1 | // VIS testbench for a sequential floating point multiplier. |
---|
2 | // The purpose of this testbench is exclusively to latch the inputs, so |
---|
3 | // that CTL properties may refer to them. |
---|
4 | // |
---|
5 | // Author: Fabio Somenzi <Fabio@Colorado.EDU> |
---|
6 | // |
---|
7 | module fvFPMult(clock,i,j); |
---|
8 | parameter MBITS = 3; // size of significand minus hidden bit |
---|
9 | parameter EBITS = 4; // size of exponent |
---|
10 | input clock; // global clock |
---|
11 | input [MBITS+EBITS:0] i; // multiplicand |
---|
12 | input [MBITS+EBITS:0] j; // multiplier |
---|
13 | reg [MBITS+EBITS:0] x; // multiplicand |
---|
14 | reg [MBITS+EBITS:0] y; // multiplier |
---|
15 | wire [MBITS+EBITS:0] z; // output register |
---|
16 | reg start; // starts multiplier |
---|
17 | |
---|
18 | IEEEfpMult #(MBITS,EBITS) FPM (clock,start,x,y,z); |
---|
19 | |
---|
20 | always @ (posedge clock) begin |
---|
21 | x = i; |
---|
22 | y = j; |
---|
23 | end // always @ (posedge clock) |
---|
24 | |
---|
25 | endmodule // fvFPMult |
---|
26 | |
---|
27 | // Floating point multiplier. |
---|
28 | // Not exactly IEEE 754-compliant, but largely inspired to the standard. |
---|
29 | // |
---|
30 | // The significand uses the hidden bit and is between 1 (included) and 2 |
---|
31 | // (excluded). |
---|
32 | // The exponent uses the excess (2**(n-1) - 1) representation. For single |
---|
33 | // precision, this is excess 127. |
---|
34 | // The smallest exponent (0) is used for the represenation of 0. Denormals |
---|
35 | // are not supported. |
---|
36 | // The largest exponent is used for infinities and NaNs. Infinities use |
---|
37 | // the smallest possible significand (all zeroes). Everything else is deemed |
---|
38 | // a NaN. No distinction is made between signalling and non-signalling NaNs. |
---|
39 | // When the multiplier generates a NaN, it uses the all-one significand. |
---|
40 | // One multiplication takes three clock cycles and it is not pipelined. |
---|
41 | // |
---|
42 | // Author: Fabio Somenzi <Fabio@Colorado.EDU> |
---|
43 | // |
---|
44 | module IEEEfpMult(clock,start,x,y,z); |
---|
45 | parameter MBITS = 3; // size of significand minus hidden bit |
---|
46 | parameter EBITS = 4; // size of exponent |
---|
47 | input clock; |
---|
48 | input start; |
---|
49 | input [MBITS+EBITS:0] x, y; |
---|
50 | output [MBITS+EBITS:0] z; |
---|
51 | |
---|
52 | reg [MBITS+EBITS:0] z; |
---|
53 | reg xSign; // unpacked x with hidden bit exposed |
---|
54 | reg [EBITS-1:0] xExp; |
---|
55 | reg [MBITS:0] xMant; |
---|
56 | reg ySign; // unpacked y with hidden bit exposed |
---|
57 | reg [EBITS-1:0] yExp; |
---|
58 | reg [MBITS:0] yMant; |
---|
59 | reg [1:0] state; // idle, computing, postprocessing |
---|
60 | reg signProd; // components of the product |
---|
61 | reg [EBITS+1:0] expProd; // before rounding and normalization |
---|
62 | reg [2*MBITS+1:0] mantProd; |
---|
63 | wire msb; |
---|
64 | wire lsb; |
---|
65 | wire guard; |
---|
66 | wire round; |
---|
67 | wire sticky; |
---|
68 | wire [MBITS+1:0] preMant; |
---|
69 | wire [EBITS+1:0] scaledExp; |
---|
70 | wire [MBITS-1:0] scaledMant; |
---|
71 | wire [2*MBITS+1:0] combZ; |
---|
72 | |
---|
73 | intMult im(xMant, yMant, combZ); |
---|
74 | |
---|
75 | function NaN; |
---|
76 | input [EBITS-1:0] aExp; |
---|
77 | input [MBITS-1:0] aMant; |
---|
78 | begin: isNaN |
---|
79 | if (aExp == {EBITS{1'b1}} && aMant != 0) |
---|
80 | NaN = 1; |
---|
81 | else |
---|
82 | NaN = 0; |
---|
83 | end // block: isNaN |
---|
84 | endfunction // NaN |
---|
85 | |
---|
86 | function Zero; |
---|
87 | input [EBITS-1:0] aExp; |
---|
88 | input [MBITS-1:0] aMant; |
---|
89 | begin: isZero |
---|
90 | if (aExp == 0 && aMant == 0) |
---|
91 | Zero = 1; |
---|
92 | else |
---|
93 | Zero = 0; |
---|
94 | end // block: isZero |
---|
95 | endfunction // Zero |
---|
96 | |
---|
97 | function Infinity; |
---|
98 | input [EBITS-1:0] aExp; |
---|
99 | input [MBITS-1:0] aMant; |
---|
100 | begin: isInfinity |
---|
101 | if (aExp == {EBITS{1'b1}} && aMant == 0) |
---|
102 | Infinity = 1; |
---|
103 | else |
---|
104 | Infinity = 0; |
---|
105 | end // block: isInfinity |
---|
106 | endfunction // Infinity |
---|
107 | |
---|
108 | parameter |
---|
109 | idle = 2'd0, |
---|
110 | computing = 2'd1, |
---|
111 | postprocessing = 2'd2; |
---|
112 | |
---|
113 | initial begin |
---|
114 | xSign = 0; |
---|
115 | xExp = 0; |
---|
116 | xMant = 0; |
---|
117 | ySign = 0; |
---|
118 | yExp = 0; |
---|
119 | yMant = 0; |
---|
120 | signProd = 0; |
---|
121 | expProd = 0; |
---|
122 | mantProd = 0; |
---|
123 | z = 0; |
---|
124 | state = idle; |
---|
125 | end |
---|
126 | |
---|
127 | always @ (posedge clock) begin |
---|
128 | case (state) |
---|
129 | idle: |
---|
130 | begin |
---|
131 | if (start) begin // unpack operands |
---|
132 | xSign = x[MBITS+EBITS]; |
---|
133 | xExp = x[MBITS+EBITS-1:MBITS]; |
---|
134 | xMant = {1'b1,x[MBITS-1:0]}; |
---|
135 | ySign = y[MBITS+EBITS]; |
---|
136 | yExp = y[MBITS+EBITS-1:MBITS]; |
---|
137 | yMant = {1'b1,y[MBITS-1:0]}; |
---|
138 | state = computing; |
---|
139 | end // if (start) |
---|
140 | end // case: idle |
---|
141 | computing: |
---|
142 | begin |
---|
143 | mantProd = combZ; |
---|
144 | if (Zero(xExp,xMant) || Zero(yExp,yMant)) |
---|
145 | expProd = 0; |
---|
146 | else |
---|
147 | expProd = xExp + yExp - {EBITS-1{1'b1}}; |
---|
148 | signProd = xSign ^ ySign; |
---|
149 | state = postprocessing; |
---|
150 | end // case: computing |
---|
151 | postprocessing: |
---|
152 | begin |
---|
153 | if (NaN(xExp,xMant) || NaN(yExp,yMant) || |
---|
154 | Infinity(xExp,xMant) && Zero(yExp,yMant) || |
---|
155 | Zero(xExp,xMant) && Infinity(yExp,yMant)) |
---|
156 | z = {1'b0,{EBITS{1'b1}},{MBITS{1'b1}}}; // NaN |
---|
157 | else if (Infinity(xExp,xMant) || Infinity(yExp,yMant)) |
---|
158 | z = {signProd,{EBITS{1'b1}},{MBITS{1'b0}}}; // +/- Infinity |
---|
159 | else |
---|
160 | // check for underflow and overflow |
---|
161 | if (scaledExp[EBITS+1] || scaledExp == 0) |
---|
162 | z = {signProd,{MBITS+EBITS{1'b0}}}; // signed zero |
---|
163 | else if (scaledExp >= {EBITS{1'b1}}) // overflow |
---|
164 | z = {signProd,{EBITS{1'b1}},{MBITS{1'b0}}}; // +/- Infinity |
---|
165 | else |
---|
166 | z = {signProd,scaledExp[EBITS-1:0],scaledMant}; |
---|
167 | state = idle; |
---|
168 | end // case: postprocessing |
---|
169 | endcase // case (state) |
---|
170 | end // always @ (posedge clock) |
---|
171 | |
---|
172 | // Combinational logic for rounding and normalization |
---|
173 | assign msb = mantProd[2*MBITS+1]; // MSB of the product |
---|
174 | assign lsb = mantProd[MBITS+1]; // LSB of the result |
---|
175 | assign guard = mantProd[MBITS]; // guard bit |
---|
176 | assign round = mantProd[MBITS-1]; // round bit |
---|
177 | assign sticky = | mantProd[MBITS-2:0]; // sticky bit |
---|
178 | // round to nearest even |
---|
179 | assign preMant = msb ? |
---|
180 | mantProd[2*MBITS+1:MBITS] + |
---|
181 | {{MBITS{1'b0}}, guard & (round | sticky | lsb), 1'b0} |
---|
182 | : |
---|
183 | mantProd[2*MBITS+1:MBITS] + |
---|
184 | {{MBITS+1{1'b0}}, round & (sticky | guard)}; |
---|
185 | // normalize |
---|
186 | assign scaledExp = preMant[MBITS+1] ? |
---|
187 | expProd + 1 : |
---|
188 | expProd; |
---|
189 | assign scaledMant = preMant[MBITS+1] ? |
---|
190 | preMant[MBITS:1] : |
---|
191 | preMant[MBITS-1:0]; |
---|
192 | |
---|
193 | endmodule // IEEEfpMult |
---|
194 | |
---|
195 | module intMult(x,y,z); |
---|
196 | input [3:0] x, y; |
---|
197 | output [7:0] z; |
---|
198 | |
---|
199 | wire [3:0] int0; |
---|
200 | wire [5:0] int1; |
---|
201 | wire [6:0] int2; |
---|
202 | wire [7:0] int3; |
---|
203 | |
---|
204 | assign int0 = {4{y[0]}} & x; |
---|
205 | assign int1 = int0 + {{4{y[1]}} & x, {1{1'b0}}}; |
---|
206 | assign int2 = int1 + {{4{y[2]}} & x, {2{1'b0}}}; |
---|
207 | assign int3 = int2 + {{4{y[3]}} & x, {3{1'b0}}}; |
---|
208 | |
---|
209 | assign z = int3; |
---|
210 | |
---|
211 | endmodule // intMult |
---|