1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [cuddUtil.c] |
---|
4 | |
---|
5 | PackageName [cudd] |
---|
6 | |
---|
7 | Synopsis [Utility functions.] |
---|
8 | |
---|
9 | Description [External procedures included in this module: |
---|
10 | <ul> |
---|
11 | <li> Cudd_PrintMinterm() |
---|
12 | <li> Cudd_bddPrintCover() |
---|
13 | <li> Cudd_PrintDebug() |
---|
14 | <li> Cudd_DagSize() |
---|
15 | <li> Cudd_EstimateCofactor() |
---|
16 | <li> Cudd_EstimateCofactorSimple() |
---|
17 | <li> Cudd_SharingSize() |
---|
18 | <li> Cudd_CountMinterm() |
---|
19 | <li> Cudd_EpdCountMinterm() |
---|
20 | <li> Cudd_CountPath() |
---|
21 | <li> Cudd_CountPathsToNonZero() |
---|
22 | <li> Cudd_Support() |
---|
23 | <li> Cudd_SupportIndex() |
---|
24 | <li> Cudd_SupportSize() |
---|
25 | <li> Cudd_VectorSupport() |
---|
26 | <li> Cudd_VectorSupportIndex() |
---|
27 | <li> Cudd_VectorSupportSize() |
---|
28 | <li> Cudd_ClassifySupport() |
---|
29 | <li> Cudd_CountLeaves() |
---|
30 | <li> Cudd_bddPickOneCube() |
---|
31 | <li> Cudd_bddPickOneMinterm() |
---|
32 | <li> Cudd_bddPickArbitraryMinterms() |
---|
33 | <li> Cudd_SubsetWithMaskVars() |
---|
34 | <li> Cudd_FirstCube() |
---|
35 | <li> Cudd_NextCube() |
---|
36 | <li> Cudd_bddComputeCube() |
---|
37 | <li> Cudd_addComputeCube() |
---|
38 | <li> Cudd_FirstNode() |
---|
39 | <li> Cudd_NextNode() |
---|
40 | <li> Cudd_GenFree() |
---|
41 | <li> Cudd_IsGenEmpty() |
---|
42 | <li> Cudd_IndicesToCube() |
---|
43 | <li> Cudd_PrintVersion() |
---|
44 | <li> Cudd_AverageDistance() |
---|
45 | <li> Cudd_Random() |
---|
46 | <li> Cudd_Srandom() |
---|
47 | <li> Cudd_Density() |
---|
48 | </ul> |
---|
49 | Internal procedures included in this module: |
---|
50 | <ul> |
---|
51 | <li> cuddP() |
---|
52 | <li> cuddStCountfree() |
---|
53 | <li> cuddCollectNodes() |
---|
54 | <li> cuddNodeArray() |
---|
55 | </ul> |
---|
56 | Static procedures included in this module: |
---|
57 | <ul> |
---|
58 | <li> dp2() |
---|
59 | <li> ddPrintMintermAux() |
---|
60 | <li> ddDagInt() |
---|
61 | <li> ddCountMintermAux() |
---|
62 | <li> ddEpdCountMintermAux() |
---|
63 | <li> ddCountPathAux() |
---|
64 | <li> ddSupportStep() |
---|
65 | <li> ddClearFlag() |
---|
66 | <li> ddLeavesInt() |
---|
67 | <li> ddPickArbitraryMinterms() |
---|
68 | <li> ddPickRepresentativeCube() |
---|
69 | <li> ddEpdFree() |
---|
70 | </ul>] |
---|
71 | |
---|
72 | Author [Fabio Somenzi] |
---|
73 | |
---|
74 | Copyright [Copyright (c) 1995-2004, Regents of the University of Colorado |
---|
75 | |
---|
76 | All rights reserved. |
---|
77 | |
---|
78 | Redistribution and use in source and binary forms, with or without |
---|
79 | modification, are permitted provided that the following conditions |
---|
80 | are met: |
---|
81 | |
---|
82 | Redistributions of source code must retain the above copyright |
---|
83 | notice, this list of conditions and the following disclaimer. |
---|
84 | |
---|
85 | Redistributions in binary form must reproduce the above copyright |
---|
86 | notice, this list of conditions and the following disclaimer in the |
---|
87 | documentation and/or other materials provided with the distribution. |
---|
88 | |
---|
89 | Neither the name of the University of Colorado nor the names of its |
---|
90 | contributors may be used to endorse or promote products derived from |
---|
91 | this software without specific prior written permission. |
---|
92 | |
---|
93 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
94 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
95 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
---|
96 | FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
---|
97 | COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
---|
98 | INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
---|
99 | BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
---|
100 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
---|
101 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
---|
102 | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
---|
103 | ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
---|
104 | POSSIBILITY OF SUCH DAMAGE.] |
---|
105 | |
---|
106 | ******************************************************************************/ |
---|
107 | |
---|
108 | #include "util.h" |
---|
109 | #include "cuddInt.h" |
---|
110 | |
---|
111 | /*---------------------------------------------------------------------------*/ |
---|
112 | /* Constant declarations */ |
---|
113 | /*---------------------------------------------------------------------------*/ |
---|
114 | |
---|
115 | /* Random generator constants. */ |
---|
116 | #define MODULUS1 2147483563 |
---|
117 | #define LEQA1 40014 |
---|
118 | #define LEQQ1 53668 |
---|
119 | #define LEQR1 12211 |
---|
120 | #define MODULUS2 2147483399 |
---|
121 | #define LEQA2 40692 |
---|
122 | #define LEQQ2 52774 |
---|
123 | #define LEQR2 3791 |
---|
124 | #define STAB_SIZE 64 |
---|
125 | #define STAB_DIV (1 + (MODULUS1 - 1) / STAB_SIZE) |
---|
126 | |
---|
127 | /*---------------------------------------------------------------------------*/ |
---|
128 | /* Stucture declarations */ |
---|
129 | /*---------------------------------------------------------------------------*/ |
---|
130 | |
---|
131 | /*---------------------------------------------------------------------------*/ |
---|
132 | /* Type declarations */ |
---|
133 | /*---------------------------------------------------------------------------*/ |
---|
134 | |
---|
135 | |
---|
136 | /*---------------------------------------------------------------------------*/ |
---|
137 | /* Variable declarations */ |
---|
138 | /*---------------------------------------------------------------------------*/ |
---|
139 | |
---|
140 | #ifndef lint |
---|
141 | static char rcsid[] DD_UNUSED = "$Id: cuddUtil.c,v 1.81 2009/03/08 02:49:02 fabio Exp $"; |
---|
142 | #endif |
---|
143 | |
---|
144 | static DdNode *background, *zero; |
---|
145 | |
---|
146 | static long cuddRand = 0; |
---|
147 | static long cuddRand2; |
---|
148 | static long shuffleSelect; |
---|
149 | static long shuffleTable[STAB_SIZE]; |
---|
150 | |
---|
151 | /*---------------------------------------------------------------------------*/ |
---|
152 | /* Macro declarations */ |
---|
153 | /*---------------------------------------------------------------------------*/ |
---|
154 | |
---|
155 | #define bang(f) ((Cudd_IsComplement(f)) ? '!' : ' ') |
---|
156 | |
---|
157 | #ifdef __cplusplus |
---|
158 | extern "C" { |
---|
159 | #endif |
---|
160 | |
---|
161 | /**AutomaticStart*************************************************************/ |
---|
162 | |
---|
163 | /*---------------------------------------------------------------------------*/ |
---|
164 | /* Static function prototypes */ |
---|
165 | /*---------------------------------------------------------------------------*/ |
---|
166 | |
---|
167 | static int dp2 (DdManager *dd, DdNode *f, st_table *t); |
---|
168 | static void ddPrintMintermAux (DdManager *dd, DdNode *node, int *list); |
---|
169 | static int ddDagInt (DdNode *n); |
---|
170 | static int cuddNodeArrayRecur (DdNode *f, DdNodePtr *table, int index); |
---|
171 | static int cuddEstimateCofactor (DdManager *dd, st_table *table, DdNode * node, int i, int phase, DdNode ** ptr); |
---|
172 | static DdNode * cuddUniqueLookup (DdManager * unique, int index, DdNode * T, DdNode * E); |
---|
173 | static int cuddEstimateCofactorSimple (DdNode * node, int i); |
---|
174 | static double ddCountMintermAux (DdNode *node, double max, DdHashTable *table); |
---|
175 | static int ddEpdCountMintermAux (DdNode *node, EpDouble *max, EpDouble *epd, st_table *table); |
---|
176 | static double ddCountPathAux (DdNode *node, st_table *table); |
---|
177 | static double ddCountPathsToNonZero (DdNode * N, st_table * table); |
---|
178 | static void ddSupportStep (DdNode *f, int *support); |
---|
179 | static void ddClearFlag (DdNode *f); |
---|
180 | static int ddLeavesInt (DdNode *n); |
---|
181 | static int ddPickArbitraryMinterms (DdManager *dd, DdNode *node, int nvars, int nminterms, char **string); |
---|
182 | static int ddPickRepresentativeCube (DdManager *dd, DdNode *node, double *weight, char *string); |
---|
183 | static enum st_retval ddEpdFree (char * key, char * value, char * arg); |
---|
184 | |
---|
185 | /**AutomaticEnd***************************************************************/ |
---|
186 | |
---|
187 | #ifdef __cplusplus |
---|
188 | } |
---|
189 | #endif |
---|
190 | |
---|
191 | /*---------------------------------------------------------------------------*/ |
---|
192 | /* Definition of exported functions */ |
---|
193 | /*---------------------------------------------------------------------------*/ |
---|
194 | |
---|
195 | |
---|
196 | /**Function******************************************************************** |
---|
197 | |
---|
198 | Synopsis [Prints a disjoint sum of products.] |
---|
199 | |
---|
200 | Description [Prints a disjoint sum of product cover for the function |
---|
201 | rooted at node. Each product corresponds to a path from node to a |
---|
202 | leaf node different from the logical zero, and different from the |
---|
203 | background value. Uses the package default output file. Returns 1 |
---|
204 | if successful; 0 otherwise.] |
---|
205 | |
---|
206 | SideEffects [None] |
---|
207 | |
---|
208 | SeeAlso [Cudd_PrintDebug Cudd_bddPrintCover] |
---|
209 | |
---|
210 | ******************************************************************************/ |
---|
211 | int |
---|
212 | Cudd_PrintMinterm( |
---|
213 | DdManager * manager, |
---|
214 | DdNode * node) |
---|
215 | { |
---|
216 | int i, *list; |
---|
217 | |
---|
218 | background = manager->background; |
---|
219 | zero = Cudd_Not(manager->one); |
---|
220 | list = ALLOC(int,manager->size); |
---|
221 | if (list == NULL) { |
---|
222 | manager->errorCode = CUDD_MEMORY_OUT; |
---|
223 | return(0); |
---|
224 | } |
---|
225 | for (i = 0; i < manager->size; i++) list[i] = 2; |
---|
226 | ddPrintMintermAux(manager,node,list); |
---|
227 | FREE(list); |
---|
228 | return(1); |
---|
229 | |
---|
230 | } /* end of Cudd_PrintMinterm */ |
---|
231 | |
---|
232 | |
---|
233 | /**Function******************************************************************** |
---|
234 | |
---|
235 | Synopsis [Prints a sum of prime implicants of a BDD.] |
---|
236 | |
---|
237 | Description [Prints a sum of product cover for an incompletely |
---|
238 | specified function given by a lower bound and an upper bound. Each |
---|
239 | product is a prime implicant obtained by expanding the product |
---|
240 | corresponding to a path from node to the constant one. Uses the |
---|
241 | package default output file. Returns 1 if successful; 0 otherwise.] |
---|
242 | |
---|
243 | SideEffects [None] |
---|
244 | |
---|
245 | SeeAlso [Cudd_PrintMinterm] |
---|
246 | |
---|
247 | ******************************************************************************/ |
---|
248 | int |
---|
249 | Cudd_bddPrintCover( |
---|
250 | DdManager *dd, |
---|
251 | DdNode *l, |
---|
252 | DdNode *u) |
---|
253 | { |
---|
254 | int *array; |
---|
255 | int q, result; |
---|
256 | DdNode *lb; |
---|
257 | #ifdef DD_DEBUG |
---|
258 | DdNode *cover; |
---|
259 | #endif |
---|
260 | |
---|
261 | array = ALLOC(int, Cudd_ReadSize(dd)); |
---|
262 | if (array == NULL) return(0); |
---|
263 | lb = l; |
---|
264 | cuddRef(lb); |
---|
265 | #ifdef DD_DEBUG |
---|
266 | cover = Cudd_ReadLogicZero(dd); |
---|
267 | cuddRef(cover); |
---|
268 | #endif |
---|
269 | while (lb != Cudd_ReadLogicZero(dd)) { |
---|
270 | DdNode *implicant, *prime, *tmp; |
---|
271 | int length; |
---|
272 | implicant = Cudd_LargestCube(dd,lb,&length); |
---|
273 | if (implicant == NULL) { |
---|
274 | Cudd_RecursiveDeref(dd,lb); |
---|
275 | FREE(array); |
---|
276 | return(0); |
---|
277 | } |
---|
278 | cuddRef(implicant); |
---|
279 | prime = Cudd_bddMakePrime(dd,implicant,u); |
---|
280 | if (prime == NULL) { |
---|
281 | Cudd_RecursiveDeref(dd,lb); |
---|
282 | Cudd_RecursiveDeref(dd,implicant); |
---|
283 | FREE(array); |
---|
284 | return(0); |
---|
285 | } |
---|
286 | cuddRef(prime); |
---|
287 | Cudd_RecursiveDeref(dd,implicant); |
---|
288 | tmp = Cudd_bddAnd(dd,lb,Cudd_Not(prime)); |
---|
289 | if (tmp == NULL) { |
---|
290 | Cudd_RecursiveDeref(dd,lb); |
---|
291 | Cudd_RecursiveDeref(dd,prime); |
---|
292 | FREE(array); |
---|
293 | return(0); |
---|
294 | } |
---|
295 | cuddRef(tmp); |
---|
296 | Cudd_RecursiveDeref(dd,lb); |
---|
297 | lb = tmp; |
---|
298 | result = Cudd_BddToCubeArray(dd,prime,array); |
---|
299 | if (result == 0) { |
---|
300 | Cudd_RecursiveDeref(dd,lb); |
---|
301 | Cudd_RecursiveDeref(dd,prime); |
---|
302 | FREE(array); |
---|
303 | return(0); |
---|
304 | } |
---|
305 | for (q = 0; q < dd->size; q++) { |
---|
306 | switch (array[q]) { |
---|
307 | case 0: |
---|
308 | (void) fprintf(dd->out, "0"); |
---|
309 | break; |
---|
310 | case 1: |
---|
311 | (void) fprintf(dd->out, "1"); |
---|
312 | break; |
---|
313 | case 2: |
---|
314 | (void) fprintf(dd->out, "-"); |
---|
315 | break; |
---|
316 | default: |
---|
317 | (void) fprintf(dd->out, "?"); |
---|
318 | } |
---|
319 | } |
---|
320 | (void) fprintf(dd->out, " 1\n"); |
---|
321 | #ifdef DD_DEBUG |
---|
322 | tmp = Cudd_bddOr(dd,prime,cover); |
---|
323 | if (tmp == NULL) { |
---|
324 | Cudd_RecursiveDeref(dd,cover); |
---|
325 | Cudd_RecursiveDeref(dd,lb); |
---|
326 | Cudd_RecursiveDeref(dd,prime); |
---|
327 | FREE(array); |
---|
328 | return(0); |
---|
329 | } |
---|
330 | cuddRef(tmp); |
---|
331 | Cudd_RecursiveDeref(dd,cover); |
---|
332 | cover = tmp; |
---|
333 | #endif |
---|
334 | Cudd_RecursiveDeref(dd,prime); |
---|
335 | } |
---|
336 | (void) fprintf(dd->out, "\n"); |
---|
337 | Cudd_RecursiveDeref(dd,lb); |
---|
338 | FREE(array); |
---|
339 | #ifdef DD_DEBUG |
---|
340 | if (!Cudd_bddLeq(dd,cover,u) || !Cudd_bddLeq(dd,l,cover)) { |
---|
341 | Cudd_RecursiveDeref(dd,cover); |
---|
342 | return(0); |
---|
343 | } |
---|
344 | Cudd_RecursiveDeref(dd,cover); |
---|
345 | #endif |
---|
346 | return(1); |
---|
347 | |
---|
348 | } /* end of Cudd_bddPrintCover */ |
---|
349 | |
---|
350 | |
---|
351 | /**Function******************************************************************** |
---|
352 | |
---|
353 | Synopsis [Prints to the standard output a DD and its statistics.] |
---|
354 | |
---|
355 | Description [Prints to the standard output a DD and its statistics. |
---|
356 | The statistics include the number of nodes, the number of leaves, and |
---|
357 | the number of minterms. (The number of minterms is the number of |
---|
358 | assignments to the variables that cause the function to be different |
---|
359 | from the logical zero (for BDDs) and from the background value (for |
---|
360 | ADDs.) The statistics are printed if pr > 0. Specifically: |
---|
361 | <ul> |
---|
362 | <li> pr = 0 : prints nothing |
---|
363 | <li> pr = 1 : prints counts of nodes and minterms |
---|
364 | <li> pr = 2 : prints counts + disjoint sum of product |
---|
365 | <li> pr = 3 : prints counts + list of nodes |
---|
366 | <li> pr > 3 : prints counts + disjoint sum of product + list of nodes |
---|
367 | </ul> |
---|
368 | For the purpose of counting the number of minterms, the function is |
---|
369 | supposed to depend on n variables. Returns 1 if successful; 0 otherwise.] |
---|
370 | |
---|
371 | SideEffects [None] |
---|
372 | |
---|
373 | SeeAlso [Cudd_DagSize Cudd_CountLeaves Cudd_CountMinterm |
---|
374 | Cudd_PrintMinterm] |
---|
375 | |
---|
376 | ******************************************************************************/ |
---|
377 | int |
---|
378 | Cudd_PrintDebug( |
---|
379 | DdManager * dd, |
---|
380 | DdNode * f, |
---|
381 | int n, |
---|
382 | int pr) |
---|
383 | { |
---|
384 | DdNode *azero, *bzero; |
---|
385 | int nodes; |
---|
386 | int leaves; |
---|
387 | double minterms; |
---|
388 | int retval = 1; |
---|
389 | |
---|
390 | if (f == NULL) { |
---|
391 | (void) fprintf(dd->out,": is the NULL DD\n"); |
---|
392 | (void) fflush(dd->out); |
---|
393 | return(0); |
---|
394 | } |
---|
395 | azero = DD_ZERO(dd); |
---|
396 | bzero = Cudd_Not(DD_ONE(dd)); |
---|
397 | if ((f == azero || f == bzero) && pr > 0){ |
---|
398 | (void) fprintf(dd->out,": is the zero DD\n"); |
---|
399 | (void) fflush(dd->out); |
---|
400 | return(1); |
---|
401 | } |
---|
402 | if (pr > 0) { |
---|
403 | nodes = Cudd_DagSize(f); |
---|
404 | if (nodes == CUDD_OUT_OF_MEM) retval = 0; |
---|
405 | leaves = Cudd_CountLeaves(f); |
---|
406 | if (leaves == CUDD_OUT_OF_MEM) retval = 0; |
---|
407 | minterms = Cudd_CountMinterm(dd, f, n); |
---|
408 | if (minterms == (double)CUDD_OUT_OF_MEM) retval = 0; |
---|
409 | (void) fprintf(dd->out,": %d nodes %d leaves %g minterms\n", |
---|
410 | nodes, leaves, minterms); |
---|
411 | if (pr > 2) { |
---|
412 | if (!cuddP(dd, f)) retval = 0; |
---|
413 | } |
---|
414 | if (pr == 2 || pr > 3) { |
---|
415 | if (!Cudd_PrintMinterm(dd,f)) retval = 0; |
---|
416 | (void) fprintf(dd->out,"\n"); |
---|
417 | } |
---|
418 | (void) fflush(dd->out); |
---|
419 | } |
---|
420 | return(retval); |
---|
421 | |
---|
422 | } /* end of Cudd_PrintDebug */ |
---|
423 | |
---|
424 | |
---|
425 | /**Function******************************************************************** |
---|
426 | |
---|
427 | Synopsis [Counts the number of nodes in a DD.] |
---|
428 | |
---|
429 | Description [Counts the number of nodes in a DD. Returns the number |
---|
430 | of nodes in the graph rooted at node.] |
---|
431 | |
---|
432 | SideEffects [None] |
---|
433 | |
---|
434 | SeeAlso [Cudd_SharingSize Cudd_PrintDebug] |
---|
435 | |
---|
436 | ******************************************************************************/ |
---|
437 | int |
---|
438 | Cudd_DagSize( |
---|
439 | DdNode * node) |
---|
440 | { |
---|
441 | int i; |
---|
442 | |
---|
443 | i = ddDagInt(Cudd_Regular(node)); |
---|
444 | ddClearFlag(Cudd_Regular(node)); |
---|
445 | |
---|
446 | return(i); |
---|
447 | |
---|
448 | } /* end of Cudd_DagSize */ |
---|
449 | |
---|
450 | |
---|
451 | /**Function******************************************************************** |
---|
452 | |
---|
453 | Synopsis [Estimates the number of nodes in a cofactor of a DD.] |
---|
454 | |
---|
455 | Description [Estimates the number of nodes in a cofactor of a DD. |
---|
456 | Returns an estimate of the number of nodes in a cofactor of |
---|
457 | the graph rooted at node with respect to the variable whose index is i. |
---|
458 | In case of failure, returns CUDD_OUT_OF_MEM. |
---|
459 | This function uses a refinement of the algorithm of Cabodi et al. |
---|
460 | (ICCAD96). The refinement allows the procedure to account for part |
---|
461 | of the recombination that may occur in the part of the cofactor above |
---|
462 | the cofactoring variable. This procedure does no create any new node. |
---|
463 | It does keep a small table of results; therefore it may run out of memory. |
---|
464 | If this is a concern, one should use Cudd_EstimateCofactorSimple, which |
---|
465 | is faster, does not allocate any memory, but is less accurate.] |
---|
466 | |
---|
467 | SideEffects [None] |
---|
468 | |
---|
469 | SeeAlso [Cudd_DagSize Cudd_EstimateCofactorSimple] |
---|
470 | |
---|
471 | ******************************************************************************/ |
---|
472 | int |
---|
473 | Cudd_EstimateCofactor( |
---|
474 | DdManager *dd /* manager */, |
---|
475 | DdNode * f /* function */, |
---|
476 | int i /* index of variable */, |
---|
477 | int phase /* 1: positive; 0: negative */ |
---|
478 | ) |
---|
479 | { |
---|
480 | int val; |
---|
481 | DdNode *ptr; |
---|
482 | st_table *table; |
---|
483 | |
---|
484 | table = st_init_table(st_ptrcmp,st_ptrhash); |
---|
485 | if (table == NULL) return(CUDD_OUT_OF_MEM); |
---|
486 | val = cuddEstimateCofactor(dd,table,Cudd_Regular(f),i,phase,&ptr); |
---|
487 | ddClearFlag(Cudd_Regular(f)); |
---|
488 | st_free_table(table); |
---|
489 | |
---|
490 | return(val); |
---|
491 | |
---|
492 | } /* end of Cudd_EstimateCofactor */ |
---|
493 | |
---|
494 | |
---|
495 | /**Function******************************************************************** |
---|
496 | |
---|
497 | Synopsis [Estimates the number of nodes in a cofactor of a DD.] |
---|
498 | |
---|
499 | Description [Estimates the number of nodes in a cofactor of a DD. |
---|
500 | Returns an estimate of the number of nodes in the positive cofactor of |
---|
501 | the graph rooted at node with respect to the variable whose index is i. |
---|
502 | This procedure implements with minor changes the algorithm of Cabodi et al. |
---|
503 | (ICCAD96). It does not allocate any memory, it does not change the |
---|
504 | state of the manager, and it is fast. However, it has been observed to |
---|
505 | overestimate the size of the cofactor by as much as a factor of 2.] |
---|
506 | |
---|
507 | SideEffects [None] |
---|
508 | |
---|
509 | SeeAlso [Cudd_DagSize] |
---|
510 | |
---|
511 | ******************************************************************************/ |
---|
512 | int |
---|
513 | Cudd_EstimateCofactorSimple( |
---|
514 | DdNode * node, |
---|
515 | int i) |
---|
516 | { |
---|
517 | int val; |
---|
518 | |
---|
519 | val = cuddEstimateCofactorSimple(Cudd_Regular(node),i); |
---|
520 | ddClearFlag(Cudd_Regular(node)); |
---|
521 | |
---|
522 | return(val); |
---|
523 | |
---|
524 | } /* end of Cudd_EstimateCofactorSimple */ |
---|
525 | |
---|
526 | |
---|
527 | /**Function******************************************************************** |
---|
528 | |
---|
529 | Synopsis [Counts the number of nodes in an array of DDs.] |
---|
530 | |
---|
531 | Description [Counts the number of nodes in an array of DDs. Shared |
---|
532 | nodes are counted only once. Returns the total number of nodes.] |
---|
533 | |
---|
534 | SideEffects [None] |
---|
535 | |
---|
536 | SeeAlso [Cudd_DagSize] |
---|
537 | |
---|
538 | ******************************************************************************/ |
---|
539 | int |
---|
540 | Cudd_SharingSize( |
---|
541 | DdNode ** nodeArray, |
---|
542 | int n) |
---|
543 | { |
---|
544 | int i,j; |
---|
545 | |
---|
546 | i = 0; |
---|
547 | for (j = 0; j < n; j++) { |
---|
548 | i += ddDagInt(Cudd_Regular(nodeArray[j])); |
---|
549 | } |
---|
550 | for (j = 0; j < n; j++) { |
---|
551 | ddClearFlag(Cudd_Regular(nodeArray[j])); |
---|
552 | } |
---|
553 | return(i); |
---|
554 | |
---|
555 | } /* end of Cudd_SharingSize */ |
---|
556 | |
---|
557 | |
---|
558 | /**Function******************************************************************** |
---|
559 | |
---|
560 | Synopsis [Counts the number of minterms of a DD.] |
---|
561 | |
---|
562 | Description [Counts the number of minterms of a DD. The function is |
---|
563 | assumed to depend on nvars variables. The minterm count is |
---|
564 | represented as a double, to allow for a larger number of variables. |
---|
565 | Returns the number of minterms of the function rooted at node if |
---|
566 | successful; (double) CUDD_OUT_OF_MEM otherwise.] |
---|
567 | |
---|
568 | SideEffects [None] |
---|
569 | |
---|
570 | SeeAlso [Cudd_PrintDebug Cudd_CountPath] |
---|
571 | |
---|
572 | ******************************************************************************/ |
---|
573 | double |
---|
574 | Cudd_CountMinterm( |
---|
575 | DdManager * manager, |
---|
576 | DdNode * node, |
---|
577 | int nvars) |
---|
578 | { |
---|
579 | double max; |
---|
580 | DdHashTable *table; |
---|
581 | double res; |
---|
582 | CUDD_VALUE_TYPE epsilon; |
---|
583 | |
---|
584 | background = manager->background; |
---|
585 | zero = Cudd_Not(manager->one); |
---|
586 | |
---|
587 | max = pow(2.0,(double)nvars); |
---|
588 | table = cuddHashTableInit(manager,1,2); |
---|
589 | if (table == NULL) { |
---|
590 | return((double)CUDD_OUT_OF_MEM); |
---|
591 | } |
---|
592 | epsilon = Cudd_ReadEpsilon(manager); |
---|
593 | Cudd_SetEpsilon(manager,(CUDD_VALUE_TYPE)0.0); |
---|
594 | res = ddCountMintermAux(node,max,table); |
---|
595 | cuddHashTableQuit(table); |
---|
596 | Cudd_SetEpsilon(manager,epsilon); |
---|
597 | |
---|
598 | return(res); |
---|
599 | |
---|
600 | } /* end of Cudd_CountMinterm */ |
---|
601 | |
---|
602 | |
---|
603 | /**Function******************************************************************** |
---|
604 | |
---|
605 | Synopsis [Counts the number of paths of a DD.] |
---|
606 | |
---|
607 | Description [Counts the number of paths of a DD. Paths to all |
---|
608 | terminal nodes are counted. The path count is represented as a |
---|
609 | double, to allow for a larger number of variables. Returns the |
---|
610 | number of paths of the function rooted at node if successful; |
---|
611 | (double) CUDD_OUT_OF_MEM otherwise.] |
---|
612 | |
---|
613 | SideEffects [None] |
---|
614 | |
---|
615 | SeeAlso [Cudd_CountMinterm] |
---|
616 | |
---|
617 | ******************************************************************************/ |
---|
618 | double |
---|
619 | Cudd_CountPath( |
---|
620 | DdNode * node) |
---|
621 | { |
---|
622 | |
---|
623 | st_table *table; |
---|
624 | double i; |
---|
625 | |
---|
626 | table = st_init_table(st_ptrcmp,st_ptrhash); |
---|
627 | if (table == NULL) { |
---|
628 | return((double)CUDD_OUT_OF_MEM); |
---|
629 | } |
---|
630 | i = ddCountPathAux(Cudd_Regular(node),table); |
---|
631 | st_foreach(table, cuddStCountfree, NULL); |
---|
632 | st_free_table(table); |
---|
633 | return(i); |
---|
634 | |
---|
635 | } /* end of Cudd_CountPath */ |
---|
636 | |
---|
637 | |
---|
638 | /**Function******************************************************************** |
---|
639 | |
---|
640 | Synopsis [Counts the number of minterms of a DD with extended precision.] |
---|
641 | |
---|
642 | Description [Counts the number of minterms of a DD with extended precision. |
---|
643 | The function is assumed to depend on nvars variables. The minterm count is |
---|
644 | represented as an EpDouble, to allow any number of variables. |
---|
645 | Returns 0 if successful; CUDD_OUT_OF_MEM otherwise.] |
---|
646 | |
---|
647 | SideEffects [None] |
---|
648 | |
---|
649 | SeeAlso [Cudd_PrintDebug Cudd_CountPath] |
---|
650 | |
---|
651 | ******************************************************************************/ |
---|
652 | int |
---|
653 | Cudd_EpdCountMinterm( |
---|
654 | DdManager * manager, |
---|
655 | DdNode * node, |
---|
656 | int nvars, |
---|
657 | EpDouble * epd) |
---|
658 | { |
---|
659 | EpDouble max, tmp; |
---|
660 | st_table *table; |
---|
661 | int status; |
---|
662 | |
---|
663 | background = manager->background; |
---|
664 | zero = Cudd_Not(manager->one); |
---|
665 | |
---|
666 | EpdPow2(nvars, &max); |
---|
667 | table = st_init_table(EpdCmp, st_ptrhash); |
---|
668 | if (table == NULL) { |
---|
669 | EpdMakeZero(epd, 0); |
---|
670 | return(CUDD_OUT_OF_MEM); |
---|
671 | } |
---|
672 | status = ddEpdCountMintermAux(Cudd_Regular(node),&max,epd,table); |
---|
673 | st_foreach(table, ddEpdFree, NULL); |
---|
674 | st_free_table(table); |
---|
675 | if (status == CUDD_OUT_OF_MEM) { |
---|
676 | EpdMakeZero(epd, 0); |
---|
677 | return(CUDD_OUT_OF_MEM); |
---|
678 | } |
---|
679 | if (Cudd_IsComplement(node)) { |
---|
680 | EpdSubtract3(&max, epd, &tmp); |
---|
681 | EpdCopy(&tmp, epd); |
---|
682 | } |
---|
683 | return(0); |
---|
684 | |
---|
685 | } /* end of Cudd_EpdCountMinterm */ |
---|
686 | |
---|
687 | |
---|
688 | /**Function******************************************************************** |
---|
689 | |
---|
690 | Synopsis [Counts the number of paths to a non-zero terminal of a DD.] |
---|
691 | |
---|
692 | Description [Counts the number of paths to a non-zero terminal of a |
---|
693 | DD. The path count is |
---|
694 | represented as a double, to allow for a larger number of variables. |
---|
695 | Returns the number of paths of the function rooted at node.] |
---|
696 | |
---|
697 | SideEffects [None] |
---|
698 | |
---|
699 | SeeAlso [Cudd_CountMinterm Cudd_CountPath] |
---|
700 | |
---|
701 | ******************************************************************************/ |
---|
702 | double |
---|
703 | Cudd_CountPathsToNonZero( |
---|
704 | DdNode * node) |
---|
705 | { |
---|
706 | |
---|
707 | st_table *table; |
---|
708 | double i; |
---|
709 | |
---|
710 | table = st_init_table(st_ptrcmp,st_ptrhash); |
---|
711 | if (table == NULL) { |
---|
712 | return((double)CUDD_OUT_OF_MEM); |
---|
713 | } |
---|
714 | i = ddCountPathsToNonZero(node,table); |
---|
715 | st_foreach(table, cuddStCountfree, NULL); |
---|
716 | st_free_table(table); |
---|
717 | return(i); |
---|
718 | |
---|
719 | } /* end of Cudd_CountPathsToNonZero */ |
---|
720 | |
---|
721 | |
---|
722 | /**Function******************************************************************** |
---|
723 | |
---|
724 | Synopsis [Finds the variables on which a DD depends.] |
---|
725 | |
---|
726 | Description [Finds the variables on which a DD depends. |
---|
727 | Returns a BDD consisting of the product of the variables if |
---|
728 | successful; NULL otherwise.] |
---|
729 | |
---|
730 | SideEffects [None] |
---|
731 | |
---|
732 | SeeAlso [Cudd_VectorSupport Cudd_ClassifySupport] |
---|
733 | |
---|
734 | ******************************************************************************/ |
---|
735 | DdNode * |
---|
736 | Cudd_Support( |
---|
737 | DdManager * dd /* manager */, |
---|
738 | DdNode * f /* DD whose support is sought */) |
---|
739 | { |
---|
740 | int *support; |
---|
741 | DdNode *res, *tmp, *var; |
---|
742 | int i,j; |
---|
743 | int size; |
---|
744 | |
---|
745 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
746 | size = ddMax(dd->size, dd->sizeZ); |
---|
747 | support = ALLOC(int,size); |
---|
748 | if (support == NULL) { |
---|
749 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
750 | return(NULL); |
---|
751 | } |
---|
752 | for (i = 0; i < size; i++) { |
---|
753 | support[i] = 0; |
---|
754 | } |
---|
755 | |
---|
756 | /* Compute support and clean up markers. */ |
---|
757 | ddSupportStep(Cudd_Regular(f),support); |
---|
758 | ddClearFlag(Cudd_Regular(f)); |
---|
759 | |
---|
760 | /* Transform support from array to cube. */ |
---|
761 | do { |
---|
762 | dd->reordered = 0; |
---|
763 | res = DD_ONE(dd); |
---|
764 | cuddRef(res); |
---|
765 | for (j = size - 1; j >= 0; j--) { /* for each level bottom-up */ |
---|
766 | i = (j >= dd->size) ? j : dd->invperm[j]; |
---|
767 | if (support[i] == 1) { |
---|
768 | /* The following call to cuddUniqueInter is guaranteed |
---|
769 | ** not to trigger reordering because the node we look up |
---|
770 | ** already exists. */ |
---|
771 | var = cuddUniqueInter(dd,i,dd->one,Cudd_Not(dd->one)); |
---|
772 | cuddRef(var); |
---|
773 | tmp = cuddBddAndRecur(dd,res,var); |
---|
774 | if (tmp == NULL) { |
---|
775 | Cudd_RecursiveDeref(dd,res); |
---|
776 | Cudd_RecursiveDeref(dd,var); |
---|
777 | res = NULL; |
---|
778 | break; |
---|
779 | } |
---|
780 | cuddRef(tmp); |
---|
781 | Cudd_RecursiveDeref(dd,res); |
---|
782 | Cudd_RecursiveDeref(dd,var); |
---|
783 | res = tmp; |
---|
784 | } |
---|
785 | } |
---|
786 | } while (dd->reordered == 1); |
---|
787 | |
---|
788 | FREE(support); |
---|
789 | if (res != NULL) cuddDeref(res); |
---|
790 | return(res); |
---|
791 | |
---|
792 | } /* end of Cudd_Support */ |
---|
793 | |
---|
794 | |
---|
795 | /**Function******************************************************************** |
---|
796 | |
---|
797 | Synopsis [Finds the variables on which a DD depends.] |
---|
798 | |
---|
799 | Description [Finds the variables on which a DD depends. Returns an |
---|
800 | index array of the variables if successful; NULL otherwise. The |
---|
801 | size of the array equals the number of variables in the manager. |
---|
802 | Each entry of the array is 1 if the corresponding variable is in the |
---|
803 | support of the DD and 0 otherwise.] |
---|
804 | |
---|
805 | SideEffects [None] |
---|
806 | |
---|
807 | SeeAlso [Cudd_Support Cudd_VectorSupport Cudd_ClassifySupport] |
---|
808 | |
---|
809 | ******************************************************************************/ |
---|
810 | int * |
---|
811 | Cudd_SupportIndex( |
---|
812 | DdManager * dd /* manager */, |
---|
813 | DdNode * f /* DD whose support is sought */) |
---|
814 | { |
---|
815 | int *support; |
---|
816 | int i; |
---|
817 | int size; |
---|
818 | |
---|
819 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
820 | size = ddMax(dd->size, dd->sizeZ); |
---|
821 | support = ALLOC(int,size); |
---|
822 | if (support == NULL) { |
---|
823 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
824 | return(NULL); |
---|
825 | } |
---|
826 | for (i = 0; i < size; i++) { |
---|
827 | support[i] = 0; |
---|
828 | } |
---|
829 | |
---|
830 | /* Compute support and clean up markers. */ |
---|
831 | ddSupportStep(Cudd_Regular(f),support); |
---|
832 | ddClearFlag(Cudd_Regular(f)); |
---|
833 | |
---|
834 | return(support); |
---|
835 | |
---|
836 | } /* end of Cudd_SupportIndex */ |
---|
837 | |
---|
838 | |
---|
839 | /**Function******************************************************************** |
---|
840 | |
---|
841 | Synopsis [Counts the variables on which a DD depends.] |
---|
842 | |
---|
843 | Description [Counts the variables on which a DD depends. |
---|
844 | Returns the number of the variables if successful; CUDD_OUT_OF_MEM |
---|
845 | otherwise.] |
---|
846 | |
---|
847 | SideEffects [None] |
---|
848 | |
---|
849 | SeeAlso [Cudd_Support] |
---|
850 | |
---|
851 | ******************************************************************************/ |
---|
852 | int |
---|
853 | Cudd_SupportSize( |
---|
854 | DdManager * dd /* manager */, |
---|
855 | DdNode * f /* DD whose support size is sought */) |
---|
856 | { |
---|
857 | int *support; |
---|
858 | int i; |
---|
859 | int size; |
---|
860 | int count; |
---|
861 | |
---|
862 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
863 | size = ddMax(dd->size, dd->sizeZ); |
---|
864 | support = ALLOC(int,size); |
---|
865 | if (support == NULL) { |
---|
866 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
867 | return(CUDD_OUT_OF_MEM); |
---|
868 | } |
---|
869 | for (i = 0; i < size; i++) { |
---|
870 | support[i] = 0; |
---|
871 | } |
---|
872 | |
---|
873 | /* Compute support and clean up markers. */ |
---|
874 | ddSupportStep(Cudd_Regular(f),support); |
---|
875 | ddClearFlag(Cudd_Regular(f)); |
---|
876 | |
---|
877 | /* Count support variables. */ |
---|
878 | count = 0; |
---|
879 | for (i = 0; i < size; i++) { |
---|
880 | if (support[i] == 1) count++; |
---|
881 | } |
---|
882 | |
---|
883 | FREE(support); |
---|
884 | return(count); |
---|
885 | |
---|
886 | } /* end of Cudd_SupportSize */ |
---|
887 | |
---|
888 | |
---|
889 | /**Function******************************************************************** |
---|
890 | |
---|
891 | Synopsis [Finds the variables on which a set of DDs depends.] |
---|
892 | |
---|
893 | Description [Finds the variables on which a set of DDs depends. |
---|
894 | The set must contain either BDDs and ADDs, or ZDDs. |
---|
895 | Returns a BDD consisting of the product of the variables if |
---|
896 | successful; NULL otherwise.] |
---|
897 | |
---|
898 | SideEffects [None] |
---|
899 | |
---|
900 | SeeAlso [Cudd_Support Cudd_ClassifySupport] |
---|
901 | |
---|
902 | ******************************************************************************/ |
---|
903 | DdNode * |
---|
904 | Cudd_VectorSupport( |
---|
905 | DdManager * dd /* manager */, |
---|
906 | DdNode ** F /* array of DDs whose support is sought */, |
---|
907 | int n /* size of the array */) |
---|
908 | { |
---|
909 | int *support; |
---|
910 | DdNode *res, *tmp, *var; |
---|
911 | int i,j; |
---|
912 | int size; |
---|
913 | |
---|
914 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
915 | size = ddMax(dd->size, dd->sizeZ); |
---|
916 | support = ALLOC(int,size); |
---|
917 | if (support == NULL) { |
---|
918 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
919 | return(NULL); |
---|
920 | } |
---|
921 | for (i = 0; i < size; i++) { |
---|
922 | support[i] = 0; |
---|
923 | } |
---|
924 | |
---|
925 | /* Compute support and clean up markers. */ |
---|
926 | for (i = 0; i < n; i++) { |
---|
927 | ddSupportStep(Cudd_Regular(F[i]),support); |
---|
928 | } |
---|
929 | for (i = 0; i < n; i++) { |
---|
930 | ddClearFlag(Cudd_Regular(F[i])); |
---|
931 | } |
---|
932 | |
---|
933 | /* Transform support from array to cube. */ |
---|
934 | res = DD_ONE(dd); |
---|
935 | cuddRef(res); |
---|
936 | for (j = size - 1; j >= 0; j--) { /* for each level bottom-up */ |
---|
937 | i = (j >= dd->size) ? j : dd->invperm[j]; |
---|
938 | if (support[i] == 1) { |
---|
939 | var = cuddUniqueInter(dd,i,dd->one,Cudd_Not(dd->one)); |
---|
940 | cuddRef(var); |
---|
941 | tmp = Cudd_bddAnd(dd,res,var); |
---|
942 | if (tmp == NULL) { |
---|
943 | Cudd_RecursiveDeref(dd,res); |
---|
944 | Cudd_RecursiveDeref(dd,var); |
---|
945 | FREE(support); |
---|
946 | return(NULL); |
---|
947 | } |
---|
948 | cuddRef(tmp); |
---|
949 | Cudd_RecursiveDeref(dd,res); |
---|
950 | Cudd_RecursiveDeref(dd,var); |
---|
951 | res = tmp; |
---|
952 | } |
---|
953 | } |
---|
954 | |
---|
955 | FREE(support); |
---|
956 | cuddDeref(res); |
---|
957 | return(res); |
---|
958 | |
---|
959 | } /* end of Cudd_VectorSupport */ |
---|
960 | |
---|
961 | |
---|
962 | /**Function******************************************************************** |
---|
963 | |
---|
964 | Synopsis [Finds the variables on which a set of DDs depends.] |
---|
965 | |
---|
966 | Description [Finds the variables on which a set of DDs depends. |
---|
967 | The set must contain either BDDs and ADDs, or ZDDs. |
---|
968 | Returns an index array of the variables if successful; NULL otherwise.] |
---|
969 | |
---|
970 | SideEffects [None] |
---|
971 | |
---|
972 | SeeAlso [Cudd_SupportIndex Cudd_VectorSupport Cudd_ClassifySupport] |
---|
973 | |
---|
974 | ******************************************************************************/ |
---|
975 | int * |
---|
976 | Cudd_VectorSupportIndex( |
---|
977 | DdManager * dd /* manager */, |
---|
978 | DdNode ** F /* array of DDs whose support is sought */, |
---|
979 | int n /* size of the array */) |
---|
980 | { |
---|
981 | int *support; |
---|
982 | int i; |
---|
983 | int size; |
---|
984 | |
---|
985 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
986 | size = ddMax(dd->size, dd->sizeZ); |
---|
987 | support = ALLOC(int,size); |
---|
988 | if (support == NULL) { |
---|
989 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
990 | return(NULL); |
---|
991 | } |
---|
992 | for (i = 0; i < size; i++) { |
---|
993 | support[i] = 0; |
---|
994 | } |
---|
995 | |
---|
996 | /* Compute support and clean up markers. */ |
---|
997 | for (i = 0; i < n; i++) { |
---|
998 | ddSupportStep(Cudd_Regular(F[i]),support); |
---|
999 | } |
---|
1000 | for (i = 0; i < n; i++) { |
---|
1001 | ddClearFlag(Cudd_Regular(F[i])); |
---|
1002 | } |
---|
1003 | |
---|
1004 | return(support); |
---|
1005 | |
---|
1006 | } /* end of Cudd_VectorSupportIndex */ |
---|
1007 | |
---|
1008 | |
---|
1009 | /**Function******************************************************************** |
---|
1010 | |
---|
1011 | Synopsis [Counts the variables on which a set of DDs depends.] |
---|
1012 | |
---|
1013 | Description [Counts the variables on which a set of DDs depends. |
---|
1014 | The set must contain either BDDs and ADDs, or ZDDs. |
---|
1015 | Returns the number of the variables if successful; CUDD_OUT_OF_MEM |
---|
1016 | otherwise.] |
---|
1017 | |
---|
1018 | SideEffects [None] |
---|
1019 | |
---|
1020 | SeeAlso [Cudd_VectorSupport Cudd_SupportSize] |
---|
1021 | |
---|
1022 | ******************************************************************************/ |
---|
1023 | int |
---|
1024 | Cudd_VectorSupportSize( |
---|
1025 | DdManager * dd /* manager */, |
---|
1026 | DdNode ** F /* array of DDs whose support is sought */, |
---|
1027 | int n /* size of the array */) |
---|
1028 | { |
---|
1029 | int *support; |
---|
1030 | int i; |
---|
1031 | int size; |
---|
1032 | int count; |
---|
1033 | |
---|
1034 | /* Allocate and initialize support array for ddSupportStep. */ |
---|
1035 | size = ddMax(dd->size, dd->sizeZ); |
---|
1036 | support = ALLOC(int,size); |
---|
1037 | if (support == NULL) { |
---|
1038 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1039 | return(CUDD_OUT_OF_MEM); |
---|
1040 | } |
---|
1041 | for (i = 0; i < size; i++) { |
---|
1042 | support[i] = 0; |
---|
1043 | } |
---|
1044 | |
---|
1045 | /* Compute support and clean up markers. */ |
---|
1046 | for (i = 0; i < n; i++) { |
---|
1047 | ddSupportStep(Cudd_Regular(F[i]),support); |
---|
1048 | } |
---|
1049 | for (i = 0; i < n; i++) { |
---|
1050 | ddClearFlag(Cudd_Regular(F[i])); |
---|
1051 | } |
---|
1052 | |
---|
1053 | /* Count vriables in support. */ |
---|
1054 | count = 0; |
---|
1055 | for (i = 0; i < size; i++) { |
---|
1056 | if (support[i] == 1) count++; |
---|
1057 | } |
---|
1058 | |
---|
1059 | FREE(support); |
---|
1060 | return(count); |
---|
1061 | |
---|
1062 | } /* end of Cudd_VectorSupportSize */ |
---|
1063 | |
---|
1064 | |
---|
1065 | /**Function******************************************************************** |
---|
1066 | |
---|
1067 | Synopsis [Classifies the variables in the support of two DDs.] |
---|
1068 | |
---|
1069 | Description [Classifies the variables in the support of two DDs |
---|
1070 | <code>f</code> and <code>g</code>, depending on whther they appear |
---|
1071 | in both DDs, only in <code>f</code>, or only in <code>g</code>. |
---|
1072 | Returns 1 if successful; 0 otherwise.] |
---|
1073 | |
---|
1074 | SideEffects [The cubes of the three classes of variables are |
---|
1075 | returned as side effects.] |
---|
1076 | |
---|
1077 | SeeAlso [Cudd_Support Cudd_VectorSupport] |
---|
1078 | |
---|
1079 | ******************************************************************************/ |
---|
1080 | int |
---|
1081 | Cudd_ClassifySupport( |
---|
1082 | DdManager * dd /* manager */, |
---|
1083 | DdNode * f /* first DD */, |
---|
1084 | DdNode * g /* second DD */, |
---|
1085 | DdNode ** common /* cube of shared variables */, |
---|
1086 | DdNode ** onlyF /* cube of variables only in f */, |
---|
1087 | DdNode ** onlyG /* cube of variables only in g */) |
---|
1088 | { |
---|
1089 | int *supportF, *supportG; |
---|
1090 | DdNode *tmp, *var; |
---|
1091 | int i,j; |
---|
1092 | int size; |
---|
1093 | |
---|
1094 | /* Allocate and initialize support arrays for ddSupportStep. */ |
---|
1095 | size = ddMax(dd->size, dd->sizeZ); |
---|
1096 | supportF = ALLOC(int,size); |
---|
1097 | if (supportF == NULL) { |
---|
1098 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1099 | return(0); |
---|
1100 | } |
---|
1101 | supportG = ALLOC(int,size); |
---|
1102 | if (supportG == NULL) { |
---|
1103 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1104 | FREE(supportF); |
---|
1105 | return(0); |
---|
1106 | } |
---|
1107 | for (i = 0; i < size; i++) { |
---|
1108 | supportF[i] = 0; |
---|
1109 | supportG[i] = 0; |
---|
1110 | } |
---|
1111 | |
---|
1112 | /* Compute supports and clean up markers. */ |
---|
1113 | ddSupportStep(Cudd_Regular(f),supportF); |
---|
1114 | ddClearFlag(Cudd_Regular(f)); |
---|
1115 | ddSupportStep(Cudd_Regular(g),supportG); |
---|
1116 | ddClearFlag(Cudd_Regular(g)); |
---|
1117 | |
---|
1118 | /* Classify variables and create cubes. */ |
---|
1119 | *common = *onlyF = *onlyG = DD_ONE(dd); |
---|
1120 | cuddRef(*common); cuddRef(*onlyF); cuddRef(*onlyG); |
---|
1121 | for (j = size - 1; j >= 0; j--) { /* for each level bottom-up */ |
---|
1122 | i = (j >= dd->size) ? j : dd->invperm[j]; |
---|
1123 | if (supportF[i] == 0 && supportG[i] == 0) continue; |
---|
1124 | var = cuddUniqueInter(dd,i,dd->one,Cudd_Not(dd->one)); |
---|
1125 | cuddRef(var); |
---|
1126 | if (supportG[i] == 0) { |
---|
1127 | tmp = Cudd_bddAnd(dd,*onlyF,var); |
---|
1128 | if (tmp == NULL) { |
---|
1129 | Cudd_RecursiveDeref(dd,*common); |
---|
1130 | Cudd_RecursiveDeref(dd,*onlyF); |
---|
1131 | Cudd_RecursiveDeref(dd,*onlyG); |
---|
1132 | Cudd_RecursiveDeref(dd,var); |
---|
1133 | FREE(supportF); FREE(supportG); |
---|
1134 | return(0); |
---|
1135 | } |
---|
1136 | cuddRef(tmp); |
---|
1137 | Cudd_RecursiveDeref(dd,*onlyF); |
---|
1138 | *onlyF = tmp; |
---|
1139 | } else if (supportF[i] == 0) { |
---|
1140 | tmp = Cudd_bddAnd(dd,*onlyG,var); |
---|
1141 | if (tmp == NULL) { |
---|
1142 | Cudd_RecursiveDeref(dd,*common); |
---|
1143 | Cudd_RecursiveDeref(dd,*onlyF); |
---|
1144 | Cudd_RecursiveDeref(dd,*onlyG); |
---|
1145 | Cudd_RecursiveDeref(dd,var); |
---|
1146 | FREE(supportF); FREE(supportG); |
---|
1147 | return(0); |
---|
1148 | } |
---|
1149 | cuddRef(tmp); |
---|
1150 | Cudd_RecursiveDeref(dd,*onlyG); |
---|
1151 | *onlyG = tmp; |
---|
1152 | } else { |
---|
1153 | tmp = Cudd_bddAnd(dd,*common,var); |
---|
1154 | if (tmp == NULL) { |
---|
1155 | Cudd_RecursiveDeref(dd,*common); |
---|
1156 | Cudd_RecursiveDeref(dd,*onlyF); |
---|
1157 | Cudd_RecursiveDeref(dd,*onlyG); |
---|
1158 | Cudd_RecursiveDeref(dd,var); |
---|
1159 | FREE(supportF); FREE(supportG); |
---|
1160 | return(0); |
---|
1161 | } |
---|
1162 | cuddRef(tmp); |
---|
1163 | Cudd_RecursiveDeref(dd,*common); |
---|
1164 | *common = tmp; |
---|
1165 | } |
---|
1166 | Cudd_RecursiveDeref(dd,var); |
---|
1167 | } |
---|
1168 | |
---|
1169 | FREE(supportF); FREE(supportG); |
---|
1170 | cuddDeref(*common); cuddDeref(*onlyF); cuddDeref(*onlyG); |
---|
1171 | return(1); |
---|
1172 | |
---|
1173 | } /* end of Cudd_ClassifySupport */ |
---|
1174 | |
---|
1175 | |
---|
1176 | /**Function******************************************************************** |
---|
1177 | |
---|
1178 | Synopsis [Counts the number of leaves in a DD.] |
---|
1179 | |
---|
1180 | Description [Counts the number of leaves in a DD. Returns the number |
---|
1181 | of leaves in the DD rooted at node if successful; CUDD_OUT_OF_MEM |
---|
1182 | otherwise.] |
---|
1183 | |
---|
1184 | SideEffects [None] |
---|
1185 | |
---|
1186 | SeeAlso [Cudd_PrintDebug] |
---|
1187 | |
---|
1188 | ******************************************************************************/ |
---|
1189 | int |
---|
1190 | Cudd_CountLeaves( |
---|
1191 | DdNode * node) |
---|
1192 | { |
---|
1193 | int i; |
---|
1194 | |
---|
1195 | i = ddLeavesInt(Cudd_Regular(node)); |
---|
1196 | ddClearFlag(Cudd_Regular(node)); |
---|
1197 | return(i); |
---|
1198 | |
---|
1199 | } /* end of Cudd_CountLeaves */ |
---|
1200 | |
---|
1201 | |
---|
1202 | /**Function******************************************************************** |
---|
1203 | |
---|
1204 | Synopsis [Picks one on-set cube randomly from the given DD.] |
---|
1205 | |
---|
1206 | Description [Picks one on-set cube randomly from the given DD. The |
---|
1207 | cube is written into an array of characters. The array must have at |
---|
1208 | least as many entries as there are variables. Returns 1 if |
---|
1209 | successful; 0 otherwise.] |
---|
1210 | |
---|
1211 | SideEffects [None] |
---|
1212 | |
---|
1213 | SeeAlso [Cudd_bddPickOneMinterm] |
---|
1214 | |
---|
1215 | ******************************************************************************/ |
---|
1216 | int |
---|
1217 | Cudd_bddPickOneCube( |
---|
1218 | DdManager * ddm, |
---|
1219 | DdNode * node, |
---|
1220 | char * string) |
---|
1221 | { |
---|
1222 | DdNode *N, *T, *E; |
---|
1223 | DdNode *one, *bzero; |
---|
1224 | char dir; |
---|
1225 | int i; |
---|
1226 | |
---|
1227 | if (string == NULL || node == NULL) return(0); |
---|
1228 | |
---|
1229 | /* The constant 0 function has no on-set cubes. */ |
---|
1230 | one = DD_ONE(ddm); |
---|
1231 | bzero = Cudd_Not(one); |
---|
1232 | if (node == bzero) return(0); |
---|
1233 | |
---|
1234 | for (i = 0; i < ddm->size; i++) string[i] = 2; |
---|
1235 | |
---|
1236 | for (;;) { |
---|
1237 | |
---|
1238 | if (node == one) break; |
---|
1239 | |
---|
1240 | N = Cudd_Regular(node); |
---|
1241 | |
---|
1242 | T = cuddT(N); E = cuddE(N); |
---|
1243 | if (Cudd_IsComplement(node)) { |
---|
1244 | T = Cudd_Not(T); E = Cudd_Not(E); |
---|
1245 | } |
---|
1246 | if (T == bzero) { |
---|
1247 | string[N->index] = 0; |
---|
1248 | node = E; |
---|
1249 | } else if (E == bzero) { |
---|
1250 | string[N->index] = 1; |
---|
1251 | node = T; |
---|
1252 | } else { |
---|
1253 | dir = (char) ((Cudd_Random() & 0x2000) >> 13); |
---|
1254 | string[N->index] = dir; |
---|
1255 | node = dir ? T : E; |
---|
1256 | } |
---|
1257 | } |
---|
1258 | return(1); |
---|
1259 | |
---|
1260 | } /* end of Cudd_bddPickOneCube */ |
---|
1261 | |
---|
1262 | |
---|
1263 | /**Function******************************************************************** |
---|
1264 | |
---|
1265 | Synopsis [Picks one on-set minterm randomly from the given DD.] |
---|
1266 | |
---|
1267 | Description [Picks one on-set minterm randomly from the given |
---|
1268 | DD. The minterm is in terms of <code>vars</code>. The array |
---|
1269 | <code>vars</code> should contain at least all variables in the |
---|
1270 | support of <code>f</code>; if this condition is not met the minterm |
---|
1271 | built by this procedure may not be contained in |
---|
1272 | <code>f</code>. Builds a BDD for the minterm and returns a pointer |
---|
1273 | to it if successful; NULL otherwise. There are three reasons why the |
---|
1274 | procedure may fail: |
---|
1275 | <ul> |
---|
1276 | <li> It may run out of memory; |
---|
1277 | <li> the function <code>f</code> may be the constant 0; |
---|
1278 | <li> the minterm may not be contained in <code>f</code>. |
---|
1279 | </ul>] |
---|
1280 | |
---|
1281 | SideEffects [None] |
---|
1282 | |
---|
1283 | SeeAlso [Cudd_bddPickOneCube] |
---|
1284 | |
---|
1285 | ******************************************************************************/ |
---|
1286 | DdNode * |
---|
1287 | Cudd_bddPickOneMinterm( |
---|
1288 | DdManager * dd /* manager */, |
---|
1289 | DdNode * f /* function from which to pick one minterm */, |
---|
1290 | DdNode ** vars /* array of variables */, |
---|
1291 | int n /* size of <code>vars</code> */) |
---|
1292 | { |
---|
1293 | char *string; |
---|
1294 | int i, size; |
---|
1295 | int *indices; |
---|
1296 | int result; |
---|
1297 | DdNode *old, *neW; |
---|
1298 | |
---|
1299 | size = dd->size; |
---|
1300 | string = ALLOC(char, size); |
---|
1301 | if (string == NULL) { |
---|
1302 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1303 | return(NULL); |
---|
1304 | } |
---|
1305 | indices = ALLOC(int,n); |
---|
1306 | if (indices == NULL) { |
---|
1307 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1308 | FREE(string); |
---|
1309 | return(NULL); |
---|
1310 | } |
---|
1311 | |
---|
1312 | for (i = 0; i < n; i++) { |
---|
1313 | indices[i] = vars[i]->index; |
---|
1314 | } |
---|
1315 | |
---|
1316 | result = Cudd_bddPickOneCube(dd,f,string); |
---|
1317 | if (result == 0) { |
---|
1318 | FREE(string); |
---|
1319 | FREE(indices); |
---|
1320 | return(NULL); |
---|
1321 | } |
---|
1322 | |
---|
1323 | /* Randomize choice for don't cares. */ |
---|
1324 | for (i = 0; i < n; i++) { |
---|
1325 | if (string[indices[i]] == 2) |
---|
1326 | string[indices[i]] = (char) ((Cudd_Random() & 0x20) >> 5); |
---|
1327 | } |
---|
1328 | |
---|
1329 | /* Build result BDD. */ |
---|
1330 | old = Cudd_ReadOne(dd); |
---|
1331 | cuddRef(old); |
---|
1332 | |
---|
1333 | for (i = n-1; i >= 0; i--) { |
---|
1334 | neW = Cudd_bddAnd(dd,old,Cudd_NotCond(vars[i],string[indices[i]]==0)); |
---|
1335 | if (neW == NULL) { |
---|
1336 | FREE(string); |
---|
1337 | FREE(indices); |
---|
1338 | Cudd_RecursiveDeref(dd,old); |
---|
1339 | return(NULL); |
---|
1340 | } |
---|
1341 | cuddRef(neW); |
---|
1342 | Cudd_RecursiveDeref(dd,old); |
---|
1343 | old = neW; |
---|
1344 | } |
---|
1345 | |
---|
1346 | #ifdef DD_DEBUG |
---|
1347 | /* Test. */ |
---|
1348 | if (Cudd_bddLeq(dd,old,f)) { |
---|
1349 | cuddDeref(old); |
---|
1350 | } else { |
---|
1351 | Cudd_RecursiveDeref(dd,old); |
---|
1352 | old = NULL; |
---|
1353 | } |
---|
1354 | #else |
---|
1355 | cuddDeref(old); |
---|
1356 | #endif |
---|
1357 | |
---|
1358 | FREE(string); |
---|
1359 | FREE(indices); |
---|
1360 | return(old); |
---|
1361 | |
---|
1362 | } /* end of Cudd_bddPickOneMinterm */ |
---|
1363 | |
---|
1364 | |
---|
1365 | /**Function******************************************************************** |
---|
1366 | |
---|
1367 | Synopsis [Picks k on-set minterms evenly distributed from given DD.] |
---|
1368 | |
---|
1369 | Description [Picks k on-set minterms evenly distributed from given DD. |
---|
1370 | The minterms are in terms of <code>vars</code>. The array |
---|
1371 | <code>vars</code> should contain at least all variables in the |
---|
1372 | support of <code>f</code>; if this condition is not met the minterms |
---|
1373 | built by this procedure may not be contained in |
---|
1374 | <code>f</code>. Builds an array of BDDs for the minterms and returns a |
---|
1375 | pointer to it if successful; NULL otherwise. There are three reasons |
---|
1376 | why the procedure may fail: |
---|
1377 | <ul> |
---|
1378 | <li> It may run out of memory; |
---|
1379 | <li> the function <code>f</code> may be the constant 0; |
---|
1380 | <li> the minterms may not be contained in <code>f</code>. |
---|
1381 | </ul>] |
---|
1382 | |
---|
1383 | SideEffects [None] |
---|
1384 | |
---|
1385 | SeeAlso [Cudd_bddPickOneMinterm Cudd_bddPickOneCube] |
---|
1386 | |
---|
1387 | ******************************************************************************/ |
---|
1388 | DdNode ** |
---|
1389 | Cudd_bddPickArbitraryMinterms( |
---|
1390 | DdManager * dd /* manager */, |
---|
1391 | DdNode * f /* function from which to pick k minterms */, |
---|
1392 | DdNode ** vars /* array of variables */, |
---|
1393 | int n /* size of <code>vars</code> */, |
---|
1394 | int k /* number of minterms to find */) |
---|
1395 | { |
---|
1396 | char **string; |
---|
1397 | int i, j, l, size; |
---|
1398 | int *indices; |
---|
1399 | int result; |
---|
1400 | DdNode **old, *neW; |
---|
1401 | double minterms; |
---|
1402 | char *saveString; |
---|
1403 | int saveFlag, savePoint, isSame; |
---|
1404 | |
---|
1405 | minterms = Cudd_CountMinterm(dd,f,n); |
---|
1406 | if ((double)k > minterms) { |
---|
1407 | return(NULL); |
---|
1408 | } |
---|
1409 | |
---|
1410 | size = dd->size; |
---|
1411 | string = ALLOC(char *, k); |
---|
1412 | if (string == NULL) { |
---|
1413 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1414 | return(NULL); |
---|
1415 | } |
---|
1416 | for (i = 0; i < k; i++) { |
---|
1417 | string[i] = ALLOC(char, size + 1); |
---|
1418 | if (string[i] == NULL) { |
---|
1419 | for (j = 0; j < i; j++) |
---|
1420 | FREE(string[i]); |
---|
1421 | FREE(string); |
---|
1422 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1423 | return(NULL); |
---|
1424 | } |
---|
1425 | for (j = 0; j < size; j++) string[i][j] = '2'; |
---|
1426 | string[i][size] = '\0'; |
---|
1427 | } |
---|
1428 | indices = ALLOC(int,n); |
---|
1429 | if (indices == NULL) { |
---|
1430 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1431 | for (i = 0; i < k; i++) |
---|
1432 | FREE(string[i]); |
---|
1433 | FREE(string); |
---|
1434 | return(NULL); |
---|
1435 | } |
---|
1436 | |
---|
1437 | for (i = 0; i < n; i++) { |
---|
1438 | indices[i] = vars[i]->index; |
---|
1439 | } |
---|
1440 | |
---|
1441 | result = ddPickArbitraryMinterms(dd,f,n,k,string); |
---|
1442 | if (result == 0) { |
---|
1443 | for (i = 0; i < k; i++) |
---|
1444 | FREE(string[i]); |
---|
1445 | FREE(string); |
---|
1446 | FREE(indices); |
---|
1447 | return(NULL); |
---|
1448 | } |
---|
1449 | |
---|
1450 | old = ALLOC(DdNode *, k); |
---|
1451 | if (old == NULL) { |
---|
1452 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1453 | for (i = 0; i < k; i++) |
---|
1454 | FREE(string[i]); |
---|
1455 | FREE(string); |
---|
1456 | FREE(indices); |
---|
1457 | return(NULL); |
---|
1458 | } |
---|
1459 | saveString = ALLOC(char, size + 1); |
---|
1460 | if (saveString == NULL) { |
---|
1461 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1462 | for (i = 0; i < k; i++) |
---|
1463 | FREE(string[i]); |
---|
1464 | FREE(string); |
---|
1465 | FREE(indices); |
---|
1466 | FREE(old); |
---|
1467 | return(NULL); |
---|
1468 | } |
---|
1469 | saveFlag = 0; |
---|
1470 | |
---|
1471 | /* Build result BDD array. */ |
---|
1472 | for (i = 0; i < k; i++) { |
---|
1473 | isSame = 0; |
---|
1474 | if (!saveFlag) { |
---|
1475 | for (j = i + 1; j < k; j++) { |
---|
1476 | if (strcmp(string[i], string[j]) == 0) { |
---|
1477 | savePoint = i; |
---|
1478 | strcpy(saveString, string[i]); |
---|
1479 | saveFlag = 1; |
---|
1480 | break; |
---|
1481 | } |
---|
1482 | } |
---|
1483 | } else { |
---|
1484 | if (strcmp(string[i], saveString) == 0) { |
---|
1485 | isSame = 1; |
---|
1486 | } else { |
---|
1487 | saveFlag = 0; |
---|
1488 | for (j = i + 1; j < k; j++) { |
---|
1489 | if (strcmp(string[i], string[j]) == 0) { |
---|
1490 | savePoint = i; |
---|
1491 | strcpy(saveString, string[i]); |
---|
1492 | saveFlag = 1; |
---|
1493 | break; |
---|
1494 | } |
---|
1495 | } |
---|
1496 | } |
---|
1497 | } |
---|
1498 | /* Randomize choice for don't cares. */ |
---|
1499 | for (j = 0; j < n; j++) { |
---|
1500 | if (string[i][indices[j]] == '2') |
---|
1501 | string[i][indices[j]] = |
---|
1502 | (char) ((Cudd_Random() & 0x20) ? '1' : '0'); |
---|
1503 | } |
---|
1504 | |
---|
1505 | while (isSame) { |
---|
1506 | isSame = 0; |
---|
1507 | for (j = savePoint; j < i; j++) { |
---|
1508 | if (strcmp(string[i], string[j]) == 0) { |
---|
1509 | isSame = 1; |
---|
1510 | break; |
---|
1511 | } |
---|
1512 | } |
---|
1513 | if (isSame) { |
---|
1514 | strcpy(string[i], saveString); |
---|
1515 | /* Randomize choice for don't cares. */ |
---|
1516 | for (j = 0; j < n; j++) { |
---|
1517 | if (string[i][indices[j]] == '2') |
---|
1518 | string[i][indices[j]] = |
---|
1519 | (char) ((Cudd_Random() & 0x20) ? '1' : '0'); |
---|
1520 | } |
---|
1521 | } |
---|
1522 | } |
---|
1523 | |
---|
1524 | old[i] = Cudd_ReadOne(dd); |
---|
1525 | cuddRef(old[i]); |
---|
1526 | |
---|
1527 | for (j = 0; j < n; j++) { |
---|
1528 | if (string[i][indices[j]] == '0') { |
---|
1529 | neW = Cudd_bddAnd(dd,old[i],Cudd_Not(vars[j])); |
---|
1530 | } else { |
---|
1531 | neW = Cudd_bddAnd(dd,old[i],vars[j]); |
---|
1532 | } |
---|
1533 | if (neW == NULL) { |
---|
1534 | FREE(saveString); |
---|
1535 | for (l = 0; l < k; l++) |
---|
1536 | FREE(string[l]); |
---|
1537 | FREE(string); |
---|
1538 | FREE(indices); |
---|
1539 | for (l = 0; l <= i; l++) |
---|
1540 | Cudd_RecursiveDeref(dd,old[l]); |
---|
1541 | FREE(old); |
---|
1542 | return(NULL); |
---|
1543 | } |
---|
1544 | cuddRef(neW); |
---|
1545 | Cudd_RecursiveDeref(dd,old[i]); |
---|
1546 | old[i] = neW; |
---|
1547 | } |
---|
1548 | |
---|
1549 | /* Test. */ |
---|
1550 | if (!Cudd_bddLeq(dd,old[i],f)) { |
---|
1551 | FREE(saveString); |
---|
1552 | for (l = 0; l < k; l++) |
---|
1553 | FREE(string[l]); |
---|
1554 | FREE(string); |
---|
1555 | FREE(indices); |
---|
1556 | for (l = 0; l <= i; l++) |
---|
1557 | Cudd_RecursiveDeref(dd,old[l]); |
---|
1558 | FREE(old); |
---|
1559 | return(NULL); |
---|
1560 | } |
---|
1561 | } |
---|
1562 | |
---|
1563 | FREE(saveString); |
---|
1564 | for (i = 0; i < k; i++) { |
---|
1565 | cuddDeref(old[i]); |
---|
1566 | FREE(string[i]); |
---|
1567 | } |
---|
1568 | FREE(string); |
---|
1569 | FREE(indices); |
---|
1570 | return(old); |
---|
1571 | |
---|
1572 | } /* end of Cudd_bddPickArbitraryMinterms */ |
---|
1573 | |
---|
1574 | |
---|
1575 | /**Function******************************************************************** |
---|
1576 | |
---|
1577 | Synopsis [Extracts a subset from a BDD.] |
---|
1578 | |
---|
1579 | Description [Extracts a subset from a BDD in the following procedure. |
---|
1580 | 1. Compute the weight for each mask variable by counting the number of |
---|
1581 | minterms for both positive and negative cofactors of the BDD with |
---|
1582 | respect to each mask variable. (weight = #positive - #negative) |
---|
1583 | 2. Find a representative cube of the BDD by using the weight. From the |
---|
1584 | top variable of the BDD, for each variable, if the weight is greater |
---|
1585 | than 0.0, choose THEN branch, othereise ELSE branch, until meeting |
---|
1586 | the constant 1. |
---|
1587 | 3. Quantify out the variables not in maskVars from the representative |
---|
1588 | cube and if a variable in maskVars is don't care, replace the |
---|
1589 | variable with a constant(1 or 0) depending on the weight. |
---|
1590 | 4. Make a subset of the BDD by multiplying with the modified cube.] |
---|
1591 | |
---|
1592 | SideEffects [None] |
---|
1593 | |
---|
1594 | SeeAlso [] |
---|
1595 | |
---|
1596 | ******************************************************************************/ |
---|
1597 | DdNode * |
---|
1598 | Cudd_SubsetWithMaskVars( |
---|
1599 | DdManager * dd /* manager */, |
---|
1600 | DdNode * f /* function from which to pick a cube */, |
---|
1601 | DdNode ** vars /* array of variables */, |
---|
1602 | int nvars /* size of <code>vars</code> */, |
---|
1603 | DdNode ** maskVars /* array of variables */, |
---|
1604 | int mvars /* size of <code>maskVars</code> */) |
---|
1605 | { |
---|
1606 | double *weight; |
---|
1607 | char *string; |
---|
1608 | int i, size; |
---|
1609 | int *indices, *mask; |
---|
1610 | int result; |
---|
1611 | DdNode *zero, *cube, *newCube, *subset; |
---|
1612 | DdNode *cof; |
---|
1613 | |
---|
1614 | DdNode *support; |
---|
1615 | support = Cudd_Support(dd,f); |
---|
1616 | cuddRef(support); |
---|
1617 | Cudd_RecursiveDeref(dd,support); |
---|
1618 | |
---|
1619 | zero = Cudd_Not(dd->one); |
---|
1620 | size = dd->size; |
---|
1621 | |
---|
1622 | weight = ALLOC(double,size); |
---|
1623 | if (weight == NULL) { |
---|
1624 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1625 | return(NULL); |
---|
1626 | } |
---|
1627 | for (i = 0; i < size; i++) { |
---|
1628 | weight[i] = 0.0; |
---|
1629 | } |
---|
1630 | for (i = 0; i < mvars; i++) { |
---|
1631 | cof = Cudd_Cofactor(dd, f, maskVars[i]); |
---|
1632 | cuddRef(cof); |
---|
1633 | weight[i] = Cudd_CountMinterm(dd, cof, nvars); |
---|
1634 | Cudd_RecursiveDeref(dd,cof); |
---|
1635 | |
---|
1636 | cof = Cudd_Cofactor(dd, f, Cudd_Not(maskVars[i])); |
---|
1637 | cuddRef(cof); |
---|
1638 | weight[i] -= Cudd_CountMinterm(dd, cof, nvars); |
---|
1639 | Cudd_RecursiveDeref(dd,cof); |
---|
1640 | } |
---|
1641 | |
---|
1642 | string = ALLOC(char, size + 1); |
---|
1643 | if (string == NULL) { |
---|
1644 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1645 | FREE(weight); |
---|
1646 | return(NULL); |
---|
1647 | } |
---|
1648 | mask = ALLOC(int, size); |
---|
1649 | if (mask == NULL) { |
---|
1650 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1651 | FREE(weight); |
---|
1652 | FREE(string); |
---|
1653 | return(NULL); |
---|
1654 | } |
---|
1655 | for (i = 0; i < size; i++) { |
---|
1656 | string[i] = '2'; |
---|
1657 | mask[i] = 0; |
---|
1658 | } |
---|
1659 | string[size] = '\0'; |
---|
1660 | indices = ALLOC(int,nvars); |
---|
1661 | if (indices == NULL) { |
---|
1662 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1663 | FREE(weight); |
---|
1664 | FREE(string); |
---|
1665 | FREE(mask); |
---|
1666 | return(NULL); |
---|
1667 | } |
---|
1668 | for (i = 0; i < nvars; i++) { |
---|
1669 | indices[i] = vars[i]->index; |
---|
1670 | } |
---|
1671 | |
---|
1672 | result = ddPickRepresentativeCube(dd,f,weight,string); |
---|
1673 | if (result == 0) { |
---|
1674 | FREE(weight); |
---|
1675 | FREE(string); |
---|
1676 | FREE(mask); |
---|
1677 | FREE(indices); |
---|
1678 | return(NULL); |
---|
1679 | } |
---|
1680 | |
---|
1681 | cube = Cudd_ReadOne(dd); |
---|
1682 | cuddRef(cube); |
---|
1683 | zero = Cudd_Not(Cudd_ReadOne(dd)); |
---|
1684 | for (i = 0; i < nvars; i++) { |
---|
1685 | if (string[indices[i]] == '0') { |
---|
1686 | newCube = Cudd_bddIte(dd,cube,Cudd_Not(vars[i]),zero); |
---|
1687 | } else if (string[indices[i]] == '1') { |
---|
1688 | newCube = Cudd_bddIte(dd,cube,vars[i],zero); |
---|
1689 | } else |
---|
1690 | continue; |
---|
1691 | if (newCube == NULL) { |
---|
1692 | FREE(weight); |
---|
1693 | FREE(string); |
---|
1694 | FREE(mask); |
---|
1695 | FREE(indices); |
---|
1696 | Cudd_RecursiveDeref(dd,cube); |
---|
1697 | return(NULL); |
---|
1698 | } |
---|
1699 | cuddRef(newCube); |
---|
1700 | Cudd_RecursiveDeref(dd,cube); |
---|
1701 | cube = newCube; |
---|
1702 | } |
---|
1703 | Cudd_RecursiveDeref(dd,cube); |
---|
1704 | |
---|
1705 | for (i = 0; i < mvars; i++) { |
---|
1706 | mask[maskVars[i]->index] = 1; |
---|
1707 | } |
---|
1708 | for (i = 0; i < nvars; i++) { |
---|
1709 | if (mask[indices[i]]) { |
---|
1710 | if (string[indices[i]] == '2') { |
---|
1711 | if (weight[indices[i]] >= 0.0) |
---|
1712 | string[indices[i]] = '1'; |
---|
1713 | else |
---|
1714 | string[indices[i]] = '0'; |
---|
1715 | } |
---|
1716 | } else { |
---|
1717 | string[indices[i]] = '2'; |
---|
1718 | } |
---|
1719 | } |
---|
1720 | |
---|
1721 | cube = Cudd_ReadOne(dd); |
---|
1722 | cuddRef(cube); |
---|
1723 | zero = Cudd_Not(Cudd_ReadOne(dd)); |
---|
1724 | |
---|
1725 | /* Build result BDD. */ |
---|
1726 | for (i = 0; i < nvars; i++) { |
---|
1727 | if (string[indices[i]] == '0') { |
---|
1728 | newCube = Cudd_bddIte(dd,cube,Cudd_Not(vars[i]),zero); |
---|
1729 | } else if (string[indices[i]] == '1') { |
---|
1730 | newCube = Cudd_bddIte(dd,cube,vars[i],zero); |
---|
1731 | } else |
---|
1732 | continue; |
---|
1733 | if (newCube == NULL) { |
---|
1734 | FREE(weight); |
---|
1735 | FREE(string); |
---|
1736 | FREE(mask); |
---|
1737 | FREE(indices); |
---|
1738 | Cudd_RecursiveDeref(dd,cube); |
---|
1739 | return(NULL); |
---|
1740 | } |
---|
1741 | cuddRef(newCube); |
---|
1742 | Cudd_RecursiveDeref(dd,cube); |
---|
1743 | cube = newCube; |
---|
1744 | } |
---|
1745 | |
---|
1746 | subset = Cudd_bddAnd(dd,f,cube); |
---|
1747 | cuddRef(subset); |
---|
1748 | Cudd_RecursiveDeref(dd,cube); |
---|
1749 | |
---|
1750 | /* Test. */ |
---|
1751 | if (Cudd_bddLeq(dd,subset,f)) { |
---|
1752 | cuddDeref(subset); |
---|
1753 | } else { |
---|
1754 | Cudd_RecursiveDeref(dd,subset); |
---|
1755 | subset = NULL; |
---|
1756 | } |
---|
1757 | |
---|
1758 | FREE(weight); |
---|
1759 | FREE(string); |
---|
1760 | FREE(mask); |
---|
1761 | FREE(indices); |
---|
1762 | return(subset); |
---|
1763 | |
---|
1764 | } /* end of Cudd_SubsetWithMaskVars */ |
---|
1765 | |
---|
1766 | |
---|
1767 | /**Function******************************************************************** |
---|
1768 | |
---|
1769 | Synopsis [Finds the first cube of a decision diagram.] |
---|
1770 | |
---|
1771 | Description [Defines an iterator on the onset of a decision diagram |
---|
1772 | and finds its first cube. Returns a generator that contains the |
---|
1773 | information necessary to continue the enumeration if successful; NULL |
---|
1774 | otherwise.<p> |
---|
1775 | A cube is represented as an array of literals, which are integers in |
---|
1776 | {0, 1, 2}; 0 represents a complemented literal, 1 represents an |
---|
1777 | uncomplemented literal, and 2 stands for don't care. The enumeration |
---|
1778 | produces a disjoint cover of the function associated with the diagram. |
---|
1779 | The size of the array equals the number of variables in the manager at |
---|
1780 | the time Cudd_FirstCube is called.<p> |
---|
1781 | For each cube, a value is also returned. This value is always 1 for a |
---|
1782 | BDD, while it may be different from 1 for an ADD. |
---|
1783 | For BDDs, the offset is the set of cubes whose value is the logical zero. |
---|
1784 | For ADDs, the offset is the set of cubes whose value is the |
---|
1785 | background value. The cubes of the offset are not enumerated.] |
---|
1786 | |
---|
1787 | SideEffects [The first cube and its value are returned as side effects.] |
---|
1788 | |
---|
1789 | SeeAlso [Cudd_ForeachCube Cudd_NextCube Cudd_GenFree Cudd_IsGenEmpty |
---|
1790 | Cudd_FirstNode] |
---|
1791 | |
---|
1792 | ******************************************************************************/ |
---|
1793 | DdGen * |
---|
1794 | Cudd_FirstCube( |
---|
1795 | DdManager * dd, |
---|
1796 | DdNode * f, |
---|
1797 | int ** cube, |
---|
1798 | CUDD_VALUE_TYPE * value) |
---|
1799 | { |
---|
1800 | DdGen *gen; |
---|
1801 | DdNode *top, *treg, *next, *nreg, *prev, *preg; |
---|
1802 | int i; |
---|
1803 | int nvars; |
---|
1804 | |
---|
1805 | /* Sanity Check. */ |
---|
1806 | if (dd == NULL || f == NULL) return(NULL); |
---|
1807 | |
---|
1808 | /* Allocate generator an initialize it. */ |
---|
1809 | gen = ALLOC(DdGen,1); |
---|
1810 | if (gen == NULL) { |
---|
1811 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1812 | return(NULL); |
---|
1813 | } |
---|
1814 | |
---|
1815 | gen->manager = dd; |
---|
1816 | gen->type = CUDD_GEN_CUBES; |
---|
1817 | gen->status = CUDD_GEN_EMPTY; |
---|
1818 | gen->gen.cubes.cube = NULL; |
---|
1819 | gen->gen.cubes.value = DD_ZERO_VAL; |
---|
1820 | gen->stack.sp = 0; |
---|
1821 | gen->stack.stack = NULL; |
---|
1822 | gen->node = NULL; |
---|
1823 | |
---|
1824 | nvars = dd->size; |
---|
1825 | gen->gen.cubes.cube = ALLOC(int,nvars); |
---|
1826 | if (gen->gen.cubes.cube == NULL) { |
---|
1827 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1828 | FREE(gen); |
---|
1829 | return(NULL); |
---|
1830 | } |
---|
1831 | for (i = 0; i < nvars; i++) gen->gen.cubes.cube[i] = 2; |
---|
1832 | |
---|
1833 | /* The maximum stack depth is one plus the number of variables. |
---|
1834 | ** because a path may have nodes at all levels, including the |
---|
1835 | ** constant level. |
---|
1836 | */ |
---|
1837 | gen->stack.stack = ALLOC(DdNodePtr, nvars+1); |
---|
1838 | if (gen->stack.stack == NULL) { |
---|
1839 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
1840 | FREE(gen->gen.cubes.cube); |
---|
1841 | FREE(gen); |
---|
1842 | return(NULL); |
---|
1843 | } |
---|
1844 | for (i = 0; i <= nvars; i++) gen->stack.stack[i] = NULL; |
---|
1845 | |
---|
1846 | /* Find the first cube of the onset. */ |
---|
1847 | gen->stack.stack[gen->stack.sp] = f; gen->stack.sp++; |
---|
1848 | |
---|
1849 | while (1) { |
---|
1850 | top = gen->stack.stack[gen->stack.sp-1]; |
---|
1851 | treg = Cudd_Regular(top); |
---|
1852 | if (!cuddIsConstant(treg)) { |
---|
1853 | /* Take the else branch first. */ |
---|
1854 | gen->gen.cubes.cube[treg->index] = 0; |
---|
1855 | next = cuddE(treg); |
---|
1856 | if (top != treg) next = Cudd_Not(next); |
---|
1857 | gen->stack.stack[gen->stack.sp] = next; gen->stack.sp++; |
---|
1858 | } else if (top == Cudd_Not(DD_ONE(dd)) || top == dd->background) { |
---|
1859 | /* Backtrack */ |
---|
1860 | while (1) { |
---|
1861 | if (gen->stack.sp == 1) { |
---|
1862 | /* The current node has no predecessor. */ |
---|
1863 | gen->status = CUDD_GEN_EMPTY; |
---|
1864 | gen->stack.sp--; |
---|
1865 | goto done; |
---|
1866 | } |
---|
1867 | prev = gen->stack.stack[gen->stack.sp-2]; |
---|
1868 | preg = Cudd_Regular(prev); |
---|
1869 | nreg = cuddT(preg); |
---|
1870 | if (prev != preg) {next = Cudd_Not(nreg);} else {next = nreg;} |
---|
1871 | if (next != top) { /* follow the then branch next */ |
---|
1872 | gen->gen.cubes.cube[preg->index] = 1; |
---|
1873 | gen->stack.stack[gen->stack.sp-1] = next; |
---|
1874 | break; |
---|
1875 | } |
---|
1876 | /* Pop the stack and try again. */ |
---|
1877 | gen->gen.cubes.cube[preg->index] = 2; |
---|
1878 | gen->stack.sp--; |
---|
1879 | top = gen->stack.stack[gen->stack.sp-1]; |
---|
1880 | treg = Cudd_Regular(top); |
---|
1881 | } |
---|
1882 | } else { |
---|
1883 | gen->status = CUDD_GEN_NONEMPTY; |
---|
1884 | gen->gen.cubes.value = cuddV(top); |
---|
1885 | goto done; |
---|
1886 | } |
---|
1887 | } |
---|
1888 | |
---|
1889 | done: |
---|
1890 | *cube = gen->gen.cubes.cube; |
---|
1891 | *value = gen->gen.cubes.value; |
---|
1892 | return(gen); |
---|
1893 | |
---|
1894 | } /* end of Cudd_FirstCube */ |
---|
1895 | |
---|
1896 | |
---|
1897 | /**Function******************************************************************** |
---|
1898 | |
---|
1899 | Synopsis [Generates the next cube of a decision diagram onset.] |
---|
1900 | |
---|
1901 | Description [Generates the next cube of a decision diagram onset, |
---|
1902 | using generator gen. Returns 0 if the enumeration is completed; 1 |
---|
1903 | otherwise.] |
---|
1904 | |
---|
1905 | SideEffects [The cube and its value are returned as side effects. The |
---|
1906 | generator is modified.] |
---|
1907 | |
---|
1908 | SeeAlso [Cudd_ForeachCube Cudd_FirstCube Cudd_GenFree Cudd_IsGenEmpty |
---|
1909 | Cudd_NextNode] |
---|
1910 | |
---|
1911 | ******************************************************************************/ |
---|
1912 | int |
---|
1913 | Cudd_NextCube( |
---|
1914 | DdGen * gen, |
---|
1915 | int ** cube, |
---|
1916 | CUDD_VALUE_TYPE * value) |
---|
1917 | { |
---|
1918 | DdNode *top, *treg, *next, *nreg, *prev, *preg; |
---|
1919 | DdManager *dd = gen->manager; |
---|
1920 | |
---|
1921 | /* Backtrack from previously reached terminal node. */ |
---|
1922 | while (1) { |
---|
1923 | if (gen->stack.sp == 1) { |
---|
1924 | /* The current node has no predecessor. */ |
---|
1925 | gen->status = CUDD_GEN_EMPTY; |
---|
1926 | gen->stack.sp--; |
---|
1927 | goto done; |
---|
1928 | } |
---|
1929 | top = gen->stack.stack[gen->stack.sp-1]; |
---|
1930 | treg = Cudd_Regular(top); |
---|
1931 | prev = gen->stack.stack[gen->stack.sp-2]; |
---|
1932 | preg = Cudd_Regular(prev); |
---|
1933 | nreg = cuddT(preg); |
---|
1934 | if (prev != preg) {next = Cudd_Not(nreg);} else {next = nreg;} |
---|
1935 | if (next != top) { /* follow the then branch next */ |
---|
1936 | gen->gen.cubes.cube[preg->index] = 1; |
---|
1937 | gen->stack.stack[gen->stack.sp-1] = next; |
---|
1938 | break; |
---|
1939 | } |
---|
1940 | /* Pop the stack and try again. */ |
---|
1941 | gen->gen.cubes.cube[preg->index] = 2; |
---|
1942 | gen->stack.sp--; |
---|
1943 | } |
---|
1944 | |
---|
1945 | while (1) { |
---|
1946 | top = gen->stack.stack[gen->stack.sp-1]; |
---|
1947 | treg = Cudd_Regular(top); |
---|
1948 | if (!cuddIsConstant(treg)) { |
---|
1949 | /* Take the else branch first. */ |
---|
1950 | gen->gen.cubes.cube[treg->index] = 0; |
---|
1951 | next = cuddE(treg); |
---|
1952 | if (top != treg) next = Cudd_Not(next); |
---|
1953 | gen->stack.stack[gen->stack.sp] = next; gen->stack.sp++; |
---|
1954 | } else if (top == Cudd_Not(DD_ONE(dd)) || top == dd->background) { |
---|
1955 | /* Backtrack */ |
---|
1956 | while (1) { |
---|
1957 | if (gen->stack.sp == 1) { |
---|
1958 | /* The current node has no predecessor. */ |
---|
1959 | gen->status = CUDD_GEN_EMPTY; |
---|
1960 | gen->stack.sp--; |
---|
1961 | goto done; |
---|
1962 | } |
---|
1963 | prev = gen->stack.stack[gen->stack.sp-2]; |
---|
1964 | preg = Cudd_Regular(prev); |
---|
1965 | nreg = cuddT(preg); |
---|
1966 | if (prev != preg) {next = Cudd_Not(nreg);} else {next = nreg;} |
---|
1967 | if (next != top) { /* follow the then branch next */ |
---|
1968 | gen->gen.cubes.cube[preg->index] = 1; |
---|
1969 | gen->stack.stack[gen->stack.sp-1] = next; |
---|
1970 | break; |
---|
1971 | } |
---|
1972 | /* Pop the stack and try again. */ |
---|
1973 | gen->gen.cubes.cube[preg->index] = 2; |
---|
1974 | gen->stack.sp--; |
---|
1975 | top = gen->stack.stack[gen->stack.sp-1]; |
---|
1976 | treg = Cudd_Regular(top); |
---|
1977 | } |
---|
1978 | } else { |
---|
1979 | gen->status = CUDD_GEN_NONEMPTY; |
---|
1980 | gen->gen.cubes.value = cuddV(top); |
---|
1981 | goto done; |
---|
1982 | } |
---|
1983 | } |
---|
1984 | |
---|
1985 | done: |
---|
1986 | if (gen->status == CUDD_GEN_EMPTY) return(0); |
---|
1987 | *cube = gen->gen.cubes.cube; |
---|
1988 | *value = gen->gen.cubes.value; |
---|
1989 | return(1); |
---|
1990 | |
---|
1991 | } /* end of Cudd_NextCube */ |
---|
1992 | |
---|
1993 | |
---|
1994 | /**Function******************************************************************** |
---|
1995 | |
---|
1996 | Synopsis [Finds the first prime of a Boolean function.] |
---|
1997 | |
---|
1998 | Description [Defines an iterator on a pair of BDDs describing a |
---|
1999 | (possibly incompletely specified) Boolean functions and finds the |
---|
2000 | first cube of a cover of the function. Returns a generator |
---|
2001 | that contains the information necessary to continue the enumeration |
---|
2002 | if successful; NULL otherwise.<p> |
---|
2003 | |
---|
2004 | The two argument BDDs are the lower and upper bounds of an interval. |
---|
2005 | It is a mistake to call this function with a lower bound that is not |
---|
2006 | less than or equal to the upper bound.<p> |
---|
2007 | |
---|
2008 | A cube is represented as an array of literals, which are integers in |
---|
2009 | {0, 1, 2}; 0 represents a complemented literal, 1 represents an |
---|
2010 | uncomplemented literal, and 2 stands for don't care. The enumeration |
---|
2011 | produces a prime and irredundant cover of the function associated |
---|
2012 | with the two BDDs. The size of the array equals the number of |
---|
2013 | variables in the manager at the time Cudd_FirstCube is called.<p> |
---|
2014 | |
---|
2015 | This iterator can only be used on BDDs.] |
---|
2016 | |
---|
2017 | SideEffects [The first cube is returned as side effect.] |
---|
2018 | |
---|
2019 | SeeAlso [Cudd_ForeachPrime Cudd_NextPrime Cudd_GenFree Cudd_IsGenEmpty |
---|
2020 | Cudd_FirstCube Cudd_FirstNode] |
---|
2021 | |
---|
2022 | ******************************************************************************/ |
---|
2023 | DdGen * |
---|
2024 | Cudd_FirstPrime( |
---|
2025 | DdManager *dd, |
---|
2026 | DdNode *l, |
---|
2027 | DdNode *u, |
---|
2028 | int **cube) |
---|
2029 | { |
---|
2030 | DdGen *gen; |
---|
2031 | DdNode *implicant, *prime, *tmp; |
---|
2032 | int length, result; |
---|
2033 | |
---|
2034 | /* Sanity Check. */ |
---|
2035 | if (dd == NULL || l == NULL || u == NULL) return(NULL); |
---|
2036 | |
---|
2037 | /* Allocate generator an initialize it. */ |
---|
2038 | gen = ALLOC(DdGen,1); |
---|
2039 | if (gen == NULL) { |
---|
2040 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
2041 | return(NULL); |
---|
2042 | } |
---|
2043 | |
---|
2044 | gen->manager = dd; |
---|
2045 | gen->type = CUDD_GEN_PRIMES; |
---|
2046 | gen->status = CUDD_GEN_EMPTY; |
---|
2047 | gen->gen.primes.cube = NULL; |
---|
2048 | gen->gen.primes.ub = u; |
---|
2049 | gen->stack.sp = 0; |
---|
2050 | gen->stack.stack = NULL; |
---|
2051 | gen->node = l; |
---|
2052 | cuddRef(l); |
---|
2053 | |
---|
2054 | gen->gen.primes.cube = ALLOC(int,dd->size); |
---|
2055 | if (gen->gen.primes.cube == NULL) { |
---|
2056 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
2057 | FREE(gen); |
---|
2058 | return(NULL); |
---|
2059 | } |
---|
2060 | |
---|
2061 | if (gen->node == Cudd_ReadLogicZero(dd)) { |
---|
2062 | gen->status = CUDD_GEN_EMPTY; |
---|
2063 | } else { |
---|
2064 | implicant = Cudd_LargestCube(dd,gen->node,&length); |
---|
2065 | if (implicant == NULL) { |
---|
2066 | Cudd_RecursiveDeref(dd,gen->node); |
---|
2067 | FREE(gen->gen.primes.cube); |
---|
2068 | FREE(gen); |
---|
2069 | return(NULL); |
---|
2070 | } |
---|
2071 | cuddRef(implicant); |
---|
2072 | prime = Cudd_bddMakePrime(dd,implicant,gen->gen.primes.ub); |
---|
2073 | if (prime == NULL) { |
---|
2074 | Cudd_RecursiveDeref(dd,gen->node); |
---|
2075 | Cudd_RecursiveDeref(dd,implicant); |
---|
2076 | FREE(gen->gen.primes.cube); |
---|
2077 | FREE(gen); |
---|
2078 | return(NULL); |
---|
2079 | } |
---|
2080 | cuddRef(prime); |
---|
2081 | Cudd_RecursiveDeref(dd,implicant); |
---|
2082 | tmp = Cudd_bddAnd(dd,gen->node,Cudd_Not(prime)); |
---|
2083 | if (tmp == NULL) { |
---|
2084 | Cudd_RecursiveDeref(dd,gen->node); |
---|
2085 | Cudd_RecursiveDeref(dd,prime); |
---|
2086 | FREE(gen->gen.primes.cube); |
---|
2087 | FREE(gen); |
---|
2088 | return(NULL); |
---|
2089 | } |
---|
2090 | cuddRef(tmp); |
---|
2091 | Cudd_RecursiveDeref(dd,gen->node); |
---|
2092 | gen->node = tmp; |
---|
2093 | result = Cudd_BddToCubeArray(dd,prime,gen->gen.primes.cube); |
---|
2094 | if (result == 0) { |
---|
2095 | Cudd_RecursiveDeref(dd,gen->node); |
---|
2096 | Cudd_RecursiveDeref(dd,prime); |
---|
2097 | FREE(gen->gen.primes.cube); |
---|
2098 | FREE(gen); |
---|
2099 | return(NULL); |
---|
2100 | } |
---|
2101 | Cudd_RecursiveDeref(dd,prime); |
---|
2102 | gen->status = CUDD_GEN_NONEMPTY; |
---|
2103 | } |
---|
2104 | *cube = gen->gen.primes.cube; |
---|
2105 | return(gen); |
---|
2106 | |
---|
2107 | } /* end of Cudd_FirstPrime */ |
---|
2108 | |
---|
2109 | |
---|
2110 | /**Function******************************************************************** |
---|
2111 | |
---|
2112 | Synopsis [Generates the next prime of a Boolean function.] |
---|
2113 | |
---|
2114 | Description [Generates the next cube of a Boolean function, |
---|
2115 | using generator gen. Returns 0 if the enumeration is completed; 1 |
---|
2116 | otherwise.] |
---|
2117 | |
---|
2118 | SideEffects [The cube and is returned as side effects. The |
---|
2119 | generator is modified.] |
---|
2120 | |
---|
2121 | SeeAlso [Cudd_ForeachPrime Cudd_FirstPrime Cudd_GenFree Cudd_IsGenEmpty |
---|
2122 | Cudd_NextCube Cudd_NextNode] |
---|
2123 | |
---|
2124 | ******************************************************************************/ |
---|
2125 | int |
---|
2126 | Cudd_NextPrime( |
---|
2127 | DdGen *gen, |
---|
2128 | int **cube) |
---|
2129 | { |
---|
2130 | DdNode *implicant, *prime, *tmp; |
---|
2131 | DdManager *dd = gen->manager; |
---|
2132 | int length, result; |
---|
2133 | |
---|
2134 | if (gen->node == Cudd_ReadLogicZero(dd)) { |
---|
2135 | gen->status = CUDD_GEN_EMPTY; |
---|
2136 | } else { |
---|
2137 | implicant = Cudd_LargestCube(dd,gen->node,&length); |
---|
2138 | if (implicant == NULL) { |
---|
2139 | gen->status = CUDD_GEN_EMPTY; |
---|
2140 | return(0); |
---|
2141 | } |
---|
2142 | cuddRef(implicant); |
---|
2143 | prime = Cudd_bddMakePrime(dd,implicant,gen->gen.primes.ub); |
---|
2144 | if (prime == NULL) { |
---|
2145 | Cudd_RecursiveDeref(dd,implicant); |
---|
2146 | gen->status = CUDD_GEN_EMPTY; |
---|
2147 | return(0); |
---|
2148 | } |
---|
2149 | cuddRef(prime); |
---|
2150 | Cudd_RecursiveDeref(dd,implicant); |
---|
2151 | tmp = Cudd_bddAnd(dd,gen->node,Cudd_Not(prime)); |
---|
2152 | if (tmp == NULL) { |
---|
2153 | Cudd_RecursiveDeref(dd,prime); |
---|
2154 | gen->status = CUDD_GEN_EMPTY; |
---|
2155 | return(0); |
---|
2156 | } |
---|
2157 | cuddRef(tmp); |
---|
2158 | Cudd_RecursiveDeref(dd,gen->node); |
---|
2159 | gen->node = tmp; |
---|
2160 | result = Cudd_BddToCubeArray(dd,prime,gen->gen.primes.cube); |
---|
2161 | if (result == 0) { |
---|
2162 | Cudd_RecursiveDeref(dd,prime); |
---|
2163 | gen->status = CUDD_GEN_EMPTY; |
---|
2164 | return(0); |
---|
2165 | } |
---|
2166 | Cudd_RecursiveDeref(dd,prime); |
---|
2167 | gen->status = CUDD_GEN_NONEMPTY; |
---|
2168 | } |
---|
2169 | if (gen->status == CUDD_GEN_EMPTY) return(0); |
---|
2170 | *cube = gen->gen.primes.cube; |
---|
2171 | return(1); |
---|
2172 | |
---|
2173 | } /* end of Cudd_NextPrime */ |
---|
2174 | |
---|
2175 | |
---|
2176 | /**Function******************************************************************** |
---|
2177 | |
---|
2178 | Synopsis [Computes the cube of an array of BDD variables.] |
---|
2179 | |
---|
2180 | Description [Computes the cube of an array of BDD variables. If |
---|
2181 | non-null, the phase argument indicates which literal of each |
---|
2182 | variable should appear in the cube. If phase\[i\] is nonzero, then the |
---|
2183 | positive literal is used. If phase is NULL, the cube is positive unate. |
---|
2184 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
2185 | |
---|
2186 | SideEffects [None] |
---|
2187 | |
---|
2188 | SeeAlso [Cudd_addComputeCube Cudd_IndicesToCube Cudd_CubeArrayToBdd] |
---|
2189 | |
---|
2190 | ******************************************************************************/ |
---|
2191 | DdNode * |
---|
2192 | Cudd_bddComputeCube( |
---|
2193 | DdManager * dd, |
---|
2194 | DdNode ** vars, |
---|
2195 | int * phase, |
---|
2196 | int n) |
---|
2197 | { |
---|
2198 | DdNode *cube; |
---|
2199 | DdNode *fn; |
---|
2200 | int i; |
---|
2201 | |
---|
2202 | cube = DD_ONE(dd); |
---|
2203 | cuddRef(cube); |
---|
2204 | |
---|
2205 | for (i = n - 1; i >= 0; i--) { |
---|
2206 | if (phase == NULL || phase[i] != 0) { |
---|
2207 | fn = Cudd_bddAnd(dd,vars[i],cube); |
---|
2208 | } else { |
---|
2209 | fn = Cudd_bddAnd(dd,Cudd_Not(vars[i]),cube); |
---|
2210 | } |
---|
2211 | if (fn == NULL) { |
---|
2212 | Cudd_RecursiveDeref(dd,cube); |
---|
2213 | return(NULL); |
---|
2214 | } |
---|
2215 | cuddRef(fn); |
---|
2216 | Cudd_RecursiveDeref(dd,cube); |
---|
2217 | cube = fn; |
---|
2218 | } |
---|
2219 | cuddDeref(cube); |
---|
2220 | |
---|
2221 | return(cube); |
---|
2222 | |
---|
2223 | } /* end of Cudd_bddComputeCube */ |
---|
2224 | |
---|
2225 | |
---|
2226 | /**Function******************************************************************** |
---|
2227 | |
---|
2228 | Synopsis [Computes the cube of an array of ADD variables.] |
---|
2229 | |
---|
2230 | Description [Computes the cube of an array of ADD variables. If |
---|
2231 | non-null, the phase argument indicates which literal of each |
---|
2232 | variable should appear in the cube. If phase\[i\] is nonzero, then the |
---|
2233 | positive literal is used. If phase is NULL, the cube is positive unate. |
---|
2234 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
2235 | |
---|
2236 | SideEffects [none] |
---|
2237 | |
---|
2238 | SeeAlso [Cudd_bddComputeCube] |
---|
2239 | |
---|
2240 | ******************************************************************************/ |
---|
2241 | DdNode * |
---|
2242 | Cudd_addComputeCube( |
---|
2243 | DdManager * dd, |
---|
2244 | DdNode ** vars, |
---|
2245 | int * phase, |
---|
2246 | int n) |
---|
2247 | { |
---|
2248 | DdNode *cube, *zero; |
---|
2249 | DdNode *fn; |
---|
2250 | int i; |
---|
2251 | |
---|
2252 | cube = DD_ONE(dd); |
---|
2253 | cuddRef(cube); |
---|
2254 | zero = DD_ZERO(dd); |
---|
2255 | |
---|
2256 | for (i = n - 1; i >= 0; i--) { |
---|
2257 | if (phase == NULL || phase[i] != 0) { |
---|
2258 | fn = Cudd_addIte(dd,vars[i],cube,zero); |
---|
2259 | } else { |
---|
2260 | fn = Cudd_addIte(dd,vars[i],zero,cube); |
---|
2261 | } |
---|
2262 | if (fn == NULL) { |
---|
2263 | Cudd_RecursiveDeref(dd,cube); |
---|
2264 | return(NULL); |
---|
2265 | } |
---|
2266 | cuddRef(fn); |
---|
2267 | Cudd_RecursiveDeref(dd,cube); |
---|
2268 | cube = fn; |
---|
2269 | } |
---|
2270 | cuddDeref(cube); |
---|
2271 | |
---|
2272 | return(cube); |
---|
2273 | |
---|
2274 | } /* end of Cudd_addComputeCube */ |
---|
2275 | |
---|
2276 | |
---|
2277 | /**Function******************************************************************** |
---|
2278 | |
---|
2279 | Synopsis [Builds the BDD of a cube from a positional array.] |
---|
2280 | |
---|
2281 | Description [Builds a cube from a positional array. The array must |
---|
2282 | have one integer entry for each BDD variable. If the i-th entry is |
---|
2283 | 1, the variable of index i appears in true form in the cube; If the |
---|
2284 | i-th entry is 0, the variable of index i appears complemented in the |
---|
2285 | cube; otherwise the variable does not appear in the cube. Returns a |
---|
2286 | pointer to the BDD for the cube if successful; NULL otherwise.] |
---|
2287 | |
---|
2288 | SideEffects [None] |
---|
2289 | |
---|
2290 | SeeAlso [Cudd_bddComputeCube Cudd_IndicesToCube Cudd_BddToCubeArray] |
---|
2291 | |
---|
2292 | ******************************************************************************/ |
---|
2293 | DdNode * |
---|
2294 | Cudd_CubeArrayToBdd( |
---|
2295 | DdManager *dd, |
---|
2296 | int *array) |
---|
2297 | { |
---|
2298 | DdNode *cube, *var, *tmp; |
---|
2299 | int i; |
---|
2300 | int size = Cudd_ReadSize(dd); |
---|
2301 | |
---|
2302 | cube = DD_ONE(dd); |
---|
2303 | cuddRef(cube); |
---|
2304 | for (i = size - 1; i >= 0; i--) { |
---|
2305 | if ((array[i] & ~1) == 0) { |
---|
2306 | var = Cudd_bddIthVar(dd,i); |
---|
2307 | tmp = Cudd_bddAnd(dd,cube,Cudd_NotCond(var,array[i]==0)); |
---|
2308 | if (tmp == NULL) { |
---|
2309 | Cudd_RecursiveDeref(dd,cube); |
---|
2310 | return(NULL); |
---|
2311 | } |
---|
2312 | cuddRef(tmp); |
---|
2313 | Cudd_RecursiveDeref(dd,cube); |
---|
2314 | cube = tmp; |
---|
2315 | } |
---|
2316 | } |
---|
2317 | cuddDeref(cube); |
---|
2318 | return(cube); |
---|
2319 | |
---|
2320 | } /* end of Cudd_CubeArrayToBdd */ |
---|
2321 | |
---|
2322 | |
---|
2323 | /**Function******************************************************************** |
---|
2324 | |
---|
2325 | Synopsis [Builds a positional array from the BDD of a cube.] |
---|
2326 | |
---|
2327 | Description [Builds a positional array from the BDD of a cube. |
---|
2328 | Array must have one entry for each BDD variable. The positional |
---|
2329 | array has 1 in i-th position if the variable of index i appears in |
---|
2330 | true form in the cube; it has 0 in i-th position if the variable of |
---|
2331 | index i appears in complemented form in the cube; finally, it has 2 |
---|
2332 | in i-th position if the variable of index i does not appear in the |
---|
2333 | cube. Returns 1 if successful (the BDD is indeed a cube); 0 |
---|
2334 | otherwise.] |
---|
2335 | |
---|
2336 | SideEffects [The result is in the array passed by reference.] |
---|
2337 | |
---|
2338 | SeeAlso [Cudd_CubeArrayToBdd] |
---|
2339 | |
---|
2340 | ******************************************************************************/ |
---|
2341 | int |
---|
2342 | Cudd_BddToCubeArray( |
---|
2343 | DdManager *dd, |
---|
2344 | DdNode *cube, |
---|
2345 | int *array) |
---|
2346 | { |
---|
2347 | DdNode *scan, *t, *e; |
---|
2348 | int i; |
---|
2349 | int size = Cudd_ReadSize(dd); |
---|
2350 | DdNode *zero = Cudd_Not(DD_ONE(dd)); |
---|
2351 | |
---|
2352 | for (i = size-1; i >= 0; i--) { |
---|
2353 | array[i] = 2; |
---|
2354 | } |
---|
2355 | scan = cube; |
---|
2356 | while (!Cudd_IsConstant(scan)) { |
---|
2357 | int index = Cudd_Regular(scan)->index; |
---|
2358 | cuddGetBranches(scan,&t,&e); |
---|
2359 | if (t == zero) { |
---|
2360 | array[index] = 0; |
---|
2361 | scan = e; |
---|
2362 | } else if (e == zero) { |
---|
2363 | array[index] = 1; |
---|
2364 | scan = t; |
---|
2365 | } else { |
---|
2366 | return(0); /* cube is not a cube */ |
---|
2367 | } |
---|
2368 | } |
---|
2369 | if (scan == zero) { |
---|
2370 | return(0); |
---|
2371 | } else { |
---|
2372 | return(1); |
---|
2373 | } |
---|
2374 | |
---|
2375 | } /* end of Cudd_BddToCubeArray */ |
---|
2376 | |
---|
2377 | |
---|
2378 | /**Function******************************************************************** |
---|
2379 | |
---|
2380 | Synopsis [Finds the first node of a decision diagram.] |
---|
2381 | |
---|
2382 | Description [Defines an iterator on the nodes of a decision diagram |
---|
2383 | and finds its first node. Returns a generator that contains the |
---|
2384 | information necessary to continue the enumeration if successful; |
---|
2385 | NULL otherwise. The nodes are enumerated in a reverse topological |
---|
2386 | order, so that a node is always preceded in the enumeration by its |
---|
2387 | descendants.] |
---|
2388 | |
---|
2389 | SideEffects [The first node is returned as a side effect.] |
---|
2390 | |
---|
2391 | SeeAlso [Cudd_ForeachNode Cudd_NextNode Cudd_GenFree Cudd_IsGenEmpty |
---|
2392 | Cudd_FirstCube] |
---|
2393 | |
---|
2394 | ******************************************************************************/ |
---|
2395 | DdGen * |
---|
2396 | Cudd_FirstNode( |
---|
2397 | DdManager * dd, |
---|
2398 | DdNode * f, |
---|
2399 | DdNode ** node) |
---|
2400 | { |
---|
2401 | DdGen *gen; |
---|
2402 | int size; |
---|
2403 | |
---|
2404 | /* Sanity Check. */ |
---|
2405 | if (dd == NULL || f == NULL) return(NULL); |
---|
2406 | |
---|
2407 | /* Allocate generator an initialize it. */ |
---|
2408 | gen = ALLOC(DdGen,1); |
---|
2409 | if (gen == NULL) { |
---|
2410 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
2411 | return(NULL); |
---|
2412 | } |
---|
2413 | |
---|
2414 | gen->manager = dd; |
---|
2415 | gen->type = CUDD_GEN_NODES; |
---|
2416 | gen->status = CUDD_GEN_EMPTY; |
---|
2417 | gen->stack.sp = 0; |
---|
2418 | gen->node = NULL; |
---|
2419 | |
---|
2420 | /* Collect all the nodes on the generator stack for later perusal. */ |
---|
2421 | gen->stack.stack = cuddNodeArray(Cudd_Regular(f), &size); |
---|
2422 | if (gen->stack.stack == NULL) { |
---|
2423 | FREE(gen); |
---|
2424 | dd->errorCode = CUDD_MEMORY_OUT; |
---|
2425 | return(NULL); |
---|
2426 | } |
---|
2427 | gen->gen.nodes.size = size; |
---|
2428 | |
---|
2429 | /* Find the first node. */ |
---|
2430 | if (gen->stack.sp < gen->gen.nodes.size) { |
---|
2431 | gen->status = CUDD_GEN_NONEMPTY; |
---|
2432 | gen->node = gen->stack.stack[gen->stack.sp]; |
---|
2433 | *node = gen->node; |
---|
2434 | } |
---|
2435 | |
---|
2436 | return(gen); |
---|
2437 | |
---|
2438 | } /* end of Cudd_FirstNode */ |
---|
2439 | |
---|
2440 | |
---|
2441 | /**Function******************************************************************** |
---|
2442 | |
---|
2443 | Synopsis [Finds the next node of a decision diagram.] |
---|
2444 | |
---|
2445 | Description [Finds the node of a decision diagram, using generator |
---|
2446 | gen. Returns 0 if the enumeration is completed; 1 otherwise.] |
---|
2447 | |
---|
2448 | SideEffects [The next node is returned as a side effect.] |
---|
2449 | |
---|
2450 | SeeAlso [Cudd_ForeachNode Cudd_FirstNode Cudd_GenFree Cudd_IsGenEmpty |
---|
2451 | Cudd_NextCube] |
---|
2452 | |
---|
2453 | ******************************************************************************/ |
---|
2454 | int |
---|
2455 | Cudd_NextNode( |
---|
2456 | DdGen * gen, |
---|
2457 | DdNode ** node) |
---|
2458 | { |
---|
2459 | /* Find the next node. */ |
---|
2460 | gen->stack.sp++; |
---|
2461 | if (gen->stack.sp < gen->gen.nodes.size) { |
---|
2462 | gen->node = gen->stack.stack[gen->stack.sp]; |
---|
2463 | *node = gen->node; |
---|
2464 | return(1); |
---|
2465 | } else { |
---|
2466 | gen->status = CUDD_GEN_EMPTY; |
---|
2467 | return(0); |
---|
2468 | } |
---|
2469 | |
---|
2470 | } /* end of Cudd_NextNode */ |
---|
2471 | |
---|
2472 | |
---|
2473 | /**Function******************************************************************** |
---|
2474 | |
---|
2475 | Synopsis [Frees a CUDD generator.] |
---|
2476 | |
---|
2477 | Description [Frees a CUDD generator. Always returns 0, so that it can |
---|
2478 | be used in mis-like foreach constructs.] |
---|
2479 | |
---|
2480 | SideEffects [None] |
---|
2481 | |
---|
2482 | SeeAlso [Cudd_ForeachCube Cudd_ForeachNode Cudd_FirstCube Cudd_NextCube |
---|
2483 | Cudd_FirstNode Cudd_NextNode Cudd_IsGenEmpty] |
---|
2484 | |
---|
2485 | ******************************************************************************/ |
---|
2486 | int |
---|
2487 | Cudd_GenFree( |
---|
2488 | DdGen * gen) |
---|
2489 | { |
---|
2490 | if (gen == NULL) return(0); |
---|
2491 | switch (gen->type) { |
---|
2492 | case CUDD_GEN_CUBES: |
---|
2493 | case CUDD_GEN_ZDD_PATHS: |
---|
2494 | FREE(gen->gen.cubes.cube); |
---|
2495 | FREE(gen->stack.stack); |
---|
2496 | break; |
---|
2497 | case CUDD_GEN_PRIMES: |
---|
2498 | FREE(gen->gen.primes.cube); |
---|
2499 | Cudd_RecursiveDeref(gen->manager,gen->node); |
---|
2500 | break; |
---|
2501 | case CUDD_GEN_NODES: |
---|
2502 | FREE(gen->stack.stack); |
---|
2503 | break; |
---|
2504 | default: |
---|
2505 | return(0); |
---|
2506 | } |
---|
2507 | FREE(gen); |
---|
2508 | return(0); |
---|
2509 | |
---|
2510 | } /* end of Cudd_GenFree */ |
---|
2511 | |
---|
2512 | |
---|
2513 | /**Function******************************************************************** |
---|
2514 | |
---|
2515 | Synopsis [Queries the status of a generator.] |
---|
2516 | |
---|
2517 | Description [Queries the status of a generator. Returns 1 if the |
---|
2518 | generator is empty or NULL; 0 otherswise.] |
---|
2519 | |
---|
2520 | SideEffects [None] |
---|
2521 | |
---|
2522 | SeeAlso [Cudd_ForeachCube Cudd_ForeachNode Cudd_FirstCube Cudd_NextCube |
---|
2523 | Cudd_FirstNode Cudd_NextNode Cudd_GenFree] |
---|
2524 | |
---|
2525 | ******************************************************************************/ |
---|
2526 | int |
---|
2527 | Cudd_IsGenEmpty( |
---|
2528 | DdGen * gen) |
---|
2529 | { |
---|
2530 | if (gen == NULL) return(1); |
---|
2531 | return(gen->status == CUDD_GEN_EMPTY); |
---|
2532 | |
---|
2533 | } /* end of Cudd_IsGenEmpty */ |
---|
2534 | |
---|
2535 | |
---|
2536 | /**Function******************************************************************** |
---|
2537 | |
---|
2538 | Synopsis [Builds a cube of BDD variables from an array of indices.] |
---|
2539 | |
---|
2540 | Description [Builds a cube of BDD variables from an array of indices. |
---|
2541 | Returns a pointer to the result if successful; NULL otherwise.] |
---|
2542 | |
---|
2543 | SideEffects [None] |
---|
2544 | |
---|
2545 | SeeAlso [Cudd_bddComputeCube Cudd_CubeArrayToBdd] |
---|
2546 | |
---|
2547 | ******************************************************************************/ |
---|
2548 | DdNode * |
---|
2549 | Cudd_IndicesToCube( |
---|
2550 | DdManager * dd, |
---|
2551 | int * array, |
---|
2552 | int n) |
---|
2553 | { |
---|
2554 | DdNode *cube, *tmp; |
---|
2555 | int i; |
---|
2556 | |
---|
2557 | cube = DD_ONE(dd); |
---|
2558 | cuddRef(cube); |
---|
2559 | for (i = n - 1; i >= 0; i--) { |
---|
2560 | tmp = Cudd_bddAnd(dd,Cudd_bddIthVar(dd,array[i]),cube); |
---|
2561 | if (tmp == NULL) { |
---|
2562 | Cudd_RecursiveDeref(dd,cube); |
---|
2563 | return(NULL); |
---|
2564 | } |
---|
2565 | cuddRef(tmp); |
---|
2566 | Cudd_RecursiveDeref(dd,cube); |
---|
2567 | cube = tmp; |
---|
2568 | } |
---|
2569 | |
---|
2570 | cuddDeref(cube); |
---|
2571 | return(cube); |
---|
2572 | |
---|
2573 | } /* end of Cudd_IndicesToCube */ |
---|
2574 | |
---|
2575 | |
---|
2576 | /**Function******************************************************************** |
---|
2577 | |
---|
2578 | Synopsis [Prints the package version number.] |
---|
2579 | |
---|
2580 | Description [] |
---|
2581 | |
---|
2582 | SideEffects [None] |
---|
2583 | |
---|
2584 | SeeAlso [] |
---|
2585 | |
---|
2586 | ******************************************************************************/ |
---|
2587 | void |
---|
2588 | Cudd_PrintVersion( |
---|
2589 | FILE * fp) |
---|
2590 | { |
---|
2591 | (void) fprintf(fp, "%s\n", CUDD_VERSION); |
---|
2592 | |
---|
2593 | } /* end of Cudd_PrintVersion */ |
---|
2594 | |
---|
2595 | |
---|
2596 | /**Function******************************************************************** |
---|
2597 | |
---|
2598 | Synopsis [Computes the average distance between adjacent nodes.] |
---|
2599 | |
---|
2600 | Description [Computes the average distance between adjacent nodes in |
---|
2601 | the manager. Adjacent nodes are node pairs such that the second node |
---|
2602 | is the then child, else child, or next node in the collision list.] |
---|
2603 | |
---|
2604 | SideEffects [None] |
---|
2605 | |
---|
2606 | SeeAlso [] |
---|
2607 | |
---|
2608 | ******************************************************************************/ |
---|
2609 | double |
---|
2610 | Cudd_AverageDistance( |
---|
2611 | DdManager * dd) |
---|
2612 | { |
---|
2613 | double tetotal, nexttotal; |
---|
2614 | double tesubtotal, nextsubtotal; |
---|
2615 | double temeasured, nextmeasured; |
---|
2616 | int i, j; |
---|
2617 | int slots, nvars; |
---|
2618 | long diff; |
---|
2619 | DdNode *scan; |
---|
2620 | DdNodePtr *nodelist; |
---|
2621 | DdNode *sentinel = &(dd->sentinel); |
---|
2622 | |
---|
2623 | nvars = dd->size; |
---|
2624 | if (nvars == 0) return(0.0); |
---|
2625 | |
---|
2626 | /* Initialize totals. */ |
---|
2627 | tetotal = 0.0; |
---|
2628 | nexttotal = 0.0; |
---|
2629 | temeasured = 0.0; |
---|
2630 | nextmeasured = 0.0; |
---|
2631 | |
---|
2632 | /* Scan the variable subtables. */ |
---|
2633 | for (i = 0; i < nvars; i++) { |
---|
2634 | nodelist = dd->subtables[i].nodelist; |
---|
2635 | tesubtotal = 0.0; |
---|
2636 | nextsubtotal = 0.0; |
---|
2637 | slots = dd->subtables[i].slots; |
---|
2638 | for (j = 0; j < slots; j++) { |
---|
2639 | scan = nodelist[j]; |
---|
2640 | while (scan != sentinel) { |
---|
2641 | diff = (long) scan - (long) cuddT(scan); |
---|
2642 | tesubtotal += (double) ddAbs(diff); |
---|
2643 | diff = (long) scan - (long) Cudd_Regular(cuddE(scan)); |
---|
2644 | tesubtotal += (double) ddAbs(diff); |
---|
2645 | temeasured += 2.0; |
---|
2646 | if (scan->next != sentinel) { |
---|
2647 | diff = (long) scan - (long) scan->next; |
---|
2648 | nextsubtotal += (double) ddAbs(diff); |
---|
2649 | nextmeasured += 1.0; |
---|
2650 | } |
---|
2651 | scan = scan->next; |
---|
2652 | } |
---|
2653 | } |
---|
2654 | tetotal += tesubtotal; |
---|
2655 | nexttotal += nextsubtotal; |
---|
2656 | } |
---|
2657 | |
---|
2658 | /* Scan the constant table. */ |
---|
2659 | nodelist = dd->constants.nodelist; |
---|
2660 | nextsubtotal = 0.0; |
---|
2661 | slots = dd->constants.slots; |
---|
2662 | for (j = 0; j < slots; j++) { |
---|
2663 | scan = nodelist[j]; |
---|
2664 | while (scan != NULL) { |
---|
2665 | if (scan->next != NULL) { |
---|
2666 | diff = (long) scan - (long) scan->next; |
---|
2667 | nextsubtotal += (double) ddAbs(diff); |
---|
2668 | nextmeasured += 1.0; |
---|
2669 | } |
---|
2670 | scan = scan->next; |
---|
2671 | } |
---|
2672 | } |
---|
2673 | nexttotal += nextsubtotal; |
---|
2674 | |
---|
2675 | return((tetotal + nexttotal) / (temeasured + nextmeasured)); |
---|
2676 | |
---|
2677 | } /* end of Cudd_AverageDistance */ |
---|
2678 | |
---|
2679 | |
---|
2680 | /**Function******************************************************************** |
---|
2681 | |
---|
2682 | Synopsis [Portable random number generator.] |
---|
2683 | |
---|
2684 | Description [Portable number generator based on ran2 from "Numerical |
---|
2685 | Recipes in C." It is a long period (> 2 * 10^18) random number generator |
---|
2686 | of L'Ecuyer with Bays-Durham shuffle. Returns a long integer uniformly |
---|
2687 | distributed between 0 and 2147483561 (inclusive of the endpoint values). |
---|
2688 | The random generator can be explicitly initialized by calling |
---|
2689 | Cudd_Srandom. If no explicit initialization is performed, then the |
---|
2690 | seed 1 is assumed.] |
---|
2691 | |
---|
2692 | SideEffects [None] |
---|
2693 | |
---|
2694 | SeeAlso [Cudd_Srandom] |
---|
2695 | |
---|
2696 | ******************************************************************************/ |
---|
2697 | long |
---|
2698 | Cudd_Random(void) |
---|
2699 | { |
---|
2700 | int i; /* index in the shuffle table */ |
---|
2701 | long int w; /* work variable */ |
---|
2702 | |
---|
2703 | /* cuddRand == 0 if the geneartor has not been initialized yet. */ |
---|
2704 | if (cuddRand == 0) Cudd_Srandom(1); |
---|
2705 | |
---|
2706 | /* Compute cuddRand = (cuddRand * LEQA1) % MODULUS1 avoiding |
---|
2707 | ** overflows by Schrage's method. |
---|
2708 | */ |
---|
2709 | w = cuddRand / LEQQ1; |
---|
2710 | cuddRand = LEQA1 * (cuddRand - w * LEQQ1) - w * LEQR1; |
---|
2711 | cuddRand += (cuddRand < 0) * MODULUS1; |
---|
2712 | |
---|
2713 | /* Compute cuddRand2 = (cuddRand2 * LEQA2) % MODULUS2 avoiding |
---|
2714 | ** overflows by Schrage's method. |
---|
2715 | */ |
---|
2716 | w = cuddRand2 / LEQQ2; |
---|
2717 | cuddRand2 = LEQA2 * (cuddRand2 - w * LEQQ2) - w * LEQR2; |
---|
2718 | cuddRand2 += (cuddRand2 < 0) * MODULUS2; |
---|
2719 | |
---|
2720 | /* cuddRand is shuffled with the Bays-Durham algorithm. |
---|
2721 | ** shuffleSelect and cuddRand2 are combined to generate the output. |
---|
2722 | */ |
---|
2723 | |
---|
2724 | /* Pick one element from the shuffle table; "i" will be in the range |
---|
2725 | ** from 0 to STAB_SIZE-1. |
---|
2726 | */ |
---|
2727 | i = (int) (shuffleSelect / STAB_DIV); |
---|
2728 | /* Mix the element of the shuffle table with the current iterate of |
---|
2729 | ** the second sub-generator, and replace the chosen element of the |
---|
2730 | ** shuffle table with the current iterate of the first sub-generator. |
---|
2731 | */ |
---|
2732 | shuffleSelect = shuffleTable[i] - cuddRand2; |
---|
2733 | shuffleTable[i] = cuddRand; |
---|
2734 | shuffleSelect += (shuffleSelect < 1) * (MODULUS1 - 1); |
---|
2735 | /* Since shuffleSelect != 0, and we want to be able to return 0, |
---|
2736 | ** here we subtract 1 before returning. |
---|
2737 | */ |
---|
2738 | return(shuffleSelect - 1); |
---|
2739 | |
---|
2740 | } /* end of Cudd_Random */ |
---|
2741 | |
---|
2742 | |
---|
2743 | /**Function******************************************************************** |
---|
2744 | |
---|
2745 | Synopsis [Initializer for the portable random number generator.] |
---|
2746 | |
---|
2747 | Description [Initializer for the portable number generator based on |
---|
2748 | ran2 in "Numerical Recipes in C." The input is the seed for the |
---|
2749 | generator. If it is negative, its absolute value is taken as seed. |
---|
2750 | If it is 0, then 1 is taken as seed. The initialized sets up the two |
---|
2751 | recurrences used to generate a long-period stream, and sets up the |
---|
2752 | shuffle table.] |
---|
2753 | |
---|
2754 | SideEffects [None] |
---|
2755 | |
---|
2756 | SeeAlso [Cudd_Random] |
---|
2757 | |
---|
2758 | ******************************************************************************/ |
---|
2759 | void |
---|
2760 | Cudd_Srandom( |
---|
2761 | long seed) |
---|
2762 | { |
---|
2763 | int i; |
---|
2764 | |
---|
2765 | if (seed < 0) cuddRand = -seed; |
---|
2766 | else if (seed == 0) cuddRand = 1; |
---|
2767 | else cuddRand = seed; |
---|
2768 | cuddRand2 = cuddRand; |
---|
2769 | /* Load the shuffle table (after 11 warm-ups). */ |
---|
2770 | for (i = 0; i < STAB_SIZE + 11; i++) { |
---|
2771 | long int w; |
---|
2772 | w = cuddRand / LEQQ1; |
---|
2773 | cuddRand = LEQA1 * (cuddRand - w * LEQQ1) - w * LEQR1; |
---|
2774 | cuddRand += (cuddRand < 0) * MODULUS1; |
---|
2775 | shuffleTable[i % STAB_SIZE] = cuddRand; |
---|
2776 | } |
---|
2777 | shuffleSelect = shuffleTable[1 % STAB_SIZE]; |
---|
2778 | |
---|
2779 | } /* end of Cudd_Srandom */ |
---|
2780 | |
---|
2781 | |
---|
2782 | /**Function******************************************************************** |
---|
2783 | |
---|
2784 | Synopsis [Computes the density of a BDD or ADD.] |
---|
2785 | |
---|
2786 | Description [Computes the density of a BDD or ADD. The density is |
---|
2787 | the ratio of the number of minterms to the number of nodes. If 0 is |
---|
2788 | passed as number of variables, the number of variables existing in |
---|
2789 | the manager is used. Returns the density if successful; (double) |
---|
2790 | CUDD_OUT_OF_MEM otherwise.] |
---|
2791 | |
---|
2792 | SideEffects [None] |
---|
2793 | |
---|
2794 | SeeAlso [Cudd_CountMinterm Cudd_DagSize] |
---|
2795 | |
---|
2796 | ******************************************************************************/ |
---|
2797 | double |
---|
2798 | Cudd_Density( |
---|
2799 | DdManager * dd /* manager */, |
---|
2800 | DdNode * f /* function whose density is sought */, |
---|
2801 | int nvars /* size of the support of f */) |
---|
2802 | { |
---|
2803 | double minterms; |
---|
2804 | int nodes; |
---|
2805 | double density; |
---|
2806 | |
---|
2807 | if (nvars == 0) nvars = dd->size; |
---|
2808 | minterms = Cudd_CountMinterm(dd,f,nvars); |
---|
2809 | if (minterms == (double) CUDD_OUT_OF_MEM) return(minterms); |
---|
2810 | nodes = Cudd_DagSize(f); |
---|
2811 | density = minterms / (double) nodes; |
---|
2812 | return(density); |
---|
2813 | |
---|
2814 | } /* end of Cudd_Density */ |
---|
2815 | |
---|
2816 | |
---|
2817 | /**Function******************************************************************** |
---|
2818 | |
---|
2819 | Synopsis [Warns that a memory allocation failed.] |
---|
2820 | |
---|
2821 | Description [Warns that a memory allocation failed. |
---|
2822 | This function can be used as replacement of MMout_of_memory to prevent |
---|
2823 | the safe_mem functions of the util package from exiting when malloc |
---|
2824 | returns NULL. One possible use is in case of discretionary allocations; |
---|
2825 | for instance, the allocation of memory to enlarge the computed table.] |
---|
2826 | |
---|
2827 | SideEffects [None] |
---|
2828 | |
---|
2829 | SeeAlso [] |
---|
2830 | |
---|
2831 | ******************************************************************************/ |
---|
2832 | void |
---|
2833 | Cudd_OutOfMem( |
---|
2834 | long size /* size of the allocation that failed */) |
---|
2835 | { |
---|
2836 | (void) fflush(stdout); |
---|
2837 | (void) fprintf(stderr, "\nunable to allocate %ld bytes\n", size); |
---|
2838 | return; |
---|
2839 | |
---|
2840 | } /* end of Cudd_OutOfMem */ |
---|
2841 | |
---|
2842 | |
---|
2843 | /*---------------------------------------------------------------------------*/ |
---|
2844 | /* Definition of internal functions */ |
---|
2845 | /*---------------------------------------------------------------------------*/ |
---|
2846 | |
---|
2847 | |
---|
2848 | /**Function******************************************************************** |
---|
2849 | |
---|
2850 | Synopsis [Prints a DD to the standard output. One line per node is |
---|
2851 | printed.] |
---|
2852 | |
---|
2853 | Description [Prints a DD to the standard output. One line per node is |
---|
2854 | printed. Returns 1 if successful; 0 otherwise.] |
---|
2855 | |
---|
2856 | SideEffects [None] |
---|
2857 | |
---|
2858 | SeeAlso [Cudd_PrintDebug] |
---|
2859 | |
---|
2860 | ******************************************************************************/ |
---|
2861 | int |
---|
2862 | cuddP( |
---|
2863 | DdManager * dd, |
---|
2864 | DdNode * f) |
---|
2865 | { |
---|
2866 | int retval; |
---|
2867 | st_table *table = st_init_table(st_ptrcmp,st_ptrhash); |
---|
2868 | |
---|
2869 | if (table == NULL) return(0); |
---|
2870 | |
---|
2871 | retval = dp2(dd,f,table); |
---|
2872 | st_free_table(table); |
---|
2873 | (void) fputc('\n',dd->out); |
---|
2874 | return(retval); |
---|
2875 | |
---|
2876 | } /* end of cuddP */ |
---|
2877 | |
---|
2878 | |
---|
2879 | /**Function******************************************************************** |
---|
2880 | |
---|
2881 | Synopsis [Frees the memory used to store the minterm counts recorded |
---|
2882 | in the visited table.] |
---|
2883 | |
---|
2884 | Description [Frees the memory used to store the minterm counts |
---|
2885 | recorded in the visited table. Returns ST_CONTINUE.] |
---|
2886 | |
---|
2887 | SideEffects [None] |
---|
2888 | |
---|
2889 | ******************************************************************************/ |
---|
2890 | enum st_retval |
---|
2891 | cuddStCountfree( |
---|
2892 | char * key, |
---|
2893 | char * value, |
---|
2894 | char * arg) |
---|
2895 | { |
---|
2896 | double *d; |
---|
2897 | |
---|
2898 | d = (double *)value; |
---|
2899 | FREE(d); |
---|
2900 | return(ST_CONTINUE); |
---|
2901 | |
---|
2902 | } /* end of cuddStCountfree */ |
---|
2903 | |
---|
2904 | |
---|
2905 | /**Function******************************************************************** |
---|
2906 | |
---|
2907 | Synopsis [Recursively collects all the nodes of a DD in a symbol |
---|
2908 | table.] |
---|
2909 | |
---|
2910 | Description [Traverses the DD f and collects all its nodes in a |
---|
2911 | symbol table. f is assumed to be a regular pointer and |
---|
2912 | cuddCollectNodes guarantees this assumption in the recursive calls. |
---|
2913 | Returns 1 in case of success; 0 otherwise.] |
---|
2914 | |
---|
2915 | SideEffects [None] |
---|
2916 | |
---|
2917 | SeeAlso [] |
---|
2918 | |
---|
2919 | ******************************************************************************/ |
---|
2920 | int |
---|
2921 | cuddCollectNodes( |
---|
2922 | DdNode * f, |
---|
2923 | st_table * visited) |
---|
2924 | { |
---|
2925 | DdNode *T, *E; |
---|
2926 | int retval; |
---|
2927 | |
---|
2928 | #ifdef DD_DEBUG |
---|
2929 | assert(!Cudd_IsComplement(f)); |
---|
2930 | #endif |
---|
2931 | |
---|
2932 | /* If already visited, nothing to do. */ |
---|
2933 | if (st_is_member(visited, (char *) f) == 1) |
---|
2934 | return(1); |
---|
2935 | |
---|
2936 | /* Check for abnormal condition that should never happen. */ |
---|
2937 | if (f == NULL) |
---|
2938 | return(0); |
---|
2939 | |
---|
2940 | /* Mark node as visited. */ |
---|
2941 | if (st_add_direct(visited, (char *) f, NULL) == ST_OUT_OF_MEM) |
---|
2942 | return(0); |
---|
2943 | |
---|
2944 | /* Check terminal case. */ |
---|
2945 | if (cuddIsConstant(f)) |
---|
2946 | return(1); |
---|
2947 | |
---|
2948 | /* Recursive calls. */ |
---|
2949 | T = cuddT(f); |
---|
2950 | retval = cuddCollectNodes(T,visited); |
---|
2951 | if (retval != 1) return(retval); |
---|
2952 | E = Cudd_Regular(cuddE(f)); |
---|
2953 | retval = cuddCollectNodes(E,visited); |
---|
2954 | return(retval); |
---|
2955 | |
---|
2956 | } /* end of cuddCollectNodes */ |
---|
2957 | |
---|
2958 | |
---|
2959 | /**Function******************************************************************** |
---|
2960 | |
---|
2961 | Synopsis [Recursively collects all the nodes of a DD in an array.] |
---|
2962 | |
---|
2963 | Description [Traverses the DD f and collects all its nodes in an array. |
---|
2964 | The caller should free the array returned by cuddNodeArray. |
---|
2965 | Returns a pointer to the array of nodes in case of success; NULL |
---|
2966 | otherwise. The nodes are collected in reverse topological order, so |
---|
2967 | that a node is always preceded in the array by all its descendants.] |
---|
2968 | |
---|
2969 | SideEffects [The number of nodes is returned as a side effect.] |
---|
2970 | |
---|
2971 | SeeAlso [Cudd_FirstNode] |
---|
2972 | |
---|
2973 | ******************************************************************************/ |
---|
2974 | DdNodePtr * |
---|
2975 | cuddNodeArray( |
---|
2976 | DdNode *f, |
---|
2977 | int *n) |
---|
2978 | { |
---|
2979 | DdNodePtr *table; |
---|
2980 | int size, retval; |
---|
2981 | |
---|
2982 | size = ddDagInt(Cudd_Regular(f)); |
---|
2983 | table = ALLOC(DdNodePtr, size); |
---|
2984 | if (table == NULL) { |
---|
2985 | ddClearFlag(Cudd_Regular(f)); |
---|
2986 | return(NULL); |
---|
2987 | } |
---|
2988 | |
---|
2989 | retval = cuddNodeArrayRecur(f, table, 0); |
---|
2990 | assert(retval == size); |
---|
2991 | |
---|
2992 | *n = size; |
---|
2993 | return(table); |
---|
2994 | |
---|
2995 | } /* cuddNodeArray */ |
---|
2996 | |
---|
2997 | |
---|
2998 | /*---------------------------------------------------------------------------*/ |
---|
2999 | /* Definition of static functions */ |
---|
3000 | /*---------------------------------------------------------------------------*/ |
---|
3001 | |
---|
3002 | |
---|
3003 | /**Function******************************************************************** |
---|
3004 | |
---|
3005 | Synopsis [Performs the recursive step of cuddP.] |
---|
3006 | |
---|
3007 | Description [Performs the recursive step of cuddP. Returns 1 in case |
---|
3008 | of success; 0 otherwise.] |
---|
3009 | |
---|
3010 | SideEffects [None] |
---|
3011 | |
---|
3012 | ******************************************************************************/ |
---|
3013 | static int |
---|
3014 | dp2( |
---|
3015 | DdManager *dd, |
---|
3016 | DdNode * f, |
---|
3017 | st_table * t) |
---|
3018 | { |
---|
3019 | DdNode *g, *n, *N; |
---|
3020 | int T,E; |
---|
3021 | |
---|
3022 | if (f == NULL) { |
---|
3023 | return(0); |
---|
3024 | } |
---|
3025 | g = Cudd_Regular(f); |
---|
3026 | if (cuddIsConstant(g)) { |
---|
3027 | #if SIZEOF_VOID_P == 8 |
---|
3028 | (void) fprintf(dd->out,"ID = %c0x%lx\tvalue = %-9g\n", bang(f), |
---|
3029 | (ptruint) g / (ptruint) sizeof(DdNode),cuddV(g)); |
---|
3030 | #else |
---|
3031 | (void) fprintf(dd->out,"ID = %c0x%x\tvalue = %-9g\n", bang(f), |
---|
3032 | (ptruint) g / (ptruint) sizeof(DdNode),cuddV(g)); |
---|
3033 | #endif |
---|
3034 | return(1); |
---|
3035 | } |
---|
3036 | if (st_is_member(t,(char *) g) == 1) { |
---|
3037 | return(1); |
---|
3038 | } |
---|
3039 | if (st_add_direct(t,(char *) g,NULL) == ST_OUT_OF_MEM) |
---|
3040 | return(0); |
---|
3041 | #ifdef DD_STATS |
---|
3042 | #if SIZEOF_VOID_P == 8 |
---|
3043 | (void) fprintf(dd->out,"ID = %c0x%lx\tindex = %d\tr = %d\t", bang(f), |
---|
3044 | (ptruint) g / (ptruint) sizeof(DdNode), g->index, g->ref); |
---|
3045 | #else |
---|
3046 | (void) fprintf(dd->out,"ID = %c0x%x\tindex = %d\tr = %d\t", bang(f), |
---|
3047 | (ptruint) g / (ptruint) sizeof(DdNode),g->index,g->ref); |
---|
3048 | #endif |
---|
3049 | #else |
---|
3050 | #if SIZEOF_VOID_P == 8 |
---|
3051 | (void) fprintf(dd->out,"ID = %c0x%lx\tindex = %u\t", bang(f), |
---|
3052 | (ptruint) g / (ptruint) sizeof(DdNode),g->index); |
---|
3053 | #else |
---|
3054 | (void) fprintf(dd->out,"ID = %c0x%x\tindex = %hu\t", bang(f), |
---|
3055 | (ptruint) g / (ptruint) sizeof(DdNode),g->index); |
---|
3056 | #endif |
---|
3057 | #endif |
---|
3058 | n = cuddT(g); |
---|
3059 | if (cuddIsConstant(n)) { |
---|
3060 | (void) fprintf(dd->out,"T = %-9g\t",cuddV(n)); |
---|
3061 | T = 1; |
---|
3062 | } else { |
---|
3063 | #if SIZEOF_VOID_P == 8 |
---|
3064 | (void) fprintf(dd->out,"T = 0x%lx\t",(ptruint) n / (ptruint) sizeof(DdNode)); |
---|
3065 | #else |
---|
3066 | (void) fprintf(dd->out,"T = 0x%x\t",(ptruint) n / (ptruint) sizeof(DdNode)); |
---|
3067 | #endif |
---|
3068 | T = 0; |
---|
3069 | } |
---|
3070 | |
---|
3071 | n = cuddE(g); |
---|
3072 | N = Cudd_Regular(n); |
---|
3073 | if (cuddIsConstant(N)) { |
---|
3074 | (void) fprintf(dd->out,"E = %c%-9g\n",bang(n),cuddV(N)); |
---|
3075 | E = 1; |
---|
3076 | } else { |
---|
3077 | #if SIZEOF_VOID_P == 8 |
---|
3078 | (void) fprintf(dd->out,"E = %c0x%lx\n", bang(n), (ptruint) N/(ptruint) sizeof(DdNode)); |
---|
3079 | #else |
---|
3080 | (void) fprintf(dd->out,"E = %c0x%x\n", bang(n), (ptruint) N/(ptruint) sizeof(DdNode)); |
---|
3081 | #endif |
---|
3082 | E = 0; |
---|
3083 | } |
---|
3084 | if (E == 0) { |
---|
3085 | if (dp2(dd,N,t) == 0) |
---|
3086 | return(0); |
---|
3087 | } |
---|
3088 | if (T == 0) { |
---|
3089 | if (dp2(dd,cuddT(g),t) == 0) |
---|
3090 | return(0); |
---|
3091 | } |
---|
3092 | return(1); |
---|
3093 | |
---|
3094 | } /* end of dp2 */ |
---|
3095 | |
---|
3096 | |
---|
3097 | /**Function******************************************************************** |
---|
3098 | |
---|
3099 | Synopsis [Performs the recursive step of Cudd_PrintMinterm.] |
---|
3100 | |
---|
3101 | Description [] |
---|
3102 | |
---|
3103 | SideEffects [None] |
---|
3104 | |
---|
3105 | ******************************************************************************/ |
---|
3106 | static void |
---|
3107 | ddPrintMintermAux( |
---|
3108 | DdManager * dd /* manager */, |
---|
3109 | DdNode * node /* current node */, |
---|
3110 | int * list /* current recursion path */) |
---|
3111 | { |
---|
3112 | DdNode *N,*Nv,*Nnv; |
---|
3113 | int i,v,index; |
---|
3114 | |
---|
3115 | N = Cudd_Regular(node); |
---|
3116 | |
---|
3117 | if (cuddIsConstant(N)) { |
---|
3118 | /* Terminal case: Print one cube based on the current recursion |
---|
3119 | ** path, unless we have reached the background value (ADDs) or |
---|
3120 | ** the logical zero (BDDs). |
---|
3121 | */ |
---|
3122 | if (node != background && node != zero) { |
---|
3123 | for (i = 0; i < dd->size; i++) { |
---|
3124 | v = list[i]; |
---|
3125 | if (v == 0) (void) fprintf(dd->out,"0"); |
---|
3126 | else if (v == 1) (void) fprintf(dd->out,"1"); |
---|
3127 | else (void) fprintf(dd->out,"-"); |
---|
3128 | } |
---|
3129 | (void) fprintf(dd->out," % g\n", cuddV(node)); |
---|
3130 | } |
---|
3131 | } else { |
---|
3132 | Nv = cuddT(N); |
---|
3133 | Nnv = cuddE(N); |
---|
3134 | if (Cudd_IsComplement(node)) { |
---|
3135 | Nv = Cudd_Not(Nv); |
---|
3136 | Nnv = Cudd_Not(Nnv); |
---|
3137 | } |
---|
3138 | index = N->index; |
---|
3139 | list[index] = 0; |
---|
3140 | ddPrintMintermAux(dd,Nnv,list); |
---|
3141 | list[index] = 1; |
---|
3142 | ddPrintMintermAux(dd,Nv,list); |
---|
3143 | list[index] = 2; |
---|
3144 | } |
---|
3145 | return; |
---|
3146 | |
---|
3147 | } /* end of ddPrintMintermAux */ |
---|
3148 | |
---|
3149 | |
---|
3150 | /**Function******************************************************************** |
---|
3151 | |
---|
3152 | Synopsis [Performs the recursive step of Cudd_DagSize.] |
---|
3153 | |
---|
3154 | Description [Performs the recursive step of Cudd_DagSize. Returns the |
---|
3155 | number of nodes in the graph rooted at n.] |
---|
3156 | |
---|
3157 | SideEffects [None] |
---|
3158 | |
---|
3159 | ******************************************************************************/ |
---|
3160 | static int |
---|
3161 | ddDagInt( |
---|
3162 | DdNode * n) |
---|
3163 | { |
---|
3164 | int tval, eval; |
---|
3165 | |
---|
3166 | if (Cudd_IsComplement(n->next)) { |
---|
3167 | return(0); |
---|
3168 | } |
---|
3169 | n->next = Cudd_Not(n->next); |
---|
3170 | if (cuddIsConstant(n)) { |
---|
3171 | return(1); |
---|
3172 | } |
---|
3173 | tval = ddDagInt(cuddT(n)); |
---|
3174 | eval = ddDagInt(Cudd_Regular(cuddE(n))); |
---|
3175 | return(1 + tval + eval); |
---|
3176 | |
---|
3177 | } /* end of ddDagInt */ |
---|
3178 | |
---|
3179 | |
---|
3180 | /**Function******************************************************************** |
---|
3181 | |
---|
3182 | Synopsis [Performs the recursive step of cuddNodeArray.] |
---|
3183 | |
---|
3184 | Description [Performs the recursive step of cuddNodeArray. Returns |
---|
3185 | an the number of nodes in the DD. Clear the least significant bit |
---|
3186 | of the next field that was used as visited flag by |
---|
3187 | cuddNodeArrayRecur when counting the nodes. node is supposed to be |
---|
3188 | regular; the invariant is maintained by this procedure.] |
---|
3189 | |
---|
3190 | SideEffects [None] |
---|
3191 | |
---|
3192 | SeeAlso [] |
---|
3193 | |
---|
3194 | ******************************************************************************/ |
---|
3195 | static int |
---|
3196 | cuddNodeArrayRecur( |
---|
3197 | DdNode *f, |
---|
3198 | DdNodePtr *table, |
---|
3199 | int index) |
---|
3200 | { |
---|
3201 | int tindex, eindex; |
---|
3202 | |
---|
3203 | if (!Cudd_IsComplement(f->next)) { |
---|
3204 | return(index); |
---|
3205 | } |
---|
3206 | /* Clear visited flag. */ |
---|
3207 | f->next = Cudd_Regular(f->next); |
---|
3208 | if (cuddIsConstant(f)) { |
---|
3209 | table[index] = f; |
---|
3210 | return(index + 1); |
---|
3211 | } |
---|
3212 | tindex = cuddNodeArrayRecur(cuddT(f), table, index); |
---|
3213 | eindex = cuddNodeArrayRecur(Cudd_Regular(cuddE(f)), table, tindex); |
---|
3214 | table[eindex] = f; |
---|
3215 | return(eindex + 1); |
---|
3216 | |
---|
3217 | } /* end of cuddNodeArrayRecur */ |
---|
3218 | |
---|
3219 | |
---|
3220 | /**Function******************************************************************** |
---|
3221 | |
---|
3222 | Synopsis [Performs the recursive step of Cudd_CofactorEstimate.] |
---|
3223 | |
---|
3224 | Description [Performs the recursive step of Cudd_CofactorEstimate. |
---|
3225 | Returns an estimate of the number of nodes in the DD of a |
---|
3226 | cofactor of node. Uses the least significant bit of the next field as |
---|
3227 | visited flag. node is supposed to be regular; the invariant is maintained |
---|
3228 | by this procedure.] |
---|
3229 | |
---|
3230 | SideEffects [None] |
---|
3231 | |
---|
3232 | SeeAlso [] |
---|
3233 | |
---|
3234 | ******************************************************************************/ |
---|
3235 | static int |
---|
3236 | cuddEstimateCofactor( |
---|
3237 | DdManager *dd, |
---|
3238 | st_table *table, |
---|
3239 | DdNode * node, |
---|
3240 | int i, |
---|
3241 | int phase, |
---|
3242 | DdNode ** ptr) |
---|
3243 | { |
---|
3244 | int tval, eval, val; |
---|
3245 | DdNode *ptrT, *ptrE; |
---|
3246 | |
---|
3247 | if (Cudd_IsComplement(node->next)) { |
---|
3248 | if (!st_lookup(table,(char *)node,(char **)ptr)) { |
---|
3249 | if (st_add_direct(table,(char *)node,(char *)node) == |
---|
3250 | ST_OUT_OF_MEM) |
---|
3251 | return(CUDD_OUT_OF_MEM); |
---|
3252 | *ptr = node; |
---|
3253 | } |
---|
3254 | return(0); |
---|
3255 | } |
---|
3256 | node->next = Cudd_Not(node->next); |
---|
3257 | if (cuddIsConstant(node)) { |
---|
3258 | *ptr = node; |
---|
3259 | if (st_add_direct(table,(char *)node,(char *)node) == ST_OUT_OF_MEM) |
---|
3260 | return(CUDD_OUT_OF_MEM); |
---|
3261 | return(1); |
---|
3262 | } |
---|
3263 | if ((int) node->index == i) { |
---|
3264 | if (phase == 1) { |
---|
3265 | *ptr = cuddT(node); |
---|
3266 | val = ddDagInt(cuddT(node)); |
---|
3267 | } else { |
---|
3268 | *ptr = cuddE(node); |
---|
3269 | val = ddDagInt(Cudd_Regular(cuddE(node))); |
---|
3270 | } |
---|
3271 | if (node->ref > 1) { |
---|
3272 | if (st_add_direct(table,(char *)node,(char *)*ptr) == |
---|
3273 | ST_OUT_OF_MEM) |
---|
3274 | return(CUDD_OUT_OF_MEM); |
---|
3275 | } |
---|
3276 | return(val); |
---|
3277 | } |
---|
3278 | if (dd->perm[node->index] > dd->perm[i]) { |
---|
3279 | *ptr = node; |
---|
3280 | tval = ddDagInt(cuddT(node)); |
---|
3281 | eval = ddDagInt(Cudd_Regular(cuddE(node))); |
---|
3282 | if (node->ref > 1) { |
---|
3283 | if (st_add_direct(table,(char *)node,(char *)node) == |
---|
3284 | ST_OUT_OF_MEM) |
---|
3285 | return(CUDD_OUT_OF_MEM); |
---|
3286 | } |
---|
3287 | val = 1 + tval + eval; |
---|
3288 | return(val); |
---|
3289 | } |
---|
3290 | tval = cuddEstimateCofactor(dd,table,cuddT(node),i,phase,&ptrT); |
---|
3291 | eval = cuddEstimateCofactor(dd,table,Cudd_Regular(cuddE(node)),i, |
---|
3292 | phase,&ptrE); |
---|
3293 | ptrE = Cudd_NotCond(ptrE,Cudd_IsComplement(cuddE(node))); |
---|
3294 | if (ptrT == ptrE) { /* recombination */ |
---|
3295 | *ptr = ptrT; |
---|
3296 | val = tval; |
---|
3297 | if (node->ref > 1) { |
---|
3298 | if (st_add_direct(table,(char *)node,(char *)*ptr) == |
---|
3299 | ST_OUT_OF_MEM) |
---|
3300 | return(CUDD_OUT_OF_MEM); |
---|
3301 | } |
---|
3302 | } else if ((ptrT != cuddT(node) || ptrE != cuddE(node)) && |
---|
3303 | (*ptr = cuddUniqueLookup(dd,node->index,ptrT,ptrE)) != NULL) { |
---|
3304 | if (Cudd_IsComplement((*ptr)->next)) { |
---|
3305 | val = 0; |
---|
3306 | } else { |
---|
3307 | val = 1 + tval + eval; |
---|
3308 | } |
---|
3309 | if (node->ref > 1) { |
---|
3310 | if (st_add_direct(table,(char *)node,(char *)*ptr) == |
---|
3311 | ST_OUT_OF_MEM) |
---|
3312 | return(CUDD_OUT_OF_MEM); |
---|
3313 | } |
---|
3314 | } else { |
---|
3315 | *ptr = node; |
---|
3316 | val = 1 + tval + eval; |
---|
3317 | } |
---|
3318 | return(val); |
---|
3319 | |
---|
3320 | } /* end of cuddEstimateCofactor */ |
---|
3321 | |
---|
3322 | |
---|
3323 | /**Function******************************************************************** |
---|
3324 | |
---|
3325 | Synopsis [Checks the unique table for the existence of an internal node.] |
---|
3326 | |
---|
3327 | Description [Checks the unique table for the existence of an internal |
---|
3328 | node. Returns a pointer to the node if it is in the table; NULL otherwise.] |
---|
3329 | |
---|
3330 | SideEffects [None] |
---|
3331 | |
---|
3332 | SeeAlso [cuddUniqueInter] |
---|
3333 | |
---|
3334 | ******************************************************************************/ |
---|
3335 | static DdNode * |
---|
3336 | cuddUniqueLookup( |
---|
3337 | DdManager * unique, |
---|
3338 | int index, |
---|
3339 | DdNode * T, |
---|
3340 | DdNode * E) |
---|
3341 | { |
---|
3342 | int posn; |
---|
3343 | unsigned int level; |
---|
3344 | DdNodePtr *nodelist; |
---|
3345 | DdNode *looking; |
---|
3346 | DdSubtable *subtable; |
---|
3347 | |
---|
3348 | if (index >= unique->size) { |
---|
3349 | return(NULL); |
---|
3350 | } |
---|
3351 | |
---|
3352 | level = unique->perm[index]; |
---|
3353 | subtable = &(unique->subtables[level]); |
---|
3354 | |
---|
3355 | #ifdef DD_DEBUG |
---|
3356 | assert(level < (unsigned) cuddI(unique,T->index)); |
---|
3357 | assert(level < (unsigned) cuddI(unique,Cudd_Regular(E)->index)); |
---|
3358 | #endif |
---|
3359 | |
---|
3360 | posn = ddHash(T, E, subtable->shift); |
---|
3361 | nodelist = subtable->nodelist; |
---|
3362 | looking = nodelist[posn]; |
---|
3363 | |
---|
3364 | while (T < cuddT(looking)) { |
---|
3365 | looking = Cudd_Regular(looking->next); |
---|
3366 | } |
---|
3367 | while (T == cuddT(looking) && E < cuddE(looking)) { |
---|
3368 | looking = Cudd_Regular(looking->next); |
---|
3369 | } |
---|
3370 | if (cuddT(looking) == T && cuddE(looking) == E) { |
---|
3371 | return(looking); |
---|
3372 | } |
---|
3373 | |
---|
3374 | return(NULL); |
---|
3375 | |
---|
3376 | } /* end of cuddUniqueLookup */ |
---|
3377 | |
---|
3378 | |
---|
3379 | /**Function******************************************************************** |
---|
3380 | |
---|
3381 | Synopsis [Performs the recursive step of Cudd_CofactorEstimateSimple.] |
---|
3382 | |
---|
3383 | Description [Performs the recursive step of Cudd_CofactorEstimateSimple. |
---|
3384 | Returns an estimate of the number of nodes in the DD of the positive |
---|
3385 | cofactor of node. Uses the least significant bit of the next field as |
---|
3386 | visited flag. node is supposed to be regular; the invariant is maintained |
---|
3387 | by this procedure.] |
---|
3388 | |
---|
3389 | SideEffects [None] |
---|
3390 | |
---|
3391 | SeeAlso [] |
---|
3392 | |
---|
3393 | ******************************************************************************/ |
---|
3394 | static int |
---|
3395 | cuddEstimateCofactorSimple( |
---|
3396 | DdNode * node, |
---|
3397 | int i) |
---|
3398 | { |
---|
3399 | int tval, eval; |
---|
3400 | |
---|
3401 | if (Cudd_IsComplement(node->next)) { |
---|
3402 | return(0); |
---|
3403 | } |
---|
3404 | node->next = Cudd_Not(node->next); |
---|
3405 | if (cuddIsConstant(node)) { |
---|
3406 | return(1); |
---|
3407 | } |
---|
3408 | tval = cuddEstimateCofactorSimple(cuddT(node),i); |
---|
3409 | if ((int) node->index == i) return(tval); |
---|
3410 | eval = cuddEstimateCofactorSimple(Cudd_Regular(cuddE(node)),i); |
---|
3411 | return(1 + tval + eval); |
---|
3412 | |
---|
3413 | } /* end of cuddEstimateCofactorSimple */ |
---|
3414 | |
---|
3415 | |
---|
3416 | /**Function******************************************************************** |
---|
3417 | |
---|
3418 | Synopsis [Performs the recursive step of Cudd_CountMinterm.] |
---|
3419 | |
---|
3420 | Description [Performs the recursive step of Cudd_CountMinterm. |
---|
3421 | It is based on the following identity. Let |f| be the |
---|
3422 | number of minterms of f. Then: |
---|
3423 | <xmp> |
---|
3424 | |f| = (|f0|+|f1|)/2 |
---|
3425 | </xmp> |
---|
3426 | where f0 and f1 are the two cofactors of f. Does not use the |
---|
3427 | identity |f'| = max - |f|, to minimize loss of accuracy due to |
---|
3428 | roundoff. Returns the number of minterms of the function rooted at |
---|
3429 | node.] |
---|
3430 | |
---|
3431 | SideEffects [None] |
---|
3432 | |
---|
3433 | ******************************************************************************/ |
---|
3434 | static double |
---|
3435 | ddCountMintermAux( |
---|
3436 | DdNode * node, |
---|
3437 | double max, |
---|
3438 | DdHashTable * table) |
---|
3439 | { |
---|
3440 | DdNode *N, *Nt, *Ne; |
---|
3441 | double min, minT, minE; |
---|
3442 | DdNode *res; |
---|
3443 | |
---|
3444 | N = Cudd_Regular(node); |
---|
3445 | |
---|
3446 | if (cuddIsConstant(N)) { |
---|
3447 | if (node == background || node == zero) { |
---|
3448 | return(0.0); |
---|
3449 | } else { |
---|
3450 | return(max); |
---|
3451 | } |
---|
3452 | } |
---|
3453 | if (N->ref != 1 && (res = cuddHashTableLookup1(table,node)) != NULL) { |
---|
3454 | min = cuddV(res); |
---|
3455 | if (res->ref == 0) { |
---|
3456 | table->manager->dead++; |
---|
3457 | table->manager->constants.dead++; |
---|
3458 | } |
---|
3459 | return(min); |
---|
3460 | } |
---|
3461 | |
---|
3462 | Nt = cuddT(N); Ne = cuddE(N); |
---|
3463 | if (Cudd_IsComplement(node)) { |
---|
3464 | Nt = Cudd_Not(Nt); Ne = Cudd_Not(Ne); |
---|
3465 | } |
---|
3466 | |
---|
3467 | minT = ddCountMintermAux(Nt,max,table); |
---|
3468 | if (minT == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
3469 | minT *= 0.5; |
---|
3470 | minE = ddCountMintermAux(Ne,max,table); |
---|
3471 | if (minE == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
3472 | minE *= 0.5; |
---|
3473 | min = minT + minE; |
---|
3474 | |
---|
3475 | if (N->ref != 1) { |
---|
3476 | ptrint fanout = (ptrint) N->ref; |
---|
3477 | cuddSatDec(fanout); |
---|
3478 | res = cuddUniqueConst(table->manager,min); |
---|
3479 | if (!cuddHashTableInsert1(table,node,res,fanout)) { |
---|
3480 | cuddRef(res); Cudd_RecursiveDeref(table->manager, res); |
---|
3481 | return((double)CUDD_OUT_OF_MEM); |
---|
3482 | } |
---|
3483 | } |
---|
3484 | |
---|
3485 | return(min); |
---|
3486 | |
---|
3487 | } /* end of ddCountMintermAux */ |
---|
3488 | |
---|
3489 | |
---|
3490 | /**Function******************************************************************** |
---|
3491 | |
---|
3492 | Synopsis [Performs the recursive step of Cudd_CountPath.] |
---|
3493 | |
---|
3494 | Description [Performs the recursive step of Cudd_CountPath. |
---|
3495 | It is based on the following identity. Let |f| be the |
---|
3496 | number of paths of f. Then: |
---|
3497 | <xmp> |
---|
3498 | |f| = |f0|+|f1| |
---|
3499 | </xmp> |
---|
3500 | where f0 and f1 are the two cofactors of f. Uses the |
---|
3501 | identity |f'| = |f|, to improve the utilization of the (local) cache. |
---|
3502 | Returns the number of paths of the function rooted at node.] |
---|
3503 | |
---|
3504 | SideEffects [None] |
---|
3505 | |
---|
3506 | ******************************************************************************/ |
---|
3507 | static double |
---|
3508 | ddCountPathAux( |
---|
3509 | DdNode * node, |
---|
3510 | st_table * table) |
---|
3511 | { |
---|
3512 | |
---|
3513 | DdNode *Nv, *Nnv; |
---|
3514 | double paths, *ppaths, paths1, paths2; |
---|
3515 | double *dummy; |
---|
3516 | |
---|
3517 | |
---|
3518 | if (cuddIsConstant(node)) { |
---|
3519 | return(1.0); |
---|
3520 | } |
---|
3521 | if (st_lookup(table, node, &dummy)) { |
---|
3522 | paths = *dummy; |
---|
3523 | return(paths); |
---|
3524 | } |
---|
3525 | |
---|
3526 | Nv = cuddT(node); Nnv = cuddE(node); |
---|
3527 | |
---|
3528 | paths1 = ddCountPathAux(Nv,table); |
---|
3529 | if (paths1 == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
3530 | paths2 = ddCountPathAux(Cudd_Regular(Nnv),table); |
---|
3531 | if (paths2 == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
3532 | paths = paths1 + paths2; |
---|
3533 | |
---|
3534 | ppaths = ALLOC(double,1); |
---|
3535 | if (ppaths == NULL) { |
---|
3536 | return((double)CUDD_OUT_OF_MEM); |
---|
3537 | } |
---|
3538 | |
---|
3539 | *ppaths = paths; |
---|
3540 | |
---|
3541 | if (st_add_direct(table,(char *)node, (char *)ppaths) == ST_OUT_OF_MEM) { |
---|
3542 | FREE(ppaths); |
---|
3543 | return((double)CUDD_OUT_OF_MEM); |
---|
3544 | } |
---|
3545 | return(paths); |
---|
3546 | |
---|
3547 | } /* end of ddCountPathAux */ |
---|
3548 | |
---|
3549 | |
---|
3550 | /**Function******************************************************************** |
---|
3551 | |
---|
3552 | Synopsis [Performs the recursive step of Cudd_EpdCountMinterm.] |
---|
3553 | |
---|
3554 | Description [Performs the recursive step of Cudd_EpdCountMinterm. |
---|
3555 | It is based on the following identity. Let |f| be the |
---|
3556 | number of minterms of f. Then: |
---|
3557 | <xmp> |
---|
3558 | |f| = (|f0|+|f1|)/2 |
---|
3559 | </xmp> |
---|
3560 | where f0 and f1 are the two cofactors of f. Does not use the |
---|
3561 | identity |f'| = max - |f|, to minimize loss of accuracy due to |
---|
3562 | roundoff. Returns the number of minterms of the function rooted at |
---|
3563 | node.] |
---|
3564 | |
---|
3565 | SideEffects [None] |
---|
3566 | |
---|
3567 | ******************************************************************************/ |
---|
3568 | static int |
---|
3569 | ddEpdCountMintermAux( |
---|
3570 | DdNode * node, |
---|
3571 | EpDouble * max, |
---|
3572 | EpDouble * epd, |
---|
3573 | st_table * table) |
---|
3574 | { |
---|
3575 | DdNode *Nt, *Ne; |
---|
3576 | EpDouble *min, minT, minE; |
---|
3577 | EpDouble *res; |
---|
3578 | int status; |
---|
3579 | |
---|
3580 | /* node is assumed to be regular */ |
---|
3581 | if (cuddIsConstant(node)) { |
---|
3582 | if (node == background || node == zero) { |
---|
3583 | EpdMakeZero(epd, 0); |
---|
3584 | } else { |
---|
3585 | EpdCopy(max, epd); |
---|
3586 | } |
---|
3587 | return(0); |
---|
3588 | } |
---|
3589 | if (node->ref != 1 && st_lookup(table, node, &res)) { |
---|
3590 | EpdCopy(res, epd); |
---|
3591 | return(0); |
---|
3592 | } |
---|
3593 | |
---|
3594 | Nt = cuddT(node); Ne = cuddE(node); |
---|
3595 | |
---|
3596 | status = ddEpdCountMintermAux(Nt,max,&minT,table); |
---|
3597 | if (status == CUDD_OUT_OF_MEM) return(CUDD_OUT_OF_MEM); |
---|
3598 | EpdMultiply(&minT, (double)0.5); |
---|
3599 | status = ddEpdCountMintermAux(Cudd_Regular(Ne),max,&minE,table); |
---|
3600 | if (status == CUDD_OUT_OF_MEM) return(CUDD_OUT_OF_MEM); |
---|
3601 | if (Cudd_IsComplement(Ne)) { |
---|
3602 | EpdSubtract3(max, &minE, epd); |
---|
3603 | EpdCopy(epd, &minE); |
---|
3604 | } |
---|
3605 | EpdMultiply(&minE, (double)0.5); |
---|
3606 | EpdAdd3(&minT, &minE, epd); |
---|
3607 | |
---|
3608 | if (node->ref > 1) { |
---|
3609 | min = EpdAlloc(); |
---|
3610 | if (!min) |
---|
3611 | return(CUDD_OUT_OF_MEM); |
---|
3612 | EpdCopy(epd, min); |
---|
3613 | if (st_insert(table, (char *)node, (char *)min) == ST_OUT_OF_MEM) { |
---|
3614 | EpdFree(min); |
---|
3615 | return(CUDD_OUT_OF_MEM); |
---|
3616 | } |
---|
3617 | } |
---|
3618 | |
---|
3619 | return(0); |
---|
3620 | |
---|
3621 | } /* end of ddEpdCountMintermAux */ |
---|
3622 | |
---|
3623 | |
---|
3624 | /**Function******************************************************************** |
---|
3625 | |
---|
3626 | Synopsis [Performs the recursive step of Cudd_CountPathsToNonZero.] |
---|
3627 | |
---|
3628 | Description [Performs the recursive step of Cudd_CountPathsToNonZero. |
---|
3629 | It is based on the following identity. Let |f| be the |
---|
3630 | number of paths of f. Then: |
---|
3631 | <xmp> |
---|
3632 | |f| = |f0|+|f1| |
---|
3633 | </xmp> |
---|
3634 | where f0 and f1 are the two cofactors of f. Returns the number of |
---|
3635 | paths of the function rooted at node.] |
---|
3636 | |
---|
3637 | SideEffects [None] |
---|
3638 | |
---|
3639 | ******************************************************************************/ |
---|
3640 | static double |
---|
3641 | ddCountPathsToNonZero( |
---|
3642 | DdNode * N, |
---|
3643 | st_table * table) |
---|
3644 | { |
---|
3645 | |
---|
3646 | DdNode *node, *Nt, *Ne; |
---|
3647 | double paths, *ppaths, paths1, paths2; |
---|
3648 | double *dummy; |
---|
3649 | |
---|
3650 | node = Cudd_Regular(N); |
---|
3651 | if (cuddIsConstant(node)) { |
---|
3652 | return((double) !(Cudd_IsComplement(N) || cuddV(node)==DD_ZERO_VAL)); |
---|
3653 | } |
---|
3654 | if (st_lookup(table, N, &dummy)) { |
---|
3655 | paths = *dummy; |
---|
3656 | return(paths); |
---|
3657 | } |
---|
3658 | |
---|
3659 | Nt = cuddT(node); Ne = cuddE(node); |
---|
3660 | if (node != N) { |
---|
3661 | Nt = Cudd_Not(Nt); Ne = Cudd_Not(Ne); |
---|
3662 | } |
---|
3663 | |
---|
3664 | paths1 = ddCountPathsToNonZero(Nt,table); |
---|
3665 | if (paths1 == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
3666 | paths2 = ddCountPathsToNonZero(Ne,table); |
---|
3667 | if (paths2 == (double)CUDD_OUT_OF_MEM) return((double)CUDD_OUT_OF_MEM); |
---|
3668 | paths = paths1 + paths2; |
---|
3669 | |
---|
3670 | ppaths = ALLOC(double,1); |
---|
3671 | if (ppaths == NULL) { |
---|
3672 | return((double)CUDD_OUT_OF_MEM); |
---|
3673 | } |
---|
3674 | |
---|
3675 | *ppaths = paths; |
---|
3676 | |
---|
3677 | if (st_add_direct(table,(char *)N, (char *)ppaths) == ST_OUT_OF_MEM) { |
---|
3678 | FREE(ppaths); |
---|
3679 | return((double)CUDD_OUT_OF_MEM); |
---|
3680 | } |
---|
3681 | return(paths); |
---|
3682 | |
---|
3683 | } /* end of ddCountPathsToNonZero */ |
---|
3684 | |
---|
3685 | |
---|
3686 | /**Function******************************************************************** |
---|
3687 | |
---|
3688 | Synopsis [Performs the recursive step of Cudd_Support.] |
---|
3689 | |
---|
3690 | Description [Performs the recursive step of Cudd_Support. Performs a |
---|
3691 | DFS from f. The support is accumulated in supp as a side effect. Uses |
---|
3692 | the LSB of the then pointer as visited flag.] |
---|
3693 | |
---|
3694 | SideEffects [None] |
---|
3695 | |
---|
3696 | SeeAlso [ddClearFlag] |
---|
3697 | |
---|
3698 | ******************************************************************************/ |
---|
3699 | static void |
---|
3700 | ddSupportStep( |
---|
3701 | DdNode * f, |
---|
3702 | int * support) |
---|
3703 | { |
---|
3704 | if (cuddIsConstant(f) || Cudd_IsComplement(f->next)) { |
---|
3705 | return; |
---|
3706 | } |
---|
3707 | |
---|
3708 | support[f->index] = 1; |
---|
3709 | ddSupportStep(cuddT(f),support); |
---|
3710 | ddSupportStep(Cudd_Regular(cuddE(f)),support); |
---|
3711 | /* Mark as visited. */ |
---|
3712 | f->next = Cudd_Not(f->next); |
---|
3713 | return; |
---|
3714 | |
---|
3715 | } /* end of ddSupportStep */ |
---|
3716 | |
---|
3717 | |
---|
3718 | /**Function******************************************************************** |
---|
3719 | |
---|
3720 | Synopsis [Performs a DFS from f, clearing the LSB of the next |
---|
3721 | pointers.] |
---|
3722 | |
---|
3723 | Description [] |
---|
3724 | |
---|
3725 | SideEffects [None] |
---|
3726 | |
---|
3727 | SeeAlso [ddSupportStep ddDagInt] |
---|
3728 | |
---|
3729 | ******************************************************************************/ |
---|
3730 | static void |
---|
3731 | ddClearFlag( |
---|
3732 | DdNode * f) |
---|
3733 | { |
---|
3734 | if (!Cudd_IsComplement(f->next)) { |
---|
3735 | return; |
---|
3736 | } |
---|
3737 | /* Clear visited flag. */ |
---|
3738 | f->next = Cudd_Regular(f->next); |
---|
3739 | if (cuddIsConstant(f)) { |
---|
3740 | return; |
---|
3741 | } |
---|
3742 | ddClearFlag(cuddT(f)); |
---|
3743 | ddClearFlag(Cudd_Regular(cuddE(f))); |
---|
3744 | return; |
---|
3745 | |
---|
3746 | } /* end of ddClearFlag */ |
---|
3747 | |
---|
3748 | |
---|
3749 | /**Function******************************************************************** |
---|
3750 | |
---|
3751 | Synopsis [Performs the recursive step of Cudd_CountLeaves.] |
---|
3752 | |
---|
3753 | Description [Performs the recursive step of Cudd_CountLeaves. Returns |
---|
3754 | the number of leaves in the DD rooted at n.] |
---|
3755 | |
---|
3756 | SideEffects [None] |
---|
3757 | |
---|
3758 | SeeAlso [Cudd_CountLeaves] |
---|
3759 | |
---|
3760 | ******************************************************************************/ |
---|
3761 | static int |
---|
3762 | ddLeavesInt( |
---|
3763 | DdNode * n) |
---|
3764 | { |
---|
3765 | int tval, eval; |
---|
3766 | |
---|
3767 | if (Cudd_IsComplement(n->next)) { |
---|
3768 | return(0); |
---|
3769 | } |
---|
3770 | n->next = Cudd_Not(n->next); |
---|
3771 | if (cuddIsConstant(n)) { |
---|
3772 | return(1); |
---|
3773 | } |
---|
3774 | tval = ddLeavesInt(cuddT(n)); |
---|
3775 | eval = ddLeavesInt(Cudd_Regular(cuddE(n))); |
---|
3776 | return(tval + eval); |
---|
3777 | |
---|
3778 | } /* end of ddLeavesInt */ |
---|
3779 | |
---|
3780 | |
---|
3781 | /**Function******************************************************************** |
---|
3782 | |
---|
3783 | Synopsis [Performs the recursive step of Cudd_bddPickArbitraryMinterms.] |
---|
3784 | |
---|
3785 | Description [Performs the recursive step of Cudd_bddPickArbitraryMinterms. |
---|
3786 | Returns 1 if successful; 0 otherwise.] |
---|
3787 | |
---|
3788 | SideEffects [none] |
---|
3789 | |
---|
3790 | SeeAlso [Cudd_bddPickArbitraryMinterms] |
---|
3791 | |
---|
3792 | ******************************************************************************/ |
---|
3793 | static int |
---|
3794 | ddPickArbitraryMinterms( |
---|
3795 | DdManager *dd, |
---|
3796 | DdNode *node, |
---|
3797 | int nvars, |
---|
3798 | int nminterms, |
---|
3799 | char **string) |
---|
3800 | { |
---|
3801 | DdNode *N, *T, *E; |
---|
3802 | DdNode *one, *bzero; |
---|
3803 | int i, t, result; |
---|
3804 | double min1, min2; |
---|
3805 | |
---|
3806 | if (string == NULL || node == NULL) return(0); |
---|
3807 | |
---|
3808 | /* The constant 0 function has no on-set cubes. */ |
---|
3809 | one = DD_ONE(dd); |
---|
3810 | bzero = Cudd_Not(one); |
---|
3811 | if (nminterms == 0 || node == bzero) return(1); |
---|
3812 | if (node == one) { |
---|
3813 | return(1); |
---|
3814 | } |
---|
3815 | |
---|
3816 | N = Cudd_Regular(node); |
---|
3817 | T = cuddT(N); E = cuddE(N); |
---|
3818 | if (Cudd_IsComplement(node)) { |
---|
3819 | T = Cudd_Not(T); E = Cudd_Not(E); |
---|
3820 | } |
---|
3821 | |
---|
3822 | min1 = Cudd_CountMinterm(dd, T, nvars) / 2.0; |
---|
3823 | if (min1 == (double)CUDD_OUT_OF_MEM) return(0); |
---|
3824 | min2 = Cudd_CountMinterm(dd, E, nvars) / 2.0; |
---|
3825 | if (min2 == (double)CUDD_OUT_OF_MEM) return(0); |
---|
3826 | |
---|
3827 | t = (int)((double)nminterms * min1 / (min1 + min2) + 0.5); |
---|
3828 | for (i = 0; i < t; i++) |
---|
3829 | string[i][N->index] = '1'; |
---|
3830 | for (i = t; i < nminterms; i++) |
---|
3831 | string[i][N->index] = '0'; |
---|
3832 | |
---|
3833 | result = ddPickArbitraryMinterms(dd,T,nvars,t,&string[0]); |
---|
3834 | if (result == 0) |
---|
3835 | return(0); |
---|
3836 | result = ddPickArbitraryMinterms(dd,E,nvars,nminterms-t,&string[t]); |
---|
3837 | return(result); |
---|
3838 | |
---|
3839 | } /* end of ddPickArbitraryMinterms */ |
---|
3840 | |
---|
3841 | |
---|
3842 | /**Function******************************************************************** |
---|
3843 | |
---|
3844 | Synopsis [Finds a representative cube of a BDD.] |
---|
3845 | |
---|
3846 | Description [Finds a representative cube of a BDD with the weight of |
---|
3847 | each variable. From the top variable, if the weight is greater than or |
---|
3848 | equal to 0.0, choose THEN branch unless the child is the constant 0. |
---|
3849 | Otherwise, choose ELSE branch unless the child is the constant 0.] |
---|
3850 | |
---|
3851 | SideEffects [Cudd_SubsetWithMaskVars Cudd_bddPickOneCube] |
---|
3852 | |
---|
3853 | ******************************************************************************/ |
---|
3854 | static int |
---|
3855 | ddPickRepresentativeCube( |
---|
3856 | DdManager *dd, |
---|
3857 | DdNode *node, |
---|
3858 | double *weight, |
---|
3859 | char *string) |
---|
3860 | { |
---|
3861 | DdNode *N, *T, *E; |
---|
3862 | DdNode *one, *bzero; |
---|
3863 | |
---|
3864 | if (string == NULL || node == NULL) return(0); |
---|
3865 | |
---|
3866 | /* The constant 0 function has no on-set cubes. */ |
---|
3867 | one = DD_ONE(dd); |
---|
3868 | bzero = Cudd_Not(one); |
---|
3869 | if (node == bzero) return(0); |
---|
3870 | |
---|
3871 | if (node == DD_ONE(dd)) return(1); |
---|
3872 | |
---|
3873 | for (;;) { |
---|
3874 | N = Cudd_Regular(node); |
---|
3875 | if (N == one) |
---|
3876 | break; |
---|
3877 | T = cuddT(N); |
---|
3878 | E = cuddE(N); |
---|
3879 | if (Cudd_IsComplement(node)) { |
---|
3880 | T = Cudd_Not(T); |
---|
3881 | E = Cudd_Not(E); |
---|
3882 | } |
---|
3883 | if (weight[N->index] >= 0.0) { |
---|
3884 | if (T == bzero) { |
---|
3885 | node = E; |
---|
3886 | string[N->index] = '0'; |
---|
3887 | } else { |
---|
3888 | node = T; |
---|
3889 | string[N->index] = '1'; |
---|
3890 | } |
---|
3891 | } else { |
---|
3892 | if (E == bzero) { |
---|
3893 | node = T; |
---|
3894 | string[N->index] = '1'; |
---|
3895 | } else { |
---|
3896 | node = E; |
---|
3897 | string[N->index] = '0'; |
---|
3898 | } |
---|
3899 | } |
---|
3900 | } |
---|
3901 | return(1); |
---|
3902 | |
---|
3903 | } /* end of ddPickRepresentativeCube */ |
---|
3904 | |
---|
3905 | |
---|
3906 | /**Function******************************************************************** |
---|
3907 | |
---|
3908 | Synopsis [Frees the memory used to store the minterm counts recorded |
---|
3909 | in the visited table.] |
---|
3910 | |
---|
3911 | Description [Frees the memory used to store the minterm counts |
---|
3912 | recorded in the visited table. Returns ST_CONTINUE.] |
---|
3913 | |
---|
3914 | SideEffects [None] |
---|
3915 | |
---|
3916 | ******************************************************************************/ |
---|
3917 | static enum st_retval |
---|
3918 | ddEpdFree( |
---|
3919 | char * key, |
---|
3920 | char * value, |
---|
3921 | char * arg) |
---|
3922 | { |
---|
3923 | EpDouble *epd; |
---|
3924 | |
---|
3925 | epd = (EpDouble *) value; |
---|
3926 | EpdFree(epd); |
---|
3927 | return(ST_CONTINUE); |
---|
3928 | |
---|
3929 | } /* end of ddEpdFree */ |
---|