source: vis_dev/glu-2.3/src/cuBdd/cuddMatMult.c @ 100

Last change on this file since 100 was 13, checked in by cecile, 13 years ago

library glu 2.3

File size: 20.0 KB
Line 
1/**CFile***********************************************************************
2
3  FileName    [cuddMatMult.c]
4
5  PackageName [cudd]
6
7  Synopsis    [Matrix multiplication functions.]
8
9  Description [External procedures included in this module:
10                <ul>
11                <li> Cudd_addMatrixMultiply()
12                <li> Cudd_addTimesPlus()
13                <li> Cudd_addTriangle()
14                <li> Cudd_addOuterSum()
15                </ul>
16        Static procedures included in this module:
17                <ul>
18                <li> addMMRecur()
19                <li> addTriangleRecur()
20                <li> cuddAddOuterSumRecur()
21                </ul>]
22
23  Author      [Fabio Somenzi]
24
25  Copyright   [Copyright (c) 1995-2004, Regents of the University of Colorado
26
27  All rights reserved.
28
29  Redistribution and use in source and binary forms, with or without
30  modification, are permitted provided that the following conditions
31  are met:
32
33  Redistributions of source code must retain the above copyright
34  notice, this list of conditions and the following disclaimer.
35
36  Redistributions in binary form must reproduce the above copyright
37  notice, this list of conditions and the following disclaimer in the
38  documentation and/or other materials provided with the distribution.
39
40  Neither the name of the University of Colorado nor the names of its
41  contributors may be used to endorse or promote products derived from
42  this software without specific prior written permission.
43
44  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
45  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
46  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
47  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
48  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
49  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
50  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
51  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
52  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
54  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
55  POSSIBILITY OF SUCH DAMAGE.]
56
57******************************************************************************/
58
59#include "util.h"
60#include "cuddInt.h"
61
62
63/*---------------------------------------------------------------------------*/
64/* Constant declarations                                                     */
65/*---------------------------------------------------------------------------*/
66
67
68/*---------------------------------------------------------------------------*/
69/* Stucture declarations                                                     */
70/*---------------------------------------------------------------------------*/
71
72
73/*---------------------------------------------------------------------------*/
74/* Type declarations                                                         */
75/*---------------------------------------------------------------------------*/
76
77
78/*---------------------------------------------------------------------------*/
79/* Variable declarations                                                     */
80/*---------------------------------------------------------------------------*/
81
82#ifndef lint
83static char rcsid[] DD_UNUSED = "$Id: cuddMatMult.c,v 1.17 2004/08/13 18:04:50 fabio Exp $";
84#endif
85
86/*---------------------------------------------------------------------------*/
87/* Macro declarations                                                        */
88/*---------------------------------------------------------------------------*/
89
90
91/**AutomaticStart*************************************************************/
92
93/*---------------------------------------------------------------------------*/
94/* Static function prototypes                                                */
95/*---------------------------------------------------------------------------*/
96
97static DdNode * addMMRecur (DdManager *dd, DdNode *A, DdNode *B, int topP, int *vars);
98static DdNode * addTriangleRecur (DdManager *dd, DdNode *f, DdNode *g, int *vars, DdNode *cube);
99static DdNode * cuddAddOuterSumRecur (DdManager *dd, DdNode *M, DdNode *r, DdNode *c);
100
101/**AutomaticEnd***************************************************************/
102
103
104/*---------------------------------------------------------------------------*/
105/* Definition of exported functions                                          */
106/*---------------------------------------------------------------------------*/
107
108/**Function********************************************************************
109
110  Synopsis [Calculates the product of two matrices represented as
111  ADDs.]
112
113  Description [Calculates the product of two matrices, A and B,
114  represented as ADDs. This procedure implements the quasiring multiplication
115  algorithm.  A is assumed to depend on variables x (rows) and z
116  (columns).  B is assumed to depend on variables z (rows) and y
117  (columns).  The product of A and B then depends on x (rows) and y
118  (columns).  Only the z variables have to be explicitly identified;
119  they are the "summation" variables.  Returns a pointer to the
120  result if successful; NULL otherwise.]
121
122  SideEffects [None]
123
124  SeeAlso     [Cudd_addTimesPlus Cudd_addTriangle Cudd_bddAndAbstract]
125
126******************************************************************************/
127DdNode *
128Cudd_addMatrixMultiply(
129  DdManager * dd,
130  DdNode * A,
131  DdNode * B,
132  DdNode ** z,
133  int  nz)
134{
135    int i, nvars, *vars;
136    DdNode *res; 
137
138    /* Array vars says what variables are "summation" variables. */
139    nvars = dd->size;
140    vars = ALLOC(int,nvars);
141    if (vars == NULL) {
142        dd->errorCode = CUDD_MEMORY_OUT;
143        return(NULL);
144    }
145    for (i = 0; i < nvars; i++) {
146        vars[i] = 0;
147    }
148    for (i = 0; i < nz; i++) {
149        vars[z[i]->index] = 1;
150    }
151
152    do {
153        dd->reordered = 0;
154        res = addMMRecur(dd,A,B,-1,vars);
155    } while (dd->reordered == 1);
156    FREE(vars);
157    return(res);
158
159} /* end of Cudd_addMatrixMultiply */
160
161
162/**Function********************************************************************
163
164  Synopsis    [Calculates the product of two matrices represented as
165  ADDs.]
166
167  Description [Calculates the product of two matrices, A and B,
168  represented as ADDs, using the CMU matrix by matrix multiplication
169  procedure by Clarke et al..  Matrix A has x's as row variables and z's
170  as column variables, while matrix B has z's as row variables and y's
171  as column variables. Returns the pointer to the result if successful;
172  NULL otherwise. The resulting matrix has x's as row variables and y's
173  as column variables.]
174
175  SideEffects [None]
176
177  SeeAlso     [Cudd_addMatrixMultiply]
178
179******************************************************************************/
180DdNode *
181Cudd_addTimesPlus(
182  DdManager * dd,
183  DdNode * A,
184  DdNode * B,
185  DdNode ** z,
186  int  nz)
187{
188    DdNode *w, *cube, *tmp, *res; 
189    int i;
190    tmp = Cudd_addApply(dd,Cudd_addTimes,A,B);
191    if (tmp == NULL) return(NULL);
192    Cudd_Ref(tmp);
193    Cudd_Ref(cube = DD_ONE(dd));
194    for (i = nz-1; i >= 0; i--) {
195         w = Cudd_addIte(dd,z[i],cube,DD_ZERO(dd));
196         if (w == NULL) {
197            Cudd_RecursiveDeref(dd,tmp);
198            return(NULL);
199         }
200         Cudd_Ref(w);
201         Cudd_RecursiveDeref(dd,cube);
202         cube = w;
203    }
204    res = Cudd_addExistAbstract(dd,tmp,cube);
205    if (res == NULL) {
206        Cudd_RecursiveDeref(dd,tmp);
207        Cudd_RecursiveDeref(dd,cube);
208        return(NULL);
209    }
210    Cudd_Ref(res);
211    Cudd_RecursiveDeref(dd,cube);
212    Cudd_RecursiveDeref(dd,tmp);
213    Cudd_Deref(res);
214    return(res);
215
216} /* end of Cudd_addTimesPlus */
217
218
219/**Function********************************************************************
220
221  Synopsis    [Performs the triangulation step for the shortest path
222  computation.]
223
224  Description [Implements the semiring multiplication algorithm used in
225  the triangulation step for the shortest path computation.  f
226  is assumed to depend on variables x (rows) and z (columns).  g is
227  assumed to depend on variables z (rows) and y (columns).  The product
228  of f and g then depends on x (rows) and y (columns).  Only the z
229  variables have to be explicitly identified; they are the
230  "abstraction" variables.  Returns a pointer to the result if
231  successful; NULL otherwise. ]
232
233  SideEffects [None]
234
235  SeeAlso     [Cudd_addMatrixMultiply Cudd_bddAndAbstract]
236
237******************************************************************************/
238DdNode *
239Cudd_addTriangle(
240  DdManager * dd,
241  DdNode * f,
242  DdNode * g,
243  DdNode ** z,
244  int  nz)
245{
246    int    i, nvars, *vars;
247    DdNode *res, *cube;
248
249    nvars = dd->size;
250    vars = ALLOC(int, nvars);
251    if (vars == NULL) {
252        dd->errorCode = CUDD_MEMORY_OUT;
253        return(NULL);
254    }
255    for (i = 0; i < nvars; i++) vars[i] = -1;
256    for (i = 0; i < nz; i++) vars[z[i]->index] = i;
257    cube = Cudd_addComputeCube(dd, z, NULL, nz);
258    if (cube == NULL) {
259        FREE(vars);
260        return(NULL);
261    }
262    cuddRef(cube);
263
264    do {
265        dd->reordered = 0;
266        res = addTriangleRecur(dd, f, g, vars, cube);
267    } while (dd->reordered == 1);
268    if (res != NULL) cuddRef(res);
269    Cudd_RecursiveDeref(dd,cube);
270    if (res != NULL) cuddDeref(res);
271    FREE(vars);
272    return(res);
273
274} /* end of Cudd_addTriangle */
275
276
277/**Function********************************************************************
278
279  Synopsis    [Takes the minimum of a matrix and the outer sum of two vectors.]
280
281  Description [Takes the pointwise minimum of a matrix and the outer
282  sum of two vectors.  This procedure is used in the Floyd-Warshall
283  all-pair shortest path algorithm.  Returns a pointer to the result if
284  successful; NULL otherwise.]
285
286  SideEffects [None]
287
288  SeeAlso     []
289
290******************************************************************************/
291DdNode *
292Cudd_addOuterSum(
293  DdManager *dd,
294  DdNode *M,
295  DdNode *r,
296  DdNode *c)
297{
298    DdNode *res;
299
300    do {
301        dd->reordered = 0;
302        res = cuddAddOuterSumRecur(dd, M, r, c);
303    } while (dd->reordered == 1);
304    return(res);
305
306} /* end of Cudd_addOuterSum */
307
308
309/*---------------------------------------------------------------------------*/
310/* Definition of internal functions                                          */
311/*---------------------------------------------------------------------------*/
312
313
314/*---------------------------------------------------------------------------*/
315/* Definition of static functions                                            */
316/*---------------------------------------------------------------------------*/
317
318/**Function********************************************************************
319
320  Synopsis    [Performs the recursive step of Cudd_addMatrixMultiply.]
321
322  Description [Performs the recursive step of Cudd_addMatrixMultiply.
323  Returns a pointer to the result if successful; NULL otherwise.]
324
325  SideEffects [None]
326
327******************************************************************************/
328static DdNode *
329addMMRecur(
330  DdManager * dd,
331  DdNode * A,
332  DdNode * B,
333  int  topP,
334  int * vars)
335{
336    DdNode *zero,
337           *At,         /* positive cofactor of first operand */
338           *Ae,         /* negative cofactor of first operand */
339           *Bt,         /* positive cofactor of second operand */
340           *Be,         /* negative cofactor of second operand */
341           *t,          /* positive cofactor of result */
342           *e,          /* negative cofactor of result */
343           *scaled,     /* scaled result */
344           *add_scale,  /* ADD representing the scaling factor */
345           *res;
346    int i;              /* loop index */
347    double scale;       /* scaling factor */
348    int index;          /* index of the top variable */
349    CUDD_VALUE_TYPE value;
350    unsigned int topA, topB, topV;
351    DD_CTFP cacheOp;
352
353    statLine(dd);
354    zero = DD_ZERO(dd);
355
356    if (A == zero || B == zero) {
357        return(zero);
358    }
359
360    if (cuddIsConstant(A) && cuddIsConstant(B)) {
361        /* Compute the scaling factor. It is 2^k, where k is the
362        ** number of summation variables below the current variable.
363        ** Indeed, these constants represent blocks of 2^k identical
364        ** constant values in both A and B.
365        */
366        value = cuddV(A) * cuddV(B);
367        for (i = 0; i < dd->size; i++) {
368            if (vars[i]) {
369                if (dd->perm[i] > topP) {
370                    value *= (CUDD_VALUE_TYPE) 2;
371                }
372            }
373        }
374        res = cuddUniqueConst(dd, value);
375        return(res);
376    }
377
378    /* Standardize to increase cache efficiency. Clearly, A*B != B*A
379    ** in matrix multiplication. However, which matrix is which is
380    ** determined by the variables appearing in the ADDs and not by
381    ** which one is passed as first argument.
382    */
383    if (A > B) {
384        DdNode *tmp = A;
385        A = B;
386        B = tmp;
387    }
388
389    topA = cuddI(dd,A->index); topB = cuddI(dd,B->index);
390    topV = ddMin(topA,topB);
391
392    cacheOp = (DD_CTFP) addMMRecur;
393    res = cuddCacheLookup2(dd,cacheOp,A,B);
394    if (res != NULL) {
395        /* If the result is 0, there is no need to normalize.
396        ** Otherwise we count the number of z variables between
397        ** the current depth and the top of the ADDs. These are
398        ** the missing variables that determine the size of the
399        ** constant blocks.
400        */
401        if (res == zero) return(res);
402        scale = 1.0;
403        for (i = 0; i < dd->size; i++) {
404            if (vars[i]) {
405                if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) {
406                    scale *= 2;
407                }
408            }
409        }
410        if (scale > 1.0) {
411            cuddRef(res);
412            add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale);
413            if (add_scale == NULL) {
414                Cudd_RecursiveDeref(dd, res);
415                return(NULL);
416            }
417            cuddRef(add_scale);
418            scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale);
419            if (scaled == NULL) {
420                Cudd_RecursiveDeref(dd, add_scale);
421                Cudd_RecursiveDeref(dd, res);
422                return(NULL);
423            }
424            cuddRef(scaled);
425            Cudd_RecursiveDeref(dd, add_scale);
426            Cudd_RecursiveDeref(dd, res);
427            res = scaled;
428            cuddDeref(res);
429        }
430        return(res);
431    }
432
433    /* compute the cofactors */
434    if (topV == topA) {
435        At = cuddT(A);
436        Ae = cuddE(A);
437    } else {
438        At = Ae = A;
439    }
440    if (topV == topB) {
441        Bt = cuddT(B);
442        Be = cuddE(B);
443    } else {
444        Bt = Be = B;
445    }
446
447    t = addMMRecur(dd, At, Bt, (int)topV, vars);
448    if (t == NULL) return(NULL);
449    cuddRef(t);
450    e = addMMRecur(dd, Ae, Be, (int)topV, vars);
451    if (e == NULL) {
452        Cudd_RecursiveDeref(dd, t);
453        return(NULL);
454    }
455    cuddRef(e);
456
457    index = dd->invperm[topV];
458    if (vars[index] == 0) {
459        /* We have split on either the rows of A or the columns
460        ** of B. We just need to connect the two subresults,
461        ** which correspond to two submatrices of the result.
462        */
463        res = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
464        if (res == NULL) {
465            Cudd_RecursiveDeref(dd, t);
466            Cudd_RecursiveDeref(dd, e);
467            return(NULL);
468        }
469        cuddRef(res);
470        cuddDeref(t);
471        cuddDeref(e);
472    } else {
473        /* we have simultaneously split on the columns of A and
474        ** the rows of B. The two subresults must be added.
475        */
476        res = cuddAddApplyRecur(dd,Cudd_addPlus,t,e);
477        if (res == NULL) {
478            Cudd_RecursiveDeref(dd, t);
479            Cudd_RecursiveDeref(dd, e);
480            return(NULL);
481        }
482        cuddRef(res);
483        Cudd_RecursiveDeref(dd, t);
484        Cudd_RecursiveDeref(dd, e);
485    }
486
487    cuddCacheInsert2(dd,cacheOp,A,B,res);
488
489    /* We have computed (and stored in the computed table) a minimal
490    ** result; that is, a result that assumes no summation variables
491    ** between the current depth of the recursion and its top
492    ** variable. We now take into account the z variables by properly
493    ** scaling the result.
494    */
495    if (res != zero) {
496        scale = 1.0;
497        for (i = 0; i < dd->size; i++) {
498            if (vars[i]) {
499                if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) {
500                    scale *= 2;
501                }
502            }
503        }
504        if (scale > 1.0) {
505            add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale);
506            if (add_scale == NULL) {
507                Cudd_RecursiveDeref(dd, res);
508                return(NULL);
509            }
510            cuddRef(add_scale);
511            scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale);
512            if (scaled == NULL) {
513                Cudd_RecursiveDeref(dd, res);
514                Cudd_RecursiveDeref(dd, add_scale);
515                return(NULL);
516            }
517            cuddRef(scaled);
518            Cudd_RecursiveDeref(dd, add_scale);
519            Cudd_RecursiveDeref(dd, res);
520            res = scaled;
521        }
522    }
523    cuddDeref(res);
524    return(res);
525
526} /* end of addMMRecur */
527
528
529/**Function********************************************************************
530
531  Synopsis    [Performs the recursive step of Cudd_addTriangle.]
532
533  Description [Performs the recursive step of Cudd_addTriangle. Returns
534  a pointer to the result if successful; NULL otherwise.]
535
536  SideEffects [None]
537
538******************************************************************************/
539static DdNode *
540addTriangleRecur(
541  DdManager * dd,
542  DdNode * f,
543  DdNode * g,
544  int * vars,
545  DdNode *cube)
546{
547    DdNode *fv, *fvn, *gv, *gvn, *t, *e, *res;
548    CUDD_VALUE_TYPE value;
549    int top, topf, topg, index;
550
551    statLine(dd);
552    if (f == DD_PLUS_INFINITY(dd) || g == DD_PLUS_INFINITY(dd)) {
553        return(DD_PLUS_INFINITY(dd));
554    }
555
556    if (cuddIsConstant(f) && cuddIsConstant(g)) {
557        value = cuddV(f) + cuddV(g);
558        res = cuddUniqueConst(dd, value);
559        return(res);
560    }
561    if (f < g) {
562        DdNode *tmp = f;
563        f = g;
564        g = tmp;
565    }
566
567    if (f->ref != 1 || g->ref != 1) {
568        res = cuddCacheLookup(dd, DD_ADD_TRIANGLE_TAG, f, g, cube);
569        if (res != NULL) {
570            return(res);
571        }
572    }
573
574    topf = cuddI(dd,f->index); topg = cuddI(dd,g->index);
575    top = ddMin(topf,topg);
576
577    if (top == topf) {fv = cuddT(f); fvn = cuddE(f);} else {fv = fvn = f;}
578    if (top == topg) {gv = cuddT(g); gvn = cuddE(g);} else {gv = gvn = g;}
579
580    t = addTriangleRecur(dd, fv, gv, vars, cube);
581    if (t == NULL) return(NULL);
582    cuddRef(t);
583    e = addTriangleRecur(dd, fvn, gvn, vars, cube);
584    if (e == NULL) {
585        Cudd_RecursiveDeref(dd, t);
586        return(NULL);
587    }
588    cuddRef(e);
589
590    index = dd->invperm[top];
591    if (vars[index] < 0) {
592        res = (t == e) ? t : cuddUniqueInter(dd,index,t,e);
593        if (res == NULL) {
594            Cudd_RecursiveDeref(dd, t);
595            Cudd_RecursiveDeref(dd, e);
596            return(NULL);
597        }
598        cuddDeref(t);
599        cuddDeref(e);
600    } else {
601        res = cuddAddApplyRecur(dd,Cudd_addMinimum,t,e);
602        if (res == NULL) {
603            Cudd_RecursiveDeref(dd, t);
604            Cudd_RecursiveDeref(dd, e);
605            return(NULL);
606        }
607        cuddRef(res);
608        Cudd_RecursiveDeref(dd, t);
609        Cudd_RecursiveDeref(dd, e);
610        cuddDeref(res);
611    }
612
613    if (f->ref != 1 || g->ref != 1) {
614        cuddCacheInsert(dd, DD_ADD_TRIANGLE_TAG, f, g, cube, res);
615    }
616
617    return(res);
618
619} /* end of addTriangleRecur */
620
621
622/**Function********************************************************************
623
624  Synopsis    [Performs the recursive step of Cudd_addOuterSum.]
625
626  Description [Performs the recursive step of Cudd_addOuterSum.
627  Returns a pointer to the result if successful; NULL otherwise.]
628
629  SideEffects [None]
630
631  SeeAlso     []
632
633******************************************************************************/
634static DdNode *
635cuddAddOuterSumRecur(
636  DdManager *dd,
637  DdNode *M,
638  DdNode *r,
639  DdNode *c)
640{
641    DdNode *P, *R, *Mt, *Me, *rt, *re, *ct, *ce, *Rt, *Re;
642    int topM, topc, topr;
643    int v, index;
644
645    statLine(dd);
646    /* Check special cases. */
647    if (r == DD_PLUS_INFINITY(dd) || c == DD_PLUS_INFINITY(dd)) return(M); 
648
649    if (cuddIsConstant(c) && cuddIsConstant(r)) {
650        R = cuddUniqueConst(dd,Cudd_V(c)+Cudd_V(r));
651        cuddRef(R);
652        if (cuddIsConstant(M)) {
653            if (cuddV(R) <= cuddV(M)) {
654                cuddDeref(R);
655                return(R);
656            } else {
657                Cudd_RecursiveDeref(dd,R);       
658                return(M);
659            }
660        } else {
661            P = Cudd_addApply(dd,Cudd_addMinimum,R,M);
662            cuddRef(P);
663            Cudd_RecursiveDeref(dd,R);
664            cuddDeref(P);
665            return(P);
666        }
667    }
668
669    /* Check the cache. */
670    R = cuddCacheLookup(dd,DD_ADD_OUT_SUM_TAG,M,r,c);
671    if (R != NULL) return(R);
672
673    topM = cuddI(dd,M->index); topr = cuddI(dd,r->index);
674    topc = cuddI(dd,c->index);
675    v = ddMin(topM,ddMin(topr,topc));
676
677    /* Compute cofactors. */
678    if (topM == v) { Mt = cuddT(M); Me = cuddE(M); } else { Mt = Me = M; }
679    if (topr == v) { rt = cuddT(r); re = cuddE(r); } else { rt = re = r; }
680    if (topc == v) { ct = cuddT(c); ce = cuddE(c); } else { ct = ce = c; }
681
682    /* Recursively solve. */
683    Rt = cuddAddOuterSumRecur(dd,Mt,rt,ct);
684    if (Rt == NULL) return(NULL);
685    cuddRef(Rt);
686    Re = cuddAddOuterSumRecur(dd,Me,re,ce);
687    if (Re == NULL) {
688        Cudd_RecursiveDeref(dd, Rt);
689        return(NULL);
690    }
691    cuddRef(Re);
692    index = dd->invperm[v];
693    R = (Rt == Re) ? Rt : cuddUniqueInter(dd,index,Rt,Re);
694    if (R == NULL) {
695        Cudd_RecursiveDeref(dd, Rt);
696        Cudd_RecursiveDeref(dd, Re);
697        return(NULL);
698    }
699    cuddDeref(Rt);
700    cuddDeref(Re);
701
702    /* Store the result in the cache. */
703    cuddCacheInsert(dd,DD_ADD_OUT_SUM_TAG,M,r,c,R);
704
705    return(R);
706
707} /* end of cuddAddOuterSumRecur */
Note: See TracBrowser for help on using the repository browser.