1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [cuddMatMult.c] |
---|
4 | |
---|
5 | PackageName [cudd] |
---|
6 | |
---|
7 | Synopsis [Matrix multiplication functions.] |
---|
8 | |
---|
9 | Description [External procedures included in this module: |
---|
10 | <ul> |
---|
11 | <li> Cudd_addMatrixMultiply() |
---|
12 | <li> Cudd_addTimesPlus() |
---|
13 | <li> Cudd_addTriangle() |
---|
14 | <li> Cudd_addOuterSum() |
---|
15 | </ul> |
---|
16 | Static procedures included in this module: |
---|
17 | <ul> |
---|
18 | <li> addMMRecur() |
---|
19 | <li> addTriangleRecur() |
---|
20 | <li> cuddAddOuterSumRecur() |
---|
21 | </ul>] |
---|
22 | |
---|
23 | Author [Fabio Somenzi] |
---|
24 | |
---|
25 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
26 | |
---|
27 | All rights reserved. |
---|
28 | |
---|
29 | Redistribution and use in source and binary forms, with or without |
---|
30 | modification, are permitted provided that the following conditions |
---|
31 | are met: |
---|
32 | |
---|
33 | Redistributions of source code must retain the above copyright |
---|
34 | notice, this list of conditions and the following disclaimer. |
---|
35 | |
---|
36 | Redistributions in binary form must reproduce the above copyright |
---|
37 | notice, this list of conditions and the following disclaimer in the |
---|
38 | documentation and/or other materials provided with the distribution. |
---|
39 | |
---|
40 | Neither the name of the University of Colorado nor the names of its |
---|
41 | contributors may be used to endorse or promote products derived from |
---|
42 | this software without specific prior written permission. |
---|
43 | |
---|
44 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
45 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
46 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
47 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
48 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
49 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
50 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
51 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
52 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
53 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
54 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
55 | POSSIBILITY OF SUCH DAMAGE.] |
---|
56 | |
---|
57 | ******************************************************************************/ |
---|
58 | |
---|
59 | #include "util.h" |
---|
60 | #include "cuddInt.h" |
---|
61 | |
---|
62 | |
---|
63 | /*---------------------------------------------------------------------------*/ |
---|
64 | /* Constant declarations */ |
---|
65 | /*---------------------------------------------------------------------------*/ |
---|
66 | |
---|
67 | |
---|
68 | /*---------------------------------------------------------------------------*/ |
---|
69 | /* Stucture declarations */ |
---|
70 | /*---------------------------------------------------------------------------*/ |
---|
71 | |
---|
72 | |
---|
73 | /*---------------------------------------------------------------------------*/ |
---|
74 | /* Type declarations */ |
---|
75 | /*---------------------------------------------------------------------------*/ |
---|
76 | |
---|
77 | |
---|
78 | /*---------------------------------------------------------------------------*/ |
---|
79 | /* Variable declarations */ |
---|
80 | /*---------------------------------------------------------------------------*/ |
---|
81 | |
---|
82 | #ifndef lint |
---|
83 | static char rcsid[] DD_UNUSED = "$Id: cuddMatMult.c,v 1.17 2004/08/13 18:04:50 fabio Exp $"; |
---|
84 | #endif |
---|
85 | |
---|
86 | /*---------------------------------------------------------------------------*/ |
---|
87 | /* Macro declarations */ |
---|
88 | /*---------------------------------------------------------------------------*/ |
---|
89 | |
---|
90 | |
---|
91 | /**AutomaticStart*************************************************************/ |
---|
92 | |
---|
93 | /*---------------------------------------------------------------------------*/ |
---|
94 | /* Static function prototypes */ |
---|
95 | /*---------------------------------------------------------------------------*/ |
---|
96 | |
---|
97 | static DdNode * addMMRecur (DdManager *dd, DdNode *A, DdNode *B, int topP, int *vars); |
---|
98 | static DdNode * addTriangleRecur (DdManager *dd, DdNode *f, DdNode *g, int *vars, DdNode *cube); |
---|
99 | static DdNode * cuddAddOuterSumRecur (DdManager *dd, DdNode *M, DdNode *r, DdNode *c); |
---|
100 | |
---|
101 | /**AutomaticEnd***************************************************************/ |
---|
102 | |
---|
103 | |
---|
104 | /*---------------------------------------------------------------------------*/ |
---|
105 | /* Definition of exported functions */ |
---|
106 | /*---------------------------------------------------------------------------*/ |
---|
107 | |
---|
108 | /**Function******************************************************************** |
---|
109 | |
---|
110 | Synopsis [Calculates the product of two matrices represented as |
---|
111 | ADDs.] |
---|
112 | |
---|
113 | Description [Calculates the product of two matrices, A and B, |
---|
114 | represented as ADDs. This procedure implements the quasiring multiplication |
---|
115 | algorithm. A is assumed to depend on variables x (rows) and z |
---|
116 | (columns). B is assumed to depend on variables z (rows) and y |
---|
117 | (columns). The product of A and B then depends on x (rows) and y |
---|
118 | (columns). Only the z variables have to be explicitly identified; |
---|
119 | they are the "summation" variables. Returns a pointer to the |
---|
120 | result if successful; NULL otherwise.] |
---|
121 | |
---|
122 | SideEffects [None] |
---|
123 | |
---|
124 | SeeAlso [Cudd_addTimesPlus Cudd_addTriangle Cudd_bddAndAbstract] |
---|
125 | |
---|
126 | ******************************************************************************/ |
---|
127 | DdNode * |
---|
128 | Cudd_addMatrixMultiply( |
---|
129 | DdManager * dd, |
---|
130 | DdNode * A, |
---|
131 | DdNode * B, |
---|
132 | DdNode ** z, |
---|
133 | int nz) |
---|
134 | { |
---|
135 | int i, nvars, *vars; |
---|
136 | DdNode *res; |
---|
137 | |
---|
138 | /* Array vars says what variables are "summation" variables. */ |
---|
139 | nvars = dd->size; |
---|
140 | vars = ALLOC(int,nvars); |
---|
141 | if (vars == NULL) { |
---|
142 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
143 | return(NULL); |
---|
144 | } |
---|
145 | for (i = 0; i < nvars; i++) { |
---|
146 | vars[i] = 0; |
---|
147 | } |
---|
148 | for (i = 0; i < nz; i++) { |
---|
149 | vars[z[i]->index] = 1; |
---|
150 | } |
---|
151 | |
---|
152 | do { |
---|
153 | dd->reordered = 0; |
---|
154 | res = addMMRecur(dd,A,B,-1,vars); |
---|
155 | } while (dd->reordered == 1); |
---|
156 | FREE(vars); |
---|
157 | return(res); |
---|
158 | |
---|
159 | } /* end of Cudd_addMatrixMultiply */ |
---|
160 | |
---|
161 | |
---|
162 | /**Function******************************************************************** |
---|
163 | |
---|
164 | Synopsis [Calculates the product of two matrices represented as |
---|
165 | ADDs.] |
---|
166 | |
---|
167 | Description [Calculates the product of two matrices, A and B, |
---|
168 | represented as ADDs, using the CMU matrix by matrix multiplication |
---|
169 | procedure by Clarke et al.. Matrix A has x's as row variables and z's |
---|
170 | as column variables, while matrix B has z's as row variables and y's |
---|
171 | as column variables. Returns the pointer to the result if successful; |
---|
172 | NULL otherwise. The resulting matrix has x's as row variables and y's |
---|
173 | as column variables.] |
---|
174 | |
---|
175 | SideEffects [None] |
---|
176 | |
---|
177 | SeeAlso [Cudd_addMatrixMultiply] |
---|
178 | |
---|
179 | ******************************************************************************/ |
---|
180 | DdNode * |
---|
181 | Cudd_addTimesPlus( |
---|
182 | DdManager * dd, |
---|
183 | DdNode * A, |
---|
184 | DdNode * B, |
---|
185 | DdNode ** z, |
---|
186 | int nz) |
---|
187 | { |
---|
188 | DdNode *w, *cube, *tmp, *res; |
---|
189 | int i; |
---|
190 | tmp = Cudd_addApply(dd,Cudd_addTimes,A,B); |
---|
191 | if (tmp == NULL) return(NULL); |
---|
192 | Cudd_Ref(tmp); |
---|
193 | Cudd_Ref(cube = DD_ONE(dd)); |
---|
194 | for (i = nz-1; i >= 0; i--) { |
---|
195 | w = Cudd_addIte(dd,z[i],cube,DD_ZERO(dd)); |
---|
196 | if (w == NULL) { |
---|
197 | Cudd_RecursiveDeref(dd,tmp); |
---|
198 | return(NULL); |
---|
199 | } |
---|
200 | Cudd_Ref(w); |
---|
201 | Cudd_RecursiveDeref(dd,cube); |
---|
202 | cube = w; |
---|
203 | } |
---|
204 | res = Cudd_addExistAbstract(dd,tmp,cube); |
---|
205 | if (res == NULL) { |
---|
206 | Cudd_RecursiveDeref(dd,tmp); |
---|
207 | Cudd_RecursiveDeref(dd,cube); |
---|
208 | return(NULL); |
---|
209 | } |
---|
210 | Cudd_Ref(res); |
---|
211 | Cudd_RecursiveDeref(dd,cube); |
---|
212 | Cudd_RecursiveDeref(dd,tmp); |
---|
213 | Cudd_Deref(res); |
---|
214 | return(res); |
---|
215 | |
---|
216 | } /* end of Cudd_addTimesPlus */ |
---|
217 | |
---|
218 | |
---|
219 | /**Function******************************************************************** |
---|
220 | |
---|
221 | Synopsis [Performs the triangulation step for the shortest path |
---|
222 | computation.] |
---|
223 | |
---|
224 | Description [Implements the semiring multiplication algorithm used in |
---|
225 | the triangulation step for the shortest path computation. f |
---|
226 | is assumed to depend on variables x (rows) and z (columns). g is |
---|
227 | assumed to depend on variables z (rows) and y (columns). The product |
---|
228 | of f and g then depends on x (rows) and y (columns). Only the z |
---|
229 | variables have to be explicitly identified; they are the |
---|
230 | "abstraction" variables. Returns a pointer to the result if |
---|
231 | successful; NULL otherwise. ] |
---|
232 | |
---|
233 | SideEffects [None] |
---|
234 | |
---|
235 | SeeAlso [Cudd_addMatrixMultiply Cudd_bddAndAbstract] |
---|
236 | |
---|
237 | ******************************************************************************/ |
---|
238 | DdNode * |
---|
239 | Cudd_addTriangle( |
---|
240 | DdManager * dd, |
---|
241 | DdNode * f, |
---|
242 | DdNode * g, |
---|
243 | DdNode ** z, |
---|
244 | int nz) |
---|
245 | { |
---|
246 | int i, nvars, *vars; |
---|
247 | DdNode *res, *cube; |
---|
248 | |
---|
249 | nvars = dd->size; |
---|
250 | vars = ALLOC(int, nvars); |
---|
251 | if (vars == NULL) { |
---|
252 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
253 | return(NULL); |
---|
254 | } |
---|
255 | for (i = 0; i < nvars; i++) vars[i] = -1; |
---|
256 | for (i = 0; i < nz; i++) vars[z[i]->index] = i; |
---|
257 | cube = Cudd_addComputeCube(dd, z, NULL, nz); |
---|
258 | if (cube == NULL) { |
---|
259 | FREE(vars); |
---|
260 | return(NULL); |
---|
261 | } |
---|
262 | cuddRef(cube); |
---|
263 | |
---|
264 | do { |
---|
265 | dd->reordered = 0; |
---|
266 | res = addTriangleRecur(dd, f, g, vars, cube); |
---|
267 | } while (dd->reordered == 1); |
---|
268 | if (res != NULL) cuddRef(res); |
---|
269 | Cudd_RecursiveDeref(dd,cube); |
---|
270 | if (res != NULL) cuddDeref(res); |
---|
271 | FREE(vars); |
---|
272 | return(res); |
---|
273 | |
---|
274 | } /* end of Cudd_addTriangle */ |
---|
275 | |
---|
276 | |
---|
277 | /**Function******************************************************************** |
---|
278 | |
---|
279 | Synopsis [Takes the minimum of a matrix and the outer sum of two vectors.] |
---|
280 | |
---|
281 | Description [Takes the pointwise minimum of a matrix and the outer |
---|
282 | sum of two vectors. This procedure is used in the Floyd-Warshall |
---|
283 | all-pair shortest path algorithm. Returns a pointer to the result if |
---|
284 | successful; NULL otherwise.] |
---|
285 | |
---|
286 | SideEffects [None] |
---|
287 | |
---|
288 | SeeAlso [] |
---|
289 | |
---|
290 | ******************************************************************************/ |
---|
291 | DdNode * |
---|
292 | Cudd_addOuterSum( |
---|
293 | DdManager *dd, |
---|
294 | DdNode *M, |
---|
295 | DdNode *r, |
---|
296 | DdNode *c) |
---|
297 | { |
---|
298 | DdNode *res; |
---|
299 | |
---|
300 | do { |
---|
301 | dd->reordered = 0; |
---|
302 | res = cuddAddOuterSumRecur(dd, M, r, c); |
---|
303 | } while (dd->reordered == 1); |
---|
304 | return(res); |
---|
305 | |
---|
306 | } /* end of Cudd_addOuterSum */ |
---|
307 | |
---|
308 | |
---|
309 | /*---------------------------------------------------------------------------*/ |
---|
310 | /* Definition of internal functions */ |
---|
311 | /*---------------------------------------------------------------------------*/ |
---|
312 | |
---|
313 | |
---|
314 | /*---------------------------------------------------------------------------*/ |
---|
315 | /* Definition of static functions */ |
---|
316 | /*---------------------------------------------------------------------------*/ |
---|
317 | |
---|
318 | /**Function******************************************************************** |
---|
319 | |
---|
320 | Synopsis [Performs the recursive step of Cudd_addMatrixMultiply.] |
---|
321 | |
---|
322 | Description [Performs the recursive step of Cudd_addMatrixMultiply. |
---|
323 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
324 | |
---|
325 | SideEffects [None] |
---|
326 | |
---|
327 | ******************************************************************************/ |
---|
328 | static DdNode * |
---|
329 | addMMRecur( |
---|
330 | DdManager * dd, |
---|
331 | DdNode * A, |
---|
332 | DdNode * B, |
---|
333 | int topP, |
---|
334 | int * vars) |
---|
335 | { |
---|
336 | DdNode *zero, |
---|
337 | *At, /* positive cofactor of first operand */ |
---|
338 | *Ae, /* negative cofactor of first operand */ |
---|
339 | *Bt, /* positive cofactor of second operand */ |
---|
340 | *Be, /* negative cofactor of second operand */ |
---|
341 | *t, /* positive cofactor of result */ |
---|
342 | *e, /* negative cofactor of result */ |
---|
343 | *scaled, /* scaled result */ |
---|
344 | *add_scale, /* ADD representing the scaling factor */ |
---|
345 | *res; |
---|
346 | int i; /* loop index */ |
---|
347 | double scale; /* scaling factor */ |
---|
348 | int index; /* index of the top variable */ |
---|
349 | CUDD_VALUE_TYPE value; |
---|
350 | unsigned int topA, topB, topV; |
---|
351 | DD_CTFP cacheOp; |
---|
352 | |
---|
353 | statLine(dd); |
---|
354 | zero = DD_ZERO(dd); |
---|
355 | |
---|
356 | if (A == zero || B == zero) { |
---|
357 | return(zero); |
---|
358 | } |
---|
359 | |
---|
360 | if (cuddIsConstant(A) && cuddIsConstant(B)) { |
---|
361 | /* Compute the scaling factor. It is 2^k, where k is the |
---|
362 | ** number of summation variables below the current variable. |
---|
363 | ** Indeed, these constants represent blocks of 2^k identical |
---|
364 | ** constant values in both A and B. |
---|
365 | */ |
---|
366 | value = cuddV(A) * cuddV(B); |
---|
367 | for (i = 0; i < dd->size; i++) { |
---|
368 | if (vars[i]) { |
---|
369 | if (dd->perm[i] > topP) { |
---|
370 | value *= (CUDD_VALUE_TYPE) 2; |
---|
371 | } |
---|
372 | } |
---|
373 | } |
---|
374 | res = cuddUniqueConst(dd, value); |
---|
375 | return(res); |
---|
376 | } |
---|
377 | |
---|
378 | /* Standardize to increase cache efficiency. Clearly, A*B != B*A |
---|
379 | ** in matrix multiplication. However, which matrix is which is |
---|
380 | ** determined by the variables appearing in the ADDs and not by |
---|
381 | ** which one is passed as first argument. |
---|
382 | */ |
---|
383 | if (A > B) { |
---|
384 | DdNode *tmp = A; |
---|
385 | A = B; |
---|
386 | B = tmp; |
---|
387 | } |
---|
388 | |
---|
389 | topA = cuddI(dd,A->index); topB = cuddI(dd,B->index); |
---|
390 | topV = ddMin(topA,topB); |
---|
391 | |
---|
392 | cacheOp = (DD_CTFP) addMMRecur; |
---|
393 | res = cuddCacheLookup2(dd,cacheOp,A,B); |
---|
394 | if (res != NULL) { |
---|
395 | /* If the result is 0, there is no need to normalize. |
---|
396 | ** Otherwise we count the number of z variables between |
---|
397 | ** the current depth and the top of the ADDs. These are |
---|
398 | ** the missing variables that determine the size of the |
---|
399 | ** constant blocks. |
---|
400 | */ |
---|
401 | if (res == zero) return(res); |
---|
402 | scale = 1.0; |
---|
403 | for (i = 0; i < dd->size; i++) { |
---|
404 | if (vars[i]) { |
---|
405 | if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) { |
---|
406 | scale *= 2; |
---|
407 | } |
---|
408 | } |
---|
409 | } |
---|
410 | if (scale > 1.0) { |
---|
411 | cuddRef(res); |
---|
412 | add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale); |
---|
413 | if (add_scale == NULL) { |
---|
414 | Cudd_RecursiveDeref(dd, res); |
---|
415 | return(NULL); |
---|
416 | } |
---|
417 | cuddRef(add_scale); |
---|
418 | scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale); |
---|
419 | if (scaled == NULL) { |
---|
420 | Cudd_RecursiveDeref(dd, add_scale); |
---|
421 | Cudd_RecursiveDeref(dd, res); |
---|
422 | return(NULL); |
---|
423 | } |
---|
424 | cuddRef(scaled); |
---|
425 | Cudd_RecursiveDeref(dd, add_scale); |
---|
426 | Cudd_RecursiveDeref(dd, res); |
---|
427 | res = scaled; |
---|
428 | cuddDeref(res); |
---|
429 | } |
---|
430 | return(res); |
---|
431 | } |
---|
432 | |
---|
433 | /* compute the cofactors */ |
---|
434 | if (topV == topA) { |
---|
435 | At = cuddT(A); |
---|
436 | Ae = cuddE(A); |
---|
437 | } else { |
---|
438 | At = Ae = A; |
---|
439 | } |
---|
440 | if (topV == topB) { |
---|
441 | Bt = cuddT(B); |
---|
442 | Be = cuddE(B); |
---|
443 | } else { |
---|
444 | Bt = Be = B; |
---|
445 | } |
---|
446 | |
---|
447 | t = addMMRecur(dd, At, Bt, (int)topV, vars); |
---|
448 | if (t == NULL) return(NULL); |
---|
449 | cuddRef(t); |
---|
450 | e = addMMRecur(dd, Ae, Be, (int)topV, vars); |
---|
451 | if (e == NULL) { |
---|
452 | Cudd_RecursiveDeref(dd, t); |
---|
453 | return(NULL); |
---|
454 | } |
---|
455 | cuddRef(e); |
---|
456 | |
---|
457 | index = dd->invperm[topV]; |
---|
458 | if (vars[index] == 0) { |
---|
459 | /* We have split on either the rows of A or the columns |
---|
460 | ** of B. We just need to connect the two subresults, |
---|
461 | ** which correspond to two submatrices of the result. |
---|
462 | */ |
---|
463 | res = (t == e) ? t : cuddUniqueInter(dd,index,t,e); |
---|
464 | if (res == NULL) { |
---|
465 | Cudd_RecursiveDeref(dd, t); |
---|
466 | Cudd_RecursiveDeref(dd, e); |
---|
467 | return(NULL); |
---|
468 | } |
---|
469 | cuddRef(res); |
---|
470 | cuddDeref(t); |
---|
471 | cuddDeref(e); |
---|
472 | } else { |
---|
473 | /* we have simultaneously split on the columns of A and |
---|
474 | ** the rows of B. The two subresults must be added. |
---|
475 | */ |
---|
476 | res = cuddAddApplyRecur(dd,Cudd_addPlus,t,e); |
---|
477 | if (res == NULL) { |
---|
478 | Cudd_RecursiveDeref(dd, t); |
---|
479 | Cudd_RecursiveDeref(dd, e); |
---|
480 | return(NULL); |
---|
481 | } |
---|
482 | cuddRef(res); |
---|
483 | Cudd_RecursiveDeref(dd, t); |
---|
484 | Cudd_RecursiveDeref(dd, e); |
---|
485 | } |
---|
486 | |
---|
487 | cuddCacheInsert2(dd,cacheOp,A,B,res); |
---|
488 | |
---|
489 | /* We have computed (and stored in the computed table) a minimal |
---|
490 | ** result; that is, a result that assumes no summation variables |
---|
491 | ** between the current depth of the recursion and its top |
---|
492 | ** variable. We now take into account the z variables by properly |
---|
493 | ** scaling the result. |
---|
494 | */ |
---|
495 | if (res != zero) { |
---|
496 | scale = 1.0; |
---|
497 | for (i = 0; i < dd->size; i++) { |
---|
498 | if (vars[i]) { |
---|
499 | if (dd->perm[i] > topP && (unsigned) dd->perm[i] < topV) { |
---|
500 | scale *= 2; |
---|
501 | } |
---|
502 | } |
---|
503 | } |
---|
504 | if (scale > 1.0) { |
---|
505 | add_scale = cuddUniqueConst(dd,(CUDD_VALUE_TYPE)scale); |
---|
506 | if (add_scale == NULL) { |
---|
507 | Cudd_RecursiveDeref(dd, res); |
---|
508 | return(NULL); |
---|
509 | } |
---|
510 | cuddRef(add_scale); |
---|
511 | scaled = cuddAddApplyRecur(dd,Cudd_addTimes,res,add_scale); |
---|
512 | if (scaled == NULL) { |
---|
513 | Cudd_RecursiveDeref(dd, res); |
---|
514 | Cudd_RecursiveDeref(dd, add_scale); |
---|
515 | return(NULL); |
---|
516 | } |
---|
517 | cuddRef(scaled); |
---|
518 | Cudd_RecursiveDeref(dd, add_scale); |
---|
519 | Cudd_RecursiveDeref(dd, res); |
---|
520 | res = scaled; |
---|
521 | } |
---|
522 | } |
---|
523 | cuddDeref(res); |
---|
524 | return(res); |
---|
525 | |
---|
526 | } /* end of addMMRecur */ |
---|
527 | |
---|
528 | |
---|
529 | /**Function******************************************************************** |
---|
530 | |
---|
531 | Synopsis [Performs the recursive step of Cudd_addTriangle.] |
---|
532 | |
---|
533 | Description [Performs the recursive step of Cudd_addTriangle. Returns |
---|
534 | a pointer to the result if successful; NULL otherwise.] |
---|
535 | |
---|
536 | SideEffects [None] |
---|
537 | |
---|
538 | ******************************************************************************/ |
---|
539 | static DdNode * |
---|
540 | addTriangleRecur( |
---|
541 | DdManager * dd, |
---|
542 | DdNode * f, |
---|
543 | DdNode * g, |
---|
544 | int * vars, |
---|
545 | DdNode *cube) |
---|
546 | { |
---|
547 | DdNode *fv, *fvn, *gv, *gvn, *t, *e, *res; |
---|
548 | CUDD_VALUE_TYPE value; |
---|
549 | int top, topf, topg, index; |
---|
550 | |
---|
551 | statLine(dd); |
---|
552 | if (f == DD_PLUS_INFINITY(dd) || g == DD_PLUS_INFINITY(dd)) { |
---|
553 | return(DD_PLUS_INFINITY(dd)); |
---|
554 | } |
---|
555 | |
---|
556 | if (cuddIsConstant(f) && cuddIsConstant(g)) { |
---|
557 | value = cuddV(f) + cuddV(g); |
---|
558 | res = cuddUniqueConst(dd, value); |
---|
559 | return(res); |
---|
560 | } |
---|
561 | if (f < g) { |
---|
562 | DdNode *tmp = f; |
---|
563 | f = g; |
---|
564 | g = tmp; |
---|
565 | } |
---|
566 | |
---|
567 | if (f->ref != 1 || g->ref != 1) { |
---|
568 | res = cuddCacheLookup(dd, DD_ADD_TRIANGLE_TAG, f, g, cube); |
---|
569 | if (res != NULL) { |
---|
570 | return(res); |
---|
571 | } |
---|
572 | } |
---|
573 | |
---|
574 | topf = cuddI(dd,f->index); topg = cuddI(dd,g->index); |
---|
575 | top = ddMin(topf,topg); |
---|
576 | |
---|
577 | if (top == topf) {fv = cuddT(f); fvn = cuddE(f);} else {fv = fvn = f;} |
---|
578 | if (top == topg) {gv = cuddT(g); gvn = cuddE(g);} else {gv = gvn = g;} |
---|
579 | |
---|
580 | t = addTriangleRecur(dd, fv, gv, vars, cube); |
---|
581 | if (t == NULL) return(NULL); |
---|
582 | cuddRef(t); |
---|
583 | e = addTriangleRecur(dd, fvn, gvn, vars, cube); |
---|
584 | if (e == NULL) { |
---|
585 | Cudd_RecursiveDeref(dd, t); |
---|
586 | return(NULL); |
---|
587 | } |
---|
588 | cuddRef(e); |
---|
589 | |
---|
590 | index = dd->invperm[top]; |
---|
591 | if (vars[index] < 0) { |
---|
592 | res = (t == e) ? t : cuddUniqueInter(dd,index,t,e); |
---|
593 | if (res == NULL) { |
---|
594 | Cudd_RecursiveDeref(dd, t); |
---|
595 | Cudd_RecursiveDeref(dd, e); |
---|
596 | return(NULL); |
---|
597 | } |
---|
598 | cuddDeref(t); |
---|
599 | cuddDeref(e); |
---|
600 | } else { |
---|
601 | res = cuddAddApplyRecur(dd,Cudd_addMinimum,t,e); |
---|
602 | if (res == NULL) { |
---|
603 | Cudd_RecursiveDeref(dd, t); |
---|
604 | Cudd_RecursiveDeref(dd, e); |
---|
605 | return(NULL); |
---|
606 | } |
---|
607 | cuddRef(res); |
---|
608 | Cudd_RecursiveDeref(dd, t); |
---|
609 | Cudd_RecursiveDeref(dd, e); |
---|
610 | cuddDeref(res); |
---|
611 | } |
---|
612 | |
---|
613 | if (f->ref != 1 || g->ref != 1) { |
---|
614 | cuddCacheInsert(dd, DD_ADD_TRIANGLE_TAG, f, g, cube, res); |
---|
615 | } |
---|
616 | |
---|
617 | return(res); |
---|
618 | |
---|
619 | } /* end of addTriangleRecur */ |
---|
620 | |
---|
621 | |
---|
622 | /**Function******************************************************************** |
---|
623 | |
---|
624 | Synopsis [Performs the recursive step of Cudd_addOuterSum.] |
---|
625 | |
---|
626 | Description [Performs the recursive step of Cudd_addOuterSum. |
---|
627 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
628 | |
---|
629 | SideEffects [None] |
---|
630 | |
---|
631 | SeeAlso [] |
---|
632 | |
---|
633 | ******************************************************************************/ |
---|
634 | static DdNode * |
---|
635 | cuddAddOuterSumRecur( |
---|
636 | DdManager *dd, |
---|
637 | DdNode *M, |
---|
638 | DdNode *r, |
---|
639 | DdNode *c) |
---|
640 | { |
---|
641 | DdNode *P, *R, *Mt, *Me, *rt, *re, *ct, *ce, *Rt, *Re; |
---|
642 | int topM, topc, topr; |
---|
643 | int v, index; |
---|
644 | |
---|
645 | statLine(dd); |
---|
646 | /* Check special cases. */ |
---|
647 | if (r == DD_PLUS_INFINITY(dd) || c == DD_PLUS_INFINITY(dd)) return(M); |
---|
648 | |
---|
649 | if (cuddIsConstant(c) && cuddIsConstant(r)) { |
---|
650 | R = cuddUniqueConst(dd,Cudd_V(c)+Cudd_V(r)); |
---|
651 | cuddRef(R); |
---|
652 | if (cuddIsConstant(M)) { |
---|
653 | if (cuddV(R) <= cuddV(M)) { |
---|
654 | cuddDeref(R); |
---|
655 | return(R); |
---|
656 | } else { |
---|
657 | Cudd_RecursiveDeref(dd,R); |
---|
658 | return(M); |
---|
659 | } |
---|
660 | } else { |
---|
661 | P = Cudd_addApply(dd,Cudd_addMinimum,R,M); |
---|
662 | cuddRef(P); |
---|
663 | Cudd_RecursiveDeref(dd,R); |
---|
664 | cuddDeref(P); |
---|
665 | return(P); |
---|
666 | } |
---|
667 | } |
---|
668 | |
---|
669 | /* Check the cache. */ |
---|
670 | R = cuddCacheLookup(dd,DD_ADD_OUT_SUM_TAG,M,r,c); |
---|
671 | if (R != NULL) return(R); |
---|
672 | |
---|
673 | topM = cuddI(dd,M->index); topr = cuddI(dd,r->index); |
---|
674 | topc = cuddI(dd,c->index); |
---|
675 | v = ddMin(topM,ddMin(topr,topc)); |
---|
676 | |
---|
677 | /* Compute cofactors. */ |
---|
678 | if (topM == v) { Mt = cuddT(M); Me = cuddE(M); } else { Mt = Me = M; } |
---|
679 | if (topr == v) { rt = cuddT(r); re = cuddE(r); } else { rt = re = r; } |
---|
680 | if (topc == v) { ct = cuddT(c); ce = cuddE(c); } else { ct = ce = c; } |
---|
681 | |
---|
682 | /* Recursively solve. */ |
---|
683 | Rt = cuddAddOuterSumRecur(dd,Mt,rt,ct); |
---|
684 | if (Rt == NULL) return(NULL); |
---|
685 | cuddRef(Rt); |
---|
686 | Re = cuddAddOuterSumRecur(dd,Me,re,ce); |
---|
687 | if (Re == NULL) { |
---|
688 | Cudd_RecursiveDeref(dd, Rt); |
---|
689 | return(NULL); |
---|
690 | } |
---|
691 | cuddRef(Re); |
---|
692 | index = dd->invperm[v]; |
---|
693 | R = (Rt == Re) ? Rt : cuddUniqueInter(dd,index,Rt,Re); |
---|
694 | if (R == NULL) { |
---|
695 | Cudd_RecursiveDeref(dd, Rt); |
---|
696 | Cudd_RecursiveDeref(dd, Re); |
---|
697 | return(NULL); |
---|
698 | } |
---|
699 | cuddDeref(Rt); |
---|
700 | cuddDeref(Re); |
---|
701 | |
---|
702 | /* Store the result in the cache. */ |
---|
703 | cuddCacheInsert(dd,DD_ADD_OUT_SUM_TAG,M,r,c,R); |
---|
704 | |
---|
705 | return(R); |
---|
706 | |
---|
707 | } /* end of cuddAddOuterSumRecur */ |
---|