1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [cuddGenCof.c] |
---|
4 | |
---|
5 | PackageName [cudd] |
---|
6 | |
---|
7 | Synopsis [Generalized cofactors for BDDs and ADDs.] |
---|
8 | |
---|
9 | Description [External procedures included in this module: |
---|
10 | <ul> |
---|
11 | <li> Cudd_bddConstrain() |
---|
12 | <li> Cudd_bddRestrict() |
---|
13 | <li> Cudd_bddNPAnd() |
---|
14 | <li> Cudd_addConstrain() |
---|
15 | <li> Cudd_bddConstrainDecomp() |
---|
16 | <li> Cudd_addRestrict() |
---|
17 | <li> Cudd_bddCharToVect() |
---|
18 | <li> Cudd_bddLICompaction() |
---|
19 | <li> Cudd_bddSqueeze() |
---|
20 | <li> Cudd_SubsetCompress() |
---|
21 | <li> Cudd_SupersetCompress() |
---|
22 | </ul> |
---|
23 | Internal procedures included in this module: |
---|
24 | <ul> |
---|
25 | <li> cuddBddConstrainRecur() |
---|
26 | <li> cuddBddRestrictRecur() |
---|
27 | <li> cuddBddNPAndRecur() |
---|
28 | <li> cuddAddConstrainRecur() |
---|
29 | <li> cuddAddRestrictRecur() |
---|
30 | <li> cuddBddLICompaction() |
---|
31 | </ul> |
---|
32 | Static procedures included in this module: |
---|
33 | <ul> |
---|
34 | <li> cuddBddConstrainDecomp() |
---|
35 | <li> cuddBddCharToVect() |
---|
36 | <li> cuddBddLICMarkEdges() |
---|
37 | <li> cuddBddLICBuildResult() |
---|
38 | <li> cuddBddSqueeze() |
---|
39 | </ul> |
---|
40 | ] |
---|
41 | |
---|
42 | Author [Fabio Somenzi] |
---|
43 | |
---|
44 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
45 | |
---|
46 | All rights reserved. |
---|
47 | |
---|
48 | Redistribution and use in source and binary forms, with or without |
---|
49 | modification, are permitted provided that the following conditions |
---|
50 | are met: |
---|
51 | |
---|
52 | Redistributions of source code must retain the above copyright |
---|
53 | notice, this list of conditions and the following disclaimer. |
---|
54 | |
---|
55 | Redistributions in binary form must reproduce the above copyright |
---|
56 | notice, this list of conditions and the following disclaimer in the |
---|
57 | documentation and/or other materials provided with the distribution. |
---|
58 | |
---|
59 | Neither the name of the University of Colorado nor the names of its |
---|
60 | contributors may be used to endorse or promote products derived from |
---|
61 | this software without specific prior written permission. |
---|
62 | |
---|
63 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
64 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
65 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
66 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
67 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
68 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
69 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
70 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
71 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
72 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
73 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
74 | POSSIBILITY OF SUCH DAMAGE.] |
---|
75 | |
---|
76 | ******************************************************************************/ |
---|
77 | |
---|
78 | #include "util.h" |
---|
79 | #include "cuddInt.h" |
---|
80 | |
---|
81 | |
---|
82 | /*---------------------------------------------------------------------------*/ |
---|
83 | /* Constant declarations */ |
---|
84 | /*---------------------------------------------------------------------------*/ |
---|
85 | |
---|
86 | /* Codes for edge markings in Cudd_bddLICompaction. The codes are defined |
---|
87 | ** so that they can be bitwise ORed to implement the code priority scheme. |
---|
88 | */ |
---|
89 | #define DD_LIC_DC 0 |
---|
90 | #define DD_LIC_1 1 |
---|
91 | #define DD_LIC_0 2 |
---|
92 | #define DD_LIC_NL 3 |
---|
93 | |
---|
94 | /*---------------------------------------------------------------------------*/ |
---|
95 | /* Stucture declarations */ |
---|
96 | /*---------------------------------------------------------------------------*/ |
---|
97 | |
---|
98 | |
---|
99 | /*---------------------------------------------------------------------------*/ |
---|
100 | /* Type declarations */ |
---|
101 | /*---------------------------------------------------------------------------*/ |
---|
102 | |
---|
103 | /* Key for the cache used in the edge marking phase. */ |
---|
104 | typedef struct MarkCacheKey { |
---|
105 | DdNode *f; |
---|
106 | DdNode *c; |
---|
107 | } MarkCacheKey; |
---|
108 | |
---|
109 | /*---------------------------------------------------------------------------*/ |
---|
110 | /* Variable declarations */ |
---|
111 | /*---------------------------------------------------------------------------*/ |
---|
112 | |
---|
113 | #ifndef lint |
---|
114 | static char rcsid[] DD_UNUSED = "$Id: cuddGenCof.c,v 1.38 2005/05/14 17:27:11 fabio Exp $"; |
---|
115 | #endif |
---|
116 | |
---|
117 | /*---------------------------------------------------------------------------*/ |
---|
118 | /* Macro declarations */ |
---|
119 | /*---------------------------------------------------------------------------*/ |
---|
120 | |
---|
121 | #ifdef __cplusplus |
---|
122 | extern "C" { |
---|
123 | #endif |
---|
124 | |
---|
125 | /**AutomaticStart*************************************************************/ |
---|
126 | |
---|
127 | /*---------------------------------------------------------------------------*/ |
---|
128 | /* Static function prototypes */ |
---|
129 | /*---------------------------------------------------------------------------*/ |
---|
130 | |
---|
131 | static int cuddBddConstrainDecomp (DdManager *dd, DdNode *f, DdNode **decomp); |
---|
132 | static DdNode * cuddBddCharToVect (DdManager *dd, DdNode *f, DdNode *x); |
---|
133 | static int cuddBddLICMarkEdges (DdManager *dd, DdNode *f, DdNode *c, st_table *table, st_table *cache); |
---|
134 | static DdNode * cuddBddLICBuildResult (DdManager *dd, DdNode *f, st_table *cache, st_table *table); |
---|
135 | static int MarkCacheHash (char *ptr, int modulus); |
---|
136 | static int MarkCacheCompare (const char *ptr1, const char *ptr2); |
---|
137 | static enum st_retval MarkCacheCleanUp (char *key, char *value, char *arg); |
---|
138 | static DdNode * cuddBddSqueeze (DdManager *dd, DdNode *l, DdNode *u); |
---|
139 | |
---|
140 | /**AutomaticEnd***************************************************************/ |
---|
141 | |
---|
142 | #ifdef __cplusplus |
---|
143 | } |
---|
144 | #endif |
---|
145 | |
---|
146 | /*---------------------------------------------------------------------------*/ |
---|
147 | /* Definition of exported functions */ |
---|
148 | /*---------------------------------------------------------------------------*/ |
---|
149 | |
---|
150 | |
---|
151 | /**Function******************************************************************** |
---|
152 | |
---|
153 | Synopsis [Computes f constrain c.] |
---|
154 | |
---|
155 | Description [Computes f constrain c (f @ c). |
---|
156 | Uses a canonical form: (f' @ c) = ( f @ c)'. (Note: this is not true |
---|
157 | for c.) List of special cases: |
---|
158 | <ul> |
---|
159 | <li> f @ 0 = 0 |
---|
160 | <li> f @ 1 = f |
---|
161 | <li> 0 @ c = 0 |
---|
162 | <li> 1 @ c = 1 |
---|
163 | <li> f @ f = 1 |
---|
164 | <li> f @ f'= 0 |
---|
165 | </ul> |
---|
166 | Returns a pointer to the result if successful; NULL otherwise. Note that if |
---|
167 | F=(f1,...,fn) and reordering takes place while computing F @ c, then the |
---|
168 | image restriction property (Img(F,c) = Img(F @ c)) is lost.] |
---|
169 | |
---|
170 | SideEffects [None] |
---|
171 | |
---|
172 | SeeAlso [Cudd_bddRestrict Cudd_addConstrain] |
---|
173 | |
---|
174 | ******************************************************************************/ |
---|
175 | DdNode * |
---|
176 | Cudd_bddConstrain( |
---|
177 | DdManager * dd, |
---|
178 | DdNode * f, |
---|
179 | DdNode * c) |
---|
180 | { |
---|
181 | DdNode *res; |
---|
182 | |
---|
183 | do { |
---|
184 | dd->reordered = 0; |
---|
185 | res = cuddBddConstrainRecur(dd,f,c); |
---|
186 | } while (dd->reordered == 1); |
---|
187 | return(res); |
---|
188 | |
---|
189 | } /* end of Cudd_bddConstrain */ |
---|
190 | |
---|
191 | |
---|
192 | /**Function******************************************************************** |
---|
193 | |
---|
194 | Synopsis [BDD restrict according to Coudert and Madre's algorithm |
---|
195 | (ICCAD90).] |
---|
196 | |
---|
197 | Description [BDD restrict according to Coudert and Madre's algorithm |
---|
198 | (ICCAD90). Returns the restricted BDD if successful; otherwise NULL. |
---|
199 | If application of restrict results in a BDD larger than the input |
---|
200 | BDD, the input BDD is returned.] |
---|
201 | |
---|
202 | SideEffects [None] |
---|
203 | |
---|
204 | SeeAlso [Cudd_bddConstrain Cudd_addRestrict] |
---|
205 | |
---|
206 | ******************************************************************************/ |
---|
207 | DdNode * |
---|
208 | Cudd_bddRestrict( |
---|
209 | DdManager * dd, |
---|
210 | DdNode * f, |
---|
211 | DdNode * c) |
---|
212 | { |
---|
213 | DdNode *suppF, *suppC, *commonSupport; |
---|
214 | DdNode *cplus, *res; |
---|
215 | int retval; |
---|
216 | int sizeF, sizeRes; |
---|
217 | |
---|
218 | /* Check terminal cases here to avoid computing supports in trivial cases. |
---|
219 | ** This also allows us notto check later for the case c == 0, in which |
---|
220 | ** there is no common support. */ |
---|
221 | if (c == Cudd_Not(DD_ONE(dd))) return(Cudd_Not(DD_ONE(dd))); |
---|
222 | if (Cudd_IsConstant(f)) return(f); |
---|
223 | if (f == c) return(DD_ONE(dd)); |
---|
224 | if (f == Cudd_Not(c)) return(Cudd_Not(DD_ONE(dd))); |
---|
225 | |
---|
226 | /* Check if supports intersect. */ |
---|
227 | retval = Cudd_ClassifySupport(dd,f,c,&commonSupport,&suppF,&suppC); |
---|
228 | if (retval == 0) { |
---|
229 | return(NULL); |
---|
230 | } |
---|
231 | cuddRef(commonSupport); cuddRef(suppF); cuddRef(suppC); |
---|
232 | Cudd_IterDerefBdd(dd,suppF); |
---|
233 | |
---|
234 | if (commonSupport == DD_ONE(dd)) { |
---|
235 | Cudd_IterDerefBdd(dd,commonSupport); |
---|
236 | Cudd_IterDerefBdd(dd,suppC); |
---|
237 | return(f); |
---|
238 | } |
---|
239 | Cudd_IterDerefBdd(dd,commonSupport); |
---|
240 | |
---|
241 | /* Abstract from c the variables that do not appear in f. */ |
---|
242 | cplus = Cudd_bddExistAbstract(dd, c, suppC); |
---|
243 | if (cplus == NULL) { |
---|
244 | Cudd_IterDerefBdd(dd,suppC); |
---|
245 | return(NULL); |
---|
246 | } |
---|
247 | cuddRef(cplus); |
---|
248 | Cudd_IterDerefBdd(dd,suppC); |
---|
249 | |
---|
250 | do { |
---|
251 | dd->reordered = 0; |
---|
252 | res = cuddBddRestrictRecur(dd, f, cplus); |
---|
253 | } while (dd->reordered == 1); |
---|
254 | if (res == NULL) { |
---|
255 | Cudd_IterDerefBdd(dd,cplus); |
---|
256 | return(NULL); |
---|
257 | } |
---|
258 | cuddRef(res); |
---|
259 | Cudd_IterDerefBdd(dd,cplus); |
---|
260 | /* Make restric safe by returning the smaller of the input and the |
---|
261 | ** result. */ |
---|
262 | sizeF = Cudd_DagSize(f); |
---|
263 | sizeRes = Cudd_DagSize(res); |
---|
264 | if (sizeF <= sizeRes) { |
---|
265 | Cudd_IterDerefBdd(dd, res); |
---|
266 | return(f); |
---|
267 | } else { |
---|
268 | cuddDeref(res); |
---|
269 | return(res); |
---|
270 | } |
---|
271 | |
---|
272 | } /* end of Cudd_bddRestrict */ |
---|
273 | |
---|
274 | |
---|
275 | /**Function******************************************************************** |
---|
276 | |
---|
277 | Synopsis [Computes f non-polluting-and g.] |
---|
278 | |
---|
279 | Description [Computes f non-polluting-and g. The non-polluting AND |
---|
280 | of f and g is a hybrid of AND and Restrict. From Restrict, this |
---|
281 | operation takes the idea of existentially quantifying the top |
---|
282 | variable of the second operand if it does not appear in the first. |
---|
283 | Therefore, the variables that appear in the result also appear in f. |
---|
284 | For the rest, the function behaves like AND. Since the two operands |
---|
285 | play different roles, non-polluting AND is not commutative. |
---|
286 | |
---|
287 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
288 | |
---|
289 | SideEffects [None] |
---|
290 | |
---|
291 | SeeAlso [Cudd_bddConstrain Cudd_bddRestrict] |
---|
292 | |
---|
293 | ******************************************************************************/ |
---|
294 | DdNode * |
---|
295 | Cudd_bddNPAnd( |
---|
296 | DdManager * dd, |
---|
297 | DdNode * f, |
---|
298 | DdNode * g) |
---|
299 | { |
---|
300 | DdNode *res; |
---|
301 | |
---|
302 | do { |
---|
303 | dd->reordered = 0; |
---|
304 | res = cuddBddNPAndRecur(dd,f,g); |
---|
305 | } while (dd->reordered == 1); |
---|
306 | return(res); |
---|
307 | |
---|
308 | } /* end of Cudd_bddNPAnd */ |
---|
309 | |
---|
310 | |
---|
311 | /**Function******************************************************************** |
---|
312 | |
---|
313 | Synopsis [Computes f constrain c for ADDs.] |
---|
314 | |
---|
315 | Description [Computes f constrain c (f @ c), for f an ADD and c a 0-1 |
---|
316 | ADD. List of special cases: |
---|
317 | <ul> |
---|
318 | <li> F @ 0 = 0 |
---|
319 | <li> F @ 1 = F |
---|
320 | <li> 0 @ c = 0 |
---|
321 | <li> 1 @ c = 1 |
---|
322 | <li> F @ F = 1 |
---|
323 | </ul> |
---|
324 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
325 | |
---|
326 | SideEffects [None] |
---|
327 | |
---|
328 | SeeAlso [Cudd_bddConstrain] |
---|
329 | |
---|
330 | ******************************************************************************/ |
---|
331 | DdNode * |
---|
332 | Cudd_addConstrain( |
---|
333 | DdManager * dd, |
---|
334 | DdNode * f, |
---|
335 | DdNode * c) |
---|
336 | { |
---|
337 | DdNode *res; |
---|
338 | |
---|
339 | do { |
---|
340 | dd->reordered = 0; |
---|
341 | res = cuddAddConstrainRecur(dd,f,c); |
---|
342 | } while (dd->reordered == 1); |
---|
343 | return(res); |
---|
344 | |
---|
345 | } /* end of Cudd_addConstrain */ |
---|
346 | |
---|
347 | |
---|
348 | /**Function******************************************************************** |
---|
349 | |
---|
350 | Synopsis [BDD conjunctive decomposition as in McMillan's CAV96 paper.] |
---|
351 | |
---|
352 | Description [BDD conjunctive decomposition as in McMillan's CAV96 |
---|
353 | paper. The decomposition is canonical only for a given variable |
---|
354 | order. If canonicity is required, variable ordering must be disabled |
---|
355 | after the decomposition has been computed. Returns an array with one |
---|
356 | entry for each BDD variable in the manager if successful; otherwise |
---|
357 | NULL. The components of the solution have their reference counts |
---|
358 | already incremented (unlike the results of most other functions in |
---|
359 | the package.] |
---|
360 | |
---|
361 | SideEffects [None] |
---|
362 | |
---|
363 | SeeAlso [Cudd_bddConstrain Cudd_bddExistAbstract] |
---|
364 | |
---|
365 | ******************************************************************************/ |
---|
366 | DdNode ** |
---|
367 | Cudd_bddConstrainDecomp( |
---|
368 | DdManager * dd, |
---|
369 | DdNode * f) |
---|
370 | { |
---|
371 | DdNode **decomp; |
---|
372 | int res; |
---|
373 | int i; |
---|
374 | |
---|
375 | /* Create an initialize decomposition array. */ |
---|
376 | decomp = ALLOC(DdNode *,dd->size); |
---|
377 | if (decomp == NULL) { |
---|
378 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
379 | return(NULL); |
---|
380 | } |
---|
381 | for (i = 0; i < dd->size; i++) { |
---|
382 | decomp[i] = NULL; |
---|
383 | } |
---|
384 | do { |
---|
385 | dd->reordered = 0; |
---|
386 | /* Clean up the decomposition array in case reordering took place. */ |
---|
387 | for (i = 0; i < dd->size; i++) { |
---|
388 | if (decomp[i] != NULL) { |
---|
389 | Cudd_IterDerefBdd(dd, decomp[i]); |
---|
390 | decomp[i] = NULL; |
---|
391 | } |
---|
392 | } |
---|
393 | res = cuddBddConstrainDecomp(dd,f,decomp); |
---|
394 | } while (dd->reordered == 1); |
---|
395 | if (res == 0) { |
---|
396 | FREE(decomp); |
---|
397 | return(NULL); |
---|
398 | } |
---|
399 | /* Missing components are constant ones. */ |
---|
400 | for (i = 0; i < dd->size; i++) { |
---|
401 | if (decomp[i] == NULL) { |
---|
402 | decomp[i] = DD_ONE(dd); |
---|
403 | cuddRef(decomp[i]); |
---|
404 | } |
---|
405 | } |
---|
406 | return(decomp); |
---|
407 | |
---|
408 | } /* end of Cudd_bddConstrainDecomp */ |
---|
409 | |
---|
410 | |
---|
411 | /**Function******************************************************************** |
---|
412 | |
---|
413 | Synopsis [ADD restrict according to Coudert and Madre's algorithm |
---|
414 | (ICCAD90).] |
---|
415 | |
---|
416 | Description [ADD restrict according to Coudert and Madre's algorithm |
---|
417 | (ICCAD90). Returns the restricted ADD if successful; otherwise NULL. |
---|
418 | If application of restrict results in an ADD larger than the input |
---|
419 | ADD, the input ADD is returned.] |
---|
420 | |
---|
421 | SideEffects [None] |
---|
422 | |
---|
423 | SeeAlso [Cudd_addConstrain Cudd_bddRestrict] |
---|
424 | |
---|
425 | ******************************************************************************/ |
---|
426 | DdNode * |
---|
427 | Cudd_addRestrict( |
---|
428 | DdManager * dd, |
---|
429 | DdNode * f, |
---|
430 | DdNode * c) |
---|
431 | { |
---|
432 | DdNode *supp_f, *supp_c; |
---|
433 | DdNode *res, *commonSupport; |
---|
434 | int intersection; |
---|
435 | int sizeF, sizeRes; |
---|
436 | |
---|
437 | /* Check if supports intersect. */ |
---|
438 | supp_f = Cudd_Support(dd, f); |
---|
439 | if (supp_f == NULL) { |
---|
440 | return(NULL); |
---|
441 | } |
---|
442 | cuddRef(supp_f); |
---|
443 | supp_c = Cudd_Support(dd, c); |
---|
444 | if (supp_c == NULL) { |
---|
445 | Cudd_RecursiveDeref(dd,supp_f); |
---|
446 | return(NULL); |
---|
447 | } |
---|
448 | cuddRef(supp_c); |
---|
449 | commonSupport = Cudd_bddLiteralSetIntersection(dd, supp_f, supp_c); |
---|
450 | if (commonSupport == NULL) { |
---|
451 | Cudd_RecursiveDeref(dd,supp_f); |
---|
452 | Cudd_RecursiveDeref(dd,supp_c); |
---|
453 | return(NULL); |
---|
454 | } |
---|
455 | cuddRef(commonSupport); |
---|
456 | Cudd_RecursiveDeref(dd,supp_f); |
---|
457 | Cudd_RecursiveDeref(dd,supp_c); |
---|
458 | intersection = commonSupport != DD_ONE(dd); |
---|
459 | Cudd_RecursiveDeref(dd,commonSupport); |
---|
460 | |
---|
461 | if (intersection) { |
---|
462 | do { |
---|
463 | dd->reordered = 0; |
---|
464 | res = cuddAddRestrictRecur(dd, f, c); |
---|
465 | } while (dd->reordered == 1); |
---|
466 | sizeF = Cudd_DagSize(f); |
---|
467 | sizeRes = Cudd_DagSize(res); |
---|
468 | if (sizeF <= sizeRes) { |
---|
469 | cuddRef(res); |
---|
470 | Cudd_RecursiveDeref(dd, res); |
---|
471 | return(f); |
---|
472 | } else { |
---|
473 | return(res); |
---|
474 | } |
---|
475 | } else { |
---|
476 | return(f); |
---|
477 | } |
---|
478 | |
---|
479 | } /* end of Cudd_addRestrict */ |
---|
480 | |
---|
481 | |
---|
482 | /**Function******************************************************************** |
---|
483 | |
---|
484 | Synopsis [Computes a vector whose image equals a non-zero function.] |
---|
485 | |
---|
486 | Description [Computes a vector of BDDs whose image equals a non-zero |
---|
487 | function. |
---|
488 | The result depends on the variable order. The i-th component of the vector |
---|
489 | depends only on the first i variables in the order. Each BDD in the vector |
---|
490 | is not larger than the BDD of the given characteristic function. This |
---|
491 | function is based on the description of char-to-vect in "Verification of |
---|
492 | Sequential Machines Using Boolean Functional Vectors" by O. Coudert, C. |
---|
493 | Berthet and J. C. Madre. |
---|
494 | Returns a pointer to an array containing the result if successful; NULL |
---|
495 | otherwise. The size of the array equals the number of variables in the |
---|
496 | manager. The components of the solution have their reference counts |
---|
497 | already incremented (unlike the results of most other functions in |
---|
498 | the package).] |
---|
499 | |
---|
500 | SideEffects [None] |
---|
501 | |
---|
502 | SeeAlso [Cudd_bddConstrain] |
---|
503 | |
---|
504 | ******************************************************************************/ |
---|
505 | DdNode ** |
---|
506 | Cudd_bddCharToVect( |
---|
507 | DdManager * dd, |
---|
508 | DdNode * f) |
---|
509 | { |
---|
510 | int i, j; |
---|
511 | DdNode **vect; |
---|
512 | DdNode *res = NULL; |
---|
513 | |
---|
514 | if (f == Cudd_Not(DD_ONE(dd))) return(NULL); |
---|
515 | |
---|
516 | vect = ALLOC(DdNode *, dd->size); |
---|
517 | if (vect == NULL) { |
---|
518 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
519 | return(NULL); |
---|
520 | } |
---|
521 | |
---|
522 | do { |
---|
523 | dd->reordered = 0; |
---|
524 | for (i = 0; i < dd->size; i++) { |
---|
525 | res = cuddBddCharToVect(dd,f,dd->vars[dd->invperm[i]]); |
---|
526 | if (res == NULL) { |
---|
527 | /* Clean up the vector array in case reordering took place. */ |
---|
528 | for (j = 0; j < i; j++) { |
---|
529 | Cudd_IterDerefBdd(dd, vect[dd->invperm[j]]); |
---|
530 | } |
---|
531 | break; |
---|
532 | } |
---|
533 | cuddRef(res); |
---|
534 | vect[dd->invperm[i]] = res; |
---|
535 | } |
---|
536 | } while (dd->reordered == 1); |
---|
537 | if (res == NULL) { |
---|
538 | FREE(vect); |
---|
539 | return(NULL); |
---|
540 | } |
---|
541 | return(vect); |
---|
542 | |
---|
543 | } /* end of Cudd_bddCharToVect */ |
---|
544 | |
---|
545 | |
---|
546 | /**Function******************************************************************** |
---|
547 | |
---|
548 | Synopsis [Performs safe minimization of a BDD.] |
---|
549 | |
---|
550 | Description [Performs safe minimization of a BDD. Given the BDD |
---|
551 | <code>f</code> of a function to be minimized and a BDD |
---|
552 | <code>c</code> representing the care set, Cudd_bddLICompaction |
---|
553 | produces the BDD of a function that agrees with <code>f</code> |
---|
554 | wherever <code>c</code> is 1. Safe minimization means that the size |
---|
555 | of the result is guaranteed not to exceed the size of |
---|
556 | <code>f</code>. This function is based on the DAC97 paper by Hong et |
---|
557 | al.. Returns a pointer to the result if successful; NULL |
---|
558 | otherwise.] |
---|
559 | |
---|
560 | SideEffects [None] |
---|
561 | |
---|
562 | SeeAlso [Cudd_bddRestrict] |
---|
563 | |
---|
564 | ******************************************************************************/ |
---|
565 | DdNode * |
---|
566 | Cudd_bddLICompaction( |
---|
567 | DdManager * dd /* manager */, |
---|
568 | DdNode * f /* function to be minimized */, |
---|
569 | DdNode * c /* constraint (care set) */) |
---|
570 | { |
---|
571 | DdNode *res; |
---|
572 | |
---|
573 | do { |
---|
574 | dd->reordered = 0; |
---|
575 | res = cuddBddLICompaction(dd,f,c); |
---|
576 | } while (dd->reordered == 1); |
---|
577 | return(res); |
---|
578 | |
---|
579 | } /* end of Cudd_bddLICompaction */ |
---|
580 | |
---|
581 | |
---|
582 | /**Function******************************************************************** |
---|
583 | |
---|
584 | Synopsis [Finds a small BDD in a function interval.] |
---|
585 | |
---|
586 | Description [Finds a small BDD in a function interval. Given BDDs |
---|
587 | <code>l</code> and <code>u</code>, representing the lower bound and |
---|
588 | upper bound of a function interval, Cudd_bddSqueeze produces the BDD |
---|
589 | of a function within the interval with a small BDD. Returns a |
---|
590 | pointer to the result if successful; NULL otherwise.] |
---|
591 | |
---|
592 | SideEffects [None] |
---|
593 | |
---|
594 | SeeAlso [Cudd_bddRestrict Cudd_bddLICompaction] |
---|
595 | |
---|
596 | ******************************************************************************/ |
---|
597 | DdNode * |
---|
598 | Cudd_bddSqueeze( |
---|
599 | DdManager * dd /* manager */, |
---|
600 | DdNode * l /* lower bound */, |
---|
601 | DdNode * u /* upper bound */) |
---|
602 | { |
---|
603 | DdNode *res; |
---|
604 | int sizeRes, sizeL, sizeU; |
---|
605 | |
---|
606 | do { |
---|
607 | dd->reordered = 0; |
---|
608 | res = cuddBddSqueeze(dd,l,u); |
---|
609 | } while (dd->reordered == 1); |
---|
610 | if (res == NULL) return(NULL); |
---|
611 | /* We now compare the result with the bounds and return the smallest. |
---|
612 | ** We first compare to u, so that in case l == 0 and u == 1, we return |
---|
613 | ** 0 as in other minimization algorithms. */ |
---|
614 | sizeRes = Cudd_DagSize(res); |
---|
615 | sizeU = Cudd_DagSize(u); |
---|
616 | if (sizeU <= sizeRes) { |
---|
617 | cuddRef(res); |
---|
618 | Cudd_IterDerefBdd(dd,res); |
---|
619 | res = u; |
---|
620 | sizeRes = sizeU; |
---|
621 | } |
---|
622 | sizeL = Cudd_DagSize(l); |
---|
623 | if (sizeL <= sizeRes) { |
---|
624 | cuddRef(res); |
---|
625 | Cudd_IterDerefBdd(dd,res); |
---|
626 | res = l; |
---|
627 | sizeRes = sizeL; |
---|
628 | } |
---|
629 | return(res); |
---|
630 | |
---|
631 | } /* end of Cudd_bddSqueeze */ |
---|
632 | |
---|
633 | |
---|
634 | /**Function******************************************************************** |
---|
635 | |
---|
636 | Synopsis [Finds a small BDD that agrees with <code>f</code> over |
---|
637 | <code>c</code>.] |
---|
638 | |
---|
639 | Description [Finds a small BDD that agrees with <code>f</code> over |
---|
640 | <code>c</code>. Returns a pointer to the result if successful; NULL |
---|
641 | otherwise.] |
---|
642 | |
---|
643 | SideEffects [None] |
---|
644 | |
---|
645 | SeeAlso [Cudd_bddRestrict Cudd_bddLICompaction Cudd_bddSqueeze] |
---|
646 | |
---|
647 | ******************************************************************************/ |
---|
648 | DdNode * |
---|
649 | Cudd_bddMinimize( |
---|
650 | DdManager * dd, |
---|
651 | DdNode * f, |
---|
652 | DdNode * c) |
---|
653 | { |
---|
654 | DdNode *cplus, *res; |
---|
655 | |
---|
656 | if (c == Cudd_Not(DD_ONE(dd))) return(c); |
---|
657 | if (Cudd_IsConstant(f)) return(f); |
---|
658 | if (f == c) return(DD_ONE(dd)); |
---|
659 | if (f == Cudd_Not(c)) return(Cudd_Not(DD_ONE(dd))); |
---|
660 | |
---|
661 | cplus = Cudd_RemapOverApprox(dd,c,0,0,1.0); |
---|
662 | if (cplus == NULL) return(NULL); |
---|
663 | cuddRef(cplus); |
---|
664 | res = Cudd_bddLICompaction(dd,f,cplus); |
---|
665 | if (res == NULL) { |
---|
666 | Cudd_IterDerefBdd(dd,cplus); |
---|
667 | return(NULL); |
---|
668 | } |
---|
669 | cuddRef(res); |
---|
670 | Cudd_IterDerefBdd(dd,cplus); |
---|
671 | cuddDeref(res); |
---|
672 | return(res); |
---|
673 | |
---|
674 | } /* end of Cudd_bddMinimize */ |
---|
675 | |
---|
676 | |
---|
677 | /**Function******************************************************************** |
---|
678 | |
---|
679 | Synopsis [Find a dense subset of BDD <code>f</code>.] |
---|
680 | |
---|
681 | Description [Finds a dense subset of BDD <code>f</code>. Density is |
---|
682 | the ratio of number of minterms to number of nodes. Uses several |
---|
683 | techniques in series. It is more expensive than other subsetting |
---|
684 | procedures, but often produces better results. See |
---|
685 | Cudd_SubsetShortPaths for a description of the threshold and nvars |
---|
686 | parameters. Returns a pointer to the result if successful; NULL |
---|
687 | otherwise.] |
---|
688 | |
---|
689 | SideEffects [None] |
---|
690 | |
---|
691 | SeeAlso [Cudd_SubsetRemap Cudd_SubsetShortPaths Cudd_SubsetHeavyBranch |
---|
692 | Cudd_bddSqueeze] |
---|
693 | |
---|
694 | ******************************************************************************/ |
---|
695 | DdNode * |
---|
696 | Cudd_SubsetCompress( |
---|
697 | DdManager * dd /* manager */, |
---|
698 | DdNode * f /* BDD whose subset is sought */, |
---|
699 | int nvars /* number of variables in the support of f */, |
---|
700 | int threshold /* maximum number of nodes in the subset */) |
---|
701 | { |
---|
702 | DdNode *res, *tmp1, *tmp2; |
---|
703 | |
---|
704 | tmp1 = Cudd_SubsetShortPaths(dd, f, nvars, threshold, 0); |
---|
705 | if (tmp1 == NULL) return(NULL); |
---|
706 | cuddRef(tmp1); |
---|
707 | tmp2 = Cudd_RemapUnderApprox(dd,tmp1,nvars,0,1.0); |
---|
708 | if (tmp2 == NULL) { |
---|
709 | Cudd_IterDerefBdd(dd,tmp1); |
---|
710 | return(NULL); |
---|
711 | } |
---|
712 | cuddRef(tmp2); |
---|
713 | Cudd_IterDerefBdd(dd,tmp1); |
---|
714 | res = Cudd_bddSqueeze(dd,tmp2,f); |
---|
715 | if (res == NULL) { |
---|
716 | Cudd_IterDerefBdd(dd,tmp2); |
---|
717 | return(NULL); |
---|
718 | } |
---|
719 | cuddRef(res); |
---|
720 | Cudd_IterDerefBdd(dd,tmp2); |
---|
721 | cuddDeref(res); |
---|
722 | return(res); |
---|
723 | |
---|
724 | } /* end of Cudd_SubsetCompress */ |
---|
725 | |
---|
726 | |
---|
727 | /**Function******************************************************************** |
---|
728 | |
---|
729 | Synopsis [Find a dense superset of BDD <code>f</code>.] |
---|
730 | |
---|
731 | Description [Finds a dense superset of BDD <code>f</code>. Density is |
---|
732 | the ratio of number of minterms to number of nodes. Uses several |
---|
733 | techniques in series. It is more expensive than other supersetting |
---|
734 | procedures, but often produces better results. See |
---|
735 | Cudd_SupersetShortPaths for a description of the threshold and nvars |
---|
736 | parameters. Returns a pointer to the result if successful; NULL |
---|
737 | otherwise.] |
---|
738 | |
---|
739 | SideEffects [None] |
---|
740 | |
---|
741 | SeeAlso [Cudd_SubsetCompress Cudd_SupersetRemap Cudd_SupersetShortPaths |
---|
742 | Cudd_SupersetHeavyBranch Cudd_bddSqueeze] |
---|
743 | |
---|
744 | ******************************************************************************/ |
---|
745 | DdNode * |
---|
746 | Cudd_SupersetCompress( |
---|
747 | DdManager * dd /* manager */, |
---|
748 | DdNode * f /* BDD whose superset is sought */, |
---|
749 | int nvars /* number of variables in the support of f */, |
---|
750 | int threshold /* maximum number of nodes in the superset */) |
---|
751 | { |
---|
752 | DdNode *subset; |
---|
753 | |
---|
754 | subset = Cudd_SubsetCompress(dd, Cudd_Not(f),nvars,threshold); |
---|
755 | |
---|
756 | return(Cudd_NotCond(subset, (subset != NULL))); |
---|
757 | |
---|
758 | } /* end of Cudd_SupersetCompress */ |
---|
759 | |
---|
760 | |
---|
761 | /*---------------------------------------------------------------------------*/ |
---|
762 | /* Definition of internal functions */ |
---|
763 | /*---------------------------------------------------------------------------*/ |
---|
764 | |
---|
765 | |
---|
766 | /**Function******************************************************************** |
---|
767 | |
---|
768 | Synopsis [Performs the recursive step of Cudd_bddConstrain.] |
---|
769 | |
---|
770 | Description [Performs the recursive step of Cudd_bddConstrain. |
---|
771 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
772 | |
---|
773 | SideEffects [None] |
---|
774 | |
---|
775 | SeeAlso [Cudd_bddConstrain] |
---|
776 | |
---|
777 | ******************************************************************************/ |
---|
778 | DdNode * |
---|
779 | cuddBddConstrainRecur( |
---|
780 | DdManager * dd, |
---|
781 | DdNode * f, |
---|
782 | DdNode * c) |
---|
783 | { |
---|
784 | DdNode *Fv, *Fnv, *Cv, *Cnv, *t, *e, *r; |
---|
785 | DdNode *one, *zero; |
---|
786 | unsigned int topf, topc; |
---|
787 | int index; |
---|
788 | int comple = 0; |
---|
789 | |
---|
790 | statLine(dd); |
---|
791 | one = DD_ONE(dd); |
---|
792 | zero = Cudd_Not(one); |
---|
793 | |
---|
794 | /* Trivial cases. */ |
---|
795 | if (c == one) return(f); |
---|
796 | if (c == zero) return(zero); |
---|
797 | if (Cudd_IsConstant(f)) return(f); |
---|
798 | if (f == c) return(one); |
---|
799 | if (f == Cudd_Not(c)) return(zero); |
---|
800 | |
---|
801 | /* Make canonical to increase the utilization of the cache. */ |
---|
802 | if (Cudd_IsComplement(f)) { |
---|
803 | f = Cudd_Not(f); |
---|
804 | comple = 1; |
---|
805 | } |
---|
806 | /* Now f is a regular pointer to a non-constant node; c is also |
---|
807 | ** non-constant, but may be complemented. |
---|
808 | */ |
---|
809 | |
---|
810 | /* Check the cache. */ |
---|
811 | r = cuddCacheLookup2(dd, Cudd_bddConstrain, f, c); |
---|
812 | if (r != NULL) { |
---|
813 | return(Cudd_NotCond(r,comple)); |
---|
814 | } |
---|
815 | |
---|
816 | /* Recursive step. */ |
---|
817 | topf = dd->perm[f->index]; |
---|
818 | topc = dd->perm[Cudd_Regular(c)->index]; |
---|
819 | if (topf <= topc) { |
---|
820 | index = f->index; |
---|
821 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
822 | } else { |
---|
823 | index = Cudd_Regular(c)->index; |
---|
824 | Fv = Fnv = f; |
---|
825 | } |
---|
826 | if (topc <= topf) { |
---|
827 | Cv = cuddT(Cudd_Regular(c)); Cnv = cuddE(Cudd_Regular(c)); |
---|
828 | if (Cudd_IsComplement(c)) { |
---|
829 | Cv = Cudd_Not(Cv); |
---|
830 | Cnv = Cudd_Not(Cnv); |
---|
831 | } |
---|
832 | } else { |
---|
833 | Cv = Cnv = c; |
---|
834 | } |
---|
835 | |
---|
836 | if (!Cudd_IsConstant(Cv)) { |
---|
837 | t = cuddBddConstrainRecur(dd, Fv, Cv); |
---|
838 | if (t == NULL) |
---|
839 | return(NULL); |
---|
840 | } else if (Cv == one) { |
---|
841 | t = Fv; |
---|
842 | } else { /* Cv == zero: return Fnv @ Cnv */ |
---|
843 | if (Cnv == one) { |
---|
844 | r = Fnv; |
---|
845 | } else { |
---|
846 | r = cuddBddConstrainRecur(dd, Fnv, Cnv); |
---|
847 | if (r == NULL) |
---|
848 | return(NULL); |
---|
849 | } |
---|
850 | return(Cudd_NotCond(r,comple)); |
---|
851 | } |
---|
852 | cuddRef(t); |
---|
853 | |
---|
854 | if (!Cudd_IsConstant(Cnv)) { |
---|
855 | e = cuddBddConstrainRecur(dd, Fnv, Cnv); |
---|
856 | if (e == NULL) { |
---|
857 | Cudd_IterDerefBdd(dd, t); |
---|
858 | return(NULL); |
---|
859 | } |
---|
860 | } else if (Cnv == one) { |
---|
861 | e = Fnv; |
---|
862 | } else { /* Cnv == zero: return Fv @ Cv previously computed */ |
---|
863 | cuddDeref(t); |
---|
864 | return(Cudd_NotCond(t,comple)); |
---|
865 | } |
---|
866 | cuddRef(e); |
---|
867 | |
---|
868 | if (Cudd_IsComplement(t)) { |
---|
869 | t = Cudd_Not(t); |
---|
870 | e = Cudd_Not(e); |
---|
871 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
872 | if (r == NULL) { |
---|
873 | Cudd_IterDerefBdd(dd, e); |
---|
874 | Cudd_IterDerefBdd(dd, t); |
---|
875 | return(NULL); |
---|
876 | } |
---|
877 | r = Cudd_Not(r); |
---|
878 | } else { |
---|
879 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
880 | if (r == NULL) { |
---|
881 | Cudd_IterDerefBdd(dd, e); |
---|
882 | Cudd_IterDerefBdd(dd, t); |
---|
883 | return(NULL); |
---|
884 | } |
---|
885 | } |
---|
886 | cuddDeref(t); |
---|
887 | cuddDeref(e); |
---|
888 | |
---|
889 | cuddCacheInsert2(dd, Cudd_bddConstrain, f, c, r); |
---|
890 | return(Cudd_NotCond(r,comple)); |
---|
891 | |
---|
892 | } /* end of cuddBddConstrainRecur */ |
---|
893 | |
---|
894 | |
---|
895 | /**Function******************************************************************** |
---|
896 | |
---|
897 | Synopsis [Performs the recursive step of Cudd_bddRestrict.] |
---|
898 | |
---|
899 | Description [Performs the recursive step of Cudd_bddRestrict. |
---|
900 | Returns the restricted BDD if successful; otherwise NULL.] |
---|
901 | |
---|
902 | SideEffects [None] |
---|
903 | |
---|
904 | SeeAlso [Cudd_bddRestrict] |
---|
905 | |
---|
906 | ******************************************************************************/ |
---|
907 | DdNode * |
---|
908 | cuddBddRestrictRecur( |
---|
909 | DdManager * dd, |
---|
910 | DdNode * f, |
---|
911 | DdNode * c) |
---|
912 | { |
---|
913 | DdNode *Fv, *Fnv, *Cv, *Cnv, *t, *e, *r, *one, *zero; |
---|
914 | unsigned int topf, topc; |
---|
915 | int index; |
---|
916 | int comple = 0; |
---|
917 | |
---|
918 | statLine(dd); |
---|
919 | one = DD_ONE(dd); |
---|
920 | zero = Cudd_Not(one); |
---|
921 | |
---|
922 | /* Trivial cases */ |
---|
923 | if (c == one) return(f); |
---|
924 | if (c == zero) return(zero); |
---|
925 | if (Cudd_IsConstant(f)) return(f); |
---|
926 | if (f == c) return(one); |
---|
927 | if (f == Cudd_Not(c)) return(zero); |
---|
928 | |
---|
929 | /* Make canonical to increase the utilization of the cache. */ |
---|
930 | if (Cudd_IsComplement(f)) { |
---|
931 | f = Cudd_Not(f); |
---|
932 | comple = 1; |
---|
933 | } |
---|
934 | /* Now f is a regular pointer to a non-constant node; c is also |
---|
935 | ** non-constant, but may be complemented. |
---|
936 | */ |
---|
937 | |
---|
938 | /* Check the cache. */ |
---|
939 | r = cuddCacheLookup2(dd, Cudd_bddRestrict, f, c); |
---|
940 | if (r != NULL) { |
---|
941 | return(Cudd_NotCond(r,comple)); |
---|
942 | } |
---|
943 | |
---|
944 | topf = dd->perm[f->index]; |
---|
945 | topc = dd->perm[Cudd_Regular(c)->index]; |
---|
946 | |
---|
947 | if (topc < topf) { /* abstract top variable from c */ |
---|
948 | DdNode *d, *s1, *s2; |
---|
949 | |
---|
950 | /* Find complements of cofactors of c. */ |
---|
951 | if (Cudd_IsComplement(c)) { |
---|
952 | s1 = cuddT(Cudd_Regular(c)); |
---|
953 | s2 = cuddE(Cudd_Regular(c)); |
---|
954 | } else { |
---|
955 | s1 = Cudd_Not(cuddT(c)); |
---|
956 | s2 = Cudd_Not(cuddE(c)); |
---|
957 | } |
---|
958 | /* Take the OR by applying DeMorgan. */ |
---|
959 | d = cuddBddAndRecur(dd, s1, s2); |
---|
960 | if (d == NULL) return(NULL); |
---|
961 | d = Cudd_Not(d); |
---|
962 | cuddRef(d); |
---|
963 | r = cuddBddRestrictRecur(dd, f, d); |
---|
964 | if (r == NULL) { |
---|
965 | Cudd_IterDerefBdd(dd, d); |
---|
966 | return(NULL); |
---|
967 | } |
---|
968 | cuddRef(r); |
---|
969 | Cudd_IterDerefBdd(dd, d); |
---|
970 | cuddCacheInsert2(dd, Cudd_bddRestrict, f, c, r); |
---|
971 | cuddDeref(r); |
---|
972 | return(Cudd_NotCond(r,comple)); |
---|
973 | } |
---|
974 | |
---|
975 | /* Recursive step. Here topf <= topc. */ |
---|
976 | index = f->index; |
---|
977 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
978 | if (topc == topf) { |
---|
979 | Cv = cuddT(Cudd_Regular(c)); Cnv = cuddE(Cudd_Regular(c)); |
---|
980 | if (Cudd_IsComplement(c)) { |
---|
981 | Cv = Cudd_Not(Cv); |
---|
982 | Cnv = Cudd_Not(Cnv); |
---|
983 | } |
---|
984 | } else { |
---|
985 | Cv = Cnv = c; |
---|
986 | } |
---|
987 | |
---|
988 | if (!Cudd_IsConstant(Cv)) { |
---|
989 | t = cuddBddRestrictRecur(dd, Fv, Cv); |
---|
990 | if (t == NULL) return(NULL); |
---|
991 | } else if (Cv == one) { |
---|
992 | t = Fv; |
---|
993 | } else { /* Cv == zero: return(Fnv @ Cnv) */ |
---|
994 | if (Cnv == one) { |
---|
995 | r = Fnv; |
---|
996 | } else { |
---|
997 | r = cuddBddRestrictRecur(dd, Fnv, Cnv); |
---|
998 | if (r == NULL) return(NULL); |
---|
999 | } |
---|
1000 | return(Cudd_NotCond(r,comple)); |
---|
1001 | } |
---|
1002 | cuddRef(t); |
---|
1003 | |
---|
1004 | if (!Cudd_IsConstant(Cnv)) { |
---|
1005 | e = cuddBddRestrictRecur(dd, Fnv, Cnv); |
---|
1006 | if (e == NULL) { |
---|
1007 | Cudd_IterDerefBdd(dd, t); |
---|
1008 | return(NULL); |
---|
1009 | } |
---|
1010 | } else if (Cnv == one) { |
---|
1011 | e = Fnv; |
---|
1012 | } else { /* Cnv == zero: return (Fv @ Cv) previously computed */ |
---|
1013 | cuddDeref(t); |
---|
1014 | return(Cudd_NotCond(t,comple)); |
---|
1015 | } |
---|
1016 | cuddRef(e); |
---|
1017 | |
---|
1018 | if (Cudd_IsComplement(t)) { |
---|
1019 | t = Cudd_Not(t); |
---|
1020 | e = Cudd_Not(e); |
---|
1021 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
1022 | if (r == NULL) { |
---|
1023 | Cudd_IterDerefBdd(dd, e); |
---|
1024 | Cudd_IterDerefBdd(dd, t); |
---|
1025 | return(NULL); |
---|
1026 | } |
---|
1027 | r = Cudd_Not(r); |
---|
1028 | } else { |
---|
1029 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
1030 | if (r == NULL) { |
---|
1031 | Cudd_IterDerefBdd(dd, e); |
---|
1032 | Cudd_IterDerefBdd(dd, t); |
---|
1033 | return(NULL); |
---|
1034 | } |
---|
1035 | } |
---|
1036 | cuddDeref(t); |
---|
1037 | cuddDeref(e); |
---|
1038 | |
---|
1039 | cuddCacheInsert2(dd, Cudd_bddRestrict, f, c, r); |
---|
1040 | return(Cudd_NotCond(r,comple)); |
---|
1041 | |
---|
1042 | } /* end of cuddBddRestrictRecur */ |
---|
1043 | |
---|
1044 | |
---|
1045 | /**Function******************************************************************** |
---|
1046 | |
---|
1047 | Synopsis [Implements the recursive step of Cudd_bddAnd.] |
---|
1048 | |
---|
1049 | Description [Implements the recursive step of Cudd_bddNPAnd. |
---|
1050 | Returns a pointer to the result is successful; NULL otherwise.] |
---|
1051 | |
---|
1052 | SideEffects [None] |
---|
1053 | |
---|
1054 | SeeAlso [Cudd_bddNPAnd] |
---|
1055 | |
---|
1056 | ******************************************************************************/ |
---|
1057 | DdNode * |
---|
1058 | cuddBddNPAndRecur( |
---|
1059 | DdManager * manager, |
---|
1060 | DdNode * f, |
---|
1061 | DdNode * g) |
---|
1062 | { |
---|
1063 | DdNode *F, *ft, *fe, *G, *gt, *ge; |
---|
1064 | DdNode *one, *r, *t, *e; |
---|
1065 | unsigned int topf, topg, index; |
---|
1066 | |
---|
1067 | statLine(manager); |
---|
1068 | one = DD_ONE(manager); |
---|
1069 | |
---|
1070 | /* Terminal cases. */ |
---|
1071 | F = Cudd_Regular(f); |
---|
1072 | G = Cudd_Regular(g); |
---|
1073 | if (F == G) { |
---|
1074 | if (f == g) return(one); |
---|
1075 | else return(Cudd_Not(one)); |
---|
1076 | } |
---|
1077 | if (G == one) { |
---|
1078 | if (g == one) return(f); |
---|
1079 | else return(g); |
---|
1080 | } |
---|
1081 | if (F == one) { |
---|
1082 | return(f); |
---|
1083 | } |
---|
1084 | |
---|
1085 | /* At this point f and g are not constant. */ |
---|
1086 | /* Check cache. */ |
---|
1087 | if (F->ref != 1 || G->ref != 1) { |
---|
1088 | r = cuddCacheLookup2(manager, Cudd_bddNPAnd, f, g); |
---|
1089 | if (r != NULL) return(r); |
---|
1090 | } |
---|
1091 | |
---|
1092 | /* Here we can skip the use of cuddI, because the operands are known |
---|
1093 | ** to be non-constant. |
---|
1094 | */ |
---|
1095 | topf = manager->perm[F->index]; |
---|
1096 | topg = manager->perm[G->index]; |
---|
1097 | |
---|
1098 | if (topg < topf) { /* abstract top variable from g */ |
---|
1099 | DdNode *d; |
---|
1100 | |
---|
1101 | /* Find complements of cofactors of g. */ |
---|
1102 | if (Cudd_IsComplement(g)) { |
---|
1103 | gt = cuddT(G); |
---|
1104 | ge = cuddE(G); |
---|
1105 | } else { |
---|
1106 | gt = Cudd_Not(cuddT(g)); |
---|
1107 | ge = Cudd_Not(cuddE(g)); |
---|
1108 | } |
---|
1109 | /* Take the OR by applying DeMorgan. */ |
---|
1110 | d = cuddBddAndRecur(manager, gt, ge); |
---|
1111 | if (d == NULL) return(NULL); |
---|
1112 | d = Cudd_Not(d); |
---|
1113 | cuddRef(d); |
---|
1114 | r = cuddBddNPAndRecur(manager, f, d); |
---|
1115 | if (r == NULL) { |
---|
1116 | Cudd_IterDerefBdd(manager, d); |
---|
1117 | return(NULL); |
---|
1118 | } |
---|
1119 | cuddRef(r); |
---|
1120 | Cudd_IterDerefBdd(manager, d); |
---|
1121 | cuddCacheInsert2(manager, Cudd_bddNPAnd, f, g, r); |
---|
1122 | cuddDeref(r); |
---|
1123 | return(r); |
---|
1124 | } |
---|
1125 | |
---|
1126 | /* Compute cofactors. */ |
---|
1127 | index = F->index; |
---|
1128 | ft = cuddT(F); |
---|
1129 | fe = cuddE(F); |
---|
1130 | if (Cudd_IsComplement(f)) { |
---|
1131 | ft = Cudd_Not(ft); |
---|
1132 | fe = Cudd_Not(fe); |
---|
1133 | } |
---|
1134 | |
---|
1135 | if (topg == topf) { |
---|
1136 | gt = cuddT(G); |
---|
1137 | ge = cuddE(G); |
---|
1138 | if (Cudd_IsComplement(g)) { |
---|
1139 | gt = Cudd_Not(gt); |
---|
1140 | ge = Cudd_Not(ge); |
---|
1141 | } |
---|
1142 | } else { |
---|
1143 | gt = ge = g; |
---|
1144 | } |
---|
1145 | |
---|
1146 | t = cuddBddAndRecur(manager, ft, gt); |
---|
1147 | if (t == NULL) return(NULL); |
---|
1148 | cuddRef(t); |
---|
1149 | |
---|
1150 | e = cuddBddAndRecur(manager, fe, ge); |
---|
1151 | if (e == NULL) { |
---|
1152 | Cudd_IterDerefBdd(manager, t); |
---|
1153 | return(NULL); |
---|
1154 | } |
---|
1155 | cuddRef(e); |
---|
1156 | |
---|
1157 | if (t == e) { |
---|
1158 | r = t; |
---|
1159 | } else { |
---|
1160 | if (Cudd_IsComplement(t)) { |
---|
1161 | r = cuddUniqueInter(manager,(int)index,Cudd_Not(t),Cudd_Not(e)); |
---|
1162 | if (r == NULL) { |
---|
1163 | Cudd_IterDerefBdd(manager, t); |
---|
1164 | Cudd_IterDerefBdd(manager, e); |
---|
1165 | return(NULL); |
---|
1166 | } |
---|
1167 | r = Cudd_Not(r); |
---|
1168 | } else { |
---|
1169 | r = cuddUniqueInter(manager,(int)index,t,e); |
---|
1170 | if (r == NULL) { |
---|
1171 | Cudd_IterDerefBdd(manager, t); |
---|
1172 | Cudd_IterDerefBdd(manager, e); |
---|
1173 | return(NULL); |
---|
1174 | } |
---|
1175 | } |
---|
1176 | } |
---|
1177 | cuddDeref(e); |
---|
1178 | cuddDeref(t); |
---|
1179 | if (F->ref != 1 || G->ref != 1) |
---|
1180 | cuddCacheInsert2(manager, Cudd_bddNPAnd, f, g, r); |
---|
1181 | return(r); |
---|
1182 | |
---|
1183 | } /* end of cuddBddNPAndRecur */ |
---|
1184 | |
---|
1185 | |
---|
1186 | /**Function******************************************************************** |
---|
1187 | |
---|
1188 | Synopsis [Performs the recursive step of Cudd_addConstrain.] |
---|
1189 | |
---|
1190 | Description [Performs the recursive step of Cudd_addConstrain. |
---|
1191 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
1192 | |
---|
1193 | SideEffects [None] |
---|
1194 | |
---|
1195 | SeeAlso [Cudd_addConstrain] |
---|
1196 | |
---|
1197 | ******************************************************************************/ |
---|
1198 | DdNode * |
---|
1199 | cuddAddConstrainRecur( |
---|
1200 | DdManager * dd, |
---|
1201 | DdNode * f, |
---|
1202 | DdNode * c) |
---|
1203 | { |
---|
1204 | DdNode *Fv, *Fnv, *Cv, *Cnv, *t, *e, *r; |
---|
1205 | DdNode *one, *zero; |
---|
1206 | unsigned int topf, topc; |
---|
1207 | int index; |
---|
1208 | |
---|
1209 | statLine(dd); |
---|
1210 | one = DD_ONE(dd); |
---|
1211 | zero = DD_ZERO(dd); |
---|
1212 | |
---|
1213 | /* Trivial cases. */ |
---|
1214 | if (c == one) return(f); |
---|
1215 | if (c == zero) return(zero); |
---|
1216 | if (Cudd_IsConstant(f)) return(f); |
---|
1217 | if (f == c) return(one); |
---|
1218 | |
---|
1219 | /* Now f and c are non-constant. */ |
---|
1220 | |
---|
1221 | /* Check the cache. */ |
---|
1222 | r = cuddCacheLookup2(dd, Cudd_addConstrain, f, c); |
---|
1223 | if (r != NULL) { |
---|
1224 | return(r); |
---|
1225 | } |
---|
1226 | |
---|
1227 | /* Recursive step. */ |
---|
1228 | topf = dd->perm[f->index]; |
---|
1229 | topc = dd->perm[c->index]; |
---|
1230 | if (topf <= topc) { |
---|
1231 | index = f->index; |
---|
1232 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
1233 | } else { |
---|
1234 | index = c->index; |
---|
1235 | Fv = Fnv = f; |
---|
1236 | } |
---|
1237 | if (topc <= topf) { |
---|
1238 | Cv = cuddT(c); Cnv = cuddE(c); |
---|
1239 | } else { |
---|
1240 | Cv = Cnv = c; |
---|
1241 | } |
---|
1242 | |
---|
1243 | if (!Cudd_IsConstant(Cv)) { |
---|
1244 | t = cuddAddConstrainRecur(dd, Fv, Cv); |
---|
1245 | if (t == NULL) |
---|
1246 | return(NULL); |
---|
1247 | } else if (Cv == one) { |
---|
1248 | t = Fv; |
---|
1249 | } else { /* Cv == zero: return Fnv @ Cnv */ |
---|
1250 | if (Cnv == one) { |
---|
1251 | r = Fnv; |
---|
1252 | } else { |
---|
1253 | r = cuddAddConstrainRecur(dd, Fnv, Cnv); |
---|
1254 | if (r == NULL) |
---|
1255 | return(NULL); |
---|
1256 | } |
---|
1257 | return(r); |
---|
1258 | } |
---|
1259 | cuddRef(t); |
---|
1260 | |
---|
1261 | if (!Cudd_IsConstant(Cnv)) { |
---|
1262 | e = cuddAddConstrainRecur(dd, Fnv, Cnv); |
---|
1263 | if (e == NULL) { |
---|
1264 | Cudd_RecursiveDeref(dd, t); |
---|
1265 | return(NULL); |
---|
1266 | } |
---|
1267 | } else if (Cnv == one) { |
---|
1268 | e = Fnv; |
---|
1269 | } else { /* Cnv == zero: return Fv @ Cv previously computed */ |
---|
1270 | cuddDeref(t); |
---|
1271 | return(t); |
---|
1272 | } |
---|
1273 | cuddRef(e); |
---|
1274 | |
---|
1275 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
1276 | if (r == NULL) { |
---|
1277 | Cudd_RecursiveDeref(dd, e); |
---|
1278 | Cudd_RecursiveDeref(dd, t); |
---|
1279 | return(NULL); |
---|
1280 | } |
---|
1281 | cuddDeref(t); |
---|
1282 | cuddDeref(e); |
---|
1283 | |
---|
1284 | cuddCacheInsert2(dd, Cudd_addConstrain, f, c, r); |
---|
1285 | return(r); |
---|
1286 | |
---|
1287 | } /* end of cuddAddConstrainRecur */ |
---|
1288 | |
---|
1289 | |
---|
1290 | /**Function******************************************************************** |
---|
1291 | |
---|
1292 | Synopsis [Performs the recursive step of Cudd_addRestrict.] |
---|
1293 | |
---|
1294 | Description [Performs the recursive step of Cudd_addRestrict. |
---|
1295 | Returns the restricted ADD if successful; otherwise NULL.] |
---|
1296 | |
---|
1297 | SideEffects [None] |
---|
1298 | |
---|
1299 | SeeAlso [Cudd_addRestrict] |
---|
1300 | |
---|
1301 | ******************************************************************************/ |
---|
1302 | DdNode * |
---|
1303 | cuddAddRestrictRecur( |
---|
1304 | DdManager * dd, |
---|
1305 | DdNode * f, |
---|
1306 | DdNode * c) |
---|
1307 | { |
---|
1308 | DdNode *Fv, *Fnv, *Cv, *Cnv, *t, *e, *r, *one, *zero; |
---|
1309 | unsigned int topf, topc; |
---|
1310 | int index; |
---|
1311 | |
---|
1312 | statLine(dd); |
---|
1313 | one = DD_ONE(dd); |
---|
1314 | zero = DD_ZERO(dd); |
---|
1315 | |
---|
1316 | /* Trivial cases */ |
---|
1317 | if (c == one) return(f); |
---|
1318 | if (c == zero) return(zero); |
---|
1319 | if (Cudd_IsConstant(f)) return(f); |
---|
1320 | if (f == c) return(one); |
---|
1321 | |
---|
1322 | /* Now f and c are non-constant. */ |
---|
1323 | |
---|
1324 | /* Check the cache. */ |
---|
1325 | r = cuddCacheLookup2(dd, Cudd_addRestrict, f, c); |
---|
1326 | if (r != NULL) { |
---|
1327 | return(r); |
---|
1328 | } |
---|
1329 | |
---|
1330 | topf = dd->perm[f->index]; |
---|
1331 | topc = dd->perm[c->index]; |
---|
1332 | |
---|
1333 | if (topc < topf) { /* abstract top variable from c */ |
---|
1334 | DdNode *d, *s1, *s2; |
---|
1335 | |
---|
1336 | /* Find cofactors of c. */ |
---|
1337 | s1 = cuddT(c); |
---|
1338 | s2 = cuddE(c); |
---|
1339 | /* Take the OR by applying DeMorgan. */ |
---|
1340 | d = cuddAddApplyRecur(dd, Cudd_addOr, s1, s2); |
---|
1341 | if (d == NULL) return(NULL); |
---|
1342 | cuddRef(d); |
---|
1343 | r = cuddAddRestrictRecur(dd, f, d); |
---|
1344 | if (r == NULL) { |
---|
1345 | Cudd_RecursiveDeref(dd, d); |
---|
1346 | return(NULL); |
---|
1347 | } |
---|
1348 | cuddRef(r); |
---|
1349 | Cudd_RecursiveDeref(dd, d); |
---|
1350 | cuddCacheInsert2(dd, Cudd_addRestrict, f, c, r); |
---|
1351 | cuddDeref(r); |
---|
1352 | return(r); |
---|
1353 | } |
---|
1354 | |
---|
1355 | /* Recursive step. Here topf <= topc. */ |
---|
1356 | index = f->index; |
---|
1357 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
1358 | if (topc == topf) { |
---|
1359 | Cv = cuddT(c); Cnv = cuddE(c); |
---|
1360 | } else { |
---|
1361 | Cv = Cnv = c; |
---|
1362 | } |
---|
1363 | |
---|
1364 | if (!Cudd_IsConstant(Cv)) { |
---|
1365 | t = cuddAddRestrictRecur(dd, Fv, Cv); |
---|
1366 | if (t == NULL) return(NULL); |
---|
1367 | } else if (Cv == one) { |
---|
1368 | t = Fv; |
---|
1369 | } else { /* Cv == zero: return(Fnv @ Cnv) */ |
---|
1370 | if (Cnv == one) { |
---|
1371 | r = Fnv; |
---|
1372 | } else { |
---|
1373 | r = cuddAddRestrictRecur(dd, Fnv, Cnv); |
---|
1374 | if (r == NULL) return(NULL); |
---|
1375 | } |
---|
1376 | return(r); |
---|
1377 | } |
---|
1378 | cuddRef(t); |
---|
1379 | |
---|
1380 | if (!Cudd_IsConstant(Cnv)) { |
---|
1381 | e = cuddAddRestrictRecur(dd, Fnv, Cnv); |
---|
1382 | if (e == NULL) { |
---|
1383 | Cudd_RecursiveDeref(dd, t); |
---|
1384 | return(NULL); |
---|
1385 | } |
---|
1386 | } else if (Cnv == one) { |
---|
1387 | e = Fnv; |
---|
1388 | } else { /* Cnv == zero: return (Fv @ Cv) previously computed */ |
---|
1389 | cuddDeref(t); |
---|
1390 | return(t); |
---|
1391 | } |
---|
1392 | cuddRef(e); |
---|
1393 | |
---|
1394 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
1395 | if (r == NULL) { |
---|
1396 | Cudd_RecursiveDeref(dd, e); |
---|
1397 | Cudd_RecursiveDeref(dd, t); |
---|
1398 | return(NULL); |
---|
1399 | } |
---|
1400 | cuddDeref(t); |
---|
1401 | cuddDeref(e); |
---|
1402 | |
---|
1403 | cuddCacheInsert2(dd, Cudd_addRestrict, f, c, r); |
---|
1404 | return(r); |
---|
1405 | |
---|
1406 | } /* end of cuddAddRestrictRecur */ |
---|
1407 | |
---|
1408 | |
---|
1409 | |
---|
1410 | /**Function******************************************************************** |
---|
1411 | |
---|
1412 | Synopsis [Performs safe minimization of a BDD.] |
---|
1413 | |
---|
1414 | Description [Performs safe minimization of a BDD. Given the BDD |
---|
1415 | <code>f</code> of a function to be minimized and a BDD |
---|
1416 | <code>c</code> representing the care set, Cudd_bddLICompaction |
---|
1417 | produces the BDD of a function that agrees with <code>f</code> |
---|
1418 | wherever <code>c</code> is 1. Safe minimization means that the size |
---|
1419 | of the result is guaranteed not to exceed the size of |
---|
1420 | <code>f</code>. This function is based on the DAC97 paper by Hong et |
---|
1421 | al.. Returns a pointer to the result if successful; NULL |
---|
1422 | otherwise.] |
---|
1423 | |
---|
1424 | SideEffects [None] |
---|
1425 | |
---|
1426 | SeeAlso [Cudd_bddLICompaction] |
---|
1427 | |
---|
1428 | ******************************************************************************/ |
---|
1429 | DdNode * |
---|
1430 | cuddBddLICompaction( |
---|
1431 | DdManager * dd /* manager */, |
---|
1432 | DdNode * f /* function to be minimized */, |
---|
1433 | DdNode * c /* constraint (care set) */) |
---|
1434 | { |
---|
1435 | st_table *marktable, *markcache, *buildcache; |
---|
1436 | DdNode *res, *zero; |
---|
1437 | |
---|
1438 | zero = Cudd_Not(DD_ONE(dd)); |
---|
1439 | if (c == zero) return(zero); |
---|
1440 | |
---|
1441 | /* We need to use local caches for both steps of this operation. |
---|
1442 | ** The results of the edge marking step are only valid as long as the |
---|
1443 | ** edge markings themselves are available. However, the edge markings |
---|
1444 | ** are lost at the end of one invocation of Cudd_bddLICompaction. |
---|
1445 | ** Hence, the cache entries for the edge marking step must be |
---|
1446 | ** invalidated at the end of this function. |
---|
1447 | ** For the result of the building step we argue as follows. The result |
---|
1448 | ** for a node and a given constrain depends on the BDD in which the node |
---|
1449 | ** appears. Hence, the same node and constrain may give different results |
---|
1450 | ** in successive invocations. |
---|
1451 | */ |
---|
1452 | marktable = st_init_table(st_ptrcmp,st_ptrhash); |
---|
1453 | if (marktable == NULL) { |
---|
1454 | return(NULL); |
---|
1455 | } |
---|
1456 | markcache = st_init_table(MarkCacheCompare,MarkCacheHash); |
---|
1457 | if (markcache == NULL) { |
---|
1458 | st_free_table(marktable); |
---|
1459 | return(NULL); |
---|
1460 | } |
---|
1461 | if (cuddBddLICMarkEdges(dd,f,c,marktable,markcache) == CUDD_OUT_OF_MEM) { |
---|
1462 | st_foreach(markcache, MarkCacheCleanUp, NULL); |
---|
1463 | st_free_table(marktable); |
---|
1464 | st_free_table(markcache); |
---|
1465 | return(NULL); |
---|
1466 | } |
---|
1467 | st_foreach(markcache, MarkCacheCleanUp, NULL); |
---|
1468 | st_free_table(markcache); |
---|
1469 | buildcache = st_init_table(st_ptrcmp,st_ptrhash); |
---|
1470 | if (buildcache == NULL) { |
---|
1471 | st_free_table(marktable); |
---|
1472 | return(NULL); |
---|
1473 | } |
---|
1474 | res = cuddBddLICBuildResult(dd,f,buildcache,marktable); |
---|
1475 | st_free_table(buildcache); |
---|
1476 | st_free_table(marktable); |
---|
1477 | return(res); |
---|
1478 | |
---|
1479 | } /* end of cuddBddLICompaction */ |
---|
1480 | |
---|
1481 | |
---|
1482 | /*---------------------------------------------------------------------------*/ |
---|
1483 | /* Definition of static functions */ |
---|
1484 | /*---------------------------------------------------------------------------*/ |
---|
1485 | |
---|
1486 | |
---|
1487 | /**Function******************************************************************** |
---|
1488 | |
---|
1489 | Synopsis [Performs the recursive step of Cudd_bddConstrainDecomp.] |
---|
1490 | |
---|
1491 | Description [Performs the recursive step of Cudd_bddConstrainDecomp. |
---|
1492 | Returns f super (i) if successful; otherwise NULL.] |
---|
1493 | |
---|
1494 | SideEffects [None] |
---|
1495 | |
---|
1496 | SeeAlso [Cudd_bddConstrainDecomp] |
---|
1497 | |
---|
1498 | ******************************************************************************/ |
---|
1499 | static int |
---|
1500 | cuddBddConstrainDecomp( |
---|
1501 | DdManager * dd, |
---|
1502 | DdNode * f, |
---|
1503 | DdNode ** decomp) |
---|
1504 | { |
---|
1505 | DdNode *F, *fv, *fvn; |
---|
1506 | DdNode *fAbs; |
---|
1507 | DdNode *result; |
---|
1508 | int ok; |
---|
1509 | |
---|
1510 | if (Cudd_IsConstant(f)) return(1); |
---|
1511 | /* Compute complements of cofactors. */ |
---|
1512 | F = Cudd_Regular(f); |
---|
1513 | fv = cuddT(F); |
---|
1514 | fvn = cuddE(F); |
---|
1515 | if (F == f) { |
---|
1516 | fv = Cudd_Not(fv); |
---|
1517 | fvn = Cudd_Not(fvn); |
---|
1518 | } |
---|
1519 | /* Compute abstraction of top variable. */ |
---|
1520 | fAbs = cuddBddAndRecur(dd, fv, fvn); |
---|
1521 | if (fAbs == NULL) { |
---|
1522 | return(0); |
---|
1523 | } |
---|
1524 | cuddRef(fAbs); |
---|
1525 | fAbs = Cudd_Not(fAbs); |
---|
1526 | /* Recursively find the next abstraction and the components of the |
---|
1527 | ** decomposition. */ |
---|
1528 | ok = cuddBddConstrainDecomp(dd, fAbs, decomp); |
---|
1529 | if (ok == 0) { |
---|
1530 | Cudd_IterDerefBdd(dd,fAbs); |
---|
1531 | return(0); |
---|
1532 | } |
---|
1533 | /* Compute the component of the decomposition corresponding to the |
---|
1534 | ** top variable and store it in the decomposition array. */ |
---|
1535 | result = cuddBddConstrainRecur(dd, f, fAbs); |
---|
1536 | if (result == NULL) { |
---|
1537 | Cudd_IterDerefBdd(dd,fAbs); |
---|
1538 | return(0); |
---|
1539 | } |
---|
1540 | cuddRef(result); |
---|
1541 | decomp[F->index] = result; |
---|
1542 | Cudd_IterDerefBdd(dd, fAbs); |
---|
1543 | return(1); |
---|
1544 | |
---|
1545 | } /* end of cuddBddConstrainDecomp */ |
---|
1546 | |
---|
1547 | |
---|
1548 | /**Function******************************************************************** |
---|
1549 | |
---|
1550 | Synopsis [Performs the recursive step of Cudd_bddCharToVect.] |
---|
1551 | |
---|
1552 | Description [Performs the recursive step of Cudd_bddCharToVect. |
---|
1553 | This function maintains the invariant that f is non-zero. |
---|
1554 | Returns the i-th component of the vector if successful; otherwise NULL.] |
---|
1555 | |
---|
1556 | SideEffects [None] |
---|
1557 | |
---|
1558 | SeeAlso [Cudd_bddCharToVect] |
---|
1559 | |
---|
1560 | ******************************************************************************/ |
---|
1561 | static DdNode * |
---|
1562 | cuddBddCharToVect( |
---|
1563 | DdManager * dd, |
---|
1564 | DdNode * f, |
---|
1565 | DdNode * x) |
---|
1566 | { |
---|
1567 | unsigned int topf; |
---|
1568 | unsigned int level; |
---|
1569 | int comple; |
---|
1570 | |
---|
1571 | DdNode *one, *zero, *res, *F, *fT, *fE, *T, *E; |
---|
1572 | |
---|
1573 | statLine(dd); |
---|
1574 | /* Check the cache. */ |
---|
1575 | res = cuddCacheLookup2(dd, cuddBddCharToVect, f, x); |
---|
1576 | if (res != NULL) { |
---|
1577 | return(res); |
---|
1578 | } |
---|
1579 | |
---|
1580 | F = Cudd_Regular(f); |
---|
1581 | |
---|
1582 | topf = cuddI(dd,F->index); |
---|
1583 | level = dd->perm[x->index]; |
---|
1584 | |
---|
1585 | if (topf > level) return(x); |
---|
1586 | |
---|
1587 | one = DD_ONE(dd); |
---|
1588 | zero = Cudd_Not(one); |
---|
1589 | |
---|
1590 | comple = F != f; |
---|
1591 | fT = Cudd_NotCond(cuddT(F),comple); |
---|
1592 | fE = Cudd_NotCond(cuddE(F),comple); |
---|
1593 | |
---|
1594 | if (topf == level) { |
---|
1595 | if (fT == zero) return(zero); |
---|
1596 | if (fE == zero) return(one); |
---|
1597 | return(x); |
---|
1598 | } |
---|
1599 | |
---|
1600 | /* Here topf < level. */ |
---|
1601 | if (fT == zero) return(cuddBddCharToVect(dd, fE, x)); |
---|
1602 | if (fE == zero) return(cuddBddCharToVect(dd, fT, x)); |
---|
1603 | |
---|
1604 | T = cuddBddCharToVect(dd, fT, x); |
---|
1605 | if (T == NULL) { |
---|
1606 | return(NULL); |
---|
1607 | } |
---|
1608 | cuddRef(T); |
---|
1609 | E = cuddBddCharToVect(dd, fE, x); |
---|
1610 | if (E == NULL) { |
---|
1611 | Cudd_IterDerefBdd(dd,T); |
---|
1612 | return(NULL); |
---|
1613 | } |
---|
1614 | cuddRef(E); |
---|
1615 | res = cuddBddIteRecur(dd, dd->vars[F->index], T, E); |
---|
1616 | if (res == NULL) { |
---|
1617 | Cudd_IterDerefBdd(dd,T); |
---|
1618 | Cudd_IterDerefBdd(dd,E); |
---|
1619 | return(NULL); |
---|
1620 | } |
---|
1621 | cuddDeref(T); |
---|
1622 | cuddDeref(E); |
---|
1623 | cuddCacheInsert2(dd, cuddBddCharToVect, f, x, res); |
---|
1624 | return(res); |
---|
1625 | |
---|
1626 | } /* end of cuddBddCharToVect */ |
---|
1627 | |
---|
1628 | |
---|
1629 | /**Function******************************************************************** |
---|
1630 | |
---|
1631 | Synopsis [Performs the edge marking step of Cudd_bddLICompaction.] |
---|
1632 | |
---|
1633 | Description [Performs the edge marking step of Cudd_bddLICompaction. |
---|
1634 | Returns the LUB of the markings of the two outgoing edges of <code>f</code> |
---|
1635 | if successful; otherwise CUDD_OUT_OF_MEM.] |
---|
1636 | |
---|
1637 | SideEffects [None] |
---|
1638 | |
---|
1639 | SeeAlso [Cudd_bddLICompaction cuddBddLICBuildResult] |
---|
1640 | |
---|
1641 | ******************************************************************************/ |
---|
1642 | static int |
---|
1643 | cuddBddLICMarkEdges( |
---|
1644 | DdManager * dd, |
---|
1645 | DdNode * f, |
---|
1646 | DdNode * c, |
---|
1647 | st_table * table, |
---|
1648 | st_table * cache) |
---|
1649 | { |
---|
1650 | DdNode *Fv, *Fnv, *Cv, *Cnv; |
---|
1651 | DdNode *one, *zero; |
---|
1652 | unsigned int topf, topc; |
---|
1653 | int comple; |
---|
1654 | int resT, resE, res, retval; |
---|
1655 | char **slot; |
---|
1656 | MarkCacheKey *key; |
---|
1657 | |
---|
1658 | one = DD_ONE(dd); |
---|
1659 | zero = Cudd_Not(one); |
---|
1660 | |
---|
1661 | /* Terminal cases. */ |
---|
1662 | if (c == zero) return(DD_LIC_DC); |
---|
1663 | if (f == one) return(DD_LIC_1); |
---|
1664 | if (f == zero) return(DD_LIC_0); |
---|
1665 | |
---|
1666 | /* Make canonical to increase the utilization of the cache. */ |
---|
1667 | comple = Cudd_IsComplement(f); |
---|
1668 | f = Cudd_Regular(f); |
---|
1669 | /* Now f is a regular pointer to a non-constant node; c may be |
---|
1670 | ** constant, or it may be complemented. |
---|
1671 | */ |
---|
1672 | |
---|
1673 | /* Check the cache. */ |
---|
1674 | key = ALLOC(MarkCacheKey, 1); |
---|
1675 | if (key == NULL) { |
---|
1676 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1677 | return(CUDD_OUT_OF_MEM); |
---|
1678 | } |
---|
1679 | key->f = f; key->c = c; |
---|
1680 | if (st_lookup_int(cache, (char *)key, &res)) { |
---|
1681 | FREE(key); |
---|
1682 | if (comple) { |
---|
1683 | if (res == DD_LIC_0) res = DD_LIC_1; |
---|
1684 | else if (res == DD_LIC_1) res = DD_LIC_0; |
---|
1685 | } |
---|
1686 | return(res); |
---|
1687 | } |
---|
1688 | |
---|
1689 | /* Recursive step. */ |
---|
1690 | topf = dd->perm[f->index]; |
---|
1691 | topc = cuddI(dd,Cudd_Regular(c)->index); |
---|
1692 | if (topf <= topc) { |
---|
1693 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
1694 | } else { |
---|
1695 | Fv = Fnv = f; |
---|
1696 | } |
---|
1697 | if (topc <= topf) { |
---|
1698 | /* We know that c is not constant because f is not. */ |
---|
1699 | Cv = cuddT(Cudd_Regular(c)); Cnv = cuddE(Cudd_Regular(c)); |
---|
1700 | if (Cudd_IsComplement(c)) { |
---|
1701 | Cv = Cudd_Not(Cv); |
---|
1702 | Cnv = Cudd_Not(Cnv); |
---|
1703 | } |
---|
1704 | } else { |
---|
1705 | Cv = Cnv = c; |
---|
1706 | } |
---|
1707 | |
---|
1708 | resT = cuddBddLICMarkEdges(dd, Fv, Cv, table, cache); |
---|
1709 | if (resT == CUDD_OUT_OF_MEM) { |
---|
1710 | FREE(key); |
---|
1711 | return(CUDD_OUT_OF_MEM); |
---|
1712 | } |
---|
1713 | resE = cuddBddLICMarkEdges(dd, Fnv, Cnv, table, cache); |
---|
1714 | if (resE == CUDD_OUT_OF_MEM) { |
---|
1715 | FREE(key); |
---|
1716 | return(CUDD_OUT_OF_MEM); |
---|
1717 | } |
---|
1718 | |
---|
1719 | /* Update edge markings. */ |
---|
1720 | if (topf <= topc) { |
---|
1721 | retval = st_find_or_add(table, (char *)f, (char ***)&slot); |
---|
1722 | if (retval == 0) { |
---|
1723 | *slot = (char *) (ptrint)((resT << 2) | resE); |
---|
1724 | } else if (retval == 1) { |
---|
1725 | *slot = (char *) (ptrint)((int)((ptrint) *slot) | (resT << 2) | resE); |
---|
1726 | } else { |
---|
1727 | FREE(key); |
---|
1728 | return(CUDD_OUT_OF_MEM); |
---|
1729 | } |
---|
1730 | } |
---|
1731 | |
---|
1732 | /* Cache result. */ |
---|
1733 | res = resT | resE; |
---|
1734 | if (st_insert(cache, (char *)key, (char *)(ptrint)res) == ST_OUT_OF_MEM) { |
---|
1735 | FREE(key); |
---|
1736 | return(CUDD_OUT_OF_MEM); |
---|
1737 | } |
---|
1738 | |
---|
1739 | /* Take into account possible complementation. */ |
---|
1740 | if (comple) { |
---|
1741 | if (res == DD_LIC_0) res = DD_LIC_1; |
---|
1742 | else if (res == DD_LIC_1) res = DD_LIC_0; |
---|
1743 | } |
---|
1744 | return(res); |
---|
1745 | |
---|
1746 | } /* end of cuddBddLICMarkEdges */ |
---|
1747 | |
---|
1748 | |
---|
1749 | /**Function******************************************************************** |
---|
1750 | |
---|
1751 | Synopsis [Builds the result of Cudd_bddLICompaction.] |
---|
1752 | |
---|
1753 | Description [Builds the results of Cudd_bddLICompaction. |
---|
1754 | Returns a pointer to the minimized BDD if successful; otherwise NULL.] |
---|
1755 | |
---|
1756 | SideEffects [None] |
---|
1757 | |
---|
1758 | SeeAlso [Cudd_bddLICompaction cuddBddLICMarkEdges] |
---|
1759 | |
---|
1760 | ******************************************************************************/ |
---|
1761 | static DdNode * |
---|
1762 | cuddBddLICBuildResult( |
---|
1763 | DdManager * dd, |
---|
1764 | DdNode * f, |
---|
1765 | st_table * cache, |
---|
1766 | st_table * table) |
---|
1767 | { |
---|
1768 | DdNode *Fv, *Fnv, *r, *t, *e; |
---|
1769 | DdNode *one, *zero; |
---|
1770 | int index; |
---|
1771 | int comple; |
---|
1772 | int markT, markE, markings; |
---|
1773 | |
---|
1774 | one = DD_ONE(dd); |
---|
1775 | zero = Cudd_Not(one); |
---|
1776 | |
---|
1777 | if (Cudd_IsConstant(f)) return(f); |
---|
1778 | /* Make canonical to increase the utilization of the cache. */ |
---|
1779 | comple = Cudd_IsComplement(f); |
---|
1780 | f = Cudd_Regular(f); |
---|
1781 | |
---|
1782 | /* Check the cache. */ |
---|
1783 | if (st_lookup(cache, f, &r)) { |
---|
1784 | return(Cudd_NotCond(r,comple)); |
---|
1785 | } |
---|
1786 | |
---|
1787 | /* Retrieve the edge markings. */ |
---|
1788 | if (st_lookup_int(table, (char *)f, &markings) == 0) |
---|
1789 | return(NULL); |
---|
1790 | markT = markings >> 2; |
---|
1791 | markE = markings & 3; |
---|
1792 | |
---|
1793 | index = f->index; |
---|
1794 | Fv = cuddT(f); Fnv = cuddE(f); |
---|
1795 | |
---|
1796 | if (markT == DD_LIC_NL) { |
---|
1797 | t = cuddBddLICBuildResult(dd,Fv,cache,table); |
---|
1798 | if (t == NULL) { |
---|
1799 | return(NULL); |
---|
1800 | } |
---|
1801 | } else if (markT == DD_LIC_1) { |
---|
1802 | t = one; |
---|
1803 | } else { |
---|
1804 | t = zero; |
---|
1805 | } |
---|
1806 | cuddRef(t); |
---|
1807 | if (markE == DD_LIC_NL) { |
---|
1808 | e = cuddBddLICBuildResult(dd,Fnv,cache,table); |
---|
1809 | if (e == NULL) { |
---|
1810 | Cudd_IterDerefBdd(dd,t); |
---|
1811 | return(NULL); |
---|
1812 | } |
---|
1813 | } else if (markE == DD_LIC_1) { |
---|
1814 | e = one; |
---|
1815 | } else { |
---|
1816 | e = zero; |
---|
1817 | } |
---|
1818 | cuddRef(e); |
---|
1819 | |
---|
1820 | if (markT == DD_LIC_DC && markE != DD_LIC_DC) { |
---|
1821 | r = e; |
---|
1822 | } else if (markT != DD_LIC_DC && markE == DD_LIC_DC) { |
---|
1823 | r = t; |
---|
1824 | } else { |
---|
1825 | if (Cudd_IsComplement(t)) { |
---|
1826 | t = Cudd_Not(t); |
---|
1827 | e = Cudd_Not(e); |
---|
1828 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
1829 | if (r == NULL) { |
---|
1830 | Cudd_IterDerefBdd(dd, e); |
---|
1831 | Cudd_IterDerefBdd(dd, t); |
---|
1832 | return(NULL); |
---|
1833 | } |
---|
1834 | r = Cudd_Not(r); |
---|
1835 | } else { |
---|
1836 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
1837 | if (r == NULL) { |
---|
1838 | Cudd_IterDerefBdd(dd, e); |
---|
1839 | Cudd_IterDerefBdd(dd, t); |
---|
1840 | return(NULL); |
---|
1841 | } |
---|
1842 | } |
---|
1843 | } |
---|
1844 | cuddDeref(t); |
---|
1845 | cuddDeref(e); |
---|
1846 | |
---|
1847 | if (st_insert(cache, (char *)f, (char *)r) == ST_OUT_OF_MEM) { |
---|
1848 | cuddRef(r); |
---|
1849 | Cudd_IterDerefBdd(dd,r); |
---|
1850 | return(NULL); |
---|
1851 | } |
---|
1852 | |
---|
1853 | return(Cudd_NotCond(r,comple)); |
---|
1854 | |
---|
1855 | } /* end of cuddBddLICBuildResult */ |
---|
1856 | |
---|
1857 | |
---|
1858 | /**Function******************************************************************** |
---|
1859 | |
---|
1860 | Synopsis [Hash function for the computed table of cuddBddLICMarkEdges.] |
---|
1861 | |
---|
1862 | Description [Hash function for the computed table of |
---|
1863 | cuddBddLICMarkEdges. Returns the bucket number.] |
---|
1864 | |
---|
1865 | SideEffects [None] |
---|
1866 | |
---|
1867 | SeeAlso [Cudd_bddLICompaction] |
---|
1868 | |
---|
1869 | ******************************************************************************/ |
---|
1870 | static int |
---|
1871 | MarkCacheHash( |
---|
1872 | char * ptr, |
---|
1873 | int modulus) |
---|
1874 | { |
---|
1875 | int val = 0; |
---|
1876 | MarkCacheKey *entry; |
---|
1877 | |
---|
1878 | entry = (MarkCacheKey *) ptr; |
---|
1879 | |
---|
1880 | val = (int) (ptrint) entry->f; |
---|
1881 | val = val * 997 + (int) (ptrint) entry->c; |
---|
1882 | |
---|
1883 | return ((val < 0) ? -val : val) % modulus; |
---|
1884 | |
---|
1885 | } /* end of MarkCacheHash */ |
---|
1886 | |
---|
1887 | |
---|
1888 | /**Function******************************************************************** |
---|
1889 | |
---|
1890 | Synopsis [Comparison function for the computed table of |
---|
1891 | cuddBddLICMarkEdges.] |
---|
1892 | |
---|
1893 | Description [Comparison function for the computed table of |
---|
1894 | cuddBddLICMarkEdges. Returns 0 if the two nodes of the key are equal; 1 |
---|
1895 | otherwise.] |
---|
1896 | |
---|
1897 | SideEffects [None] |
---|
1898 | |
---|
1899 | SeeAlso [Cudd_bddLICompaction] |
---|
1900 | |
---|
1901 | ******************************************************************************/ |
---|
1902 | static int |
---|
1903 | MarkCacheCompare( |
---|
1904 | const char * ptr1, |
---|
1905 | const char * ptr2) |
---|
1906 | { |
---|
1907 | MarkCacheKey *entry1, *entry2; |
---|
1908 | |
---|
1909 | entry1 = (MarkCacheKey *) ptr1; |
---|
1910 | entry2 = (MarkCacheKey *) ptr2; |
---|
1911 | |
---|
1912 | return((entry1->f != entry2->f) || (entry1->c != entry2->c)); |
---|
1913 | |
---|
1914 | } /* end of MarkCacheCompare */ |
---|
1915 | |
---|
1916 | |
---|
1917 | |
---|
1918 | /**Function******************************************************************** |
---|
1919 | |
---|
1920 | Synopsis [Frees memory associated with computed table of |
---|
1921 | cuddBddLICMarkEdges.] |
---|
1922 | |
---|
1923 | Description [Frees memory associated with computed table of |
---|
1924 | cuddBddLICMarkEdges. Returns ST_CONTINUE.] |
---|
1925 | |
---|
1926 | SideEffects [None] |
---|
1927 | |
---|
1928 | SeeAlso [Cudd_bddLICompaction] |
---|
1929 | |
---|
1930 | ******************************************************************************/ |
---|
1931 | static enum st_retval |
---|
1932 | MarkCacheCleanUp( |
---|
1933 | char * key, |
---|
1934 | char * value, |
---|
1935 | char * arg) |
---|
1936 | { |
---|
1937 | MarkCacheKey *entry; |
---|
1938 | |
---|
1939 | entry = (MarkCacheKey *) key; |
---|
1940 | FREE(entry); |
---|
1941 | return ST_CONTINUE; |
---|
1942 | |
---|
1943 | } /* end of MarkCacheCleanUp */ |
---|
1944 | |
---|
1945 | |
---|
1946 | /**Function******************************************************************** |
---|
1947 | |
---|
1948 | Synopsis [Performs the recursive step of Cudd_bddSqueeze.] |
---|
1949 | |
---|
1950 | Description [Performs the recursive step of Cudd_bddSqueeze. This |
---|
1951 | procedure exploits the fact that if we complement and swap the |
---|
1952 | bounds of the interval we obtain a valid solution by taking the |
---|
1953 | complement of the solution to the original problem. Therefore, we |
---|
1954 | can enforce the condition that the upper bound is always regular. |
---|
1955 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
1956 | |
---|
1957 | SideEffects [None] |
---|
1958 | |
---|
1959 | SeeAlso [Cudd_bddSqueeze] |
---|
1960 | |
---|
1961 | ******************************************************************************/ |
---|
1962 | static DdNode * |
---|
1963 | cuddBddSqueeze( |
---|
1964 | DdManager * dd, |
---|
1965 | DdNode * l, |
---|
1966 | DdNode * u) |
---|
1967 | { |
---|
1968 | DdNode *one, *zero, *r, *lt, *le, *ut, *ue, *t, *e; |
---|
1969 | #if 0 |
---|
1970 | DdNode *ar; |
---|
1971 | #endif |
---|
1972 | int comple = 0; |
---|
1973 | unsigned int topu, topl; |
---|
1974 | int index; |
---|
1975 | |
---|
1976 | statLine(dd); |
---|
1977 | if (l == u) { |
---|
1978 | return(l); |
---|
1979 | } |
---|
1980 | one = DD_ONE(dd); |
---|
1981 | zero = Cudd_Not(one); |
---|
1982 | /* The only case when l == zero && u == one is at the top level, |
---|
1983 | ** where returning either one or zero is OK. In all other cases |
---|
1984 | ** the procedure will detect such a case and will perform |
---|
1985 | ** remapping. Therefore the order in which we test l and u at this |
---|
1986 | ** point is immaterial. */ |
---|
1987 | if (l == zero) return(l); |
---|
1988 | if (u == one) return(u); |
---|
1989 | |
---|
1990 | /* Make canonical to increase the utilization of the cache. */ |
---|
1991 | if (Cudd_IsComplement(u)) { |
---|
1992 | DdNode *temp; |
---|
1993 | temp = Cudd_Not(l); |
---|
1994 | l = Cudd_Not(u); |
---|
1995 | u = temp; |
---|
1996 | comple = 1; |
---|
1997 | } |
---|
1998 | /* At this point u is regular and non-constant; l is non-constant, but |
---|
1999 | ** may be complemented. */ |
---|
2000 | |
---|
2001 | /* Here we could check the relative sizes. */ |
---|
2002 | |
---|
2003 | /* Check the cache. */ |
---|
2004 | r = cuddCacheLookup2(dd, Cudd_bddSqueeze, l, u); |
---|
2005 | if (r != NULL) { |
---|
2006 | return(Cudd_NotCond(r,comple)); |
---|
2007 | } |
---|
2008 | |
---|
2009 | /* Recursive step. */ |
---|
2010 | topu = dd->perm[u->index]; |
---|
2011 | topl = dd->perm[Cudd_Regular(l)->index]; |
---|
2012 | if (topu <= topl) { |
---|
2013 | index = u->index; |
---|
2014 | ut = cuddT(u); ue = cuddE(u); |
---|
2015 | } else { |
---|
2016 | index = Cudd_Regular(l)->index; |
---|
2017 | ut = ue = u; |
---|
2018 | } |
---|
2019 | if (topl <= topu) { |
---|
2020 | lt = cuddT(Cudd_Regular(l)); le = cuddE(Cudd_Regular(l)); |
---|
2021 | if (Cudd_IsComplement(l)) { |
---|
2022 | lt = Cudd_Not(lt); |
---|
2023 | le = Cudd_Not(le); |
---|
2024 | } |
---|
2025 | } else { |
---|
2026 | lt = le = l; |
---|
2027 | } |
---|
2028 | |
---|
2029 | /* If one interval is contained in the other, use the smaller |
---|
2030 | ** interval. This corresponds to one-sided matching. */ |
---|
2031 | if ((lt == zero || Cudd_bddLeq(dd,lt,le)) && |
---|
2032 | (ut == one || Cudd_bddLeq(dd,ue,ut))) { /* remap */ |
---|
2033 | r = cuddBddSqueeze(dd, le, ue); |
---|
2034 | if (r == NULL) |
---|
2035 | return(NULL); |
---|
2036 | return(Cudd_NotCond(r,comple)); |
---|
2037 | } else if ((le == zero || Cudd_bddLeq(dd,le,lt)) && |
---|
2038 | (ue == one || Cudd_bddLeq(dd,ut,ue))) { /* remap */ |
---|
2039 | r = cuddBddSqueeze(dd, lt, ut); |
---|
2040 | if (r == NULL) |
---|
2041 | return(NULL); |
---|
2042 | return(Cudd_NotCond(r,comple)); |
---|
2043 | } else if ((le == zero || Cudd_bddLeq(dd,le,Cudd_Not(ut))) && |
---|
2044 | (ue == one || Cudd_bddLeq(dd,Cudd_Not(lt),ue))) { /* c-remap */ |
---|
2045 | t = cuddBddSqueeze(dd, lt, ut); |
---|
2046 | cuddRef(t); |
---|
2047 | if (Cudd_IsComplement(t)) { |
---|
2048 | r = cuddUniqueInter(dd, index, Cudd_Not(t), t); |
---|
2049 | if (r == NULL) { |
---|
2050 | Cudd_IterDerefBdd(dd, t); |
---|
2051 | return(NULL); |
---|
2052 | } |
---|
2053 | r = Cudd_Not(r); |
---|
2054 | } else { |
---|
2055 | r = cuddUniqueInter(dd, index, t, Cudd_Not(t)); |
---|
2056 | if (r == NULL) { |
---|
2057 | Cudd_IterDerefBdd(dd, t); |
---|
2058 | return(NULL); |
---|
2059 | } |
---|
2060 | } |
---|
2061 | cuddDeref(t); |
---|
2062 | if (r == NULL) |
---|
2063 | return(NULL); |
---|
2064 | cuddCacheInsert2(dd, Cudd_bddSqueeze, l, u, r); |
---|
2065 | return(Cudd_NotCond(r,comple)); |
---|
2066 | } else if ((lt == zero || Cudd_bddLeq(dd,lt,Cudd_Not(ue))) && |
---|
2067 | (ut == one || Cudd_bddLeq(dd,Cudd_Not(le),ut))) { /* c-remap */ |
---|
2068 | e = cuddBddSqueeze(dd, le, ue); |
---|
2069 | cuddRef(e); |
---|
2070 | if (Cudd_IsComplement(e)) { |
---|
2071 | r = cuddUniqueInter(dd, index, Cudd_Not(e), e); |
---|
2072 | if (r == NULL) { |
---|
2073 | Cudd_IterDerefBdd(dd, e); |
---|
2074 | return(NULL); |
---|
2075 | } |
---|
2076 | } else { |
---|
2077 | r = cuddUniqueInter(dd, index, e, Cudd_Not(e)); |
---|
2078 | if (r == NULL) { |
---|
2079 | Cudd_IterDerefBdd(dd, e); |
---|
2080 | return(NULL); |
---|
2081 | } |
---|
2082 | r = Cudd_Not(r); |
---|
2083 | } |
---|
2084 | cuddDeref(e); |
---|
2085 | if (r == NULL) |
---|
2086 | return(NULL); |
---|
2087 | cuddCacheInsert2(dd, Cudd_bddSqueeze, l, u, r); |
---|
2088 | return(Cudd_NotCond(r,comple)); |
---|
2089 | } |
---|
2090 | |
---|
2091 | #if 0 |
---|
2092 | /* If the two intervals intersect, take a solution from |
---|
2093 | ** the intersection of the intervals. This guarantees that the |
---|
2094 | ** splitting variable will not appear in the result. |
---|
2095 | ** This approach corresponds to two-sided matching, and is very |
---|
2096 | ** expensive. */ |
---|
2097 | if (Cudd_bddLeq(dd,lt,ue) && Cudd_bddLeq(dd,le,ut)) { |
---|
2098 | DdNode *au, *al; |
---|
2099 | au = cuddBddAndRecur(dd,ut,ue); |
---|
2100 | if (au == NULL) |
---|
2101 | return(NULL); |
---|
2102 | cuddRef(au); |
---|
2103 | al = cuddBddAndRecur(dd,Cudd_Not(lt),Cudd_Not(le)); |
---|
2104 | if (al == NULL) { |
---|
2105 | Cudd_IterDerefBdd(dd,au); |
---|
2106 | return(NULL); |
---|
2107 | } |
---|
2108 | cuddRef(al); |
---|
2109 | al = Cudd_Not(al); |
---|
2110 | ar = cuddBddSqueeze(dd, al, au); |
---|
2111 | if (ar == NULL) { |
---|
2112 | Cudd_IterDerefBdd(dd,au); |
---|
2113 | Cudd_IterDerefBdd(dd,al); |
---|
2114 | return(NULL); |
---|
2115 | } |
---|
2116 | cuddRef(ar); |
---|
2117 | Cudd_IterDerefBdd(dd,au); |
---|
2118 | Cudd_IterDerefBdd(dd,al); |
---|
2119 | } else { |
---|
2120 | ar = NULL; |
---|
2121 | } |
---|
2122 | #endif |
---|
2123 | |
---|
2124 | t = cuddBddSqueeze(dd, lt, ut); |
---|
2125 | if (t == NULL) { |
---|
2126 | return(NULL); |
---|
2127 | } |
---|
2128 | cuddRef(t); |
---|
2129 | e = cuddBddSqueeze(dd, le, ue); |
---|
2130 | if (e == NULL) { |
---|
2131 | Cudd_IterDerefBdd(dd,t); |
---|
2132 | return(NULL); |
---|
2133 | } |
---|
2134 | cuddRef(e); |
---|
2135 | |
---|
2136 | if (Cudd_IsComplement(t)) { |
---|
2137 | t = Cudd_Not(t); |
---|
2138 | e = Cudd_Not(e); |
---|
2139 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
2140 | if (r == NULL) { |
---|
2141 | Cudd_IterDerefBdd(dd, e); |
---|
2142 | Cudd_IterDerefBdd(dd, t); |
---|
2143 | return(NULL); |
---|
2144 | } |
---|
2145 | r = Cudd_Not(r); |
---|
2146 | } else { |
---|
2147 | r = (t == e) ? t : cuddUniqueInter(dd, index, t, e); |
---|
2148 | if (r == NULL) { |
---|
2149 | Cudd_IterDerefBdd(dd, e); |
---|
2150 | Cudd_IterDerefBdd(dd, t); |
---|
2151 | return(NULL); |
---|
2152 | } |
---|
2153 | } |
---|
2154 | cuddDeref(t); |
---|
2155 | cuddDeref(e); |
---|
2156 | |
---|
2157 | #if 0 |
---|
2158 | /* Check whether there is a result obtained by abstraction and whether |
---|
2159 | ** it is better than the one obtained by recursion. */ |
---|
2160 | cuddRef(r); |
---|
2161 | if (ar != NULL) { |
---|
2162 | if (Cudd_DagSize(ar) <= Cudd_DagSize(r)) { |
---|
2163 | Cudd_IterDerefBdd(dd, r); |
---|
2164 | r = ar; |
---|
2165 | } else { |
---|
2166 | Cudd_IterDerefBdd(dd, ar); |
---|
2167 | } |
---|
2168 | } |
---|
2169 | cuddDeref(r); |
---|
2170 | #endif |
---|
2171 | |
---|
2172 | cuddCacheInsert2(dd, Cudd_bddSqueeze, l, u, r); |
---|
2173 | return(Cudd_NotCond(r,comple)); |
---|
2174 | |
---|
2175 | } /* end of cuddBddSqueeze */ |
---|