1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [cuddGenetic.c] |
---|
4 | |
---|
5 | PackageName [cudd] |
---|
6 | |
---|
7 | Synopsis [Genetic algorithm for variable reordering.] |
---|
8 | |
---|
9 | Description [Internal procedures included in this file: |
---|
10 | <ul> |
---|
11 | <li> cuddGa() |
---|
12 | </ul> |
---|
13 | Static procedures included in this module: |
---|
14 | <ul> |
---|
15 | <li> make_random() |
---|
16 | <li> sift_up() |
---|
17 | <li> build_dd() |
---|
18 | <li> largest() |
---|
19 | <li> rand_int() |
---|
20 | <li> array_hash() |
---|
21 | <li> array_compare() |
---|
22 | <li> find_best() |
---|
23 | <li> find_average_fitness() |
---|
24 | <li> PMX() |
---|
25 | <li> roulette() |
---|
26 | </ul> |
---|
27 | |
---|
28 | The genetic algorithm implemented here is as follows. We start with |
---|
29 | the current DD order. We sift this order and use this as the |
---|
30 | reference DD. We only keep 1 DD around for the entire process and |
---|
31 | simply rearrange the order of this DD, storing the various orders |
---|
32 | and their corresponding DD sizes. We generate more random orders to |
---|
33 | build an initial population. This initial population is 3 times the |
---|
34 | number of variables, with a maximum of 120. Each random order is |
---|
35 | built (from the reference DD) and its size stored. Each random |
---|
36 | order is also sifted to keep the DD sizes fairly small. Then a |
---|
37 | crossover is performed between two orders (picked randomly) and the |
---|
38 | two resulting DDs are built and sifted. For each new order, if its |
---|
39 | size is smaller than any DD in the population, it is inserted into |
---|
40 | the population and the DD with the largest number of nodes is thrown |
---|
41 | out. The crossover process happens up to 50 times, and at this point |
---|
42 | the DD in the population with the smallest size is chosen as the |
---|
43 | result. This DD must then be built from the reference DD.] |
---|
44 | |
---|
45 | SeeAlso [] |
---|
46 | |
---|
47 | Author [Curt Musfeldt, Alan Shuler, Fabio Somenzi] |
---|
48 | |
---|
49 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
50 | |
---|
51 | All rights reserved. |
---|
52 | |
---|
53 | Redistribution and use in source and binary forms, with or without |
---|
54 | modification, are permitted provided that the following conditions |
---|
55 | are met: |
---|
56 | |
---|
57 | Redistributions of source code must retain the above copyright |
---|
58 | notice, this list of conditions and the following disclaimer. |
---|
59 | |
---|
60 | Redistributions in binary form must reproduce the above copyright |
---|
61 | notice, this list of conditions and the following disclaimer in the |
---|
62 | documentation and/or other materials provided with the distribution. |
---|
63 | |
---|
64 | Neither the name of the University of Colorado nor the names of its |
---|
65 | contributors may be used to endorse or promote products derived from |
---|
66 | this software without specific prior written permission. |
---|
67 | |
---|
68 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
69 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
70 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
71 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
72 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
73 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
74 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
75 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
76 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
77 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
78 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
79 | POSSIBILITY OF SUCH DAMAGE.] |
---|
80 | |
---|
81 | ******************************************************************************/ |
---|
82 | |
---|
83 | #include "util.h" |
---|
84 | #include "cuddInt.h" |
---|
85 | |
---|
86 | /*---------------------------------------------------------------------------*/ |
---|
87 | /* Constant declarations */ |
---|
88 | /*---------------------------------------------------------------------------*/ |
---|
89 | |
---|
90 | /*---------------------------------------------------------------------------*/ |
---|
91 | /* Stucture declarations */ |
---|
92 | /*---------------------------------------------------------------------------*/ |
---|
93 | |
---|
94 | /*---------------------------------------------------------------------------*/ |
---|
95 | /* Type declarations */ |
---|
96 | /*---------------------------------------------------------------------------*/ |
---|
97 | |
---|
98 | /*---------------------------------------------------------------------------*/ |
---|
99 | /* Variable declarations */ |
---|
100 | /*---------------------------------------------------------------------------*/ |
---|
101 | |
---|
102 | #ifndef lint |
---|
103 | static char rcsid[] DD_UNUSED = "$Id: cuddGenetic.c,v 1.28 2004/08/13 18:04:48 fabio Exp $"; |
---|
104 | #endif |
---|
105 | |
---|
106 | static int popsize; /* the size of the population */ |
---|
107 | static int numvars; /* the number of input variables in the ckt. */ |
---|
108 | /* storedd stores the population orders and sizes. This table has two |
---|
109 | ** extra rows and one extras column. The two extra rows are used for the |
---|
110 | ** offspring produced by a crossover. Each row stores one order and its |
---|
111 | ** size. The order is stored by storing the indices of variables in the |
---|
112 | ** order in which they appear in the order. The table is in reality a |
---|
113 | ** one-dimensional array which is accessed via a macro to give the illusion |
---|
114 | ** it is a two-dimensional structure. |
---|
115 | */ |
---|
116 | static int *storedd; |
---|
117 | static st_table *computed; /* hash table to identify existing orders */ |
---|
118 | static int *repeat; /* how many times an order is present */ |
---|
119 | static int large; /* stores the index of the population with |
---|
120 | ** the largest number of nodes in the DD */ |
---|
121 | static int result; |
---|
122 | static int cross; /* the number of crossovers to perform */ |
---|
123 | |
---|
124 | /*---------------------------------------------------------------------------*/ |
---|
125 | /* Macro declarations */ |
---|
126 | /*---------------------------------------------------------------------------*/ |
---|
127 | |
---|
128 | /* macro used to access the population table as if it were a |
---|
129 | ** two-dimensional structure. |
---|
130 | */ |
---|
131 | #define STOREDD(i,j) storedd[(i)*(numvars+1)+(j)] |
---|
132 | |
---|
133 | #ifdef __cplusplus |
---|
134 | extern "C" { |
---|
135 | #endif |
---|
136 | |
---|
137 | /**AutomaticStart*************************************************************/ |
---|
138 | |
---|
139 | /*---------------------------------------------------------------------------*/ |
---|
140 | /* Static function prototypes */ |
---|
141 | /*---------------------------------------------------------------------------*/ |
---|
142 | |
---|
143 | static int make_random (DdManager *table, int lower); |
---|
144 | static int sift_up (DdManager *table, int x, int x_low); |
---|
145 | static int build_dd (DdManager *table, int num, int lower, int upper); |
---|
146 | static int largest (void); |
---|
147 | static int rand_int (int a); |
---|
148 | static int array_hash (char *array, int modulus); |
---|
149 | static int array_compare (const char *array1, const char *array2); |
---|
150 | static int find_best (void); |
---|
151 | #ifdef DD_STATS |
---|
152 | static double find_average_fitness (void); |
---|
153 | #endif |
---|
154 | static int PMX (int maxvar); |
---|
155 | static int roulette (int *p1, int *p2); |
---|
156 | |
---|
157 | /**AutomaticEnd***************************************************************/ |
---|
158 | |
---|
159 | #ifdef __cplusplus |
---|
160 | } |
---|
161 | #endif |
---|
162 | |
---|
163 | /*---------------------------------------------------------------------------*/ |
---|
164 | /* Definition of exported functions */ |
---|
165 | /*---------------------------------------------------------------------------*/ |
---|
166 | |
---|
167 | /*---------------------------------------------------------------------------*/ |
---|
168 | /* Definition of internal functions */ |
---|
169 | /*---------------------------------------------------------------------------*/ |
---|
170 | |
---|
171 | |
---|
172 | /**Function******************************************************************** |
---|
173 | |
---|
174 | Synopsis [Genetic algorithm for DD reordering.] |
---|
175 | |
---|
176 | Description [Genetic algorithm for DD reordering. |
---|
177 | The two children of a crossover will be stored in |
---|
178 | storedd[popsize] and storedd[popsize+1] --- the last two slots in the |
---|
179 | storedd array. (This will make comparisons and replacement easy.) |
---|
180 | Returns 1 in case of success; 0 otherwise.] |
---|
181 | |
---|
182 | SideEffects [None] |
---|
183 | |
---|
184 | SeeAlso [] |
---|
185 | |
---|
186 | ******************************************************************************/ |
---|
187 | int |
---|
188 | cuddGa( |
---|
189 | DdManager * table /* manager */, |
---|
190 | int lower /* lowest level to be reordered */, |
---|
191 | int upper /* highest level to be reorderded */) |
---|
192 | { |
---|
193 | int i,n,m; /* dummy/loop vars */ |
---|
194 | int index; |
---|
195 | #ifdef DD_STATS |
---|
196 | double average_fitness; |
---|
197 | #endif |
---|
198 | int small; /* index of smallest DD in population */ |
---|
199 | |
---|
200 | /* Do an initial sifting to produce at least one reasonable individual. */ |
---|
201 | if (!cuddSifting(table,lower,upper)) return(0); |
---|
202 | |
---|
203 | /* Get the initial values. */ |
---|
204 | numvars = upper - lower + 1; /* number of variables to be reordered */ |
---|
205 | if (table->populationSize == 0) { |
---|
206 | popsize = 3 * numvars; /* population size is 3 times # of vars */ |
---|
207 | if (popsize > 120) { |
---|
208 | popsize = 120; /* Maximum population size is 120 */ |
---|
209 | } |
---|
210 | } else { |
---|
211 | popsize = table->populationSize; /* user specified value */ |
---|
212 | } |
---|
213 | if (popsize < 4) popsize = 4; /* enforce minimum population size */ |
---|
214 | |
---|
215 | /* Allocate population table. */ |
---|
216 | storedd = ALLOC(int,(popsize+2)*(numvars+1)); |
---|
217 | if (storedd == NULL) { |
---|
218 | table->errorCode = CUDD_MEMORY_OUT; |
---|
219 | return(0); |
---|
220 | } |
---|
221 | |
---|
222 | /* Initialize the computed table. This table is made up of two data |
---|
223 | ** structures: A hash table with the key given by the order, which says |
---|
224 | ** if a given order is present in the population; and the repeat |
---|
225 | ** vector, which says how many copies of a given order are stored in |
---|
226 | ** the population table. If there are multiple copies of an order, only |
---|
227 | ** one has a repeat count greater than 1. This copy is the one pointed |
---|
228 | ** by the computed table. |
---|
229 | */ |
---|
230 | repeat = ALLOC(int,popsize); |
---|
231 | if (repeat == NULL) { |
---|
232 | table->errorCode = CUDD_MEMORY_OUT; |
---|
233 | FREE(storedd); |
---|
234 | return(0); |
---|
235 | } |
---|
236 | for (i = 0; i < popsize; i++) { |
---|
237 | repeat[i] = 0; |
---|
238 | } |
---|
239 | computed = st_init_table(array_compare,array_hash); |
---|
240 | if (computed == NULL) { |
---|
241 | table->errorCode = CUDD_MEMORY_OUT; |
---|
242 | FREE(storedd); |
---|
243 | FREE(repeat); |
---|
244 | return(0); |
---|
245 | } |
---|
246 | |
---|
247 | /* Copy the current DD and its size to the population table. */ |
---|
248 | for (i = 0; i < numvars; i++) { |
---|
249 | STOREDD(0,i) = table->invperm[i+lower]; /* order of initial DD */ |
---|
250 | } |
---|
251 | STOREDD(0,numvars) = table->keys - table->isolated; /* size of initial DD */ |
---|
252 | |
---|
253 | /* Store the initial order in the computed table. */ |
---|
254 | if (st_insert(computed,(char *)storedd,(char *) 0) == ST_OUT_OF_MEM) { |
---|
255 | FREE(storedd); |
---|
256 | FREE(repeat); |
---|
257 | st_free_table(computed); |
---|
258 | return(0); |
---|
259 | } |
---|
260 | repeat[0]++; |
---|
261 | |
---|
262 | /* Insert the reverse order as second element of the population. */ |
---|
263 | for (i = 0; i < numvars; i++) { |
---|
264 | STOREDD(1,numvars-1-i) = table->invperm[i+lower]; /* reverse order */ |
---|
265 | } |
---|
266 | |
---|
267 | /* Now create the random orders. make_random fills the population |
---|
268 | ** table with random permutations. The successive loop builds and sifts |
---|
269 | ** the DDs for the reverse order and each random permutation, and stores |
---|
270 | ** the results in the computed table. |
---|
271 | */ |
---|
272 | if (!make_random(table,lower)) { |
---|
273 | table->errorCode = CUDD_MEMORY_OUT; |
---|
274 | FREE(storedd); |
---|
275 | FREE(repeat); |
---|
276 | st_free_table(computed); |
---|
277 | return(0); |
---|
278 | } |
---|
279 | for (i = 1; i < popsize; i++) { |
---|
280 | result = build_dd(table,i,lower,upper); /* build and sift order */ |
---|
281 | if (!result) { |
---|
282 | FREE(storedd); |
---|
283 | FREE(repeat); |
---|
284 | st_free_table(computed); |
---|
285 | return(0); |
---|
286 | } |
---|
287 | if (st_lookup_int(computed,(char *)&STOREDD(i,0),&index)) { |
---|
288 | repeat[index]++; |
---|
289 | } else { |
---|
290 | if (st_insert(computed,(char *)&STOREDD(i,0),(char *)(long)i) == |
---|
291 | ST_OUT_OF_MEM) { |
---|
292 | FREE(storedd); |
---|
293 | FREE(repeat); |
---|
294 | st_free_table(computed); |
---|
295 | return(0); |
---|
296 | } |
---|
297 | repeat[i]++; |
---|
298 | } |
---|
299 | } |
---|
300 | |
---|
301 | #if 0 |
---|
302 | #ifdef DD_STATS |
---|
303 | /* Print the initial population. */ |
---|
304 | (void) fprintf(table->out,"Initial population after sifting\n"); |
---|
305 | for (m = 0; m < popsize; m++) { |
---|
306 | for (i = 0; i < numvars; i++) { |
---|
307 | (void) fprintf(table->out," %2d",STOREDD(m,i)); |
---|
308 | } |
---|
309 | (void) fprintf(table->out," : %3d (%d)\n", |
---|
310 | STOREDD(m,numvars),repeat[m]); |
---|
311 | } |
---|
312 | #endif |
---|
313 | #endif |
---|
314 | |
---|
315 | small = find_best(); |
---|
316 | #ifdef DD_STATS |
---|
317 | average_fitness = find_average_fitness(); |
---|
318 | (void) fprintf(table->out,"\nInitial population: best fitness = %d, average fitness %8.3f",STOREDD(small,numvars),average_fitness); |
---|
319 | #endif |
---|
320 | |
---|
321 | /* Decide how many crossovers should be tried. */ |
---|
322 | if (table->numberXovers == 0) { |
---|
323 | cross = 3*numvars; |
---|
324 | if (cross > 60) { /* do a maximum of 50 crossovers */ |
---|
325 | cross = 60; |
---|
326 | } |
---|
327 | } else { |
---|
328 | cross = table->numberXovers; /* use user specified value */ |
---|
329 | } |
---|
330 | |
---|
331 | /* Perform the crossovers to get the best order. */ |
---|
332 | for (m = 0; m < cross; m++) { |
---|
333 | if (!PMX(table->size)) { /* perform one crossover */ |
---|
334 | table->errorCode = CUDD_MEMORY_OUT; |
---|
335 | FREE(storedd); |
---|
336 | FREE(repeat); |
---|
337 | st_free_table(computed); |
---|
338 | return(0); |
---|
339 | } |
---|
340 | /* The offsprings are left in the last two entries of the |
---|
341 | ** population table. These are now considered in turn. |
---|
342 | */ |
---|
343 | for (i = popsize; i <= popsize+1; i++) { |
---|
344 | result = build_dd(table,i,lower,upper); /* build and sift child */ |
---|
345 | if (!result) { |
---|
346 | FREE(storedd); |
---|
347 | FREE(repeat); |
---|
348 | st_free_table(computed); |
---|
349 | return(0); |
---|
350 | } |
---|
351 | large = largest(); /* find the largest DD in population */ |
---|
352 | |
---|
353 | /* If the new child is smaller than the largest DD in the current |
---|
354 | ** population, enter it into the population in place of the |
---|
355 | ** largest DD. |
---|
356 | */ |
---|
357 | if (STOREDD(i,numvars) < STOREDD(large,numvars)) { |
---|
358 | /* Look up the largest DD in the computed table. |
---|
359 | ** Decrease its repetition count. If the repetition count |
---|
360 | ** goes to 0, remove the largest DD from the computed table. |
---|
361 | */ |
---|
362 | result = st_lookup_int(computed,(char *)&STOREDD(large,0), |
---|
363 | &index); |
---|
364 | if (!result) { |
---|
365 | FREE(storedd); |
---|
366 | FREE(repeat); |
---|
367 | st_free_table(computed); |
---|
368 | return(0); |
---|
369 | } |
---|
370 | repeat[index]--; |
---|
371 | if (repeat[index] == 0) { |
---|
372 | int *pointer = &STOREDD(index,0); |
---|
373 | result = st_delete(computed, &pointer, NULL); |
---|
374 | if (!result) { |
---|
375 | FREE(storedd); |
---|
376 | FREE(repeat); |
---|
377 | st_free_table(computed); |
---|
378 | return(0); |
---|
379 | } |
---|
380 | } |
---|
381 | /* Copy the new individual to the entry of the |
---|
382 | ** population table just made available and update the |
---|
383 | ** computed table. |
---|
384 | */ |
---|
385 | for (n = 0; n <= numvars; n++) { |
---|
386 | STOREDD(large,n) = STOREDD(i,n); |
---|
387 | } |
---|
388 | if (st_lookup_int(computed,(char *)&STOREDD(large,0), |
---|
389 | &index)) { |
---|
390 | repeat[index]++; |
---|
391 | } else { |
---|
392 | if (st_insert(computed,(char *)&STOREDD(large,0), |
---|
393 | (char *)(long)large) == ST_OUT_OF_MEM) { |
---|
394 | FREE(storedd); |
---|
395 | FREE(repeat); |
---|
396 | st_free_table(computed); |
---|
397 | return(0); |
---|
398 | } |
---|
399 | repeat[large]++; |
---|
400 | } |
---|
401 | } |
---|
402 | } |
---|
403 | } |
---|
404 | |
---|
405 | /* Find the smallest DD in the population and build it; |
---|
406 | ** that will be the result. |
---|
407 | */ |
---|
408 | small = find_best(); |
---|
409 | |
---|
410 | /* Print stats on the final population. */ |
---|
411 | #ifdef DD_STATS |
---|
412 | average_fitness = find_average_fitness(); |
---|
413 | (void) fprintf(table->out,"\nFinal population: best fitness = %d, average fitness %8.3f",STOREDD(small,numvars),average_fitness); |
---|
414 | #endif |
---|
415 | |
---|
416 | /* Clean up, build the result DD, and return. */ |
---|
417 | st_free_table(computed); |
---|
418 | computed = NULL; |
---|
419 | result = build_dd(table,small,lower,upper); |
---|
420 | FREE(storedd); |
---|
421 | FREE(repeat); |
---|
422 | return(result); |
---|
423 | |
---|
424 | } /* end of cuddGa */ |
---|
425 | |
---|
426 | |
---|
427 | /*---------------------------------------------------------------------------*/ |
---|
428 | /* Definition of static functions */ |
---|
429 | /*---------------------------------------------------------------------------*/ |
---|
430 | |
---|
431 | /**Function******************************************************************** |
---|
432 | |
---|
433 | Synopsis [Generates the random sequences for the initial population.] |
---|
434 | |
---|
435 | Description [Generates the random sequences for the initial population. |
---|
436 | The sequences are permutations of the indices between lower and |
---|
437 | upper in the current order.] |
---|
438 | |
---|
439 | SideEffects [None] |
---|
440 | |
---|
441 | SeeAlso [] |
---|
442 | |
---|
443 | ******************************************************************************/ |
---|
444 | static int |
---|
445 | make_random( |
---|
446 | DdManager * table, |
---|
447 | int lower) |
---|
448 | { |
---|
449 | int i,j; /* loop variables */ |
---|
450 | int *used; /* is a number already in a permutation */ |
---|
451 | int next; /* next random number without repetitions */ |
---|
452 | |
---|
453 | used = ALLOC(int,numvars); |
---|
454 | if (used == NULL) { |
---|
455 | table->errorCode = CUDD_MEMORY_OUT; |
---|
456 | return(0); |
---|
457 | } |
---|
458 | #if 0 |
---|
459 | #ifdef DD_STATS |
---|
460 | (void) fprintf(table->out,"Initial population before sifting\n"); |
---|
461 | for (i = 0; i < 2; i++) { |
---|
462 | for (j = 0; j < numvars; j++) { |
---|
463 | (void) fprintf(table->out," %2d",STOREDD(i,j)); |
---|
464 | } |
---|
465 | (void) fprintf(table->out,"\n"); |
---|
466 | } |
---|
467 | #endif |
---|
468 | #endif |
---|
469 | for (i = 2; i < popsize; i++) { |
---|
470 | for (j = 0; j < numvars; j++) { |
---|
471 | used[j] = 0; |
---|
472 | } |
---|
473 | /* Generate a permutation of {0...numvars-1} and use it to |
---|
474 | ** permute the variables in the layesr from lower to upper. |
---|
475 | */ |
---|
476 | for (j = 0; j < numvars; j++) { |
---|
477 | do { |
---|
478 | next = rand_int(numvars-1); |
---|
479 | } while (used[next] != 0); |
---|
480 | used[next] = 1; |
---|
481 | STOREDD(i,j) = table->invperm[next+lower]; |
---|
482 | } |
---|
483 | #if 0 |
---|
484 | #ifdef DD_STATS |
---|
485 | /* Print the order just generated. */ |
---|
486 | for (j = 0; j < numvars; j++) { |
---|
487 | (void) fprintf(table->out," %2d",STOREDD(i,j)); |
---|
488 | } |
---|
489 | (void) fprintf(table->out,"\n"); |
---|
490 | #endif |
---|
491 | #endif |
---|
492 | } |
---|
493 | FREE(used); |
---|
494 | return(1); |
---|
495 | |
---|
496 | } /* end of make_random */ |
---|
497 | |
---|
498 | |
---|
499 | /**Function******************************************************************** |
---|
500 | |
---|
501 | Synopsis [Moves one variable up.] |
---|
502 | |
---|
503 | Description [Takes a variable from position x and sifts it up to |
---|
504 | position x_low; x_low should be less than x. Returns 1 if successful; |
---|
505 | 0 otherwise] |
---|
506 | |
---|
507 | SideEffects [None] |
---|
508 | |
---|
509 | SeeAlso [] |
---|
510 | |
---|
511 | ******************************************************************************/ |
---|
512 | static int |
---|
513 | sift_up( |
---|
514 | DdManager * table, |
---|
515 | int x, |
---|
516 | int x_low) |
---|
517 | { |
---|
518 | int y; |
---|
519 | int size; |
---|
520 | |
---|
521 | y = cuddNextLow(table,x); |
---|
522 | while (y >= x_low) { |
---|
523 | size = cuddSwapInPlace(table,y,x); |
---|
524 | if (size == 0) { |
---|
525 | return(0); |
---|
526 | } |
---|
527 | x = y; |
---|
528 | y = cuddNextLow(table,x); |
---|
529 | } |
---|
530 | return(1); |
---|
531 | |
---|
532 | } /* end of sift_up */ |
---|
533 | |
---|
534 | |
---|
535 | /**Function******************************************************************** |
---|
536 | |
---|
537 | Synopsis [Builds a DD from a given order.] |
---|
538 | |
---|
539 | Description [Builds a DD from a given order. This procedure also |
---|
540 | sifts the final order and inserts into the array the size in nodes |
---|
541 | of the result. Returns 1 if successful; 0 otherwise.] |
---|
542 | |
---|
543 | SideEffects [None] |
---|
544 | |
---|
545 | SeeAlso [] |
---|
546 | |
---|
547 | ******************************************************************************/ |
---|
548 | static int |
---|
549 | build_dd( |
---|
550 | DdManager * table, |
---|
551 | int num /* the index of the individual to be built */, |
---|
552 | int lower, |
---|
553 | int upper) |
---|
554 | { |
---|
555 | int i,j; /* loop vars */ |
---|
556 | int position; |
---|
557 | int index; |
---|
558 | int limit; /* how large the DD for this order can grow */ |
---|
559 | int size; |
---|
560 | |
---|
561 | /* Check the computed table. If the order already exists, it |
---|
562 | ** suffices to copy the size from the existing entry. |
---|
563 | */ |
---|
564 | if (computed && st_lookup_int(computed,(char *)&STOREDD(num,0),&index)) { |
---|
565 | STOREDD(num,numvars) = STOREDD(index,numvars); |
---|
566 | #ifdef DD_STATS |
---|
567 | (void) fprintf(table->out,"\nCache hit for index %d", index); |
---|
568 | #endif |
---|
569 | return(1); |
---|
570 | } |
---|
571 | |
---|
572 | /* Stop if the DD grows 20 times larges than the reference size. */ |
---|
573 | limit = 20 * STOREDD(0,numvars); |
---|
574 | |
---|
575 | /* Sift up the variables so as to build the desired permutation. |
---|
576 | ** First the variable that has to be on top is sifted to the top. |
---|
577 | ** Then the variable that has to occupy the secon position is sifted |
---|
578 | ** up to the second position, and so on. |
---|
579 | */ |
---|
580 | for (j = 0; j < numvars; j++) { |
---|
581 | i = STOREDD(num,j); |
---|
582 | position = table->perm[i]; |
---|
583 | result = sift_up(table,position,j+lower); |
---|
584 | if (!result) return(0); |
---|
585 | size = table->keys - table->isolated; |
---|
586 | if (size > limit) break; |
---|
587 | } |
---|
588 | |
---|
589 | /* Sift the DD just built. */ |
---|
590 | #ifdef DD_STATS |
---|
591 | (void) fprintf(table->out,"\n"); |
---|
592 | #endif |
---|
593 | result = cuddSifting(table,lower,upper); |
---|
594 | if (!result) return(0); |
---|
595 | |
---|
596 | /* Copy order and size to table. */ |
---|
597 | for (j = 0; j < numvars; j++) { |
---|
598 | STOREDD(num,j) = table->invperm[lower+j]; |
---|
599 | } |
---|
600 | STOREDD(num,numvars) = table->keys - table->isolated; /* size of new DD */ |
---|
601 | return(1); |
---|
602 | |
---|
603 | } /* end of build_dd */ |
---|
604 | |
---|
605 | |
---|
606 | /**Function******************************************************************** |
---|
607 | |
---|
608 | Synopsis [Finds the largest DD in the population.] |
---|
609 | |
---|
610 | Description [Finds the largest DD in the population. If an order is |
---|
611 | repeated, it avoids choosing the copy that is in the computed table |
---|
612 | (it has repeat[i] > 1).] |
---|
613 | |
---|
614 | SideEffects [None] |
---|
615 | |
---|
616 | SeeAlso [] |
---|
617 | |
---|
618 | ******************************************************************************/ |
---|
619 | static int |
---|
620 | largest(void) |
---|
621 | { |
---|
622 | int i; /* loop var */ |
---|
623 | int big; /* temporary holder to return result */ |
---|
624 | |
---|
625 | big = 0; |
---|
626 | while (repeat[big] > 1) big++; |
---|
627 | for (i = big + 1; i < popsize; i++) { |
---|
628 | if (STOREDD(i,numvars) >= STOREDD(big,numvars) && repeat[i] <= 1) { |
---|
629 | big = i; |
---|
630 | } |
---|
631 | } |
---|
632 | return(big); |
---|
633 | |
---|
634 | } /* end of largest */ |
---|
635 | |
---|
636 | |
---|
637 | /**Function******************************************************************** |
---|
638 | |
---|
639 | Synopsis [Generates a random number between 0 and the integer a.] |
---|
640 | |
---|
641 | Description [] |
---|
642 | |
---|
643 | SideEffects [None] |
---|
644 | |
---|
645 | SeeAlso [] |
---|
646 | |
---|
647 | ******************************************************************************/ |
---|
648 | static int |
---|
649 | rand_int( |
---|
650 | int a) |
---|
651 | { |
---|
652 | return(Cudd_Random() % (a+1)); |
---|
653 | |
---|
654 | } /* end of rand_int */ |
---|
655 | |
---|
656 | |
---|
657 | /**Function******************************************************************** |
---|
658 | |
---|
659 | Synopsis [Hash function for the computed table.] |
---|
660 | |
---|
661 | Description [Hash function for the computed table. Returns the bucket |
---|
662 | number.] |
---|
663 | |
---|
664 | SideEffects [None] |
---|
665 | |
---|
666 | SeeAlso [] |
---|
667 | |
---|
668 | ******************************************************************************/ |
---|
669 | static int |
---|
670 | array_hash( |
---|
671 | char * array, |
---|
672 | int modulus) |
---|
673 | { |
---|
674 | int val = 0; |
---|
675 | int i; |
---|
676 | int *intarray; |
---|
677 | |
---|
678 | intarray = (int *) array; |
---|
679 | |
---|
680 | for (i = 0; i < numvars; i++) { |
---|
681 | val = val * 997 + intarray[i]; |
---|
682 | } |
---|
683 | |
---|
684 | return ((val < 0) ? -val : val) % modulus; |
---|
685 | |
---|
686 | } /* end of array_hash */ |
---|
687 | |
---|
688 | |
---|
689 | /**Function******************************************************************** |
---|
690 | |
---|
691 | Synopsis [Comparison function for the computed table.] |
---|
692 | |
---|
693 | Description [Comparison function for the computed table. Returns 0 if |
---|
694 | the two arrays are equal; 1 otherwise.] |
---|
695 | |
---|
696 | SideEffects [None] |
---|
697 | |
---|
698 | SeeAlso [] |
---|
699 | |
---|
700 | ******************************************************************************/ |
---|
701 | static int |
---|
702 | array_compare( |
---|
703 | const char * array1, |
---|
704 | const char * array2) |
---|
705 | { |
---|
706 | int i; |
---|
707 | int *intarray1, *intarray2; |
---|
708 | |
---|
709 | intarray1 = (int *) array1; |
---|
710 | intarray2 = (int *) array2; |
---|
711 | |
---|
712 | for (i = 0; i < numvars; i++) { |
---|
713 | if (intarray1[i] != intarray2[i]) return(1); |
---|
714 | } |
---|
715 | return(0); |
---|
716 | |
---|
717 | } /* end of array_compare */ |
---|
718 | |
---|
719 | |
---|
720 | /**Function******************************************************************** |
---|
721 | |
---|
722 | Synopsis [Returns the index of the fittest individual.] |
---|
723 | |
---|
724 | Description [] |
---|
725 | |
---|
726 | SideEffects [None] |
---|
727 | |
---|
728 | SeeAlso [] |
---|
729 | |
---|
730 | ******************************************************************************/ |
---|
731 | static int |
---|
732 | find_best(void) |
---|
733 | { |
---|
734 | int i,small; |
---|
735 | |
---|
736 | small = 0; |
---|
737 | for (i = 1; i < popsize; i++) { |
---|
738 | if (STOREDD(i,numvars) < STOREDD(small,numvars)) { |
---|
739 | small = i; |
---|
740 | } |
---|
741 | } |
---|
742 | return(small); |
---|
743 | |
---|
744 | } /* end of find_best */ |
---|
745 | |
---|
746 | |
---|
747 | /**Function******************************************************************** |
---|
748 | |
---|
749 | Synopsis [Returns the average fitness of the population.] |
---|
750 | |
---|
751 | Description [] |
---|
752 | |
---|
753 | SideEffects [None] |
---|
754 | |
---|
755 | SeeAlso [] |
---|
756 | |
---|
757 | ******************************************************************************/ |
---|
758 | #ifdef DD_STATS |
---|
759 | static double |
---|
760 | find_average_fitness(void) |
---|
761 | { |
---|
762 | int i; |
---|
763 | int total_fitness = 0; |
---|
764 | double average_fitness; |
---|
765 | |
---|
766 | for (i = 0; i < popsize; i++) { |
---|
767 | total_fitness += STOREDD(i,numvars); |
---|
768 | } |
---|
769 | average_fitness = (double) total_fitness / (double) popsize; |
---|
770 | return(average_fitness); |
---|
771 | |
---|
772 | } /* end of find_average_fitness */ |
---|
773 | #endif |
---|
774 | |
---|
775 | |
---|
776 | /**Function******************************************************************** |
---|
777 | |
---|
778 | Synopsis [Performs the crossover between two parents.] |
---|
779 | |
---|
780 | Description [Performs the crossover between two randomly chosen |
---|
781 | parents, and creates two children, x1 and x2. Uses the Partially |
---|
782 | Matched Crossover operator.] |
---|
783 | |
---|
784 | SideEffects [None] |
---|
785 | |
---|
786 | SeeAlso [] |
---|
787 | |
---|
788 | ******************************************************************************/ |
---|
789 | static int |
---|
790 | PMX( |
---|
791 | int maxvar) |
---|
792 | { |
---|
793 | int cut1,cut2; /* the two cut positions (random) */ |
---|
794 | int mom,dad; /* the two randomly chosen parents */ |
---|
795 | int *inv1; /* inverse permutations for repair algo */ |
---|
796 | int *inv2; |
---|
797 | int i; /* loop vars */ |
---|
798 | int u,v; /* aux vars */ |
---|
799 | |
---|
800 | inv1 = ALLOC(int,maxvar); |
---|
801 | if (inv1 == NULL) { |
---|
802 | return(0); |
---|
803 | } |
---|
804 | inv2 = ALLOC(int,maxvar); |
---|
805 | if (inv2 == NULL) { |
---|
806 | FREE(inv1); |
---|
807 | return(0); |
---|
808 | } |
---|
809 | |
---|
810 | /* Choose two orders from the population using roulette wheel. */ |
---|
811 | if (!roulette(&mom,&dad)) { |
---|
812 | FREE(inv1); |
---|
813 | FREE(inv2); |
---|
814 | return(0); |
---|
815 | } |
---|
816 | |
---|
817 | /* Choose two random cut positions. A cut in position i means that |
---|
818 | ** the cut immediately precedes position i. If cut1 < cut2, we |
---|
819 | ** exchange the middle of the two orderings; otherwise, we |
---|
820 | ** exchange the beginnings and the ends. |
---|
821 | */ |
---|
822 | cut1 = rand_int(numvars-1); |
---|
823 | do { |
---|
824 | cut2 = rand_int(numvars-1); |
---|
825 | } while (cut1 == cut2); |
---|
826 | |
---|
827 | #if 0 |
---|
828 | /* Print out the parents. */ |
---|
829 | (void) fprintf(table->out, |
---|
830 | "Crossover of %d (mom) and %d (dad) between %d and %d\n", |
---|
831 | mom,dad,cut1,cut2); |
---|
832 | for (i = 0; i < numvars; i++) { |
---|
833 | if (i == cut1 || i == cut2) (void) fprintf(table->out,"|"); |
---|
834 | (void) fprintf(table->out,"%2d ",STOREDD(mom,i)); |
---|
835 | } |
---|
836 | (void) fprintf(table->out,"\n"); |
---|
837 | for (i = 0; i < numvars; i++) { |
---|
838 | if (i == cut1 || i == cut2) (void) fprintf(table->out,"|"); |
---|
839 | (void) fprintf(table->out,"%2d ",STOREDD(dad,i)); |
---|
840 | } |
---|
841 | (void) fprintf(table->out,"\n"); |
---|
842 | #endif |
---|
843 | |
---|
844 | /* Initialize the inverse permutations: -1 means yet undetermined. */ |
---|
845 | for (i = 0; i < maxvar; i++) { |
---|
846 | inv1[i] = -1; |
---|
847 | inv2[i] = -1; |
---|
848 | } |
---|
849 | |
---|
850 | /* Copy the portions whithin the cuts. */ |
---|
851 | for (i = cut1; i != cut2; i = (i == numvars-1) ? 0 : i+1) { |
---|
852 | STOREDD(popsize,i) = STOREDD(dad,i); |
---|
853 | inv1[STOREDD(popsize,i)] = i; |
---|
854 | STOREDD(popsize+1,i) = STOREDD(mom,i); |
---|
855 | inv2[STOREDD(popsize+1,i)] = i; |
---|
856 | } |
---|
857 | |
---|
858 | /* Now apply the repair algorithm outside the cuts. */ |
---|
859 | for (i = cut2; i != cut1; i = (i == numvars-1 ) ? 0 : i+1) { |
---|
860 | v = i; |
---|
861 | do { |
---|
862 | u = STOREDD(mom,v); |
---|
863 | v = inv1[u]; |
---|
864 | } while (v != -1); |
---|
865 | STOREDD(popsize,i) = u; |
---|
866 | inv1[u] = i; |
---|
867 | v = i; |
---|
868 | do { |
---|
869 | u = STOREDD(dad,v); |
---|
870 | v = inv2[u]; |
---|
871 | } while (v != -1); |
---|
872 | STOREDD(popsize+1,i) = u; |
---|
873 | inv2[u] = i; |
---|
874 | } |
---|
875 | |
---|
876 | #if 0 |
---|
877 | /* Print the results of crossover. */ |
---|
878 | for (i = 0; i < numvars; i++) { |
---|
879 | if (i == cut1 || i == cut2) (void) fprintf(table->out,"|"); |
---|
880 | (void) fprintf(table->out,"%2d ",STOREDD(popsize,i)); |
---|
881 | } |
---|
882 | (void) fprintf(table->out,"\n"); |
---|
883 | for (i = 0; i < numvars; i++) { |
---|
884 | if (i == cut1 || i == cut2) (void) fprintf(table->out,"|"); |
---|
885 | (void) fprintf(table->out,"%2d ",STOREDD(popsize+1,i)); |
---|
886 | } |
---|
887 | (void) fprintf(table->out,"\n"); |
---|
888 | #endif |
---|
889 | |
---|
890 | FREE(inv1); |
---|
891 | FREE(inv2); |
---|
892 | return(1); |
---|
893 | |
---|
894 | } /* end of PMX */ |
---|
895 | |
---|
896 | |
---|
897 | /**Function******************************************************************** |
---|
898 | |
---|
899 | Synopsis [Selects two parents with the roulette wheel method.] |
---|
900 | |
---|
901 | Description [Selects two distinct parents with the roulette wheel method.] |
---|
902 | |
---|
903 | SideEffects [The indices of the selected parents are returned as side |
---|
904 | effects.] |
---|
905 | |
---|
906 | SeeAlso [] |
---|
907 | |
---|
908 | ******************************************************************************/ |
---|
909 | static int |
---|
910 | roulette( |
---|
911 | int * p1, |
---|
912 | int * p2) |
---|
913 | { |
---|
914 | double *wheel; |
---|
915 | double spin; |
---|
916 | int i; |
---|
917 | |
---|
918 | wheel = ALLOC(double,popsize); |
---|
919 | if (wheel == NULL) { |
---|
920 | return(0); |
---|
921 | } |
---|
922 | |
---|
923 | /* The fitness of an individual is the reciprocal of its size. */ |
---|
924 | wheel[0] = 1.0 / (double) STOREDD(0,numvars); |
---|
925 | |
---|
926 | for (i = 1; i < popsize; i++) { |
---|
927 | wheel[i] = wheel[i-1] + 1.0 / (double) STOREDD(i,numvars); |
---|
928 | } |
---|
929 | |
---|
930 | /* Get a random number between 0 and wheel[popsize-1] (that is, |
---|
931 | ** the sum of all fitness values. 2147483561 is the largest number |
---|
932 | ** returned by Cudd_Random. |
---|
933 | */ |
---|
934 | spin = wheel[numvars-1] * (double) Cudd_Random() / 2147483561.0; |
---|
935 | |
---|
936 | /* Find the lucky element by scanning the wheel. */ |
---|
937 | for (i = 0; i < popsize; i++) { |
---|
938 | if (spin <= wheel[i]) break; |
---|
939 | } |
---|
940 | *p1 = i; |
---|
941 | |
---|
942 | /* Repeat the process for the second parent, making sure it is |
---|
943 | ** distinct from the first. |
---|
944 | */ |
---|
945 | do { |
---|
946 | spin = wheel[popsize-1] * (double) Cudd_Random() / 2147483561.0; |
---|
947 | for (i = 0; i < popsize; i++) { |
---|
948 | if (spin <= wheel[i]) break; |
---|
949 | } |
---|
950 | } while (i == *p1); |
---|
951 | *p2 = i; |
---|
952 | |
---|
953 | FREE(wheel); |
---|
954 | return(1); |
---|
955 | |
---|
956 | } /* end of roulette */ |
---|
957 | |
---|