static int |
---|
| 1193 | equalp( |
---|
| 1194 | DdHalfWord var1a, |
---|
| 1195 | short phase1a, |
---|
| 1196 | DdHalfWord var1b, |
---|
| 1197 | short phase1b, |
---|
| 1198 | DdHalfWord var2a, |
---|
| 1199 | short phase2a, |
---|
| 1200 | DdHalfWord var2b, |
---|
| 1201 | short phase2b) |
---|
| 1202 | { |
---|
| 1203 | return(var1a == var2a && phase1a == phase2a && |
---|
| 1204 | var1b == var2b && phase1b == phase2b); |
---|
| 1205 | |
---|
| 1206 | } /* end of equalp */ |
---|
| 1207 | |
---|
| 1208 | |
---|
| 1209 | /**Function******************************************************************** |
---|
| 1210 | |
---|
| 1211 | Synopsis [Returns true iff the first argument precedes the second in |
---|
| 1212 | the clause order.] |
---|
| 1213 | |
---|
| 1214 | Description [Returns true iff the first argument precedes the second |
---|
| 1215 | in the clause order. A clause precedes another if its first lieral |
---|
| 1216 | precedes the first literal of the other, or if the first literals |
---|
| 1217 | are the same, and its second literal precedes the second literal of |
---|
| 1218 | the other clause. A literal precedes another if it has a higher |
---|
| 1219 | index, of if it has the same index, but it has lower phase. Phase 0 |
---|
| 1220 | is the positive phase, and it is lower than Phase 1 (negative |
---|
| 1221 | phase).] |
---|
| 1222 | |
---|
| 1223 | SideEffects [None] |
---|
| 1224 | |
---|
| 1225 | SeeAlso [equalp] |
---|
| 1226 | |
---|
| 1227 | ******************************************************************************/ |
---|
| 1228 | static int |
---|
| 1229 | beforep( |
---|
| 1230 | DdHalfWord var1a, |
---|
| 1231 | short phase1a, |
---|
| 1232 | DdHalfWord var1b, |
---|
| 1233 | short phase1b, |
---|
| 1234 | DdHalfWord var2a, |
---|
| 1235 | short phase2a, |
---|
| 1236 | DdHalfWord var2b, |
---|
| 1237 | short phase2b) |
---|
| 1238 | { |
---|
| 1239 | return(var1a > var2a || (var1a == var2a && |
---|
| 1240 | (phase1a < phase2a || (phase1a == phase2a && |
---|
| 1241 | (var1b > var2b || (var1b == var2b && phase1b < phase2b)))))); |
---|
| 1242 | |
---|
| 1243 | } /* end of beforep */ |
---|
| 1244 | |
---|
| 1245 | |
---|
| 1246 | /**Function******************************************************************** |
---|
| 1247 | |
---|
| 1248 | Synopsis [Returns true iff the argument is a one-literal clause.] |
---|
| 1249 | |
---|
| 1250 | Description [Returns true iff the argument is a one-literal clause. |
---|
| 1251 | A one-litaral clause has the constant FALSE as second literal. |
---|
| 1252 | Since the constant TRUE is never used, it is sufficient to test for |
---|
| 1253 | a constant.] |
---|
| 1254 | |
---|
| 1255 | SideEffects [None] |
---|
| 1256 | |
---|
| 1257 | SeeAlso [] |
---|
| 1258 | |
---|
| 1259 | ******************************************************************************/ |
---|
| 1260 | static int |
---|
| 1261 | oneliteralp( |
---|
| 1262 | DdHalfWord var) |
---|
| 1263 | { |
---|
| 1264 | return(var == CUDD_MAXINDEX); |
---|
| 1265 | |
---|
| 1266 | } /* end of oneliteralp */ |
---|
| 1267 | |
---|
| 1268 | |
---|
| 1269 | /**Function******************************************************************** |
---|
| 1270 | |
---|
| 1271 | Synopsis [Returns true iff either literal of a clause is in a set of |
---|
| 1272 | literals.] |
---|
| 1273 | |
---|
| 1274 | Description [Returns true iff either literal of a clause is in a set |
---|
| 1275 | of literals. The first four arguments specify the clause. The |
---|
| 1276 | remaining two arguments specify the literal set.] |
---|
| 1277 | |
---|
| 1278 | SideEffects [None] |
---|
| 1279 | |
---|
| 1280 | SeeAlso [] |
---|
| 1281 | |
---|
| 1282 | ******************************************************************************/ |
---|
| 1283 | static int |
---|
| 1284 | impliedp( |
---|
| 1285 | DdHalfWord var1, |
---|
| 1286 | short phase1, |
---|
| 1287 | DdHalfWord var2, |
---|
| 1288 | short phase2, |
---|
| 1289 | BitVector *olv, |
---|
| 1290 | BitVector *olp) |
---|
| 1291 | { |
---|
| 1292 | return((bitVectorRead(olv, var1) && |
---|
| 1293 | bitVectorRead(olp, var1) == phase1) || |
---|
| 1294 | (bitVectorRead(olv, var2) && |
---|
| 1295 | bitVectorRead(olp, var2) == phase2)); |
---|
| 1296 | |
---|
| 1297 | } /* end of impliedp */ |
---|
| 1298 | |
---|
| 1299 | |
---|
| 1300 | /**Function******************************************************************** |
---|
| 1301 | |
---|
| 1302 | Synopsis [Allocates a bit vector.] |
---|
| 1303 | |
---|
| 1304 | Description [Allocates a bit vector. The parameter size gives the |
---|
| 1305 | number of bits. This procedure allocates enough long's to hold the |
---|
| 1306 | specified number of bits. Returns a pointer to the allocated vector |
---|
| 1307 | if successful; NULL otherwise.] |
---|
| 1308 | |
---|
| 1309 | SideEffects [None] |
---|
| 1310 | |
---|
| 1311 | SeeAlso [bitVectorClear bitVectorFree] |
---|
| 1312 | |
---|
| 1313 | ******************************************************************************/ |
---|
| 1314 | static BitVector * |
---|
| 1315 | bitVectorAlloc( |
---|
| 1316 | int size) |
---|
| 1317 | { |
---|
| 1318 | int allocSize; |
---|
| 1319 | BitVector *vector; |
---|
| 1320 | |
---|
| 1321 | /* Find out how many long's we need. |
---|
| 1322 | ** There are sizeof(long) * 8 bits in a long. |
---|
| 1323 | ** The ceiling of the ratio of two integers m and n is given |
---|
| 1324 | ** by ((n-1)/m)+1. Putting all this together, we get... */ |
---|
| 1325 | allocSize = ((size - 1) / (sizeof(BitVector) * 8)) + 1; |
---|
| 1326 | vector = ALLOC(BitVector, allocSize); |
---|
| 1327 | if (vector == NULL) return(NULL); |
---|
| 1328 | /* Clear the whole array. */ |
---|
| 1329 | (void) memset(vector, 0, allocSize * sizeof(BitVector)); |
---|
| 1330 | return(vector); |
---|
| 1331 | |
---|
| 1332 | } /* end of bitVectorAlloc */ |
---|
| 1333 | |
---|
| 1334 | |
---|
| 1335 | /**Function******************************************************************** |
---|
| 1336 | |
---|
| 1337 | Synopsis [Clears a bit vector.] |
---|
| 1338 | |
---|
| 1339 | Description [Clears a bit vector. The parameter size gives the |
---|
| 1340 | number of bits.] |
---|
| 1341 | |
---|
| 1342 | SideEffects [None] |
---|
| 1343 | |
---|
| 1344 | SeeAlso [bitVectorAlloc] |
---|
| 1345 | |
---|
| 1346 | ******************************************************************************/ |
---|
| 1347 | DD_INLINE |
---|
| 1348 | static void |
---|
| 1349 | bitVectorClear( |
---|
| 1350 | BitVector *vector, |
---|
| 1351 | int size) |
---|
| 1352 | { |
---|
| 1353 | int allocSize; |
---|
| 1354 | |
---|
| 1355 | /* Find out how many long's we need. |
---|
| 1356 | ** There are sizeof(long) * 8 bits in a long. |
---|
| 1357 | ** The ceiling of the ratio of two integers m and n is given |
---|
| 1358 | ** by ((n-1)/m)+1. Putting all this together, we get... */ |
---|
| 1359 | allocSize = ((size - 1) / (sizeof(BitVector) * 8)) + 1; |
---|
| 1360 | /* Clear the whole array. */ |
---|
| 1361 | (void) memset(vector, 0, allocSize * sizeof(BitVector)); |
---|
| 1362 | return; |
---|
| 1363 | |
---|
| 1364 | } /* end of bitVectorClear */ |
---|
| 1365 | |
---|
| 1366 | |
---|
| 1367 | /**Function******************************************************************** |
---|
| 1368 | |
---|
| 1369 | Synopsis [Frees a bit vector.] |
---|
| 1370 | |
---|
| 1371 | Description [Frees a bit vector.] |
---|
| 1372 | |
---|
| 1373 | SideEffects [None] |
---|
| 1374 | |
---|
| 1375 | SeeAlso [bitVectorAlloc] |
---|
| 1376 | |
---|
| 1377 | ******************************************************************************/ |
---|
| 1378 | static void |
---|
| 1379 | bitVectorFree( |
---|
| 1380 | BitVector *vector) |
---|
| 1381 | { |
---|
| 1382 | FREE(vector); |
---|
| 1383 | |
---|
| 1384 | } /* end of bitVectorFree */ |
---|
| 1385 | |
---|
| 1386 | |
---|
| 1387 | /**Function******************************************************************** |
---|
| 1388 | |
---|
| 1389 | Synopsis [Returns the i-th entry of a bit vector.] |
---|
| 1390 | |
---|
| 1391 | Description [Returns the i-th entry of a bit vector.] |
---|
| 1392 | |
---|
| 1393 | SideEffects [None] |
---|
| 1394 | |
---|
| 1395 | SeeAlso [bitVectorSet] |
---|
| 1396 | |
---|
| 1397 | ******************************************************************************/ |
---|
| 1398 | DD_INLINE |
---|
| 1399 | static short |
---|
| 1400 | bitVectorRead( |
---|
| 1401 | BitVector *vector, |
---|
| 1402 | int i) |
---|
| 1403 | { |
---|
| 1404 | int word, bit; |
---|
| 1405 | short result; |
---|
| 1406 | |
---|
| 1407 | if (vector == NULL) return((short) 0); |
---|
| 1408 | |
---|
| 1409 | word = i >> LOGBPL; |
---|
| 1410 | bit = i & (BPL - 1); |
---|
| 1411 | result = (short) ((vector[word] >> bit) & 1L); |
---|
| 1412 | return(result); |
---|
| 1413 | |
---|
| 1414 | } /* end of bitVectorRead */ |
---|
| 1415 | |
---|
| 1416 | |
---|
| 1417 | /**Function******************************************************************** |
---|
| 1418 | |
---|
| 1419 | Synopsis [Sets the i-th entry of a bit vector to a value.] |
---|
| 1420 | |
---|
| 1421 | Description [Sets the i-th entry of a bit vector to a value.] |
---|
| 1422 | |
---|
| 1423 | SideEffects [None] |
---|
| 1424 | |
---|
| 1425 | SeeAlso [bitVectorRead] |
---|
| 1426 | |
---|
| 1427 | ******************************************************************************/ |
---|
| 1428 | DD_INLINE |
---|
| 1429 | static void |
---|
| 1430 | bitVectorSet( |
---|
| 1431 | BitVector * vector, |
---|
| 1432 | int i, |
---|
| 1433 | short val) |
---|
| 1434 | { |
---|
| 1435 | int word, bit; |
---|
| 1436 | |
---|
| 1437 | word = i >> LOGBPL; |
---|
| 1438 | bit = i & (BPL - 1); |
---|
| 1439 | vector[word] &= ~(1L << bit); |
---|
| 1440 | vector[word] |= (((long) val) << bit); |
---|
| 1441 | |
---|
| 1442 | } /* end of bitVectorSet */ |
---|
| 1443 | |
---|
| 1444 | |
---|
| 1445 | /**Function******************************************************************** |
---|
| 1446 | |
---|
| 1447 | Synopsis [Allocates a DdTlcInfo Structure.] |
---|
| 1448 | |
---|
| 1449 | Description [Returns a pointer to a DdTlcInfo Structure if successful; |
---|
| 1450 | NULL otherwise.] |
---|
| 1451 | |
---|
| 1452 | SideEffects [None] |
---|
| 1453 | |
---|
| 1454 | SeeAlso [Cudd_tlcInfoFree] |
---|
| 1455 | |
---|
| 1456 | ******************************************************************************/ |
---|
| 1457 | static DdTlcInfo * |
---|
| 1458 | tlcInfoAlloc(void) |
---|
| 1459 | { |
---|
| 1460 | DdTlcInfo *res = ALLOC(DdTlcInfo,1); |
---|
| 1461 | if (res == NULL) return(NULL); |
---|
| 1462 | res->vars = NULL; |
---|
| 1463 | res->phases = NULL; |
---|
| 1464 | res->cnt = 0; |
---|
| 1465 | return(res); |
---|
| 1466 | |
---|
| 1467 | } /* end of tlcInfoAlloc */ |
---|