[13] | 1 | /**CFile*********************************************************************** |
---|
| 2 | |
---|
| 3 | FileName [cuddGenetic.c] |
---|
| 4 | |
---|
| 5 | PackageName [cudd] |
---|
| 6 | |
---|
| 7 | Synopsis [Genetic algorithm for variable reordering.] |
---|
| 8 | |
---|
| 9 | Description [Internal procedures included in this file: |
---|
| 10 | <ul> |
---|
| 11 | <li> cuddGa() |
---|
| 12 | </ul> |
---|
| 13 | Static procedures included in this module: |
---|
| 14 | <ul> |
---|
| 15 | <li> make_random() |
---|
| 16 | <li> sift_up() |
---|
| 17 | <li> build_dd() |
---|
| 18 | <li> largest() |
---|
| 19 | <li> rand_int() |
---|
| 20 | <li> array_hash() |
---|
| 21 | <li> array_compare() |
---|
| 22 | <li> find_best() |
---|
| 23 | <li> find_average_fitness() |
---|
| 24 | <li> PMX() |
---|
| 25 | <li> roulette() |
---|
| 26 | </ul> |
---|
| 27 | |
---|
| 28 | The genetic algorithm implemented here is as follows. We start with |
---|
| 29 | the current DD order. We sift this order and use this as the |
---|
| 30 | reference DD. We only keep 1 DD around for the entire process and |
---|
| 31 | simply rearrange the order of this DD, storing the various orders |
---|
| 32 | and their corresponding DD sizes. We generate more random orders to |
---|
| 33 | build an initial population. This initial population is 3 times the |
---|
| 34 | number of variables, with a maximum of 120. Each random order is |
---|
| 35 | built (from the reference DD) and its size stored. Each random |
---|
| 36 | order is also sifted to keep the DD sizes fairly small. Then a |
---|
| 37 | crossover is performed between two orders (picked randomly) and the |
---|
| 38 | two resulting DDs are built and sifted. For each new order, if its |
---|
| 39 | size is smaller than any DD in the population, it is inserted into |
---|
| 40 | the population and the DD with the largest number of nodes is thrown |
---|
| 41 | out. The crossover process happens up to 50 times, and at this point |
---|
| 42 | the DD in the population with the smallest size is chosen as the |
---|
| 43 | result. This DD must then be built from the reference DD.] |
---|
| 44 | |
---|
| 45 | SeeAlso [] |
---|
| 46 | |
---|
| 47 | Author [Curt Musfeldt, Alan Shuler, Fabio Somenzi] |
---|
| 48 | |
---|
| 49 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
| 50 | |
---|
| 51 | All rights reserved. |
---|
| 52 | |
---|
| 53 | Redistribution and use in source and binary forms, with or without |
---|
| 54 | modification, are permitted provided that the following conditions |
---|
| 55 | are met: |
---|
| 56 | |
---|
| 57 | Redistributions of source code must retain the above copyright |
---|
| 58 | notice, this list of conditions and the following disclaimer. |
---|
| 59 | |
---|
| 60 | Redistributions in binary form must reproduce the above copyright |
---|
| 61 | notice, this list of conditions and the following disclaimer in the |
---|
| 62 | documentation and/or other materials provided with the distribution. |
---|
| 63 | |
---|
| 64 | Neither the name of the University of Colorado nor the names of its |
---|
| 65 | contributors may be used to endorse or promote products derived from |
---|
| 66 | this software without specific prior written permission. |
---|
| 67 | |
---|
| 68 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 69 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 70 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
| 71 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
| 72 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
| 73 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
| 74 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
| 75 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
| 76 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
| 77 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
| 78 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
| 79 | POSSIBILITY OF SUCH DAMAGE.] |
---|
| 80 | |
---|
| 81 | ******************************************************************************/ |
---|
| 82 | |
---|
| 83 | #include "util.h" |
---|
| 84 | #include "cuddInt.h" |
---|
| 85 | |
---|
| 86 | /*---------------------------------------------------------------------------*/ |
---|
| 87 | /* Constant declarations */ |
---|
| 88 | /*---------------------------------------------------------------------------*/ |
---|
| 89 | |
---|
| 90 | /*---------------------------------------------------------------------------*/ |
---|
| 91 | /* Stucture declarations */ |
---|
| 92 | /*---------------------------------------------------------------------------*/ |
---|
| 93 | |
---|
| 94 | /*---------------------------------------------------------------------------*/ |
---|
| 95 | /* Type declarations */ |
---|
| 96 | /*---------------------------------------------------------------------------*/ |
---|
| 97 | |
---|
| 98 | /*---------------------------------------------------------------------------*/ |
---|
| 99 | /* Variable declarations */ |
---|
| 100 | /*---------------------------------------------------------------------------*/ |
---|
| 101 | |
---|
| 102 | #ifndef lint |
---|
| 103 | static char rcsid[] DD_UNUSED = "$Id: cuddGenetic.c,v 1.28 2004/08/13 18:04:48 fabio Exp $"; |
---|
| 104 | #endif |
---|
| 105 | |
---|
| 106 | static int popsize; /* the size of the population */ |
---|
| 107 | static int numvars; /* the number of input variables in the ckt. */ |
---|
| 108 | /* storedd stores the population orders and sizes. This table has two |
---|
| 109 | ** extra rows and one extras column. The two extra rows are used for the |
---|
| 110 | ** offspring produced by a crossover. Each row stores one order and its |
---|
| 111 | ** size. The order is stored by storing the indices of variables in the |
---|
| 112 | ** order in which they appear in the order. The table is in reality a |
---|
| 113 | ** one-dimensional array which is accessed via a macro to give the illusion |
---|
| 114 | ** it is a two-dimensional structure. |
---|
| 115 | */ |
---|
| 116 | static int *storedd; |
---|
| 117 | static st_table *computed; /* hash table to identify existing orders */ |
---|
| 118 | static int *repeat; /* how many times an order is present */ |
---|
| 119 | static int large; /* stores the index of the population with |
---|
| 120 | ** the largest number of nodes in the DD */ |
---|
| 121 | static int result; |
---|
| 122 | static int cross; /* the number of crossovers to perform */ |
---|
| 123 | |
---|
| 124 | /*---------------------------------------------------------------------------*/ |
---|
| 125 | /* Macro declarations */ |
---|
| 126 | /*---------------------------------------------------------------------------*/ |
---|
| 127 | |
---|
| 128 | /* macro used to access the population table as if it were a |
---|
| 129 | ** two-dimensional structure. |
---|
| 130 | */ |
---|
| 131 | #define STOREDD(i,j) storedd[(i)*(numvars+1)+(j)] |
---|
| 132 | |
---|
| 133 | #ifdef __cplusplus |
---|
| 134 | extern "C" { |
---|
| 135 | #endif |
---|
| 136 | |
---|
| 137 | /**AutomaticStart*************************************************************/ |
---|
| 138 | |
---|
| 139 | /*---------------------------------------------------------------------------*/ |
---|
| 140 | /* Static function prototypes */ |
---|
| 141 | /*---------------------------------------------------------------------------*/ |
---|
| 142 | |
---|
| 143 | static int make_random (DdManager *table, int lower); |
---|
| 144 | static int sift_up (DdManager *table, int x, int x_low); |
---|
| 145 | static int build_dd (DdManager *table, int num, int lower, int upper); |
---|
| 146 | static int largest (void); |
---|
| 147 | static int rand_int (int a); |
---|
| 148 | static int array_hash (char *array, int modulus); |
---|
| 149 | static int array_compare (const char *array1, const char *array2); |
---|
| 150 | static int find_best (void); |
---|
| 151 | #ifdef DD_STATS |
---|
| 152 | static double find_average_fitness (void); |
---|
| 153 | #endif |
---|
| 154 | static int PMX (int maxvar); |
---|
| 155 | static int roulette (int *p1, int *p2); |
---|
| 156 | |
---|
| 157 | /**AutomaticEnd***************************************************************/ |
---|
| 158 | |
---|
| 159 | #ifdef __cplusplus |
---|
| 160 | } |
---|
| 161 | #endif |
---|
| 162 | |
---|
| 163 | /*---------------------------------------------------------------------------*/ |
---|
| 164 | /* Definition of exported functions */ |
---|
| 165 | /*---------------------------------------------------------------------------*/ |
---|
| 166 | |
---|
| 167 | /*---------------------------------------------------------------------------*/ |
---|
| 168 | /* Definition of internal functions */ |
---|
| 169 | /*---------------------------------------------------------------------------*/ |
---|
| 170 | |
---|
| 171 | |
---|
| 172 | /**Function******************************************************************** |
---|
| 173 | |
---|
| 174 | Synopsis [Genetic algorithm for DD reordering.] |
---|
| 175 | |
---|
| 176 | Description [Genetic algorithm for DD reordering. |
---|
| 177 | The two children of a crossover will be stored in |
---|
| 178 | storedd[popsize] and storedd[popsize+1] --- the last two slots in the |
---|
| 179 | storedd array. (This will make comparisons and replacement easy.) |
---|
| 180 | Returns 1 in case of success; 0 otherwise.] |
---|
| 181 | |
---|
| 182 | SideEffects [None] |
---|
| 183 | |
---|
| 184 | SeeAlso [] |
---|
| 185 | |
---|
| 186 | ******************************************************************************/ |
---|
| 187 | int |
---|
| 188 | cuddGa( |
---|
| 189 | DdManager * table /* manager */, |
---|
| 190 | int lower /* lowest level to be reordered */, |
---|
| 191 | int upper /* highest level to be reorderded */) |
---|
| 192 | { |
---|
| 193 | int i,n,m; /* dummy/loop vars */ |
---|
| 194 | int index; |
---|
| 195 | #ifdef DD_STATS |
---|
| 196 | double average_fitness; |
---|
| 197 | #endif |
---|
| 198 | int small; /* index of smallest DD in population */ |
---|
| 199 | |
---|
| 200 | /* Do an initial sifting to produce at least one reasonable individual. */ |
---|
| 201 | if (!cuddSifting(table,lower,upper)) return(0); |
---|
| 202 | |
---|
| 203 | /* Get the initial values. */ |
---|
| 204 | numvars = upper - lower + 1; /* number of variables to be reordered */ |
---|
| 205 | if (table->populationSize == 0) { |
---|
| 206 | popsize = 3 * numvars; /* population size is 3 times # of vars */ |
---|
| 207 | if (popsize > 120) { |
---|
| 208 | popsize = 120; /* Maximum population size is 120 */ |
---|
| 209 | } |
---|
| 210 | } else { |
---|
| 211 | popsize = table->populationSize; /* user specified value */ |
---|
| 212 | } |
---|
| 213 | if (popsize < 4) popsize = 4; /* enforce minimum population size */ |
---|
| 214 | |
---|
| 215 | /* Allocate population table. */ |
---|
| 216 | storedd = ALLOC(int,(popsize+2)*(numvars+1)); |
---|
| 217 | if (storedd == NULL) { |
---|
| 218 | table->errorCode = CUDD_MEMORY_OUT; |
---|
| 219 | return(0); |
---|
| 220 | } |
---|
| 221 | |
---|
| 222 | /* Initialize the computed table. This table is made up of two data |
---|
| 223 | ** structures: A hash table with the key given by the order, which says |
---|
| 224 | ** if a given order is present in the population; and the repeat |
---|
| 225 | ** vector, which says how many copies of a given order are stored in |
---|
| 226 | ** the population table. If there are multiple copies of an order, only |
---|
| 227 | ** one has a repeat count greater than 1. This copy is the one pointed |
---|
| 228 | ** by the computed table. |
---|
| 229 | */ |
---|
| 230 | repeat = ALLOC(int,popsize); |
---|
| 231 | if (repeat == NULL) { |
---|
| 232 | table->errorCode = CUDD_MEMORY_OUT; |
---|
| 233 | FREE(storedd); |
---|
| 234 | return(0); |
---|
| 235 | } |
---|
| 236 | for (i = 0; i < popsize; i++) { |
---|
| 237 | repeat[i] = 0; |
---|
| 238 | } |
---|
| 239 | computed = st_init_table(array_compare,array_hash); |
---|
| 240 | if (computed == NULL) { |
---|
| 241 | table->errorCode = CUDD_MEMORY_OUT; |
---|
| 242 | FREE(storedd); |
---|
| 243 | FREE(repeat); |
---|
| 244 | return(0); |
---|
| 245 | } |
---|
| 246 | |
---|
| 247 | /* Copy the current DD and its size to the population table. */ |
---|
| 248 | for (i = 0; i < numvars; i++) { |
---|
| 249 | STOREDD(0,i) = table->invperm[i+lower]; /* order of initial DD */ |
---|
| 250 | } |
---|
| 251 | STOREDD(0,numvars) = table->keys - table->isolated; /* size of initial DD */ |
---|
| 252 | |
---|
| 253 | /* Store the initial order in the computed table. */ |
---|
| 254 | if (st_insert(computed,(char *)storedd,(char *) 0) == ST_OUT_OF_MEM) { |
---|
| 255 | FREE(storedd); |
---|
| 256 | FREE(repeat); |
---|
| 257 | st_free_table(computed); |
---|
| 258 | return(0); |
---|
| 259 | } |
---|
| 260 | repeat[0]++; |
---|
| 261 | |
---|
| 262 | /* Insert the reverse order as second element of the population. */ |
---|
| 263 | for (i = 0; i < numvars; i++) { |
---|
| 264 | STOREDD(1,numvars-1-i) = table->invperm[i+lower]; /* reverse order */ |
---|
| 265 | } |
---|
| 266 | |
---|
| 267 | /* Now create the random orders. make_random fills the population |
---|
| 268 | ** table with random permutations. The successive loop builds and sifts |
---|
| 269 | ** the DDs for the reverse order and each random permutation, and stores |
---|
| 270 | ** the results in the computed table. |
---|
| 271 | */ |
---|
| 272 | if (!make_random(table,lower)) { |
---|
| 273 | table->errorCode = CUDD_MEMORY_OUT; |
---|
| 274 | FREE(storedd); |
---|
| 275 | FREE(repeat); |
---|
| 276 | st_free_table(computed); |
---|
| 277 | return(0); |
---|
| 278 | } |
---|
| 279 | for (i = 1; i < popsize; i++) { |
---|
| 280 | result = build_dd(table,i,lower,upper); /* build and sift order */ |
---|
| 281 | if (!result) { |
---|
| 282 | FREE(storedd); |
---|
| 283 | FREE(repeat); |
---|
| 284 | st_free_table(computed); |
---|
| 285 | return(0); |
---|
| 286 | } |
---|
| 287 | if (st_lookup_int(computed,(char *)&STOREDD(i,0),&index)) { |
---|
| 288 | repeat[index]++; |
---|
| 289 | } else { |
---|
| 290 | if (st_insert(computed,(char *)&STOREDD(i,0),(char *)(long)i) == |
---|
| 291 | ST_OUT_OF_MEM) { |
---|
| 292 | FREE(storedd); |
---|
| 293 | FREE(repeat); |
---|
| 294 | st_free_table(computed); |
---|
| 295 | return(0); |
---|
| 296 | } |
---|
| 297 | repeat[i]++; |
---|
| 298 | } |
---|
| 299 | } |
---|
| 300 | |
---|
| 301 | #if 0 |
---|
| 302 | #ifdef DD_STATS |
---|
| 303 | /* Print the initial population. */ |
---|
| 304 | (void) fprintf(table->out,"Initial population after sifting\n"); |
---|
| 305 | for (m = 0; m < popsize; m++) { |
---|
| 306 | for (i = 0; i < numvars; i++) { |
---|
| 307 | (void) fprintf(table->out," %2d",STOREDD(m,i)); |
---|
| 308 | } |
---|
| 309 | (void) fprintf(table->out," : %3d (%d)\n", |
---|
| 310 | STOREDD(m,numvars),repeat[m]); |
---|
| 311 | } |
---|
| 312 | #endif |
---|
| 313 | #endif |
---|
| 314 | |
---|
| 315 | small = find_best(); |
---|
| 316 | #ifdef DD_STATS |
---|
| 317 | average_fitness = find_average_fitness(); |
---|
| 318 | (void) fprintf(table->out,"\nInitial population: best fitness = %d, average fitness %8.3f",STOREDD(small,numvars),average_fitness); |
---|
| 319 | #endif |
---|
| 320 | |
---|
| 321 | /* Decide how many crossovers should be tried. */ |
---|
| 322 | if (table->numberXovers == 0) { |
---|
| 323 | cross = 3*numvars; |
---|
| 324 | if (cross > 60) { /* do a maximum of 50 crossovers */ |
---|
| 325 | cross = 60; |
---|
| 326 | } |
---|
| 327 | } else { |
---|
| 328 | cross = table->numberXovers; /* use user specified value */ |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | /* Perform the crossovers to get the best order. */ |
---|
| 332 | for (m = 0; m < cross; m++) { |
---|
| 333 | if (!PMX(table->size)) { /* perform one crossover */ |
---|
| 334 | table->errorCode = CUDD_MEMORY_OUT; |
---|
| 335 | FREE(storedd); |
---|
| 336 | FREE(repeat); |
---|
| 337 | st_free_table(computed); |
---|
| 338 | return(0); |
---|
| 339 | } |
---|
| 340 | /* The offsprings are left in the last two entries of the |
---|
| 341 | ** population table. These are now considered in turn. |
---|
| 342 | */ |
---|
| 343 | for (i = popsize; i <= popsize+1; i++) { |
---|
| 344 | result = build_dd(table,i,lower,upper); /* build and sift child */ |
---|
| 345 | if (!result) { |
---|
| 346 | FREE(storedd); |
---|
| 347 | FREE(repeat); |
---|
| 348 | st_free_table(computed); |
---|
| 349 | return(0); |
---|
| 350 | } |
---|
| 351 | large = largest(); /* find the largest DD in population */ |
---|
| 352 | |
---|
| 353 | /* If the new child is smaller than the largest DD in the current |
---|
| 354 | ** population, enter it into the population in place of the |
---|
| 355 | ** largest DD. |
---|
| 356 | */ |
---|
| 357 | if (STOREDD(i,numvars) < STOREDD(large,numvars)) { |
---|
| 358 | /* Look up the largest DD in the computed table. |
---|
| 359 | ** Decrease its repetition count. If the repetition count |
---|
| 360 | ** goes to 0, remove the largest DD from the computed table. |
---|
| 361 | */ |
---|
| 362 | result = st_lookup_int(computed,(char *)&STOREDD(large,0), |
---|
| 363 | &index); |
---|
| 364 | if (!result) { |
---|
| 365 | FREE(storedd); |
---|
| 366 | FREE(repeat); |
---|
| 367 | st_free_table(computed); |
---|
| 368 | return(0); |
---|
| 369 | } |
---|
| 370 | repeat[index]--; |
---|
| 371 | if (repeat[index] == 0) { |
---|
| 372 | int *pointer = &STOREDD(index,0); |
---|
| 373 | result = st_delete(computed, &pointer, NULL); |
---|
| 374 | if (!result) { |
---|
| 375 | FREE(storedd); |
---|
| 376 | FREE(repeat); |
---|
| 377 | st_free_table(computed); |
---|
| 378 | return(0); |
---|
| 379 | } |
---|
| 380 | } |
---|
| 381 | /* Copy the new individual to the entry of the |
---|
| 382 | ** population table just made available and update the |
---|
| 383 | ** computed table. |
---|
| 384 | */ |
---|
| 385 | for (n = 0; n <= numvars; n++) { |
---|
| 386 | STOREDD(large,n) = STOREDD(i,n); |
---|
| 387 | } |
---|
| 388 | if (st_lookup_int(computed,(char *)&STOREDD(large,0), |
---|
| 389 | &index)) { |
---|
| 390 | repeat[index]++; |
---|
| 391 | } else { |
---|
| 392 | if (st_insert(computed,(char *)&STOREDD(large,0), |
---|
| 393 | (char *)(long)large) == ST_OUT_OF_MEM) { |
---|
| 394 | FREE(storedd); |
---|
| 395 | FREE(repeat); |
---|
| 396 | st_free_table(computed); |
---|
| 397 | return(0); |
---|
| 398 | } |
---|
| 399 | repeat[large]++; |
---|
| 400 | } |
---|
| 401 | } |
---|
| 402 | } |
---|
| 403 | } |
---|
| 404 | |
---|
| 405 | /* Find the smallest DD in the population and build it; |
---|
| 406 | ** that will be the result. |
---|
| 407 | */ |
---|
| 408 | small = find_best(); |
---|
| 409 | |
---|
| 410 | /* Print stats on the final population. */ |
---|
| 411 | #ifdef DD_STATS |
---|
| 412 | average_fitness = find_average_fitness(); |
---|
| 413 | (void) fprintf(table->out,"\nFinal population: best fitness = %d, average fitness %8.3f",STOREDD(small,numvars),average_fitness); |
---|
| 414 | #endif |
---|
| 415 | |
---|
| 416 | /* Clean up, build the result DD, and return. */ |
---|
| 417 | st_free_table(computed); |
---|
| 418 | computed = NULL; |
---|
| 419 | result = build_dd(table,small,lower,upper); |
---|
| 420 | FREE(storedd); |
---|
| 421 | FREE(repeat); |
---|
| 422 | return(result); |
---|
| 423 | |
---|
| 424 | } /* end of cuddGa */ |
---|
| 425 | |
---|
| 426 | |
---|
| 427 | /*---------------------------------------------------------------------------*/ |
---|
| 428 | /* Definition of static functions */ |
---|
| 429 | /*---------------------------------------------------------------------------*/ |
---|
| 430 | |
---|
| 431 | /**Function******************************************************************** |
---|
| 432 | |
---|
| 433 | Synopsis [Generates the random sequences for the initial population.] |
---|
| 434 | |
---|
| 435 | Description [Generates the random sequences for the initial population. |
---|
| 436 | The sequences are permutations of the indices between lower and |
---|
| 437 | upper in the current order.] |
---|
| 438 | |
---|
| 439 | SideEffects [None] |
---|
| 440 | |
---|
| 441 | SeeAlso [] |
---|
| 442 | |
---|
| 443 | ******************************************************************************/ |
---|
| 444 | static int |
---|
| 445 | make_random( |
---|
| 446 | DdManager * table, |
---|
| 447 | int lower) |
---|
| 448 | { |
---|
| 449 | int i,j; /* loop variables */ |
---|
| 450 | int *used; /* is a number already in a permutation */ |
---|
| 451 | int next; /* next random number without repetitions */ |
---|
| 452 | |
---|
| 453 | used = ALLOC(int,numvars); |
---|
| 454 | if (used == NULL) { |
---|
| 455 | table->errorCode = CUDD_MEMORY_OUT; |
---|
| 456 | return(0); |
---|
| 457 | } |
---|
| 458 | #if 0 |
---|
| 459 | #ifdef DD_STATS |
---|
| 460 | (void) fprintf(table->out,"Initial population before sifting\n"); |
---|
| 461 | for (i = 0; i < 2; i++) { |
---|
| 462 | for (j = 0; j < numvars; j++) { |
---|
| 463 | (void) fprintf(table->out," %2d",STOREDD(i,j)); |
---|
| 464 | } |
---|
| 465 | (void) fprintf(table->out,"\n"); |
---|
| 466 | } |
---|
| 467 | #endif |
---|
| 468 | #endif |
---|
| 469 | for (i = 2; i < popsize; i++) { |
---|
| 470 | for (j = 0; j < numvars; j++) { |
---|
| 471 | used[j] = 0; |
---|
| 472 | } |
---|
| 473 | /* Generate a permutation of {0...numvars-1} and use it to |
---|
| 474 | ** permute the variables in the layesr from lower to upper. |
---|
| 475 | */ |
---|
| 476 | for (j = 0; j < numvars; j++) { |
---|
| 477 | do { |
---|
| 478 | next = rand_int(numvars-1); |
---|
| 479 | } while (used[next] != 0); |
---|
| 480 | used[next] = 1; |
---|
| 481 | STOREDD(i,j) = table->invperm[next+lower]; |
---|
| 482 | } |
---|
| 483 | #if 0 |
---|
| 484 | #ifdef DD_STATS |
---|
| 485 | /* Print the order just generated. */ |
---|
| 486 | for (j = 0; j < numvars; j++) { |
---|
| 487 | (void) fprintf(table->out," %2d",STOREDD(i,j)); |
---|
| 488 | } |
---|
| 489 | (void) fprintf(table->out,"\n"); |
---|
| 490 | #endif |
---|
| 491 | #endif |
---|
| 492 | } |
---|
| 493 | FREE(used); |
---|
| 494 | return(1); |
---|
| 495 | |
---|
| 496 | } /* end of make_random */ |
---|
| 497 | |
---|
| 498 | |
---|
| 499 | /**Function******************************************************************** |
---|
| 500 | |
---|
| 501 | Synopsis [Moves one variable up.] |
---|
| 502 | |
---|
| 503 | Description [Takes a variable from position x and sifts it up to |
---|
| 504 | position x_low; x_low should be less than x. Returns 1 if successful; |
---|
| 505 | 0 otherwise] |
---|
| 506 | |
---|
| 507 | SideEffects [None] |
---|
| 508 | |
---|
| 509 | SeeAlso [] |
---|
| 510 | |
---|
| 511 | ******************************************************************************/ |
---|
| 512 | static int |
---|
| 513 | sift_up( |
---|
| 514 | DdManager * table, |
---|
| 515 | int x, |
---|
| 516 | int x_low) |
---|
| 517 | { |
---|
| 518 | int y; |
---|
| 519 | int size; |
---|
| 520 | |
---|
| 521 | y = cuddNextLow(table,x); |
---|
| 522 | while (y >= x_low) { |
---|
| 523 | size = cuddSwapInPlace(table,y,x); |
---|
| 524 | if (size == 0) { |
---|
| 525 | return(0); |
---|
| 526 | } |
---|
| 527 | x = y; |
---|
| 528 | y = cuddNextLow(table,x); |
---|
| 529 | } |
---|
| 530 | return(1); |
---|
| 531 | |
---|
| 532 | } /* end of sift_up */ |
---|
| 533 | |
---|
| 534 | |
---|
| 535 | /**Function******************************************************************** |
---|
| 536 | |
---|
| 537 | Synopsis [Builds a DD from a given order.] |
---|
| 538 | |
---|
| 539 | Description [Builds a DD from a given order. This procedure also |
---|
| 540 | sifts the final order and inserts into the array the size in nodes |
---|
| 541 | of the result. Returns 1 if successful; 0 otherwise.] |
---|
| 542 | |
---|
| 543 | SideEffects [None] |
---|
| 544 | |
---|
| 545 | SeeAlso [] |
---|
| 546 | |
---|
| 547 | ******************************************************************************/ |
---|
| 548 | static int |
---|
| 549 | build_dd( |
---|
| 550 | DdManager * table, |
---|
| 551 | int num /* the index of the individual to be built */, |
---|
| 552 | int lower, |
---|
| 553 | int upper) |
---|
| 554 | { |
---|
| 555 | int i,j; /* loop vars */ |
---|
| 556 | int position; |
---|
| 557 | int index; |
---|
| 558 | int limit; /* how large the DD for this order can grow */ |
---|
| 559 | int size; |
---|
| 560 | |
---|
| 561 | /* Check the computed table. If the order already exists, it |
---|
| 562 | ** suffices to copy the size from the existing entry. |
---|
| 563 | */ |
---|
| 564 | if (computed && st_lookup_int(computed,(char *)&STOREDD(num,0),&index)) { |
---|
| 565 | STOREDD(num,numvars) = STOREDD(index,numvars); |
---|
| 566 | #ifdef DD_STATS |
---|
| 567 | (void) fprintf(table->out,"\nCache hit for index %d", index); |
---|
| 568 | #endif |
---|
| 569 | return(1); |
---|
| 570 | } |
---|
| 571 | |
---|
| 572 | /* Stop if the DD grows 20 times larges than the reference size. */ |
---|
| 573 | limit = 20 * STOREDD(0,numvars); |
---|
| 574 | |
---|
| 575 | /* Sift up the variables so as to build the desired permutation. |
---|
| 576 | ** First the variable that has to be on top is sifted to the top. |
---|
| 577 | ** Then the variable that has to occupy the secon position is sifted |
---|
| 578 | ** up to the second position, and so on. |
---|
| 579 | */ |
---|
| 580 | for (j = 0; j < numvars; j++) { |
---|
| 581 | i = STOREDD(num,j); |
---|
| 582 | position = table->perm[i]; |
---|
| 583 | result = sift_up(table,position,j+lower); |
---|
| 584 | if (!result) return(0); |
---|
| 585 | size = table->keys - table->isolated; |
---|
| 586 | if (size > limit) break; |
---|
| 587 | } |
---|
| 588 | |
---|
| 589 | /* Sift the DD just built. */ |
---|
| 590 | #ifdef DD_STATS |
---|
| 591 | (void) fprintf(table->out,"\n"); |
---|
| 592 | #endif |
---|
| 593 | result = cuddSifting(table,lower,upper); |
---|
| 594 | if (!result) return(0); |
---|
| 595 | |
---|
| 596 | /* Copy order and size to table. */ |
---|
| 597 | for (j = 0; j < numvars; j++) { |
---|
| 598 | STOREDD(num,j) = table->invperm[lower+j]; |
---|
| 599 | } |
---|
| 600 | STOREDD(num,numvars) = table->keys - table->isolated; /* size of new DD */ |
---|
| 601 | return(1); |
---|
| 602 | |
---|
| 603 | } /* end of build_dd */ |
---|
| 604 | |
---|
| 605 | |
---|
| 606 | /**Function******************************************************************** |
---|
| 607 | |
---|
| 608 | Synopsis [Finds the largest DD in the population.] |
---|
| 609 | |
---|
| 610 | Description [Finds the largest DD in the population. If an order is |
---|
| 611 | repeated, it avoids choosing the copy that is in the computed table |
---|
| 612 | (it has repeat[i] > 1).] |
---|
| 613 | |
---|
| 614 | SideEffects [None] |
---|
| 615 | |
---|
| 616 | SeeAlso [] |
---|
| 617 | |
---|
| 618 | ******************************************************************************/ |
---|
| 619 | static int |
---|
| 620 | largest(void) |
---|
| 621 | { |
---|
| 622 | int i; /* loop var */ |
---|
| 623 | int big; /* temporary holder to return result */ |
---|
| 624 | |
---|
| 625 | big = 0; |
---|
| 626 | while (repeat[big] > 1) big++; |
---|
| 627 | for (i = big + 1; i < popsize; i++) { |
---|
| 628 | if (STOREDD(i,numvars) >= STOREDD(big,numvars) && repeat[i] <= 1) { |
---|
| 629 | big = i; |
---|
| 630 | } |
---|
| 631 | } |
---|
| 632 | return(big); |
---|
| 633 | |
---|
| 634 | } /* end of largest */ |
---|
| 635 | |
---|
| 636 | |
---|
| 637 | /**Function******************************************************************** |
---|
| 638 | |
---|
| 639 | Synopsis [Generates a random number between 0 and the integer a.] |
---|
| 640 | |
---|
| 641 | Description [] |
---|
| 642 | |
---|
| 643 | SideEffects [None] |
---|
| 644 | |
---|
| 645 | SeeAlso [] |
---|
| 646 | |
---|
| 647 | ******************************************************************************/ |
---|
| 648 | static int |
---|
| 649 | rand_int( |
---|
| 650 | int a) |
---|
| 651 | { |
---|
| 652 | return(Cudd_Random() % (a+1)); |
---|
| 653 | |
---|
| 654 | } /* end of rand_int */ |
---|
| 655 | |
---|
| 656 | |
---|
| 657 | /**Function******************************************************************** |
---|
| 658 | |
---|
| 659 | Synopsis [Hash function for the computed table.] |
---|
| 660 | |
---|
| 661 | Description [Hash function for the computed table. Returns the bucket |
---|
| 662 | number.] |
---|
| 663 | |
---|
| 664 | SideEffects [None] |
---|
| 665 | |
---|
| 666 | SeeAlso [] |
---|
| 667 | |
---|
| 668 | ******************************************************************************/ |
---|
| 669 | static int |
---|
| 670 | array_hash( |
---|
| 671 | char * array, |
---|
| 672 | int modulus) |
---|
| 673 | { |
---|
| 674 | int val = 0; |
---|
| 675 | int i; |
---|
| 676 | int *intarray; |
---|
| 677 | |
---|
| 678 | intarray = (int *) array; |
---|
| 679 | |
---|
| 680 | for (i = 0; i < numvars; i++) { |
---|
| 681 | val = val * 997 + intarray[i]; |
---|
| 682 | } |
---|
| 683 | |
---|
| 684 | return ((val < 0) ? -val : val) % modulus; |
---|
| 685 | |
---|
| 686 | } /* end of array_hash */ |
---|
| 687 | |
---|
| 688 | |
---|
| 689 | /**Function******************************************************************** |
---|
| 690 | |
---|
| 691 | Synopsis [Comparison function for the computed table.] |
---|
| 692 | |
---|
| 693 | Description [Comparison function for the computed table. Returns 0 if |
---|
| 694 | the two arrays are equal; 1 otherwise.] |
---|
| 695 | |
---|
| 696 | SideEffects [None] |
---|
| 697 | |
---|
| 698 | SeeAlso [] |
---|
| 699 | |
---|
| 700 | ******************************************************************************/ |
---|
| 701 | static int |
---|
| 702 | array_compare( |
---|
| 703 | const char * array1, |
---|
| 704 | const char * array2) |
---|
| 705 | { |
---|
| 706 | int i; |
---|
| 707 | int *intarray1, *intarray2; |
---|
| 708 | |
---|
| 709 | intarray1 = (int *) array1; |
---|
| 710 | intarray2 = (int *) array2; |
---|
| 711 | |
---|
| 712 | for (i = 0; i < numvars; i++) { |
---|
| 713 | if (intarray1[i] != intarray2[i]) return(1); |
---|
| 714 | } |
---|
| 715 | return(0); |
---|
| 716 | |
---|
| 717 | } /* end of array_compare */ |
---|
| 718 | |
---|
| 719 | |
---|
| 720 | /**Function******************************************************************** |
---|
| 721 | |
---|
| 722 | Synopsis [Returns the index of the fittest individual.] |
---|
| 723 | |
---|
| 724 | Description [] |
---|
| 725 | |
---|
| 726 | SideEffects [None] |
---|
| 727 | |
---|
| 728 | SeeAlso [] |
---|
| 729 | |
---|
| 730 | ******************************************************************************/ |
---|
| 731 | static int |
---|
| 732 | find_best(void) |
---|
| 733 | { |
---|
| 734 | int i,small; |
---|
| 735 | |
---|
| 736 | small = 0; |
---|
| 737 | for (i = 1; i < popsize; i++) { |
---|
| 738 | if (STOREDD(i,numvars) < STOREDD(small,numvars)) { |
---|
| 739 | small = i; |
---|
| 740 | } |
---|
| 741 | } |
---|
| 742 | return(small); |
---|
| 743 | |
---|
| 744 | } /* end of find_best */ |
---|
| 745 | |
---|
| 746 | |
---|
| 747 | /**Function******************************************************************** |
---|
| 748 | |
---|
| 749 | Synopsis [Returns the average fitness of the population.] |
---|
| 750 | |
---|
| 751 | Description [] |
---|
| 752 | |
---|
| 753 | SideEffects [None] |
---|
| 754 | |
---|
| 755 | SeeAlso [] |
---|
| 756 | |
---|
| 757 | ******************************************************************************/ |
---|
| 758 | #ifdef DD_STATS |
---|
| 759 | static double |
---|
| 760 | find_average_fitness(void) |
---|
| 761 | { |
---|
| 762 | int i; |
---|
| 763 | int total_fitness = 0; |
---|
| 764 | double average_fitness; |
---|
| 765 | |
---|
| 766 | for (i = 0; i < popsize; i++) { |
---|
| 767 | total_fitness += STOREDD(i,numvars); |
---|
| 768 | } |
---|
| 769 | average_fitness = (double) total_fitness / (double) popsize; |
---|
| 770 | return(average_fitness); |
---|
| 771 | |
---|
| 772 | } /* end of find_average_fitness */ |
---|
| 773 | #endif |
---|
| 774 | |
---|
| 775 | |
---|
| 776 | /**Function******************************************************************** |
---|
| 777 | |
---|
| 778 | Synopsis [Performs the crossover between two parents.] |
---|
| 779 | |
---|
| 780 | Description [Performs the crossover between two randomly chosen |
---|
| 781 | parents, and creates two children, x1 and x2. Uses the Partially |
---|
| 782 | Matched Crossover operator.] |
---|
| 783 | |
---|
| 784 | SideEffects [None] |
---|
| 785 | |
---|
| 786 | SeeAlso [] |
---|
| 787 | |
---|
| 788 | ******************************************************************************/ |
---|
| 789 | static int |
---|
| 790 | PMX( |
---|
| 791 | int maxvar) |
---|
| 792 | { |
---|
| 793 | int cut1,cut2; /* the two cut positions (random) */ |
---|
| 794 | int mom,dad; /* the two randomly chosen parents */ |
---|
| 795 | int *inv1; /* inverse permutations for repair algo */ |
---|
| 796 | int *inv2; |
---|
| 797 | int i; /* loop vars */ |
---|
| 798 | int u,v; /* aux vars */ |
---|
| 799 | |
---|
| 800 | inv1 = ALLOC(int,maxvar); |
---|
| 801 | if (inv1 == NULL) { |
---|
| 802 | return(0); |
---|
| 803 | } |
---|
| 804 | inv2 = ALLOC(int,maxvar); |
---|
| 805 | if (inv2 == NULL) { |
---|
| 806 | FREE(inv1); |
---|
| 807 | return(0); |
---|
| 808 | } |
---|
| 809 | |
---|
| 810 | /* Choose two orders from the population using roulette wheel. */ |
---|
| 811 | if (!roulette(&mom,&dad)) { |
---|
| 812 | FREE(inv1); |
---|
| 813 | FREE(inv2); |
---|
| 814 | return(0); |
---|
| 815 | } |
---|
| 816 | |
---|
| 817 | /* Choose two random cut positions. A cut in position i means that |
---|
| 818 | ** the cut immediately precedes position i. If cut1 < cut2, we |
---|
| 819 | ** exchange the middle of the two orderings; otherwise, we |
---|
| 820 | ** exchange the beginnings and the ends. |
---|
| 821 | */ |
---|
| 822 | cut1 = rand_int(numvars-1); |
---|
| 823 | do { |
---|
| 824 | cut2 = rand_int(numvars-1); |
---|
| 825 | } while (cut1 == cut2); |
---|
| 826 | |
---|
| 827 | #if 0 |
---|
| 828 | /* Print out the parents. */ |
---|
| 829 | (void) fprintf(table->out, |
---|
| 830 | "Crossover of %d (mom) and %d (dad) between %d and %d\n", |
---|
| 831 | mom,dad,cut1,cut2); |
---|
| 832 | for (i = 0; i < numvars; i++) { |
---|
| 833 | if (i == cut1 || i == cut2) (void) fprintf(table->out,"|"); |
---|
| 834 | (void) fprintf(table->out,"%2d ",STOREDD(mom,i)); |
---|
| 835 | } |
---|
| 836 | (void) fprintf(table->out,"\n"); |
---|
| 837 | for (i = 0; i < numvars; i++) { |
---|
| 838 | if (i == cut1 || i == cut2) (void) fprintf(table->out,"|"); |
---|
| 839 | (void) fprintf(table->out,"%2d ",STOREDD(dad,i)); |
---|
| 840 | } |
---|
| 841 | (void) fprintf(table->out,"\n"); |
---|
| 842 | #endif |
---|
| 843 | |
---|
| 844 | /* Initialize the inverse permutations: -1 means yet undetermined. */ |
---|
| 845 | for (i = 0; i < maxvar; i++) { |
---|
| 846 | inv1[i] = -1; |
---|
| 847 | inv2[i] = -1; |
---|
| 848 | } |
---|
| 849 | |
---|
| 850 | /* Copy the portions whithin the cuts. */ |
---|
| 851 | for (i = cut1; i != cut2; i = (i == numvars-1) ? 0 : i+1) { |
---|
| 852 | STOREDD(popsize,i) = STOREDD(dad,i); |
---|
| 853 | inv1[STOREDD(popsize,i)] = i; |
---|
| 854 | STOREDD(popsize+1,i) = STOREDD(mom,i); |
---|
| 855 | inv2[STOREDD(popsize+1,i)] = i; |
---|
| 856 | } |
---|
| 857 | |
---|
| 858 | /* Now apply the repair algorithm outside the cuts. */ |
---|
| 859 | for (i = cut2; i != cut1; i = (i == numvars-1 ) ? 0 : i+1) { |
---|
| 860 | v = i; |
---|
| 861 | do { |
---|
| 862 | u = STOREDD(mom,v); |
---|
| 863 | v = inv1[u]; |
---|
| 864 | } while (v != -1); |
---|
| 865 | STOREDD(popsize,i) = u; |
---|
| 866 | inv1[u] = i; |
---|
| 867 | v = i; |
---|
| 868 | do { |
---|
| 869 | u = STOREDD(dad,v); |
---|
| 870 | v = inv2[u]; |
---|
| 871 | } while (v != -1); |
---|
| 872 | STOREDD(popsize+1,i) = u; |
---|
| 873 | inv2[u] = i; |
---|
| 874 | } |
---|
| 875 | |
---|
| 876 | #if 0 |
---|
| 877 | /* Print the results of crossover. */ |
---|
| 878 | for (i = 0; i < numvars; i++) { |
---|
| 879 | if (i == cut1 || i == cut2) (void) fprintf(table->out,"|"); |
---|
| 880 | (void) fprintf(table->out,"%2d ",STOREDD(popsize,i)); |
---|
| 881 | } |
---|
| 882 | (void) fprintf(table->out,"\n"); |
---|
| 883 | for (i = 0; i < numvars; i++) { |
---|
| 884 | if (i == cut1 || i == cut2) (void) fprintf(table->out,"|"); |
---|
| 885 | (void) fprintf(table->out,"%2d ",STOREDD(popsize+1,i)); |
---|
| 886 | } |
---|
| 887 | (void) fprintf(table->out,"\n"); |
---|
| 888 | #endif |
---|
| 889 | |
---|
| 890 | FREE(inv1); |
---|
| 891 | FREE(inv2); |
---|
| 892 | return(1); |
---|
| 893 | |
---|
| 894 | } /* end of PMX */ |
---|
| 895 | |
---|
| 896 | |
---|
| 897 | /**Function******************************************************************** |
---|
| 898 | |
---|
| 899 | Synopsis [Selects two parents with the roulette wheel method.] |
---|
| 900 | |
---|
| 901 | Description [Selects two distinct parents with the roulette wheel method.] |
---|
| 902 | |
---|
| 903 | SideEffects [The indices of the selected parents are returned as side |
---|
| 904 | effects.] |
---|
| 905 | |
---|
| 906 | SeeAlso [] |
---|
| 907 | |
---|
| 908 | ******************************************************************************/ |
---|
| 909 | static int |
---|
| 910 | roulette( |
---|
| 911 | int * p1, |
---|
| 912 | int * p2) |
---|
| 913 | { |
---|
| 914 | double *wheel; |
---|
| 915 | double spin; |
---|
| 916 | int i; |
---|
| 917 | |
---|
| 918 | wheel = ALLOC(double,popsize); |
---|
| 919 | if (wheel == NULL) { |
---|
| 920 | return(0); |
---|
| 921 | } |
---|
| 922 | |
---|
| 923 | /* The fitness of an individual is the reciprocal of its size. */ |
---|
| 924 | wheel[0] = 1.0 / (double) STOREDD(0,numvars); |
---|
| 925 | |
---|
| 926 | for (i = 1; i < popsize; i++) { |
---|
| 927 | wheel[i] = wheel[i-1] + 1.0 / (double) STOREDD(i,numvars); |
---|
| 928 | } |
---|
| 929 | |
---|
| 930 | /* Get a random number between 0 and wheel[popsize-1] (that is, |
---|
| 931 | ** the sum of all fitness values. 2147483561 is the largest number |
---|
| 932 | ** returned by Cudd_Random. |
---|
| 933 | */ |
---|
| 934 | spin = wheel[numvars-1] * (double) Cudd_Random() / 2147483561.0; |
---|
| 935 | |
---|
| 936 | /* Find the lucky element by scanning the wheel. */ |
---|
| 937 | for (i = 0; i < popsize; i++) { |
---|
| 938 | if (spin <= wheel[i]) break; |
---|
| 939 | } |
---|
| 940 | *p1 = i; |
---|
| 941 | |
---|
| 942 | /* Repeat the process for the second parent, making sure it is |
---|
| 943 | ** distinct from the first. |
---|
| 944 | */ |
---|
| 945 | do { |
---|
| 946 | spin = wheel[popsize-1] * (double) Cudd_Random() / 2147483561.0; |
---|
| 947 | for (i = 0; i < popsize; i++) { |
---|
| 948 | if (spin <= wheel[i]) break; |
---|
| 949 | } |
---|
| 950 | } while (i == *p1); |
---|
| 951 | *p2 = i; |
---|
| 952 | |
---|
| 953 | FREE(wheel); |
---|
| 954 | return(1); |
---|
| 955 | |
---|
| 956 | } /* end of roulette */ |
---|
| 957 | |
---|