1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [cuddSat.c] |
---|
4 | |
---|
5 | PackageName [cudd] |
---|
6 | |
---|
7 | Synopsis [Functions for the solution of satisfiability related |
---|
8 | problems.] |
---|
9 | |
---|
10 | Description [External procedures included in this file: |
---|
11 | <ul> |
---|
12 | <li> Cudd_Eval() |
---|
13 | <li> Cudd_ShortestPath() |
---|
14 | <li> Cudd_LargestCube() |
---|
15 | <li> Cudd_ShortestLength() |
---|
16 | <li> Cudd_Decreasing() |
---|
17 | <li> Cudd_Increasing() |
---|
18 | <li> Cudd_EquivDC() |
---|
19 | <li> Cudd_bddLeqUnless() |
---|
20 | <li> Cudd_EqualSupNorm() |
---|
21 | <li> Cudd_bddMakePrime() |
---|
22 | </ul> |
---|
23 | Internal procedures included in this module: |
---|
24 | <ul> |
---|
25 | <li> cuddBddMakePrime() |
---|
26 | </ul> |
---|
27 | Static procedures included in this module: |
---|
28 | <ul> |
---|
29 | <li> freePathPair() |
---|
30 | <li> getShortest() |
---|
31 | <li> getPath() |
---|
32 | <li> getLargest() |
---|
33 | <li> getCube() |
---|
34 | </ul>] |
---|
35 | |
---|
36 | Author [Seh-Woong Jeong, Fabio Somenzi] |
---|
37 | |
---|
38 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
39 | |
---|
40 | All rights reserved. |
---|
41 | |
---|
42 | Redistribution and use in source and binary forms, with or without |
---|
43 | modification, are permitted provided that the following conditions |
---|
44 | are met: |
---|
45 | |
---|
46 | Redistributions of source code must retain the above copyright |
---|
47 | notice, this list of conditions and the following disclaimer. |
---|
48 | |
---|
49 | Redistributions in binary form must reproduce the above copyright |
---|
50 | notice, this list of conditions and the following disclaimer in the |
---|
51 | documentation and/or other materials provided with the distribution. |
---|
52 | |
---|
53 | Neither the name of the University of Colorado nor the names of its |
---|
54 | contributors may be used to endorse or promote products derived from |
---|
55 | this software without specific prior written permission. |
---|
56 | |
---|
57 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
58 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
59 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
60 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
61 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
62 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
63 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
64 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
65 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
66 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
67 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
68 | POSSIBILITY OF SUCH DAMAGE.] |
---|
69 | |
---|
70 | ******************************************************************************/ |
---|
71 | |
---|
72 | #include "util.h" |
---|
73 | #include "cuddInt.h" |
---|
74 | |
---|
75 | /*---------------------------------------------------------------------------*/ |
---|
76 | /* Constant declarations */ |
---|
77 | /*---------------------------------------------------------------------------*/ |
---|
78 | |
---|
79 | #define DD_BIGGY 1000000 |
---|
80 | |
---|
81 | /*---------------------------------------------------------------------------*/ |
---|
82 | /* Stucture declarations */ |
---|
83 | /*---------------------------------------------------------------------------*/ |
---|
84 | |
---|
85 | /*---------------------------------------------------------------------------*/ |
---|
86 | /* Type declarations */ |
---|
87 | /*---------------------------------------------------------------------------*/ |
---|
88 | |
---|
89 | typedef struct cuddPathPair { |
---|
90 | int pos; |
---|
91 | int neg; |
---|
92 | } cuddPathPair; |
---|
93 | |
---|
94 | /*---------------------------------------------------------------------------*/ |
---|
95 | /* Variable declarations */ |
---|
96 | /*---------------------------------------------------------------------------*/ |
---|
97 | |
---|
98 | #ifndef lint |
---|
99 | static char rcsid[] DD_UNUSED = "$Id: cuddSat.c,v 1.36 2009/03/08 02:49:02 fabio Exp $"; |
---|
100 | #endif |
---|
101 | |
---|
102 | static DdNode *one, *zero; |
---|
103 | |
---|
104 | /*---------------------------------------------------------------------------*/ |
---|
105 | /* Macro declarations */ |
---|
106 | /*---------------------------------------------------------------------------*/ |
---|
107 | |
---|
108 | #define WEIGHT(weight, col) ((weight) == NULL ? 1 : weight[col]) |
---|
109 | |
---|
110 | #ifdef __cplusplus |
---|
111 | extern "C" { |
---|
112 | #endif |
---|
113 | |
---|
114 | /**AutomaticStart*************************************************************/ |
---|
115 | |
---|
116 | /*---------------------------------------------------------------------------*/ |
---|
117 | /* Static function prototypes */ |
---|
118 | /*---------------------------------------------------------------------------*/ |
---|
119 | |
---|
120 | static enum st_retval freePathPair (char *key, char *value, char *arg); |
---|
121 | static cuddPathPair getShortest (DdNode *root, int *cost, int *support, st_table *visited); |
---|
122 | static DdNode * getPath (DdManager *manager, st_table *visited, DdNode *f, int *weight, int cost); |
---|
123 | static cuddPathPair getLargest (DdNode *root, st_table *visited); |
---|
124 | static DdNode * getCube (DdManager *manager, st_table *visited, DdNode *f, int cost); |
---|
125 | |
---|
126 | /**AutomaticEnd***************************************************************/ |
---|
127 | |
---|
128 | #ifdef __cplusplus |
---|
129 | } |
---|
130 | #endif |
---|
131 | |
---|
132 | /*---------------------------------------------------------------------------*/ |
---|
133 | /* Definition of exported functions */ |
---|
134 | /*---------------------------------------------------------------------------*/ |
---|
135 | |
---|
136 | |
---|
137 | /**Function******************************************************************** |
---|
138 | |
---|
139 | Synopsis [Returns the value of a DD for a given variable assignment.] |
---|
140 | |
---|
141 | Description [Finds the value of a DD for a given variable |
---|
142 | assignment. The variable assignment is passed in an array of int's, |
---|
143 | that should specify a zero or a one for each variable in the support |
---|
144 | of the function. Returns a pointer to a constant node. No new nodes |
---|
145 | are produced.] |
---|
146 | |
---|
147 | SideEffects [None] |
---|
148 | |
---|
149 | SeeAlso [Cudd_bddLeq Cudd_addEvalConst] |
---|
150 | |
---|
151 | ******************************************************************************/ |
---|
152 | DdNode * |
---|
153 | Cudd_Eval( |
---|
154 | DdManager * dd, |
---|
155 | DdNode * f, |
---|
156 | int * inputs) |
---|
157 | { |
---|
158 | int comple; |
---|
159 | DdNode *ptr; |
---|
160 | |
---|
161 | comple = Cudd_IsComplement(f); |
---|
162 | ptr = Cudd_Regular(f); |
---|
163 | |
---|
164 | while (!cuddIsConstant(ptr)) { |
---|
165 | if (inputs[ptr->index] == 1) { |
---|
166 | ptr = cuddT(ptr); |
---|
167 | } else { |
---|
168 | comple ^= Cudd_IsComplement(cuddE(ptr)); |
---|
169 | ptr = Cudd_Regular(cuddE(ptr)); |
---|
170 | } |
---|
171 | } |
---|
172 | return(Cudd_NotCond(ptr,comple)); |
---|
173 | |
---|
174 | } /* end of Cudd_Eval */ |
---|
175 | |
---|
176 | |
---|
177 | /**Function******************************************************************** |
---|
178 | |
---|
179 | Synopsis [Finds a shortest path in a DD.] |
---|
180 | |
---|
181 | Description [Finds a shortest path in a DD. f is the DD we want to |
---|
182 | get the shortest path for; weight\[i\] is the weight of the THEN arc |
---|
183 | coming from the node whose index is i. If weight is NULL, then unit |
---|
184 | weights are assumed for all THEN arcs. All ELSE arcs have 0 weight. |
---|
185 | If non-NULL, both weight and support should point to arrays with at |
---|
186 | least as many entries as there are variables in the manager. |
---|
187 | Returns the shortest path as the BDD of a cube.] |
---|
188 | |
---|
189 | SideEffects [support contains on return the true support of f. |
---|
190 | If support is NULL on entry, then Cudd_ShortestPath does not compute |
---|
191 | the true support info. length contains the length of the path.] |
---|
192 | |
---|
193 | SeeAlso [Cudd_ShortestLength Cudd_LargestCube] |
---|
194 | |
---|
195 | ******************************************************************************/ |
---|
196 | DdNode * |
---|
197 | Cudd_ShortestPath( |
---|
198 | DdManager * manager, |
---|
199 | DdNode * f, |
---|
200 | int * weight, |
---|
201 | int * support, |
---|
202 | int * length) |
---|
203 | { |
---|
204 | DdNode *F; |
---|
205 | st_table *visited; |
---|
206 | DdNode *sol; |
---|
207 | cuddPathPair *rootPair; |
---|
208 | int complement, cost; |
---|
209 | int i; |
---|
210 | |
---|
211 | one = DD_ONE(manager); |
---|
212 | zero = DD_ZERO(manager); |
---|
213 | |
---|
214 | /* Initialize support. Support does not depend on variable order. |
---|
215 | ** Hence, it does not need to be reinitialized if reordering occurs. |
---|
216 | */ |
---|
217 | if (support) { |
---|
218 | for (i = 0; i < manager->size; i++) { |
---|
219 | support[i] = 0; |
---|
220 | } |
---|
221 | } |
---|
222 | |
---|
223 | if (f == Cudd_Not(one) || f == zero) { |
---|
224 | *length = DD_BIGGY; |
---|
225 | return(Cudd_Not(one)); |
---|
226 | } |
---|
227 | /* From this point on, a path exists. */ |
---|
228 | |
---|
229 | do { |
---|
230 | manager->reordered = 0; |
---|
231 | |
---|
232 | /* Initialize visited table. */ |
---|
233 | visited = st_init_table(st_ptrcmp, st_ptrhash); |
---|
234 | |
---|
235 | /* Now get the length of the shortest path(s) from f to 1. */ |
---|
236 | (void) getShortest(f, weight, support, visited); |
---|
237 | |
---|
238 | complement = Cudd_IsComplement(f); |
---|
239 | |
---|
240 | F = Cudd_Regular(f); |
---|
241 | |
---|
242 | if (!st_lookup(visited, F, &rootPair)) return(NULL); |
---|
243 | |
---|
244 | if (complement) { |
---|
245 | cost = rootPair->neg; |
---|
246 | } else { |
---|
247 | cost = rootPair->pos; |
---|
248 | } |
---|
249 | |
---|
250 | /* Recover an actual shortest path. */ |
---|
251 | sol = getPath(manager,visited,f,weight,cost); |
---|
252 | |
---|
253 | st_foreach(visited, freePathPair, NULL); |
---|
254 | st_free_table(visited); |
---|
255 | |
---|
256 | } while (manager->reordered == 1); |
---|
257 | |
---|
258 | *length = cost; |
---|
259 | return(sol); |
---|
260 | |
---|
261 | } /* end of Cudd_ShortestPath */ |
---|
262 | |
---|
263 | |
---|
264 | /**Function******************************************************************** |
---|
265 | |
---|
266 | Synopsis [Finds a largest cube in a DD.] |
---|
267 | |
---|
268 | Description [Finds a largest cube in a DD. f is the DD we want to |
---|
269 | get the largest cube for. The problem is translated into the one of |
---|
270 | finding a shortest path in f, when both THEN and ELSE arcs are assumed to |
---|
271 | have unit length. This yields a largest cube in the disjoint cover |
---|
272 | corresponding to the DD. Therefore, it is not necessarily the largest |
---|
273 | implicant of f. Returns the largest cube as a BDD.] |
---|
274 | |
---|
275 | SideEffects [The number of literals of the cube is returned in length.] |
---|
276 | |
---|
277 | SeeAlso [Cudd_ShortestPath] |
---|
278 | |
---|
279 | ******************************************************************************/ |
---|
280 | DdNode * |
---|
281 | Cudd_LargestCube( |
---|
282 | DdManager * manager, |
---|
283 | DdNode * f, |
---|
284 | int * length) |
---|
285 | { |
---|
286 | register DdNode *F; |
---|
287 | st_table *visited; |
---|
288 | DdNode *sol; |
---|
289 | cuddPathPair *rootPair; |
---|
290 | int complement, cost; |
---|
291 | |
---|
292 | one = DD_ONE(manager); |
---|
293 | zero = DD_ZERO(manager); |
---|
294 | |
---|
295 | if (f == Cudd_Not(one) || f == zero) { |
---|
296 | *length = DD_BIGGY; |
---|
297 | return(Cudd_Not(one)); |
---|
298 | } |
---|
299 | /* From this point on, a path exists. */ |
---|
300 | |
---|
301 | do { |
---|
302 | manager->reordered = 0; |
---|
303 | |
---|
304 | /* Initialize visited table. */ |
---|
305 | visited = st_init_table(st_ptrcmp, st_ptrhash); |
---|
306 | |
---|
307 | /* Now get the length of the shortest path(s) from f to 1. */ |
---|
308 | (void) getLargest(f, visited); |
---|
309 | |
---|
310 | complement = Cudd_IsComplement(f); |
---|
311 | |
---|
312 | F = Cudd_Regular(f); |
---|
313 | |
---|
314 | if (!st_lookup(visited, F, &rootPair)) return(NULL); |
---|
315 | |
---|
316 | if (complement) { |
---|
317 | cost = rootPair->neg; |
---|
318 | } else { |
---|
319 | cost = rootPair->pos; |
---|
320 | } |
---|
321 | |
---|
322 | /* Recover an actual shortest path. */ |
---|
323 | sol = getCube(manager,visited,f,cost); |
---|
324 | |
---|
325 | st_foreach(visited, freePathPair, NULL); |
---|
326 | st_free_table(visited); |
---|
327 | |
---|
328 | } while (manager->reordered == 1); |
---|
329 | |
---|
330 | *length = cost; |
---|
331 | return(sol); |
---|
332 | |
---|
333 | } /* end of Cudd_LargestCube */ |
---|
334 | |
---|
335 | |
---|
336 | /**Function******************************************************************** |
---|
337 | |
---|
338 | Synopsis [Find the length of the shortest path(s) in a DD.] |
---|
339 | |
---|
340 | Description [Find the length of the shortest path(s) in a DD. f is |
---|
341 | the DD we want to get the shortest path for; weight\[i\] is the |
---|
342 | weight of the THEN edge coming from the node whose index is i. All |
---|
343 | ELSE edges have 0 weight. Returns the length of the shortest |
---|
344 | path(s) if such a path is found; a large number if the function is |
---|
345 | identically 0, and CUDD_OUT_OF_MEM in case of failure.] |
---|
346 | |
---|
347 | SideEffects [None] |
---|
348 | |
---|
349 | SeeAlso [Cudd_ShortestPath] |
---|
350 | |
---|
351 | ******************************************************************************/ |
---|
352 | int |
---|
353 | Cudd_ShortestLength( |
---|
354 | DdManager * manager, |
---|
355 | DdNode * f, |
---|
356 | int * weight) |
---|
357 | { |
---|
358 | register DdNode *F; |
---|
359 | st_table *visited; |
---|
360 | cuddPathPair *my_pair; |
---|
361 | int complement, cost; |
---|
362 | |
---|
363 | one = DD_ONE(manager); |
---|
364 | zero = DD_ZERO(manager); |
---|
365 | |
---|
366 | if (f == Cudd_Not(one) || f == zero) { |
---|
367 | return(DD_BIGGY); |
---|
368 | } |
---|
369 | |
---|
370 | /* From this point on, a path exists. */ |
---|
371 | /* Initialize visited table and support. */ |
---|
372 | visited = st_init_table(st_ptrcmp, st_ptrhash); |
---|
373 | |
---|
374 | /* Now get the length of the shortest path(s) from f to 1. */ |
---|
375 | (void) getShortest(f, weight, NULL, visited); |
---|
376 | |
---|
377 | complement = Cudd_IsComplement(f); |
---|
378 | |
---|
379 | F = Cudd_Regular(f); |
---|
380 | |
---|
381 | if (!st_lookup(visited, F, &my_pair)) return(CUDD_OUT_OF_MEM); |
---|
382 | |
---|
383 | if (complement) { |
---|
384 | cost = my_pair->neg; |
---|
385 | } else { |
---|
386 | cost = my_pair->pos; |
---|
387 | } |
---|
388 | |
---|
389 | st_foreach(visited, freePathPair, NULL); |
---|
390 | st_free_table(visited); |
---|
391 | |
---|
392 | return(cost); |
---|
393 | |
---|
394 | } /* end of Cudd_ShortestLength */ |
---|
395 | |
---|
396 | |
---|
397 | /**Function******************************************************************** |
---|
398 | |
---|
399 | Synopsis [Determines whether a BDD is negative unate in a |
---|
400 | variable.] |
---|
401 | |
---|
402 | Description [Determines whether the function represented by BDD f is |
---|
403 | negative unate (monotonic decreasing) in variable i. Returns the |
---|
404 | constant one is f is unate and the (logical) constant zero if it is not. |
---|
405 | This function does not generate any new nodes.] |
---|
406 | |
---|
407 | SideEffects [None] |
---|
408 | |
---|
409 | SeeAlso [Cudd_Increasing] |
---|
410 | |
---|
411 | ******************************************************************************/ |
---|
412 | DdNode * |
---|
413 | Cudd_Decreasing( |
---|
414 | DdManager * dd, |
---|
415 | DdNode * f, |
---|
416 | int i) |
---|
417 | { |
---|
418 | unsigned int topf, level; |
---|
419 | DdNode *F, *fv, *fvn, *res; |
---|
420 | DD_CTFP cacheOp; |
---|
421 | |
---|
422 | statLine(dd); |
---|
423 | #ifdef DD_DEBUG |
---|
424 | assert(0 <= i && i < dd->size); |
---|
425 | #endif |
---|
426 | |
---|
427 | F = Cudd_Regular(f); |
---|
428 | topf = cuddI(dd,F->index); |
---|
429 | |
---|
430 | /* Check terminal case. If topf > i, f does not depend on var. |
---|
431 | ** Therefore, f is unate in i. |
---|
432 | */ |
---|
433 | level = (unsigned) dd->perm[i]; |
---|
434 | if (topf > level) { |
---|
435 | return(DD_ONE(dd)); |
---|
436 | } |
---|
437 | |
---|
438 | /* From now on, f is not constant. */ |
---|
439 | |
---|
440 | /* Check cache. */ |
---|
441 | cacheOp = (DD_CTFP) Cudd_Decreasing; |
---|
442 | res = cuddCacheLookup2(dd,cacheOp,f,dd->vars[i]); |
---|
443 | if (res != NULL) { |
---|
444 | return(res); |
---|
445 | } |
---|
446 | |
---|
447 | /* Compute cofactors. */ |
---|
448 | fv = cuddT(F); fvn = cuddE(F); |
---|
449 | if (F != f) { |
---|
450 | fv = Cudd_Not(fv); |
---|
451 | fvn = Cudd_Not(fvn); |
---|
452 | } |
---|
453 | |
---|
454 | if (topf == (unsigned) level) { |
---|
455 | /* Special case: if fv is regular, fv(1,...,1) = 1; |
---|
456 | ** If in addition fvn is complemented, fvn(1,...,1) = 0. |
---|
457 | ** But then f(1,1,...,1) > f(0,1,...,1). Hence f is not |
---|
458 | ** monotonic decreasing in i. |
---|
459 | */ |
---|
460 | if (!Cudd_IsComplement(fv) && Cudd_IsComplement(fvn)) { |
---|
461 | return(Cudd_Not(DD_ONE(dd))); |
---|
462 | } |
---|
463 | res = Cudd_bddLeq(dd,fv,fvn) ? DD_ONE(dd) : Cudd_Not(DD_ONE(dd)); |
---|
464 | } else { |
---|
465 | res = Cudd_Decreasing(dd,fv,i); |
---|
466 | if (res == DD_ONE(dd)) { |
---|
467 | res = Cudd_Decreasing(dd,fvn,i); |
---|
468 | } |
---|
469 | } |
---|
470 | |
---|
471 | cuddCacheInsert2(dd,cacheOp,f,dd->vars[i],res); |
---|
472 | return(res); |
---|
473 | |
---|
474 | } /* end of Cudd_Decreasing */ |
---|
475 | |
---|
476 | |
---|
477 | /**Function******************************************************************** |
---|
478 | |
---|
479 | Synopsis [Determines whether a BDD is positive unate in a |
---|
480 | variable.] |
---|
481 | |
---|
482 | Description [Determines whether the function represented by BDD f is |
---|
483 | positive unate (monotonic increasing) in variable i. It is based on |
---|
484 | Cudd_Decreasing and the fact that f is monotonic increasing in i if |
---|
485 | and only if its complement is monotonic decreasing in i.] |
---|
486 | |
---|
487 | SideEffects [None] |
---|
488 | |
---|
489 | SeeAlso [Cudd_Decreasing] |
---|
490 | |
---|
491 | ******************************************************************************/ |
---|
492 | DdNode * |
---|
493 | Cudd_Increasing( |
---|
494 | DdManager * dd, |
---|
495 | DdNode * f, |
---|
496 | int i) |
---|
497 | { |
---|
498 | return(Cudd_Decreasing(dd,Cudd_Not(f),i)); |
---|
499 | |
---|
500 | } /* end of Cudd_Increasing */ |
---|
501 | |
---|
502 | |
---|
503 | /**Function******************************************************************** |
---|
504 | |
---|
505 | Synopsis [Tells whether F and G are identical wherever D is 0.] |
---|
506 | |
---|
507 | Description [Tells whether F and G are identical wherever D is 0. F |
---|
508 | and G are either two ADDs or two BDDs. D is either a 0-1 ADD or a |
---|
509 | BDD. The function returns 1 if F and G are equivalent, and 0 |
---|
510 | otherwise. No new nodes are created.] |
---|
511 | |
---|
512 | SideEffects [None] |
---|
513 | |
---|
514 | SeeAlso [Cudd_bddLeqUnless] |
---|
515 | |
---|
516 | ******************************************************************************/ |
---|
517 | int |
---|
518 | Cudd_EquivDC( |
---|
519 | DdManager * dd, |
---|
520 | DdNode * F, |
---|
521 | DdNode * G, |
---|
522 | DdNode * D) |
---|
523 | { |
---|
524 | DdNode *tmp, *One, *Gr, *Dr; |
---|
525 | DdNode *Fv, *Fvn, *Gv, *Gvn, *Dv, *Dvn; |
---|
526 | int res; |
---|
527 | unsigned int flevel, glevel, dlevel, top; |
---|
528 | |
---|
529 | One = DD_ONE(dd); |
---|
530 | |
---|
531 | statLine(dd); |
---|
532 | /* Check terminal cases. */ |
---|
533 | if (D == One || F == G) return(1); |
---|
534 | if (D == Cudd_Not(One) || D == DD_ZERO(dd) || F == Cudd_Not(G)) return(0); |
---|
535 | |
---|
536 | /* From now on, D is non-constant. */ |
---|
537 | |
---|
538 | /* Normalize call to increase cache efficiency. */ |
---|
539 | if (F > G) { |
---|
540 | tmp = F; |
---|
541 | F = G; |
---|
542 | G = tmp; |
---|
543 | } |
---|
544 | if (Cudd_IsComplement(F)) { |
---|
545 | F = Cudd_Not(F); |
---|
546 | G = Cudd_Not(G); |
---|
547 | } |
---|
548 | |
---|
549 | /* From now on, F is regular. */ |
---|
550 | |
---|
551 | /* Check cache. */ |
---|
552 | tmp = cuddCacheLookup(dd,DD_EQUIV_DC_TAG,F,G,D); |
---|
553 | if (tmp != NULL) return(tmp == One); |
---|
554 | |
---|
555 | /* Find splitting variable. */ |
---|
556 | flevel = cuddI(dd,F->index); |
---|
557 | Gr = Cudd_Regular(G); |
---|
558 | glevel = cuddI(dd,Gr->index); |
---|
559 | top = ddMin(flevel,glevel); |
---|
560 | Dr = Cudd_Regular(D); |
---|
561 | dlevel = dd->perm[Dr->index]; |
---|
562 | top = ddMin(top,dlevel); |
---|
563 | |
---|
564 | /* Compute cofactors. */ |
---|
565 | if (top == flevel) { |
---|
566 | Fv = cuddT(F); |
---|
567 | Fvn = cuddE(F); |
---|
568 | } else { |
---|
569 | Fv = Fvn = F; |
---|
570 | } |
---|
571 | if (top == glevel) { |
---|
572 | Gv = cuddT(Gr); |
---|
573 | Gvn = cuddE(Gr); |
---|
574 | if (G != Gr) { |
---|
575 | Gv = Cudd_Not(Gv); |
---|
576 | Gvn = Cudd_Not(Gvn); |
---|
577 | } |
---|
578 | } else { |
---|
579 | Gv = Gvn = G; |
---|
580 | } |
---|
581 | if (top == dlevel) { |
---|
582 | Dv = cuddT(Dr); |
---|
583 | Dvn = cuddE(Dr); |
---|
584 | if (D != Dr) { |
---|
585 | Dv = Cudd_Not(Dv); |
---|
586 | Dvn = Cudd_Not(Dvn); |
---|
587 | } |
---|
588 | } else { |
---|
589 | Dv = Dvn = D; |
---|
590 | } |
---|
591 | |
---|
592 | /* Solve recursively. */ |
---|
593 | res = Cudd_EquivDC(dd,Fv,Gv,Dv); |
---|
594 | if (res != 0) { |
---|
595 | res = Cudd_EquivDC(dd,Fvn,Gvn,Dvn); |
---|
596 | } |
---|
597 | cuddCacheInsert(dd,DD_EQUIV_DC_TAG,F,G,D,(res) ? One : Cudd_Not(One)); |
---|
598 | |
---|
599 | return(res); |
---|
600 | |
---|
601 | } /* end of Cudd_EquivDC */ |
---|
602 | |
---|
603 | |
---|
604 | /**Function******************************************************************** |
---|
605 | |
---|
606 | Synopsis [Tells whether f is less than of equal to G unless D is 1.] |
---|
607 | |
---|
608 | Description [Tells whether f is less than of equal to G unless D is |
---|
609 | 1. f, g, and D are BDDs. The function returns 1 if f is less than |
---|
610 | of equal to G, and 0 otherwise. No new nodes are created.] |
---|
611 | |
---|
612 | SideEffects [None] |
---|
613 | |
---|
614 | SeeAlso [Cudd_EquivDC Cudd_bddLeq Cudd_bddIteConstant] |
---|
615 | |
---|
616 | ******************************************************************************/ |
---|
617 | int |
---|
618 | Cudd_bddLeqUnless( |
---|
619 | DdManager *dd, |
---|
620 | DdNode *f, |
---|
621 | DdNode *g, |
---|
622 | DdNode *D) |
---|
623 | { |
---|
624 | DdNode *tmp, *One, *F, *G; |
---|
625 | DdNode *Ft, *Fe, *Gt, *Ge, *Dt, *De; |
---|
626 | int res; |
---|
627 | unsigned int flevel, glevel, dlevel, top; |
---|
628 | |
---|
629 | statLine(dd); |
---|
630 | |
---|
631 | One = DD_ONE(dd); |
---|
632 | |
---|
633 | /* Check terminal cases. */ |
---|
634 | if (f == g || g == One || f == Cudd_Not(One) || D == One || |
---|
635 | D == f || D == Cudd_Not(g)) return(1); |
---|
636 | /* Check for two-operand cases. */ |
---|
637 | if (D == Cudd_Not(One) || D == g || D == Cudd_Not(f)) |
---|
638 | return(Cudd_bddLeq(dd,f,g)); |
---|
639 | if (g == Cudd_Not(One) || g == Cudd_Not(f)) return(Cudd_bddLeq(dd,f,D)); |
---|
640 | if (f == One) return(Cudd_bddLeq(dd,Cudd_Not(g),D)); |
---|
641 | |
---|
642 | /* From now on, f, g, and D are non-constant, distinct, and |
---|
643 | ** non-complementary. */ |
---|
644 | |
---|
645 | /* Normalize call to increase cache efficiency. We rely on the |
---|
646 | ** fact that f <= g unless D is equivalent to not(g) <= not(f) |
---|
647 | ** unless D and to f <= D unless g. We make sure that D is |
---|
648 | ** regular, and that at most one of f and g is complemented. We also |
---|
649 | ** ensure that when two operands can be swapped, the one with the |
---|
650 | ** lowest address comes first. */ |
---|
651 | |
---|
652 | if (Cudd_IsComplement(D)) { |
---|
653 | if (Cudd_IsComplement(g)) { |
---|
654 | /* Special case: if f is regular and g is complemented, |
---|
655 | ** f(1,...,1) = 1 > 0 = g(1,...,1). If D(1,...,1) = 0, return 0. |
---|
656 | */ |
---|
657 | if (!Cudd_IsComplement(f)) return(0); |
---|
658 | /* !g <= D unless !f or !D <= g unless !f */ |
---|
659 | tmp = D; |
---|
660 | D = Cudd_Not(f); |
---|
661 | if (g < tmp) { |
---|
662 | f = Cudd_Not(g); |
---|
663 | g = tmp; |
---|
664 | } else { |
---|
665 | f = Cudd_Not(tmp); |
---|
666 | } |
---|
667 | } else { |
---|
668 | if (Cudd_IsComplement(f)) { |
---|
669 | /* !D <= !f unless g or !D <= g unless !f */ |
---|
670 | tmp = f; |
---|
671 | f = Cudd_Not(D); |
---|
672 | if (tmp < g) { |
---|
673 | D = g; |
---|
674 | g = Cudd_Not(tmp); |
---|
675 | } else { |
---|
676 | D = Cudd_Not(tmp); |
---|
677 | } |
---|
678 | } else { |
---|
679 | /* f <= D unless g or !D <= !f unless g */ |
---|
680 | tmp = D; |
---|
681 | D = g; |
---|
682 | if (tmp < f) { |
---|
683 | g = Cudd_Not(f); |
---|
684 | f = Cudd_Not(tmp); |
---|
685 | } else { |
---|
686 | g = tmp; |
---|
687 | } |
---|
688 | } |
---|
689 | } |
---|
690 | } else { |
---|
691 | if (Cudd_IsComplement(g)) { |
---|
692 | if (Cudd_IsComplement(f)) { |
---|
693 | /* !g <= !f unless D or !g <= D unless !f */ |
---|
694 | tmp = f; |
---|
695 | f = Cudd_Not(g); |
---|
696 | if (D < tmp) { |
---|
697 | g = D; |
---|
698 | D = Cudd_Not(tmp); |
---|
699 | } else { |
---|
700 | g = Cudd_Not(tmp); |
---|
701 | } |
---|
702 | } else { |
---|
703 | /* f <= g unless D or !g <= !f unless D */ |
---|
704 | if (g < f) { |
---|
705 | tmp = g; |
---|
706 | g = Cudd_Not(f); |
---|
707 | f = Cudd_Not(tmp); |
---|
708 | } |
---|
709 | } |
---|
710 | } else { |
---|
711 | /* f <= g unless D or f <= D unless g */ |
---|
712 | if (D < g) { |
---|
713 | tmp = D; |
---|
714 | D = g; |
---|
715 | g = tmp; |
---|
716 | } |
---|
717 | } |
---|
718 | } |
---|
719 | |
---|
720 | /* From now on, D is regular. */ |
---|
721 | |
---|
722 | /* Check cache. */ |
---|
723 | tmp = cuddCacheLookup(dd,DD_BDD_LEQ_UNLESS_TAG,f,g,D); |
---|
724 | if (tmp != NULL) return(tmp == One); |
---|
725 | |
---|
726 | /* Find splitting variable. */ |
---|
727 | F = Cudd_Regular(f); |
---|
728 | flevel = dd->perm[F->index]; |
---|
729 | G = Cudd_Regular(g); |
---|
730 | glevel = dd->perm[G->index]; |
---|
731 | top = ddMin(flevel,glevel); |
---|
732 | dlevel = dd->perm[D->index]; |
---|
733 | top = ddMin(top,dlevel); |
---|
734 | |
---|
735 | /* Compute cofactors. */ |
---|
736 | if (top == flevel) { |
---|
737 | Ft = cuddT(F); |
---|
738 | Fe = cuddE(F); |
---|
739 | if (F != f) { |
---|
740 | Ft = Cudd_Not(Ft); |
---|
741 | Fe = Cudd_Not(Fe); |
---|
742 | } |
---|
743 | } else { |
---|
744 | Ft = Fe = f; |
---|
745 | } |
---|
746 | if (top == glevel) { |
---|
747 | Gt = cuddT(G); |
---|
748 | Ge = cuddE(G); |
---|
749 | if (G != g) { |
---|
750 | Gt = Cudd_Not(Gt); |
---|
751 | Ge = Cudd_Not(Ge); |
---|
752 | } |
---|
753 | } else { |
---|
754 | Gt = Ge = g; |
---|
755 | } |
---|
756 | if (top == dlevel) { |
---|
757 | Dt = cuddT(D); |
---|
758 | De = cuddE(D); |
---|
759 | } else { |
---|
760 | Dt = De = D; |
---|
761 | } |
---|
762 | |
---|
763 | /* Solve recursively. */ |
---|
764 | res = Cudd_bddLeqUnless(dd,Ft,Gt,Dt); |
---|
765 | if (res != 0) { |
---|
766 | res = Cudd_bddLeqUnless(dd,Fe,Ge,De); |
---|
767 | } |
---|
768 | cuddCacheInsert(dd,DD_BDD_LEQ_UNLESS_TAG,f,g,D,Cudd_NotCond(One,!res)); |
---|
769 | |
---|
770 | return(res); |
---|
771 | |
---|
772 | } /* end of Cudd_bddLeqUnless */ |
---|
773 | |
---|
774 | |
---|
775 | /**Function******************************************************************** |
---|
776 | |
---|
777 | Synopsis [Compares two ADDs for equality within tolerance.] |
---|
778 | |
---|
779 | Description [Compares two ADDs for equality within tolerance. Two |
---|
780 | ADDs are reported to be equal if the maximum difference between them |
---|
781 | (the sup norm of their difference) is less than or equal to the |
---|
782 | tolerance parameter. Returns 1 if the two ADDs are equal (within |
---|
783 | tolerance); 0 otherwise. If parameter <code>pr</code> is positive |
---|
784 | the first failure is reported to the standard output.] |
---|
785 | |
---|
786 | SideEffects [None] |
---|
787 | |
---|
788 | SeeAlso [] |
---|
789 | |
---|
790 | ******************************************************************************/ |
---|
791 | int |
---|
792 | Cudd_EqualSupNorm( |
---|
793 | DdManager * dd /* manager */, |
---|
794 | DdNode * f /* first ADD */, |
---|
795 | DdNode * g /* second ADD */, |
---|
796 | CUDD_VALUE_TYPE tolerance /* maximum allowed difference */, |
---|
797 | int pr /* verbosity level */) |
---|
798 | { |
---|
799 | DdNode *fv, *fvn, *gv, *gvn, *r; |
---|
800 | unsigned int topf, topg; |
---|
801 | |
---|
802 | statLine(dd); |
---|
803 | /* Check terminal cases. */ |
---|
804 | if (f == g) return(1); |
---|
805 | if (Cudd_IsConstant(f) && Cudd_IsConstant(g)) { |
---|
806 | if (ddEqualVal(cuddV(f),cuddV(g),tolerance)) { |
---|
807 | return(1); |
---|
808 | } else { |
---|
809 | if (pr>0) { |
---|
810 | (void) fprintf(dd->out,"Offending nodes:\n"); |
---|
811 | (void) fprintf(dd->out, |
---|
812 | "f: address = %p\t value = %40.30f\n", |
---|
813 | (void *) f, cuddV(f)); |
---|
814 | (void) fprintf(dd->out, |
---|
815 | "g: address = %p\t value = %40.30f\n", |
---|
816 | (void *) g, cuddV(g)); |
---|
817 | } |
---|
818 | return(0); |
---|
819 | } |
---|
820 | } |
---|
821 | |
---|
822 | /* We only insert the result in the cache if the comparison is |
---|
823 | ** successful. Therefore, if we hit we return 1. */ |
---|
824 | r = cuddCacheLookup2(dd,(DD_CTFP)Cudd_EqualSupNorm,f,g); |
---|
825 | if (r != NULL) { |
---|
826 | return(1); |
---|
827 | } |
---|
828 | |
---|
829 | /* Compute the cofactors and solve the recursive subproblems. */ |
---|
830 | topf = cuddI(dd,f->index); |
---|
831 | topg = cuddI(dd,g->index); |
---|
832 | |
---|
833 | if (topf <= topg) {fv = cuddT(f); fvn = cuddE(f);} else {fv = fvn = f;} |
---|
834 | if (topg <= topf) {gv = cuddT(g); gvn = cuddE(g);} else {gv = gvn = g;} |
---|
835 | |
---|
836 | if (!Cudd_EqualSupNorm(dd,fv,gv,tolerance,pr)) return(0); |
---|
837 | if (!Cudd_EqualSupNorm(dd,fvn,gvn,tolerance,pr)) return(0); |
---|
838 | |
---|
839 | cuddCacheInsert2(dd,(DD_CTFP)Cudd_EqualSupNorm,f,g,DD_ONE(dd)); |
---|
840 | |
---|
841 | return(1); |
---|
842 | |
---|
843 | } /* end of Cudd_EqualSupNorm */ |
---|
844 | |
---|
845 | |
---|
846 | /**Function******************************************************************** |
---|
847 | |
---|
848 | Synopsis [Expands cube to a prime implicant of f.] |
---|
849 | |
---|
850 | Description [Expands cube to a prime implicant of f. Returns the prime |
---|
851 | if successful; NULL otherwise. In particular, NULL is returned if cube |
---|
852 | is not a real cube or is not an implicant of f.] |
---|
853 | |
---|
854 | SideEffects [None] |
---|
855 | |
---|
856 | SeeAlso [] |
---|
857 | |
---|
858 | ******************************************************************************/ |
---|
859 | DdNode * |
---|
860 | Cudd_bddMakePrime( |
---|
861 | DdManager *dd /* manager */, |
---|
862 | DdNode *cube /* cube to be expanded */, |
---|
863 | DdNode *f /* function of which the cube is to be made a prime */) |
---|
864 | { |
---|
865 | DdNode *res; |
---|
866 | |
---|
867 | if (!Cudd_bddLeq(dd,cube,f)) return(NULL); |
---|
868 | |
---|
869 | do { |
---|
870 | dd->reordered = 0; |
---|
871 | res = cuddBddMakePrime(dd,cube,f); |
---|
872 | } while (dd->reordered == 1); |
---|
873 | return(res); |
---|
874 | |
---|
875 | } /* end of Cudd_bddMakePrime */ |
---|
876 | |
---|
877 | |
---|
878 | /*---------------------------------------------------------------------------*/ |
---|
879 | /* Definition of internal functions */ |
---|
880 | /*---------------------------------------------------------------------------*/ |
---|
881 | |
---|
882 | |
---|
883 | /**Function******************************************************************** |
---|
884 | |
---|
885 | Synopsis [Performs the recursive step of Cudd_bddMakePrime.] |
---|
886 | |
---|
887 | Description [Performs the recursive step of Cudd_bddMakePrime. |
---|
888 | Returns the prime if successful; NULL otherwise.] |
---|
889 | |
---|
890 | SideEffects [None] |
---|
891 | |
---|
892 | SeeAlso [] |
---|
893 | |
---|
894 | ******************************************************************************/ |
---|
895 | DdNode * |
---|
896 | cuddBddMakePrime( |
---|
897 | DdManager *dd /* manager */, |
---|
898 | DdNode *cube /* cube to be expanded */, |
---|
899 | DdNode *f /* function of which the cube is to be made a prime */) |
---|
900 | { |
---|
901 | DdNode *scan; |
---|
902 | DdNode *t, *e; |
---|
903 | DdNode *res = cube; |
---|
904 | DdNode *zero = Cudd_Not(DD_ONE(dd)); |
---|
905 | |
---|
906 | Cudd_Ref(res); |
---|
907 | scan = cube; |
---|
908 | while (!Cudd_IsConstant(scan)) { |
---|
909 | DdNode *reg = Cudd_Regular(scan); |
---|
910 | DdNode *var = dd->vars[reg->index]; |
---|
911 | DdNode *expanded = Cudd_bddExistAbstract(dd,res,var); |
---|
912 | if (expanded == NULL) { |
---|
913 | return(NULL); |
---|
914 | } |
---|
915 | Cudd_Ref(expanded); |
---|
916 | if (Cudd_bddLeq(dd,expanded,f)) { |
---|
917 | Cudd_RecursiveDeref(dd,res); |
---|
918 | res = expanded; |
---|
919 | } else { |
---|
920 | Cudd_RecursiveDeref(dd,expanded); |
---|
921 | } |
---|
922 | cuddGetBranches(scan,&t,&e); |
---|
923 | if (t == zero) { |
---|
924 | scan = e; |
---|
925 | } else if (e == zero) { |
---|
926 | scan = t; |
---|
927 | } else { |
---|
928 | Cudd_RecursiveDeref(dd,res); |
---|
929 | return(NULL); /* cube is not a cube */ |
---|
930 | } |
---|
931 | } |
---|
932 | |
---|
933 | if (scan == DD_ONE(dd)) { |
---|
934 | Cudd_Deref(res); |
---|
935 | return(res); |
---|
936 | } else { |
---|
937 | Cudd_RecursiveDeref(dd,res); |
---|
938 | return(NULL); |
---|
939 | } |
---|
940 | |
---|
941 | } /* end of cuddBddMakePrime */ |
---|
942 | |
---|
943 | |
---|
944 | /*---------------------------------------------------------------------------*/ |
---|
945 | /* Definition of static functions */ |
---|
946 | /*---------------------------------------------------------------------------*/ |
---|
947 | |
---|
948 | |
---|
949 | /**Function******************************************************************** |
---|
950 | |
---|
951 | Synopsis [Frees the entries of the visited symbol table.] |
---|
952 | |
---|
953 | Description [Frees the entries of the visited symbol table. Returns |
---|
954 | ST_CONTINUE.] |
---|
955 | |
---|
956 | SideEffects [None] |
---|
957 | |
---|
958 | ******************************************************************************/ |
---|
959 | static enum st_retval |
---|
960 | freePathPair( |
---|
961 | char * key, |
---|
962 | char * value, |
---|
963 | char * arg) |
---|
964 | { |
---|
965 | cuddPathPair *pair; |
---|
966 | |
---|
967 | pair = (cuddPathPair *) value; |
---|
968 | FREE(pair); |
---|
969 | return(ST_CONTINUE); |
---|
970 | |
---|
971 | } /* end of freePathPair */ |
---|
972 | |
---|
973 | |
---|
974 | /**Function******************************************************************** |
---|
975 | |
---|
976 | Synopsis [Finds the length of the shortest path(s) in a DD.] |
---|
977 | |
---|
978 | Description [Finds the length of the shortest path(s) in a DD. |
---|
979 | Uses a local symbol table to store the lengths for each |
---|
980 | node. Only the lengths for the regular nodes are entered in the table, |
---|
981 | because those for the complement nodes are simply obtained by swapping |
---|
982 | the two lenghts. |
---|
983 | Returns a pair of lengths: the length of the shortest path to 1; |
---|
984 | and the length of the shortest path to 0. This is done so as to take |
---|
985 | complement arcs into account.] |
---|
986 | |
---|
987 | SideEffects [Accumulates the support of the DD in support.] |
---|
988 | |
---|
989 | SeeAlso [] |
---|
990 | |
---|
991 | ******************************************************************************/ |
---|
992 | static cuddPathPair |
---|
993 | getShortest( |
---|
994 | DdNode * root, |
---|
995 | int * cost, |
---|
996 | int * support, |
---|
997 | st_table * visited) |
---|
998 | { |
---|
999 | cuddPathPair *my_pair, res_pair, pair_T, pair_E; |
---|
1000 | DdNode *my_root, *T, *E; |
---|
1001 | int weight; |
---|
1002 | |
---|
1003 | my_root = Cudd_Regular(root); |
---|
1004 | |
---|
1005 | if (st_lookup(visited, my_root, &my_pair)) { |
---|
1006 | if (Cudd_IsComplement(root)) { |
---|
1007 | res_pair.pos = my_pair->neg; |
---|
1008 | res_pair.neg = my_pair->pos; |
---|
1009 | } else { |
---|
1010 | res_pair.pos = my_pair->pos; |
---|
1011 | res_pair.neg = my_pair->neg; |
---|
1012 | } |
---|
1013 | return(res_pair); |
---|
1014 | } |
---|
1015 | |
---|
1016 | /* In the case of a BDD the following test is equivalent to |
---|
1017 | ** testing whether the BDD is the constant 1. This formulation, |
---|
1018 | ** however, works for ADDs as well, by assuming the usual |
---|
1019 | ** dichotomy of 0 and != 0. |
---|
1020 | */ |
---|
1021 | if (cuddIsConstant(my_root)) { |
---|
1022 | if (my_root != zero) { |
---|
1023 | res_pair.pos = 0; |
---|
1024 | res_pair.neg = DD_BIGGY; |
---|
1025 | } else { |
---|
1026 | res_pair.pos = DD_BIGGY; |
---|
1027 | res_pair.neg = 0; |
---|
1028 | } |
---|
1029 | } else { |
---|
1030 | T = cuddT(my_root); |
---|
1031 | E = cuddE(my_root); |
---|
1032 | |
---|
1033 | pair_T = getShortest(T, cost, support, visited); |
---|
1034 | pair_E = getShortest(E, cost, support, visited); |
---|
1035 | weight = WEIGHT(cost, my_root->index); |
---|
1036 | res_pair.pos = ddMin(pair_T.pos+weight, pair_E.pos); |
---|
1037 | res_pair.neg = ddMin(pair_T.neg+weight, pair_E.neg); |
---|
1038 | |
---|
1039 | /* Update support. */ |
---|
1040 | if (support != NULL) { |
---|
1041 | support[my_root->index] = 1; |
---|
1042 | } |
---|
1043 | } |
---|
1044 | |
---|
1045 | my_pair = ALLOC(cuddPathPair, 1); |
---|
1046 | if (my_pair == NULL) { |
---|
1047 | if (Cudd_IsComplement(root)) { |
---|
1048 | int tmp = res_pair.pos; |
---|
1049 | res_pair.pos = res_pair.neg; |
---|
1050 | res_pair.neg = tmp; |
---|
1051 | } |
---|
1052 | return(res_pair); |
---|
1053 | } |
---|
1054 | my_pair->pos = res_pair.pos; |
---|
1055 | my_pair->neg = res_pair.neg; |
---|
1056 | |
---|
1057 | st_insert(visited, (char *)my_root, (char *)my_pair); |
---|
1058 | if (Cudd_IsComplement(root)) { |
---|
1059 | res_pair.pos = my_pair->neg; |
---|
1060 | res_pair.neg = my_pair->pos; |
---|
1061 | } else { |
---|
1062 | res_pair.pos = my_pair->pos; |
---|
1063 | res_pair.neg = my_pair->neg; |
---|
1064 | } |
---|
1065 | return(res_pair); |
---|
1066 | |
---|
1067 | } /* end of getShortest */ |
---|
1068 | |
---|
1069 | |
---|
1070 | /**Function******************************************************************** |
---|
1071 | |
---|
1072 | Synopsis [Build a BDD for a shortest path of f.] |
---|
1073 | |
---|
1074 | Description [Build a BDD for a shortest path of f. |
---|
1075 | Given the minimum length from the root, and the minimum |
---|
1076 | lengths for each node (in visited), apply triangulation at each node. |
---|
1077 | Of the two children of each node on a shortest path, at least one is |
---|
1078 | on a shortest path. In case of ties the procedure chooses the THEN |
---|
1079 | children. |
---|
1080 | Returns a pointer to the cube BDD representing the path if |
---|
1081 | successful; NULL otherwise.] |
---|
1082 | |
---|
1083 | SideEffects [None] |
---|
1084 | |
---|
1085 | SeeAlso [] |
---|
1086 | |
---|
1087 | ******************************************************************************/ |
---|
1088 | static DdNode * |
---|
1089 | getPath( |
---|
1090 | DdManager * manager, |
---|
1091 | st_table * visited, |
---|
1092 | DdNode * f, |
---|
1093 | int * weight, |
---|
1094 | int cost) |
---|
1095 | { |
---|
1096 | DdNode *sol, *tmp; |
---|
1097 | DdNode *my_dd, *T, *E; |
---|
1098 | cuddPathPair *T_pair, *E_pair; |
---|
1099 | int Tcost, Ecost; |
---|
1100 | int complement; |
---|
1101 | |
---|
1102 | my_dd = Cudd_Regular(f); |
---|
1103 | complement = Cudd_IsComplement(f); |
---|
1104 | |
---|
1105 | sol = one; |
---|
1106 | cuddRef(sol); |
---|
1107 | |
---|
1108 | while (!cuddIsConstant(my_dd)) { |
---|
1109 | Tcost = cost - WEIGHT(weight, my_dd->index); |
---|
1110 | Ecost = cost; |
---|
1111 | |
---|
1112 | T = cuddT(my_dd); |
---|
1113 | E = cuddE(my_dd); |
---|
1114 | |
---|
1115 | if (complement) {T = Cudd_Not(T); E = Cudd_Not(E);} |
---|
1116 | |
---|
1117 | st_lookup(visited, Cudd_Regular(T), &T_pair); |
---|
1118 | if ((Cudd_IsComplement(T) && T_pair->neg == Tcost) || |
---|
1119 | (!Cudd_IsComplement(T) && T_pair->pos == Tcost)) { |
---|
1120 | tmp = cuddBddAndRecur(manager,manager->vars[my_dd->index],sol); |
---|
1121 | if (tmp == NULL) { |
---|
1122 | Cudd_RecursiveDeref(manager,sol); |
---|
1123 | return(NULL); |
---|
1124 | } |
---|
1125 | cuddRef(tmp); |
---|
1126 | Cudd_RecursiveDeref(manager,sol); |
---|
1127 | sol = tmp; |
---|
1128 | |
---|
1129 | complement = Cudd_IsComplement(T); |
---|
1130 | my_dd = Cudd_Regular(T); |
---|
1131 | cost = Tcost; |
---|
1132 | continue; |
---|
1133 | } |
---|
1134 | st_lookup(visited, Cudd_Regular(E), &E_pair); |
---|
1135 | if ((Cudd_IsComplement(E) && E_pair->neg == Ecost) || |
---|
1136 | (!Cudd_IsComplement(E) && E_pair->pos == Ecost)) { |
---|
1137 | tmp = cuddBddAndRecur(manager,Cudd_Not(manager->vars[my_dd->index]),sol); |
---|
1138 | if (tmp == NULL) { |
---|
1139 | Cudd_RecursiveDeref(manager,sol); |
---|
1140 | return(NULL); |
---|
1141 | } |
---|
1142 | cuddRef(tmp); |
---|
1143 | Cudd_RecursiveDeref(manager,sol); |
---|
1144 | sol = tmp; |
---|
1145 | complement = Cudd_IsComplement(E); |
---|
1146 | my_dd = Cudd_Regular(E); |
---|
1147 | cost = Ecost; |
---|
1148 | continue; |
---|
1149 | } |
---|
1150 | (void) fprintf(manager->err,"We shouldn't be here!!\n"); |
---|
1151 | manager->errorCode = CUDD_INTERNAL_ERROR; |
---|
1152 | return(NULL); |
---|
1153 | } |
---|
1154 | |
---|
1155 | cuddDeref(sol); |
---|
1156 | return(sol); |
---|
1157 | |
---|
1158 | } /* end of getPath */ |
---|
1159 | |
---|
1160 | |
---|
1161 | /**Function******************************************************************** |
---|
1162 | |
---|
1163 | Synopsis [Finds the size of the largest cube(s) in a DD.] |
---|
1164 | |
---|
1165 | Description [Finds the size of the largest cube(s) in a DD. |
---|
1166 | This problem is translated into finding the shortest paths from a node |
---|
1167 | when both THEN and ELSE arcs have unit lengths. |
---|
1168 | Uses a local symbol table to store the lengths for each |
---|
1169 | node. Only the lengths for the regular nodes are entered in the table, |
---|
1170 | because those for the complement nodes are simply obtained by swapping |
---|
1171 | the two lenghts. |
---|
1172 | Returns a pair of lengths: the length of the shortest path to 1; |
---|
1173 | and the length of the shortest path to 0. This is done so as to take |
---|
1174 | complement arcs into account.] |
---|
1175 | |
---|
1176 | SideEffects [none] |
---|
1177 | |
---|
1178 | SeeAlso [] |
---|
1179 | |
---|
1180 | ******************************************************************************/ |
---|
1181 | static cuddPathPair |
---|
1182 | getLargest( |
---|
1183 | DdNode * root, |
---|
1184 | st_table * visited) |
---|
1185 | { |
---|
1186 | cuddPathPair *my_pair, res_pair, pair_T, pair_E; |
---|
1187 | DdNode *my_root, *T, *E; |
---|
1188 | |
---|
1189 | my_root = Cudd_Regular(root); |
---|
1190 | |
---|
1191 | if (st_lookup(visited, my_root, &my_pair)) { |
---|
1192 | if (Cudd_IsComplement(root)) { |
---|
1193 | res_pair.pos = my_pair->neg; |
---|
1194 | res_pair.neg = my_pair->pos; |
---|
1195 | } else { |
---|
1196 | res_pair.pos = my_pair->pos; |
---|
1197 | res_pair.neg = my_pair->neg; |
---|
1198 | } |
---|
1199 | return(res_pair); |
---|
1200 | } |
---|
1201 | |
---|
1202 | /* In the case of a BDD the following test is equivalent to |
---|
1203 | ** testing whether the BDD is the constant 1. This formulation, |
---|
1204 | ** however, works for ADDs as well, by assuming the usual |
---|
1205 | ** dichotomy of 0 and != 0. |
---|
1206 | */ |
---|
1207 | if (cuddIsConstant(my_root)) { |
---|
1208 | if (my_root != zero) { |
---|
1209 | res_pair.pos = 0; |
---|
1210 | res_pair.neg = DD_BIGGY; |
---|
1211 | } else { |
---|
1212 | res_pair.pos = DD_BIGGY; |
---|
1213 | res_pair.neg = 0; |
---|
1214 | } |
---|
1215 | } else { |
---|
1216 | T = cuddT(my_root); |
---|
1217 | E = cuddE(my_root); |
---|
1218 | |
---|
1219 | pair_T = getLargest(T, visited); |
---|
1220 | pair_E = getLargest(E, visited); |
---|
1221 | res_pair.pos = ddMin(pair_T.pos, pair_E.pos) + 1; |
---|
1222 | res_pair.neg = ddMin(pair_T.neg, pair_E.neg) + 1; |
---|
1223 | } |
---|
1224 | |
---|
1225 | my_pair = ALLOC(cuddPathPair, 1); |
---|
1226 | if (my_pair == NULL) { /* simply do not cache this result */ |
---|
1227 | if (Cudd_IsComplement(root)) { |
---|
1228 | int tmp = res_pair.pos; |
---|
1229 | res_pair.pos = res_pair.neg; |
---|
1230 | res_pair.neg = tmp; |
---|
1231 | } |
---|
1232 | return(res_pair); |
---|
1233 | } |
---|
1234 | my_pair->pos = res_pair.pos; |
---|
1235 | my_pair->neg = res_pair.neg; |
---|
1236 | |
---|
1237 | /* Caching may fail without affecting correctness. */ |
---|
1238 | st_insert(visited, (char *)my_root, (char *)my_pair); |
---|
1239 | if (Cudd_IsComplement(root)) { |
---|
1240 | res_pair.pos = my_pair->neg; |
---|
1241 | res_pair.neg = my_pair->pos; |
---|
1242 | } else { |
---|
1243 | res_pair.pos = my_pair->pos; |
---|
1244 | res_pair.neg = my_pair->neg; |
---|
1245 | } |
---|
1246 | return(res_pair); |
---|
1247 | |
---|
1248 | } /* end of getLargest */ |
---|
1249 | |
---|
1250 | |
---|
1251 | /**Function******************************************************************** |
---|
1252 | |
---|
1253 | Synopsis [Build a BDD for a largest cube of f.] |
---|
1254 | |
---|
1255 | Description [Build a BDD for a largest cube of f. |
---|
1256 | Given the minimum length from the root, and the minimum |
---|
1257 | lengths for each node (in visited), apply triangulation at each node. |
---|
1258 | Of the two children of each node on a shortest path, at least one is |
---|
1259 | on a shortest path. In case of ties the procedure chooses the THEN |
---|
1260 | children. |
---|
1261 | Returns a pointer to the cube BDD representing the path if |
---|
1262 | successful; NULL otherwise.] |
---|
1263 | |
---|
1264 | SideEffects [None] |
---|
1265 | |
---|
1266 | SeeAlso [] |
---|
1267 | |
---|
1268 | ******************************************************************************/ |
---|
1269 | static DdNode * |
---|
1270 | getCube( |
---|
1271 | DdManager * manager, |
---|
1272 | st_table * visited, |
---|
1273 | DdNode * f, |
---|
1274 | int cost) |
---|
1275 | { |
---|
1276 | DdNode *sol, *tmp; |
---|
1277 | DdNode *my_dd, *T, *E; |
---|
1278 | cuddPathPair *T_pair, *E_pair; |
---|
1279 | int Tcost, Ecost; |
---|
1280 | int complement; |
---|
1281 | |
---|
1282 | my_dd = Cudd_Regular(f); |
---|
1283 | complement = Cudd_IsComplement(f); |
---|
1284 | |
---|
1285 | sol = one; |
---|
1286 | cuddRef(sol); |
---|
1287 | |
---|
1288 | while (!cuddIsConstant(my_dd)) { |
---|
1289 | Tcost = cost - 1; |
---|
1290 | Ecost = cost - 1; |
---|
1291 | |
---|
1292 | T = cuddT(my_dd); |
---|
1293 | E = cuddE(my_dd); |
---|
1294 | |
---|
1295 | if (complement) {T = Cudd_Not(T); E = Cudd_Not(E);} |
---|
1296 | |
---|
1297 | if (!st_lookup(visited, Cudd_Regular(T), &T_pair)) return(NULL); |
---|
1298 | if ((Cudd_IsComplement(T) && T_pair->neg == Tcost) || |
---|
1299 | (!Cudd_IsComplement(T) && T_pair->pos == Tcost)) { |
---|
1300 | tmp = cuddBddAndRecur(manager,manager->vars[my_dd->index],sol); |
---|
1301 | if (tmp == NULL) { |
---|
1302 | Cudd_RecursiveDeref(manager,sol); |
---|
1303 | return(NULL); |
---|
1304 | } |
---|
1305 | cuddRef(tmp); |
---|
1306 | Cudd_RecursiveDeref(manager,sol); |
---|
1307 | sol = tmp; |
---|
1308 | |
---|
1309 | complement = Cudd_IsComplement(T); |
---|
1310 | my_dd = Cudd_Regular(T); |
---|
1311 | cost = Tcost; |
---|
1312 | continue; |
---|
1313 | } |
---|
1314 | if (!st_lookup(visited, Cudd_Regular(E), &E_pair)) return(NULL); |
---|
1315 | if ((Cudd_IsComplement(E) && E_pair->neg == Ecost) || |
---|
1316 | (!Cudd_IsComplement(E) && E_pair->pos == Ecost)) { |
---|
1317 | tmp = cuddBddAndRecur(manager,Cudd_Not(manager->vars[my_dd->index]),sol); |
---|
1318 | if (tmp == NULL) { |
---|
1319 | Cudd_RecursiveDeref(manager,sol); |
---|
1320 | return(NULL); |
---|
1321 | } |
---|
1322 | cuddRef(tmp); |
---|
1323 | Cudd_RecursiveDeref(manager,sol); |
---|
1324 | sol = tmp; |
---|
1325 | complement = Cudd_IsComplement(E); |
---|
1326 | my_dd = Cudd_Regular(E); |
---|
1327 | cost = Ecost; |
---|
1328 | continue; |
---|
1329 | } |
---|
1330 | (void) fprintf(manager->err,"We shouldn't be here!\n"); |
---|
1331 | manager->errorCode = CUDD_INTERNAL_ERROR; |
---|
1332 | return(NULL); |
---|
1333 | } |
---|
1334 | |
---|
1335 | cuddDeref(sol); |
---|
1336 | return(sol); |
---|
1337 | |
---|
1338 | } /* end of getCube */ |
---|