[14] | 1 | /**CFile*********************************************************************** |
---|
| 2 | |
---|
| 3 | FileName [bmcUtil.c] |
---|
| 4 | |
---|
| 5 | PackageName [bmc] |
---|
| 6 | |
---|
| 7 | Synopsis [Utilities for BMC package] |
---|
| 8 | |
---|
| 9 | Author [Mohammad Awedh] |
---|
| 10 | |
---|
| 11 | Copyright [This file was created at the University of Colorado at Boulder. |
---|
| 12 | The University of Colorado at Boulder makes no warranty about the suitability |
---|
| 13 | of this software for any purpose. It is presented on an AS IS basis.] |
---|
| 14 | |
---|
| 15 | ******************************************************************************/ |
---|
| 16 | |
---|
| 17 | #include "bmcInt.h" |
---|
| 18 | #include "sat.h" |
---|
| 19 | #include "baig.h" |
---|
| 20 | |
---|
| 21 | static char rcsid[] UNUSED = "$Id: bmcUtil.c,v 1.82 2010/04/10 04:07:06 fabio Exp $"; |
---|
| 22 | |
---|
| 23 | /*---------------------------------------------------------------------------*/ |
---|
| 24 | /* Constant declarations */ |
---|
| 25 | /*---------------------------------------------------------------------------*/ |
---|
| 26 | |
---|
| 27 | #define MAX_LENGTH 320 /* Max. length of a string while reading a file */ |
---|
| 28 | |
---|
| 29 | /*---------------------------------------------------------------------------*/ |
---|
| 30 | /* Type declarations */ |
---|
| 31 | /*---------------------------------------------------------------------------*/ |
---|
| 32 | |
---|
| 33 | |
---|
| 34 | /*---------------------------------------------------------------------------*/ |
---|
| 35 | /* Structure declarations */ |
---|
| 36 | /*---------------------------------------------------------------------------*/ |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | /*---------------------------------------------------------------------------*/ |
---|
| 40 | /* Variable declarations */ |
---|
| 41 | /*---------------------------------------------------------------------------*/ |
---|
| 42 | |
---|
| 43 | |
---|
| 44 | /**AutomaticStart*************************************************************/ |
---|
| 45 | |
---|
| 46 | /*---------------------------------------------------------------------------*/ |
---|
| 47 | /* Static function prototypes */ |
---|
| 48 | /*---------------------------------------------------------------------------*/ |
---|
| 49 | |
---|
| 50 | static int StringCheckIsInteger(char *string, int *value); |
---|
| 51 | static int nameCompare(const void * name1, const void * name2); |
---|
| 52 | static void printValue(mAig_Manager_t *manager, Ntk_Network_t *network, st_table *nodeToMvfAigTable, BmcCnfClauses_t *cnfClauses, array_t *varNames, st_table *resultTable, int state, int *prevValue); |
---|
| 53 | static void printValueAiger(mAig_Manager_t *manager, Ntk_Network_t *network, st_table *nodeToMvfAigTable, BmcCnfClauses_t *cnfClauses, array_t *varNames, st_table *resultTable, int state, int *prevValue); |
---|
| 54 | static void printValueAigerInputs(mAig_Manager_t *manager, Ntk_Network_t *network, st_table *nodeToMvfAigTable, BmcCnfClauses_t *cnfClauses, array_t *varNames, st_table *resultTable, int state, int *prevValue); |
---|
| 55 | |
---|
| 56 | /**AutomaticEnd***************************************************************/ |
---|
| 57 | |
---|
| 58 | /*---------------------------------------------------------------------------*/ |
---|
| 59 | /* Definition of exported functions */ |
---|
| 60 | /*---------------------------------------------------------------------------*/ |
---|
| 61 | |
---|
| 62 | |
---|
| 63 | /**Function******************************************************************** |
---|
| 64 | |
---|
| 65 | Synopsis [Compute cube that is close to target states.] |
---|
| 66 | |
---|
| 67 | SideEffects [] |
---|
| 68 | |
---|
| 69 | ******************************************************************************/ |
---|
| 70 | mdd_t * |
---|
| 71 | Bmc_ComputeCloseCube( |
---|
| 72 | mdd_t *states, |
---|
| 73 | mdd_t *target, |
---|
| 74 | int *dist, |
---|
| 75 | Fsm_Fsm_t *modelFsm) |
---|
| 76 | { |
---|
| 77 | array_t *PSVars = Fsm_FsmReadPresentStateVars( modelFsm ); |
---|
| 78 | mdd_manager *mddMgr = Ntk_NetworkReadMddManager( Fsm_FsmReadNetwork( modelFsm ) ); |
---|
| 79 | mdd_t *result = BmcComputeCloseCube( states, target, dist, PSVars, mddMgr ); |
---|
| 80 | |
---|
| 81 | return result; |
---|
| 82 | } |
---|
| 83 | |
---|
| 84 | /**Function******************************************************************** |
---|
| 85 | |
---|
| 86 | Synopsis [Build multi-valued function for a given node.] |
---|
| 87 | |
---|
| 88 | SideEffects [The mvf of this node is a function of combinational input |
---|
| 89 | nodes.] |
---|
| 90 | |
---|
| 91 | ******************************************************************************/ |
---|
| 92 | MvfAig_Function_t * |
---|
| 93 | Bmc_NodeBuildMVF( |
---|
| 94 | Ntk_Network_t *network, |
---|
| 95 | Ntk_Node_t *node) |
---|
| 96 | { |
---|
| 97 | MvfAig_Function_t * MvfAig; |
---|
| 98 | lsGen tmpGen; |
---|
| 99 | Ntk_Node_t *tmpNode; |
---|
| 100 | array_t *mvfArray; |
---|
| 101 | array_t *tmpRoots = array_alloc(Ntk_Node_t *, 0); |
---|
| 102 | st_table *tmpLeaves = st_init_table(st_ptrcmp, st_ptrhash); |
---|
| 103 | array_insert_last(Ntk_Node_t *, tmpRoots, node); |
---|
| 104 | |
---|
| 105 | Ntk_NetworkForEachCombInput(network, tmpGen, tmpNode) { |
---|
| 106 | st_insert(tmpLeaves, (char *) tmpNode, (char *) ntmaig_UNUSED); |
---|
| 107 | } |
---|
| 108 | |
---|
| 109 | mvfArray = ntmaig_NetworkBuildMvfAigs(network, tmpRoots, tmpLeaves); |
---|
| 110 | MvfAig = array_fetch(MvfAig_Function_t *, mvfArray, 0); |
---|
| 111 | array_free(tmpRoots); |
---|
| 112 | st_free_table(tmpLeaves); |
---|
| 113 | array_free(mvfArray); |
---|
| 114 | return MvfAig; |
---|
| 115 | } |
---|
| 116 | |
---|
| 117 | |
---|
| 118 | /**Function******************************************************************** |
---|
| 119 | |
---|
| 120 | Synopsis [Returns MvfAig corresponding to a node; returns NIL if node not in |
---|
| 121 | table.] |
---|
| 122 | |
---|
| 123 | SideEffects [None] |
---|
| 124 | |
---|
| 125 | ******************************************************************************/ |
---|
| 126 | MvfAig_Function_t * |
---|
| 127 | Bmc_ReadMvfAig( |
---|
| 128 | Ntk_Node_t * node, |
---|
| 129 | st_table * nodeToMvfAigTable) |
---|
| 130 | { |
---|
| 131 | MvfAig_Function_t *result; |
---|
| 132 | if (st_lookup(nodeToMvfAigTable, node, &result)){ |
---|
| 133 | return result; |
---|
| 134 | } |
---|
| 135 | return NIL(MvfAig_Function_t); |
---|
| 136 | } |
---|
| 137 | |
---|
| 138 | |
---|
| 139 | /*---------------------------------------------------------------------------*/ |
---|
| 140 | /* Definition of internal functions */ |
---|
| 141 | /*---------------------------------------------------------------------------*/ |
---|
| 142 | |
---|
| 143 | /**Function******************************************************************** |
---|
| 144 | |
---|
| 145 | Synopsis [Evaluate states satisfying X target] |
---|
| 146 | |
---|
| 147 | Description [Evaluate states satisfying X target.] |
---|
| 148 | |
---|
| 149 | SideEffects [] |
---|
| 150 | |
---|
| 151 | ******************************************************************************/ |
---|
| 152 | mdd_t * |
---|
| 153 | BmcFsmEvaluateX( |
---|
| 154 | Fsm_Fsm_t *modelFsm, |
---|
| 155 | mdd_t *targetMdd) |
---|
| 156 | { |
---|
| 157 | mdd_t *fromLowerBound; |
---|
| 158 | mdd_t *fromUpperBound; |
---|
| 159 | mdd_t *result; |
---|
| 160 | Img_ImageInfo_t * imageInfo; |
---|
| 161 | mdd_t *careStates; |
---|
| 162 | array_t *careStatesArray = array_alloc(array_t *, 0); |
---|
| 163 | |
---|
| 164 | imageInfo = Fsm_FsmReadOrCreateImageInfo(modelFsm, 1, 0); |
---|
| 165 | |
---|
| 166 | /* |
---|
| 167 | * The lower bound is the conjunction of the fair states, |
---|
| 168 | * and the target states. |
---|
| 169 | */ |
---|
| 170 | fromLowerBound = mdd_dup(targetMdd); |
---|
| 171 | /* |
---|
| 172 | * The upper bound is the same as the lower bound. |
---|
| 173 | */ |
---|
| 174 | fromUpperBound = mdd_dup(fromLowerBound); |
---|
| 175 | /* |
---|
| 176 | careSet is the set of all unreachabel states. |
---|
| 177 | */ |
---|
| 178 | careStates = mdd_one(Fsm_FsmReadMddManager(modelFsm)); |
---|
| 179 | array_insert(mdd_t *, careStatesArray, 0, careStates); |
---|
| 180 | |
---|
| 181 | result = Img_ImageInfoComputePreImageWithDomainVars(imageInfo, |
---|
| 182 | fromLowerBound, fromUpperBound, careStatesArray); |
---|
| 183 | mdd_free(fromLowerBound); |
---|
| 184 | mdd_free(fromUpperBound); |
---|
| 185 | |
---|
| 186 | return result; |
---|
| 187 | |
---|
| 188 | } /* BmcFsmEvaluateX */ |
---|
| 189 | |
---|
| 190 | |
---|
| 191 | /**Function******************************************************************** |
---|
| 192 | |
---|
| 193 | Synopsis [Compute cube that is close to target states. Support |
---|
| 194 | is an array of mddids representing the total support; that is, all |
---|
| 195 | the variables on which aSet may depend. It dos the function only |
---|
| 196 | if CUDD is the BDD package.] |
---|
| 197 | |
---|
| 198 | SideEffects [] |
---|
| 199 | |
---|
| 200 | ******************************************************************************/ |
---|
| 201 | mdd_t * |
---|
| 202 | BmcComputeCloseCube( |
---|
| 203 | mdd_t *aSet, |
---|
| 204 | mdd_t *target, |
---|
| 205 | int *dist, |
---|
| 206 | array_t *Support, |
---|
| 207 | mdd_manager *mddMgr) |
---|
| 208 | { |
---|
| 209 | if (bdd_get_package_name() == CUDD && target != NIL(mdd_t)) { |
---|
| 210 | mdd_t *range; /* range of Support */ |
---|
| 211 | mdd_t *legalSet; /* aSet without the don't cares */ |
---|
| 212 | mdd_t *closeCube; |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | /* Check that support of set is contained in Support. |
---|
| 216 | assert(SetCheckSupport(aSet, Support, mddMgr)); */ |
---|
| 217 | assert(!mdd_is_tautology(aSet, 0)); |
---|
| 218 | range = mdd_range_mdd(mddMgr, Support); |
---|
| 219 | legalSet = bdd_and(aSet, range, 1, 1); |
---|
| 220 | mdd_free(range); |
---|
| 221 | closeCube = mdd_closest_cube(legalSet, target, dist); |
---|
| 222 | |
---|
| 223 | mdd_free(legalSet); |
---|
| 224 | |
---|
| 225 | return closeCube; |
---|
| 226 | } else { |
---|
| 227 | return aSet; |
---|
| 228 | /*return BMC_ComputeAMinterm(aSet, Support, mddMgr);*/ |
---|
| 229 | }/* if CUDD */ |
---|
| 230 | |
---|
| 231 | } /* BmcComputeCloseCube */ |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | /**Function******************************************************************** |
---|
| 235 | |
---|
| 236 | Synopsis [Build AND/INV graph for intial states] |
---|
| 237 | |
---|
| 238 | Description [Build AND/INV graph for intial states. Returns bAig Id |
---|
| 239 | of the bAig Function that represents the intial states. |
---|
| 240 | |
---|
| 241 | The initial states are computed as follows. For each latch i, the relation |
---|
| 242 | (x_i = g_i(u)) is built, where x_i is the present state variable of latch i, |
---|
| 243 | and g_i(u) is the multi-valued initialization function of latch i, in terms |
---|
| 244 | of the input variables u. These relations are then conjuncted. |
---|
| 245 | ] |
---|
| 246 | |
---|
| 247 | SideEffects [] |
---|
| 248 | |
---|
| 249 | SeeAlso [] |
---|
| 250 | |
---|
| 251 | ******************************************************************************/ |
---|
| 252 | mAigEdge_t |
---|
| 253 | BmcCreateMaigOfInitialStates( |
---|
| 254 | Ntk_Network_t *network, |
---|
| 255 | st_table *nodeToMvfAigTable, |
---|
| 256 | st_table *CoiTable) |
---|
| 257 | { |
---|
| 258 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
| 259 | st_generator *stGen; |
---|
| 260 | |
---|
| 261 | Ntk_Node_t *latch, *latchInit; |
---|
| 262 | MvfAig_Function_t *initMvfAig, *latchMvfAig; |
---|
| 263 | |
---|
| 264 | bAigEdge_t resultAnd = bAig_One; |
---|
| 265 | bAigEdge_t resultOr; |
---|
| 266 | int i; |
---|
| 267 | |
---|
| 268 | st_foreach_item(CoiTable, stGen, &latch, NULL) { |
---|
| 269 | |
---|
| 270 | |
---|
| 271 | latchInit = Ntk_LatchReadInitialInput(latch); |
---|
| 272 | |
---|
| 273 | /* Get the multi-valued function for each node*/ |
---|
| 274 | initMvfAig = Bmc_ReadMvfAig(latchInit, nodeToMvfAigTable); |
---|
| 275 | if (initMvfAig == NIL(MvfAig_Function_t)){ |
---|
| 276 | (void) fprintf(vis_stdout, "No multi-valued function for this node %s \n", Ntk_NodeReadName(latchInit)); |
---|
| 277 | return bAig_NULL; |
---|
| 278 | } |
---|
| 279 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
| 280 | if (latchMvfAig == NIL(MvfAig_Function_t)){ |
---|
| 281 | latchMvfAig = Bmc_NodeBuildMVF(network, latch); |
---|
| 282 | array_free(latchMvfAig); |
---|
| 283 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
| 284 | } |
---|
| 285 | resultOr = bAig_Zero; |
---|
| 286 | for(i=0; i<array_n(initMvfAig); i++){ |
---|
| 287 | resultOr = mAig_Or(manager, resultOr, |
---|
| 288 | bAig_Eq(manager, |
---|
| 289 | bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(initMvfAig, i)), |
---|
| 290 | bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(latchMvfAig, i)) |
---|
| 291 | ) |
---|
| 292 | ); |
---|
| 293 | if(resultOr == bAig_One){ |
---|
| 294 | break; |
---|
| 295 | } |
---|
| 296 | } |
---|
| 297 | resultAnd = mAig_And(manager, resultAnd, resultOr); |
---|
| 298 | if(resultAnd == bAig_Zero){ |
---|
| 299 | break; |
---|
| 300 | } |
---|
| 301 | }/* for each latch*/ |
---|
| 302 | |
---|
| 303 | return resultAnd; |
---|
| 304 | } |
---|
| 305 | |
---|
| 306 | |
---|
| 307 | /**Function******************************************************************** |
---|
| 308 | |
---|
| 309 | Synopsis [Builds AND/INVERTER graph (aig) for a propsitional formula] |
---|
| 310 | |
---|
| 311 | Description [Builds AND/INVERTER graph for a propsitional formula. |
---|
| 312 | Returns bAig ID of the function that is quivalent to the propositional |
---|
| 313 | fomula] |
---|
| 314 | |
---|
| 315 | SideEffects [] |
---|
| 316 | |
---|
| 317 | SeeAlso [] |
---|
| 318 | |
---|
| 319 | ******************************************************************************/ |
---|
| 320 | |
---|
| 321 | mAigEdge_t |
---|
| 322 | BmcCreateMaigOfPropFormula( |
---|
| 323 | Ntk_Network_t *network, |
---|
| 324 | mAig_Manager_t *manager, |
---|
| 325 | Ctlsp_Formula_t *formula) |
---|
| 326 | { |
---|
| 327 | mAigEdge_t left, right, result; |
---|
| 328 | |
---|
| 329 | if (formula == NIL(Ctlsp_Formula_t)) { |
---|
| 330 | return mAig_NULL; |
---|
| 331 | } |
---|
| 332 | if (formula->type == Ctlsp_TRUE_c){ |
---|
| 333 | return mAig_One; |
---|
| 334 | } |
---|
| 335 | if (formula->type == Ctlsp_FALSE_c){ |
---|
| 336 | return mAig_Zero; |
---|
| 337 | } |
---|
| 338 | |
---|
| 339 | assert(Ctlsp_isPropositionalFormula(formula)); |
---|
| 340 | |
---|
| 341 | if (formula->type == Ctlsp_ID_c){ |
---|
| 342 | char *nodeNameString = Ctlsp_FormulaReadVariableName(formula); |
---|
| 343 | char *nodeValueString = Ctlsp_FormulaReadValueName(formula); |
---|
| 344 | Ntk_Node_t *node = Ntk_NetworkFindNodeByName(network, nodeNameString); |
---|
| 345 | |
---|
| 346 | Var_Variable_t *nodeVar; |
---|
| 347 | int nodeValue; |
---|
| 348 | |
---|
| 349 | MvfAig_Function_t *tmpMvfAig; |
---|
| 350 | st_table *nodeToMvfAigTable; /* maps each node to its mvfAig */ |
---|
| 351 | |
---|
| 352 | if (node == NIL(Ntk_Node_t)) { |
---|
| 353 | (void) fprintf(vis_stderr, "bmc error: Could not find node corresponding to the name\t %s\n", nodeNameString); |
---|
| 354 | return mAig_NULL; |
---|
| 355 | } |
---|
| 356 | nodeToMvfAigTable = (st_table *) Ntk_NetworkReadApplInfo(network, MVFAIG_NETWORK_APPL_KEY); |
---|
| 357 | if (nodeToMvfAigTable == NIL(st_table)){ |
---|
| 358 | (void) fprintf(vis_stderr, "bmc error: please run build_partiton_maigs first"); |
---|
| 359 | return mAig_NULL; |
---|
| 360 | } |
---|
| 361 | tmpMvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
| 362 | if (tmpMvfAig == NIL(MvfAig_Function_t)){ |
---|
| 363 | tmpMvfAig = Bmc_NodeBuildMVF(network, node); |
---|
| 364 | array_free(tmpMvfAig); |
---|
| 365 | tmpMvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
| 366 | } |
---|
| 367 | nodeVar = Ntk_NodeReadVariable(node); |
---|
| 368 | if (Var_VariableTestIsSymbolic(nodeVar)) { |
---|
| 369 | nodeValue = Var_VariableReadIndexFromSymbolicValue(nodeVar, nodeValueString); |
---|
| 370 | if ( nodeValue == -1 ) { |
---|
| 371 | (void) fprintf(vis_stderr, "Value specified in RHS is not in domain of variable\n"); |
---|
| 372 | (void) fprintf(vis_stderr,"%s = %s\n", nodeNameString, nodeValueString); |
---|
| 373 | return mAig_NULL; |
---|
| 374 | } |
---|
| 375 | } |
---|
| 376 | else { |
---|
| 377 | int check; |
---|
| 378 | check = StringCheckIsInteger(nodeValueString, &nodeValue); |
---|
| 379 | if( check == 0 ) { |
---|
| 380 | (void) fprintf(vis_stderr,"Illegal value in the RHS\n"); |
---|
| 381 | (void) fprintf(vis_stderr,"%s = %s\n", nodeNameString, nodeValueString); |
---|
| 382 | return mAig_NULL; |
---|
| 383 | } |
---|
| 384 | if( check == 1 ) { |
---|
| 385 | (void) fprintf(vis_stderr,"Value in the RHS is out of range of int\n"); |
---|
| 386 | (void) fprintf(vis_stderr,"%s = %s", nodeNameString, nodeValueString); |
---|
| 387 | return mAig_NULL; |
---|
| 388 | } |
---|
| 389 | if ( !(Var_VariableTestIsValueInRange(nodeVar, nodeValue))) { |
---|
| 390 | (void) fprintf(vis_stderr,"Value specified in RHS is not in domain of variable\n"); |
---|
| 391 | (void) fprintf(vis_stderr,"%s = %s\n", nodeNameString, nodeValueString); |
---|
| 392 | return mAig_NULL; |
---|
| 393 | |
---|
| 394 | } |
---|
| 395 | } |
---|
| 396 | result = MvfAig_FunctionReadComponent(tmpMvfAig, nodeValue); |
---|
| 397 | return bAig_GetCanonical(manager, result); |
---|
| 398 | } |
---|
| 399 | /* |
---|
| 400 | right can be mAig_NULL for unery operators, but left can't be mAig_Null |
---|
| 401 | */ |
---|
| 402 | left = BmcCreateMaigOfPropFormula(network, manager, formula->left); |
---|
| 403 | if (left == mAig_NULL){ |
---|
| 404 | return mAig_NULL; |
---|
| 405 | } |
---|
| 406 | right = BmcCreateMaigOfPropFormula(network, manager, formula->right); |
---|
| 407 | |
---|
| 408 | switch(formula->type) { |
---|
| 409 | case Ctlsp_NOT_c: |
---|
| 410 | result = mAig_Not(left); |
---|
| 411 | break; |
---|
| 412 | case Ctlsp_OR_c: |
---|
| 413 | result = mAig_Or(manager, left, right); |
---|
| 414 | break; |
---|
| 415 | case Ctlsp_AND_c: |
---|
| 416 | result = mAig_And(manager, left, right); |
---|
| 417 | break; |
---|
| 418 | case Ctlsp_THEN_c: |
---|
| 419 | result = mAig_Then(manager, left, right); |
---|
| 420 | break; |
---|
| 421 | case Ctlsp_EQ_c: |
---|
| 422 | result = mAig_Eq(manager, left, right); |
---|
| 423 | break; |
---|
| 424 | case Ctlsp_XOR_c: |
---|
| 425 | result = mAig_Xor(manager, left, right); |
---|
| 426 | break; |
---|
| 427 | default: |
---|
| 428 | fail("Unexpected LTL type"); |
---|
| 429 | } |
---|
| 430 | return result; |
---|
| 431 | } /* BmcCreateMaigOfPropFormula */ |
---|
| 432 | |
---|
| 433 | /**Function******************************************************************** |
---|
| 434 | |
---|
| 435 | Synopsis [Build MDD for safety property in form of AG(p). Where p is either a |
---|
| 436 | propositional formula or a path formula contains only the temporal property X.] |
---|
| 437 | |
---|
| 438 | Description [Build MDD for a safety formula. Returns NIL if the conversion |
---|
| 439 | fails. The calling application is responsible for freeing the returned MDD.] |
---|
| 440 | |
---|
| 441 | SideEffects [] |
---|
| 442 | |
---|
| 443 | SeeAlso [Ctlsp_FormulaReadClass] |
---|
| 444 | |
---|
| 445 | ******************************************************************************/ |
---|
| 446 | mdd_t * |
---|
| 447 | BmcCreateMddOfSafetyProperty( |
---|
| 448 | Fsm_Fsm_t *fsm, |
---|
| 449 | Ctlsp_Formula_t *formula) |
---|
| 450 | { |
---|
| 451 | |
---|
| 452 | mdd_manager *manager = Ntk_NetworkReadMddManager(Fsm_FsmReadNetwork(fsm)); |
---|
| 453 | mdd_t *left, *right, *result; |
---|
| 454 | |
---|
| 455 | if (formula == NIL(Ctlsp_Formula_t)) { |
---|
| 456 | return NIL(mdd_t); |
---|
| 457 | } |
---|
| 458 | if (formula->type == Ctlsp_TRUE_c){ |
---|
| 459 | return bdd_one(manager); |
---|
| 460 | } |
---|
| 461 | if (formula->type == Ctlsp_FALSE_c){ |
---|
| 462 | return mdd_zero(manager); |
---|
| 463 | } |
---|
| 464 | |
---|
| 465 | #if 0 |
---|
| 466 | if (!Ctlsp_isPropositionalFormula(formula)) { |
---|
| 467 | (void) fprintf(vis_stderr, "bmc error: Only propositional formula can be converted to bdd \n"); |
---|
| 468 | fprintf(vis_stdout, "\nFormula: "); |
---|
| 469 | Ctlsp_FormulaPrint(vis_stdout, formula); |
---|
| 470 | fprintf(vis_stdout, "\n"); |
---|
| 471 | return NIL(mdd_t); |
---|
| 472 | } |
---|
| 473 | #endif |
---|
| 474 | /* |
---|
| 475 | Atomic proposition. |
---|
| 476 | */ |
---|
| 477 | if (formula->type == Ctlsp_ID_c){ |
---|
| 478 | return BmcModelCheckAtomicFormula(fsm, formula); |
---|
| 479 | } |
---|
| 480 | /* |
---|
| 481 | right can be NIL(mdd_t) for unery operators, but left can't be NIL(mdd_t) |
---|
| 482 | */ |
---|
| 483 | left = BmcCreateMddOfSafetyProperty(fsm, formula->left); |
---|
| 484 | if (left == NIL(mdd_t)){ |
---|
| 485 | return NIL(mdd_t); |
---|
| 486 | } |
---|
| 487 | right = BmcCreateMddOfSafetyProperty(fsm, formula->right); |
---|
| 488 | assert(right != NIL(mdd_t)); |
---|
| 489 | switch(formula->type) { |
---|
| 490 | case Ctlsp_NOT_c: |
---|
| 491 | result = mdd_not(left); |
---|
| 492 | break; |
---|
| 493 | case Ctlsp_OR_c: |
---|
| 494 | result = mdd_or(left, right, 1, 1); |
---|
| 495 | break; |
---|
| 496 | case Ctlsp_AND_c: |
---|
| 497 | result = mdd_and(left, right, 1, 1); |
---|
| 498 | break; |
---|
| 499 | case Ctlsp_THEN_c: |
---|
| 500 | result = mdd_or(left, right, 0, 1); |
---|
| 501 | break; |
---|
| 502 | case Ctlsp_EQ_c: |
---|
| 503 | result = mdd_xnor(left, right); |
---|
| 504 | break; |
---|
| 505 | case Ctlsp_XOR_c: |
---|
| 506 | result = mdd_xor(left, right); |
---|
| 507 | break; |
---|
| 508 | case Ctlsp_X_c: |
---|
| 509 | result = BmcFsmEvaluateX(fsm, left); |
---|
| 510 | break; |
---|
| 511 | default: |
---|
| 512 | /* |
---|
| 513 | return NIL(mdd_t) if the type is not supported |
---|
| 514 | */ |
---|
| 515 | return NIL(mdd_t); |
---|
| 516 | /* |
---|
| 517 | fail("Unexpected type"); |
---|
| 518 | */ |
---|
| 519 | } |
---|
| 520 | return result; |
---|
| 521 | } |
---|
| 522 | |
---|
| 523 | |
---|
| 524 | /**Function******************************************************************** |
---|
| 525 | |
---|
| 526 | Synopsis [Generate the CNF formula of a given function represented by |
---|
| 527 | AND/INVERTER graph] |
---|
| 528 | |
---|
| 529 | Description [Generate an array of clausese for a function represented in |
---|
| 530 | AND/INVERETER graph structure. |
---|
| 531 | |
---|
| 532 | the CNF formula of node to the output file specifies by cnfFile. |
---|
| 533 | It stores CNF index for each node in the cnfIndexTable. The generated CNF |
---|
| 534 | is in dimacs format. |
---|
| 535 | It is an error to call this function on a constand zero/one node.] |
---|
| 536 | |
---|
| 537 | SideEffects [] |
---|
| 538 | |
---|
| 539 | SeeAlso [] |
---|
| 540 | |
---|
| 541 | ******************************************************************************/ |
---|
| 542 | int |
---|
| 543 | BmcGenerateCnfFormulaForAigFunction( |
---|
| 544 | bAig_Manager_t *manager, |
---|
| 545 | bAigEdge_t node, |
---|
| 546 | int k, |
---|
| 547 | BmcCnfClauses_t *cnfClauses) |
---|
| 548 | { |
---|
| 549 | int leftIndex, rightIndex, nodeIndex; |
---|
| 550 | array_t *clause; |
---|
| 551 | |
---|
| 552 | assert( (node != bAig_One) && (node != bAig_Zero)); |
---|
| 553 | |
---|
| 554 | if(bAig_IsInverted(node)){ |
---|
| 555 | /* |
---|
| 556 | The generated clauses are in dimacs formate that uses negative number to indicate complement |
---|
| 557 | */ |
---|
| 558 | return -1*BmcGenerateCnfFormulaForAigFunction(manager, bAig_NonInvertedEdge(node), k, cnfClauses); |
---|
| 559 | } |
---|
| 560 | if (BmcCnfReadOrInsertNode(cnfClauses, bAig_NodeReadName(manager, node), k, &nodeIndex)){ |
---|
| 561 | return nodeIndex; |
---|
| 562 | } |
---|
| 563 | if (bAig_isVarNode(manager, node)){ |
---|
| 564 | return nodeIndex; |
---|
| 565 | } |
---|
| 566 | leftIndex = BmcGenerateCnfFormulaForAigFunction(manager, |
---|
| 567 | bAig_GetCanonical(manager, leftChild(node)), |
---|
| 568 | k, cnfClauses); |
---|
| 569 | rightIndex = BmcGenerateCnfFormulaForAigFunction(manager, |
---|
| 570 | bAig_GetCanonical(manager, rightChild(node)), |
---|
| 571 | k, cnfClauses); |
---|
| 572 | clause = array_alloc(int, 3); |
---|
| 573 | array_insert(int, clause, 0, -leftIndex ); |
---|
| 574 | array_insert(int, clause, 1, -rightIndex); |
---|
| 575 | array_insert(int, clause, 2, nodeIndex ); |
---|
| 576 | BmcCnfInsertClause(cnfClauses, clause); |
---|
| 577 | array_free(clause); |
---|
| 578 | |
---|
| 579 | clause = array_alloc(int, 2); |
---|
| 580 | array_insert(int, clause, 0, leftIndex); |
---|
| 581 | array_insert(int, clause, 1, -nodeIndex); |
---|
| 582 | BmcCnfInsertClause(cnfClauses, clause); |
---|
| 583 | array_free(clause); |
---|
| 584 | |
---|
| 585 | clause = array_alloc(int, 2); |
---|
| 586 | array_insert(int, clause, 0, rightIndex); |
---|
| 587 | array_insert(int, clause, 1, -nodeIndex); |
---|
| 588 | BmcCnfInsertClause(cnfClauses, clause); |
---|
| 589 | array_free(clause); |
---|
| 590 | |
---|
| 591 | return(nodeIndex); |
---|
| 592 | } |
---|
| 593 | |
---|
| 594 | /**Function******************************************************************** |
---|
| 595 | |
---|
| 596 | Synopsis [Generate CNF for bdd function] |
---|
| 597 | |
---|
| 598 | Description [ |
---|
| 599 | The function of each node f = var*thenChild + -var*elseChild |
---|
| 600 | var is the variable at this node. |
---|
| 601 | For each node there are four cases: |
---|
| 602 | - both childeren are constant -> do nothing. |
---|
| 603 | - the then child is constant 1 -> generate clauses for f = var + elseChild. |
---|
| 604 | - the else child is constant 0 -> generate clauses for f = var * thenChild. |
---|
| 605 | - the else child is constant 1 -> generate clauses for f = -var + thenChild. |
---|
| 606 | - else -> generate clauses for f = var*thenChild + -var*elseChild. |
---|
| 607 | ------------------------------------------------ |
---|
| 608 | function | clauses |
---|
| 609 | ------------------------------------------------ |
---|
| 610 | c = a*b | (-a + -b + c)*(a + -c)*(b + -c) |
---|
| 611 | c = a+b | (a + b + -c)*(-a + c)*(-b + c) |
---|
| 612 | f = c*a + -c*b | (-a + -c + f)*(a + -c + -f)* |
---|
| 613 | | (-b + c + f)*(b + c + -f) |
---|
| 614 | |
---|
| 615 | return the cnf index of the bdd function |
---|
| 616 | ] |
---|
| 617 | |
---|
| 618 | SideEffects [] |
---|
| 619 | |
---|
| 620 | SeeAlso [] |
---|
| 621 | |
---|
| 622 | ******************************************************************************/ |
---|
| 623 | int |
---|
| 624 | BmcGenerateCnfFormulaForBdd( |
---|
| 625 | bdd_t *bddFunction, |
---|
| 626 | int k, |
---|
| 627 | BmcCnfClauses_t *cnfClauses) |
---|
| 628 | { |
---|
| 629 | bdd_manager *bddManager = bdd_get_manager(bddFunction); |
---|
| 630 | bdd_node *node, *thenNode, *elseNode, *funcNode; |
---|
| 631 | int is_complemented; |
---|
| 632 | int nodeIndex=0, thenIndex, elseIndex; |
---|
| 633 | bdd_gen *gen; |
---|
| 634 | int varIndex, flag; |
---|
| 635 | array_t *tmpClause; |
---|
| 636 | |
---|
| 637 | st_table *bddToCnfIndexTable; |
---|
| 638 | |
---|
| 639 | bdd_t *currentBddNode; |
---|
| 640 | int cut = 5; |
---|
| 641 | |
---|
| 642 | if (bddFunction == NULL){ |
---|
| 643 | return 0; |
---|
| 644 | } |
---|
| 645 | funcNode = bdd_get_node(bddFunction, &is_complemented); |
---|
| 646 | if (bdd_is_constant(funcNode)){ |
---|
| 647 | if (is_complemented){ |
---|
| 648 | /* add an empty clause to indicate FALSE (un-satisfiable)*/ |
---|
| 649 | BmcAddEmptyClause(cnfClauses); |
---|
| 650 | } |
---|
| 651 | return 0; |
---|
| 652 | } |
---|
| 653 | if(bdd_size(bddFunction) <= cut){ |
---|
| 654 | return BmcGenerateCnfFormulaForBddOffSet(bddFunction, k, cnfClauses); |
---|
| 655 | } |
---|
| 656 | |
---|
| 657 | bddToCnfIndexTable = st_init_table(st_numcmp, st_numhash); |
---|
| 658 | foreach_bdd_node(bddFunction, gen, node){ |
---|
| 659 | if (bdd_is_constant(node)){ /* do nothing */ |
---|
| 660 | continue; |
---|
| 661 | } |
---|
| 662 | |
---|
| 663 | /* |
---|
| 664 | bdd_size() returns 1 if bdd is constant one. |
---|
| 665 | */ |
---|
| 666 | /* |
---|
| 667 | Use offset method to generate CNF if the size of the node <= cut (include the constant 1 node). |
---|
| 668 | */ |
---|
| 669 | /*#if 0*/ |
---|
| 670 | if(bdd_size(currentBddNode = bdd_construct_bdd_t(bddManager, bdd_regular(node))) <= cut){ |
---|
| 671 | if (bdd_size(currentBddNode) == cut){ |
---|
| 672 | nodeIndex = BmcGenerateCnfFormulaForBddOffSet(currentBddNode, k, cnfClauses); |
---|
| 673 | st_insert(bddToCnfIndexTable, (char *) (long) bdd_regular(node), (char *) (long)nodeIndex); |
---|
| 674 | continue; |
---|
| 675 | } |
---|
| 676 | continue; |
---|
| 677 | } |
---|
| 678 | /*#endif*/ |
---|
| 679 | varIndex = BmcGetCnfVarIndexForBddNode(bddManager, bdd_regular(node), k, cnfClauses); |
---|
| 680 | nodeIndex = varIndex; |
---|
| 681 | |
---|
| 682 | thenNode = bdd_bdd_T(node); |
---|
| 683 | elseNode = bdd_bdd_E(node); |
---|
| 684 | |
---|
| 685 | if (!((bdd_is_constant(thenNode)) && (bdd_is_constant(elseNode)))){ |
---|
| 686 | nodeIndex = cnfClauses->cnfGlobalIndex++; /* index of the function of this node */ |
---|
| 687 | |
---|
| 688 | if (bdd_is_constant(thenNode)){ /* the thenNode can be only constant one*/ |
---|
| 689 | flag = st_lookup_int(bddToCnfIndexTable, bdd_regular(elseNode), &elseIndex); |
---|
| 690 | assert(flag); |
---|
| 691 | /* |
---|
| 692 | test if the elseNode is complemented arc? |
---|
| 693 | */ |
---|
| 694 | if (bdd_is_complement(elseNode)){ |
---|
| 695 | elseIndex = -1*elseIndex; |
---|
| 696 | } |
---|
| 697 | BmcCnfGenerateClausesForOR(elseIndex, varIndex, nodeIndex, cnfClauses); |
---|
| 698 | } else if (bdd_is_constant(elseNode)){ /* one or zero */ |
---|
| 699 | flag = st_lookup_int(bddToCnfIndexTable, bdd_regular(thenNode), &thenIndex); |
---|
| 700 | assert(flag); |
---|
| 701 | /* |
---|
| 702 | test if the elseNode is complemented arc? |
---|
| 703 | */ |
---|
| 704 | if (bdd_is_complement(elseNode)){ /* Constant zero */ |
---|
| 705 | BmcCnfGenerateClausesForAND(thenIndex, varIndex, nodeIndex, cnfClauses); |
---|
| 706 | } else { /* Constant one */ |
---|
| 707 | BmcCnfGenerateClausesForOR(thenIndex, -varIndex, nodeIndex, cnfClauses); |
---|
| 708 | } |
---|
| 709 | } else { |
---|
| 710 | flag = st_lookup_int(bddToCnfIndexTable, bdd_regular(thenNode), &thenIndex); |
---|
| 711 | if(flag == 0){ |
---|
| 712 | thenIndex = BmcGenerateCnfFormulaForBddOffSet(bdd_construct_bdd_t(bddManager, bdd_regular(thenNode)), k, cnfClauses); |
---|
| 713 | st_insert(bddToCnfIndexTable, (char *) (long) bdd_regular(thenNode), (char *) (long)thenIndex); |
---|
| 714 | } |
---|
| 715 | /*assert(flag);*/ |
---|
| 716 | |
---|
| 717 | flag = st_lookup_int(bddToCnfIndexTable, bdd_regular(elseNode), &elseIndex); |
---|
| 718 | if(flag == 0){ |
---|
| 719 | elseIndex = BmcGenerateCnfFormulaForBddOffSet( bdd_construct_bdd_t(bddManager, bdd_regular(elseNode)), k, cnfClauses); |
---|
| 720 | st_insert(bddToCnfIndexTable, (char *) (long) bdd_regular(elseNode), (char *)(long) elseIndex); |
---|
| 721 | } |
---|
| 722 | /*assert(flag);*/ |
---|
| 723 | /* |
---|
| 724 | test if the elseNode is complemented arc? |
---|
| 725 | */ |
---|
| 726 | if (bdd_is_complement(elseNode)){ |
---|
| 727 | elseIndex = -1*elseIndex; |
---|
| 728 | } |
---|
| 729 | tmpClause = array_alloc(int, 3); |
---|
| 730 | |
---|
| 731 | assert(abs(thenIndex) <= cnfClauses->cnfGlobalIndex); |
---|
| 732 | assert(abs(varIndex) <= cnfClauses->cnfGlobalIndex); |
---|
| 733 | assert(abs(nodeIndex) <= cnfClauses->cnfGlobalIndex); |
---|
| 734 | |
---|
| 735 | array_insert(int, tmpClause, 0, -thenIndex); |
---|
| 736 | array_insert(int, tmpClause, 1, -varIndex); |
---|
| 737 | array_insert(int, tmpClause, 2, nodeIndex); |
---|
| 738 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
| 739 | |
---|
| 740 | array_insert(int, tmpClause, 0, thenIndex); |
---|
| 741 | array_insert(int, tmpClause, 1, -varIndex); |
---|
| 742 | array_insert(int, tmpClause, 2, -nodeIndex); |
---|
| 743 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
| 744 | |
---|
| 745 | array_insert(int, tmpClause, 0, -elseIndex); |
---|
| 746 | array_insert(int, tmpClause, 1, varIndex); |
---|
| 747 | array_insert(int, tmpClause, 2, nodeIndex); |
---|
| 748 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
| 749 | |
---|
| 750 | array_insert(int, tmpClause, 0, elseIndex); |
---|
| 751 | array_insert(int, tmpClause, 1, varIndex); |
---|
| 752 | array_insert(int, tmpClause, 2, -nodeIndex); |
---|
| 753 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
| 754 | |
---|
| 755 | array_free(tmpClause); |
---|
| 756 | } |
---|
| 757 | } |
---|
| 758 | st_insert(bddToCnfIndexTable, (char *) (long) bdd_regular(node), (char *) (long) nodeIndex); |
---|
| 759 | } /* foreach_bdd_node() */ |
---|
| 760 | st_free_table(bddToCnfIndexTable); |
---|
| 761 | return (is_complemented? -nodeIndex: nodeIndex); |
---|
| 762 | } /* BmcGenerateCnfFormulaForBdd() */ |
---|
| 763 | |
---|
| 764 | |
---|
| 765 | |
---|
| 766 | /**Function******************************************************************** |
---|
| 767 | |
---|
| 768 | Synopsis [Generate CNF for bdd function based on the off set of the |
---|
| 769 | bdd function] |
---|
| 770 | |
---|
| 771 | Description [Express the negation of bdd function in disjunctive |
---|
| 772 | normal form(DNF), and generate a clause for each disjunct in the |
---|
| 773 | DNF.] |
---|
| 774 | |
---|
| 775 | SideEffects [] |
---|
| 776 | |
---|
| 777 | SeeAlso [] |
---|
| 778 | |
---|
| 779 | ******************************************************************************/ |
---|
| 780 | int |
---|
| 781 | BmcGenerateCnfFormulaForBddOffSet( |
---|
| 782 | bdd_t *bddFunction, |
---|
| 783 | int k, |
---|
| 784 | BmcCnfClauses_t *cnfClauses) |
---|
| 785 | { |
---|
| 786 | bdd_manager *bddManager = bdd_get_manager(bddFunction); |
---|
| 787 | bdd_node *node, *funcNode; |
---|
| 788 | int is_complemented; |
---|
| 789 | bdd_gen *gen; |
---|
| 790 | int varIndex; |
---|
| 791 | array_t *tmpClause; |
---|
| 792 | array_t *cube; |
---|
| 793 | int i, value; |
---|
| 794 | bdd_t *newVar; |
---|
| 795 | |
---|
| 796 | if (bddFunction == NULL){ |
---|
| 797 | return 0; |
---|
| 798 | } |
---|
| 799 | /* |
---|
| 800 | Because the top node of bddFunction represents a variable in |
---|
| 801 | bddFunction, newVar is used to represent the function of |
---|
| 802 | bddFunction. Setting the cnfIndex of newVar to 1(0) is like |
---|
| 803 | setting the function of bddFunction to 1(0). |
---|
| 804 | */ |
---|
| 805 | newVar = bdd_create_variable(bddManager); |
---|
| 806 | bddFunction = bdd_xnor(newVar, bddFunction); |
---|
| 807 | funcNode = bdd_get_node(bddFunction, &is_complemented); |
---|
| 808 | if (bdd_is_constant(funcNode)){ |
---|
| 809 | if (is_complemented){ |
---|
| 810 | /* add an empty clause to indicate FALSE (un-satisfiable)*/ |
---|
| 811 | BmcAddEmptyClause(cnfClauses); |
---|
| 812 | } |
---|
| 813 | return 0; |
---|
| 814 | } |
---|
| 815 | bddFunction = bdd_not(bddFunction); |
---|
| 816 | |
---|
| 817 | foreach_bdd_cube(bddFunction, gen, cube){ |
---|
| 818 | tmpClause = array_alloc(int,0); |
---|
| 819 | arrayForEachItem(int, cube, i, value) { |
---|
| 820 | if (value != 2){ |
---|
| 821 | node = bdd_bdd_ith_var(bddManager, i); |
---|
| 822 | varIndex = BmcGetCnfVarIndexForBddNode(bddManager, bdd_regular(node), k, cnfClauses); |
---|
| 823 | if (value == 1){ |
---|
| 824 | varIndex = -varIndex; |
---|
| 825 | } |
---|
| 826 | array_insert_last(int, tmpClause, varIndex); |
---|
| 827 | } |
---|
| 828 | } |
---|
| 829 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
| 830 | array_free(tmpClause); |
---|
| 831 | }/* foreach_bdd_cube() */ |
---|
| 832 | varIndex = BmcGetCnfVarIndexForBddNode(bddManager, |
---|
| 833 | bdd_regular(bdd_get_node(newVar, &is_complemented)), |
---|
| 834 | k, cnfClauses); |
---|
| 835 | return (varIndex); |
---|
| 836 | } /* BmcGenerateCnfFormulaForBddOffSet() */ |
---|
| 837 | |
---|
| 838 | #if 0 |
---|
| 839 | /**Function******************************************************************** |
---|
| 840 | |
---|
| 841 | Synopsis [Generate the CNF formula of a given function represented by |
---|
| 842 | AND/INVERTER graph] |
---|
| 843 | |
---|
| 844 | Description [Generate an array of clausese for a function represented in |
---|
| 845 | AND/INVERETER graph structure. |
---|
| 846 | |
---|
| 847 | the CNF formula of node to the output file specifies by cnfFile. |
---|
| 848 | It stores CNF index for each node in the cnfIndexTable. The generated CNF |
---|
| 849 | is in dimacs format. |
---|
| 850 | It is an error to call this function on a constand zero/one node.] |
---|
| 851 | |
---|
| 852 | SideEffects [] |
---|
| 853 | |
---|
| 854 | SeeAlso [] |
---|
| 855 | |
---|
| 856 | ******************************************************************************/ |
---|
| 857 | int |
---|
| 858 | BmcGenerateCnfForAigFunction( |
---|
| 859 | bAig_Manager_t *manager, |
---|
| 860 | Ntk_Network_t *network, |
---|
| 861 | bAigEdge_t node, |
---|
| 862 | int k, |
---|
| 863 | BmcCnfClauses_t *cnfClauses) |
---|
| 864 | { |
---|
| 865 | int leftIndex, rightIndex, nodeIndex; |
---|
| 866 | array_t *clause; |
---|
| 867 | |
---|
| 868 | if(bAig_IsInverted(node)){ |
---|
| 869 | /* |
---|
| 870 | The generated clauses are in dimacs formate that uses negative number to indicate complement |
---|
| 871 | */ |
---|
| 872 | return -1*BmcGenerateCnfFormulaForAigFunction(manager, bAig_NonInvertedEdge(node), k, cnfClauses); |
---|
| 873 | } |
---|
| 874 | { |
---|
| 875 | char *name = bAig_NodeReadName(manager, node); |
---|
| 876 | char *found = strchr(name, '='); |
---|
| 877 | |
---|
| 878 | if (found != NIL(char)){ |
---|
| 879 | int value = atoi(found+1); |
---|
| 880 | int length = found-name; |
---|
| 881 | char toName[length+1]; |
---|
| 882 | Ntk_Node_t *node; |
---|
| 883 | |
---|
| 884 | toName[length] = '\0'; |
---|
| 885 | strncpy(toName, name, length); |
---|
| 886 | node = Ntk_NetworkFindNodeByName(network, toName); |
---|
| 887 | if ((node != NIL( Ntk_Node_t)) && Ntk_NodeTestIsLatch(node)){ |
---|
| 888 | MvfAig_Function_t *tmpMvfAig; |
---|
| 889 | st_table *nodeToMvfAigTable = (st_table *) Ntk_NetworkReadApplInfo(network, MVFAIG_NETWORK_APPL_KEY); |
---|
| 890 | bAigEdge_t mAigNode; |
---|
| 891 | |
---|
| 892 | if (nodeToMvfAigTable == NIL(st_table)){ |
---|
| 893 | (void) fprintf(vis_stderr, "bmc error: please run build_partiton_maigs first"); |
---|
| 894 | return mAig_NULL; |
---|
| 895 | } |
---|
| 896 | if (k==0){ |
---|
| 897 | node = Ntk_LatchReadInitialInput(node); |
---|
| 898 | } else { |
---|
| 899 | node = Ntk_LatchReadDataInput(node); |
---|
| 900 | k--; |
---|
| 901 | } |
---|
| 902 | tmpMvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
| 903 | if (tmpMvfAig == NIL(MvfAig_Function_t)){ |
---|
| 904 | tmpMvfAig = Bmc_NodeBuildMVF(network, node); |
---|
| 905 | array_free(tmpMvfAig); |
---|
| 906 | tmpMvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
| 907 | } |
---|
| 908 | mAigNode = MvfAig_FunctionReadComponent(tmpMvfAig, value); |
---|
| 909 | BmcGenerateCnfForAigFunction(manager, network, mAigNode, k, cnfClauses); |
---|
| 910 | } |
---|
| 911 | } |
---|
| 912 | } |
---|
| 913 | if (BmcCnfReadOrInsertNode(cnfClauses, bAig_NodeReadName(manager, node), k, &nodeIndex)){ |
---|
| 914 | return nodeIndex; |
---|
| 915 | } |
---|
| 916 | if (bAig_isVarNode(manager, node)){ |
---|
| 917 | return nodeIndex; |
---|
| 918 | } |
---|
| 919 | leftIndex = BmcGenerateCnfForAigFunction(manager, network, leftChild(node), k, cnfClauses); |
---|
| 920 | rightIndex = BmcGenerateCnfForAigFunction(manager, network, rightChild(node), k, cnfClauses); |
---|
| 921 | |
---|
| 922 | clause = array_alloc(int, 3); |
---|
| 923 | array_insert(int, clause, 0, -leftIndex ); |
---|
| 924 | array_insert(int, clause, 1, -rightIndex); |
---|
| 925 | array_insert(int, clause, 2, nodeIndex ); |
---|
| 926 | BmcCnfInsertClause(cnfClauses, clause); |
---|
| 927 | array_free(clause); |
---|
| 928 | |
---|
| 929 | clause = array_alloc(int, 2); |
---|
| 930 | array_insert(int, clause, 0, leftIndex); |
---|
| 931 | array_insert(int, clause, 1, -nodeIndex); |
---|
| 932 | BmcCnfInsertClause(cnfClauses, clause); |
---|
| 933 | array_free(clause); |
---|
| 934 | |
---|
| 935 | clause = array_alloc(int, 2); |
---|
| 936 | array_insert(int, clause, 0, rightIndex); |
---|
| 937 | array_insert(int, clause, 1, -nodeIndex); |
---|
| 938 | BmcCnfInsertClause(cnfClauses, clause); |
---|
| 939 | array_free(clause); |
---|
| 940 | |
---|
| 941 | return(nodeIndex); |
---|
| 942 | |
---|
| 943 | } |
---|
| 944 | #endif |
---|
| 945 | /**Function******************************************************************** |
---|
| 946 | |
---|
| 947 | Synopsis [ |
---|
| 948 | c = a <-> b = (a=0)*(b=0) + (a=1)*(b=1) .... |
---|
| 949 | For a given term (a=i)*(b=i), if either is Zero, don't generate |
---|
| 950 | clauses for this term. |
---|
| 951 | if both are One, don't generate clauses |
---|
| 952 | for c. |
---|
| 953 | ] |
---|
| 954 | |
---|
| 955 | SideEffects [] |
---|
| 956 | |
---|
| 957 | ******************************************************************************/ |
---|
| 958 | void |
---|
| 959 | BmcGenerateClausesFromStateTostate( |
---|
| 960 | bAig_Manager_t *manager, |
---|
| 961 | bAigEdge_t *fromAigArray, |
---|
| 962 | bAigEdge_t *toAigArray, |
---|
| 963 | int mvfSize, |
---|
| 964 | int fromState, |
---|
| 965 | int toState, |
---|
| 966 | BmcCnfClauses_t *cnfClauses, |
---|
| 967 | int outIndex) |
---|
| 968 | { |
---|
| 969 | array_t *clause, *tmpclause; |
---|
| 970 | int toIndex, fromIndex, cnfIndex; |
---|
| 971 | int i; |
---|
| 972 | |
---|
| 973 | /* used to turn off the warning messages: might be left uninitialized. |
---|
| 974 | We are sure that these two variables will not be used uninitialized. |
---|
| 975 | */ |
---|
| 976 | toIndex =0; |
---|
| 977 | fromIndex = 0; |
---|
| 978 | |
---|
| 979 | for(i=0; i< mvfSize; i++){ |
---|
| 980 | if ((fromAigArray[i] == bAig_One) && (toAigArray[i] == bAig_One)){ |
---|
| 981 | return; /* the clause is always true */ |
---|
| 982 | } |
---|
| 983 | } |
---|
| 984 | clause = array_alloc(int, 0); |
---|
| 985 | for(i=0; i< mvfSize; i++){ |
---|
| 986 | if ((fromAigArray[i] != bAig_Zero) && (toAigArray[i] != bAig_Zero)){ |
---|
| 987 | if (toAigArray[i] != bAig_One){ |
---|
| 988 | /* to State */ |
---|
| 989 | |
---|
| 990 | toIndex = BmcGenerateCnfFormulaForAigFunction(manager,toAigArray[i], |
---|
| 991 | toState,cnfClauses); |
---|
| 992 | } |
---|
| 993 | if (fromAigArray[i] != bAig_One){ |
---|
| 994 | /* from State */ |
---|
| 995 | fromIndex = BmcGenerateCnfFormulaForAigFunction(manager, |
---|
| 996 | fromAigArray[i], |
---|
| 997 | fromState, |
---|
| 998 | cnfClauses); |
---|
| 999 | } |
---|
| 1000 | /* |
---|
| 1001 | Create new var for the output of this node. We don't create variable for this node, we only |
---|
| 1002 | use its index number. |
---|
| 1003 | */ |
---|
| 1004 | cnfIndex = cnfClauses->cnfGlobalIndex++; /* index of the output of the OR of T(from, to) */ |
---|
| 1005 | |
---|
| 1006 | assert(abs(cnfIndex) <= cnfClauses->cnfGlobalIndex); |
---|
| 1007 | assert(abs(fromIndex) <= cnfClauses->cnfGlobalIndex); |
---|
| 1008 | assert(abs(toIndex) <= cnfClauses->cnfGlobalIndex); |
---|
| 1009 | |
---|
| 1010 | if (toAigArray[i] == bAig_One){ |
---|
| 1011 | tmpclause = array_alloc(int, 2); |
---|
| 1012 | array_insert(int, tmpclause, 0, -fromIndex); |
---|
| 1013 | array_insert(int, tmpclause, 1, cnfIndex); |
---|
| 1014 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
| 1015 | array_free(tmpclause); |
---|
| 1016 | |
---|
| 1017 | tmpclause = array_alloc(int, 2); |
---|
| 1018 | array_insert(int, tmpclause, 0, fromIndex); |
---|
| 1019 | array_insert(int, tmpclause, 1, -cnfIndex); |
---|
| 1020 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
| 1021 | array_free(tmpclause); |
---|
| 1022 | |
---|
| 1023 | } else if (fromAigArray[i] == bAig_One){ |
---|
| 1024 | tmpclause = array_alloc(int, 2); |
---|
| 1025 | array_insert(int, tmpclause, 0, -toIndex); |
---|
| 1026 | array_insert(int, tmpclause, 1, cnfIndex); |
---|
| 1027 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
| 1028 | array_free(tmpclause); |
---|
| 1029 | |
---|
| 1030 | tmpclause = array_alloc(int, 2); |
---|
| 1031 | array_insert(int, tmpclause, 0, toIndex); |
---|
| 1032 | array_insert(int, tmpclause, 1, -cnfIndex); |
---|
| 1033 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
| 1034 | array_free(tmpclause); |
---|
| 1035 | |
---|
| 1036 | } else { |
---|
| 1037 | tmpclause = array_alloc(int, 3); |
---|
| 1038 | array_insert(int, tmpclause, 0, -toIndex); |
---|
| 1039 | array_insert(int, tmpclause, 1, -fromIndex); |
---|
| 1040 | array_insert(int, tmpclause, 2, cnfIndex); |
---|
| 1041 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
| 1042 | array_free(tmpclause); |
---|
| 1043 | |
---|
| 1044 | tmpclause = array_alloc(int, 2); |
---|
| 1045 | array_insert(int, tmpclause, 0, toIndex); |
---|
| 1046 | array_insert(int, tmpclause, 1, -cnfIndex); |
---|
| 1047 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
| 1048 | array_free(tmpclause); |
---|
| 1049 | |
---|
| 1050 | tmpclause = array_alloc(int, 2); |
---|
| 1051 | array_insert(int, tmpclause, 0, fromIndex); |
---|
| 1052 | array_insert(int, tmpclause, 1, -cnfIndex); |
---|
| 1053 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
| 1054 | array_free(tmpclause); |
---|
| 1055 | } |
---|
| 1056 | array_insert_last(int, clause, cnfIndex); |
---|
| 1057 | } /* if */ |
---|
| 1058 | } /* for i loop */ |
---|
| 1059 | if (outIndex != 0 ){ |
---|
| 1060 | array_insert_last(int, clause, -outIndex); |
---|
| 1061 | } |
---|
| 1062 | BmcCnfInsertClause(cnfClauses, clause); |
---|
| 1063 | array_free(clause); |
---|
| 1064 | |
---|
| 1065 | return; |
---|
| 1066 | } |
---|
| 1067 | |
---|
| 1068 | /**Function******************************************************************** |
---|
| 1069 | |
---|
| 1070 | Synopsis [Write the set of clauses in diamacs format to the output file.] |
---|
| 1071 | |
---|
| 1072 | SideEffects [] |
---|
| 1073 | |
---|
| 1074 | ******************************************************************************/ |
---|
| 1075 | void |
---|
| 1076 | BmcWriteClauses( |
---|
| 1077 | mAig_Manager_t *maigManager, |
---|
| 1078 | FILE *cnfFile, |
---|
| 1079 | BmcCnfClauses_t *cnfClauses, |
---|
| 1080 | BmcOption_t *options) |
---|
| 1081 | { |
---|
| 1082 | st_generator *stGen; |
---|
| 1083 | char *name; |
---|
| 1084 | int cnfIndex, i, k; |
---|
| 1085 | |
---|
| 1086 | if (options->verbosityLevel == BmcVerbosityMax_c) { |
---|
| 1087 | fprintf(vis_stdout, |
---|
| 1088 | "Number of Variables = %d Number of Clauses = %d\n", |
---|
| 1089 | cnfClauses->cnfGlobalIndex-1, cnfClauses->noOfClauses); |
---|
| 1090 | } |
---|
| 1091 | st_foreach_item_int(cnfClauses->cnfIndexTable, stGen, &name, &cnfIndex) { |
---|
| 1092 | fprintf(cnfFile, "c %s %d\n",name, cnfIndex); |
---|
| 1093 | } |
---|
| 1094 | (void) fprintf(cnfFile, "p cnf %d %d\n", cnfClauses->cnfGlobalIndex-1, |
---|
| 1095 | cnfClauses->noOfClauses); |
---|
| 1096 | if (cnfClauses->clauseArray != NIL(array_t)) { |
---|
| 1097 | for (i = 0; i < cnfClauses->nextIndex; i++) { |
---|
| 1098 | k = array_fetch(int, cnfClauses->clauseArray, i); |
---|
| 1099 | (void) fprintf(cnfFile, "%d%c", k, (k == 0) ? '\n' : ' '); |
---|
| 1100 | } |
---|
| 1101 | } |
---|
| 1102 | return; |
---|
| 1103 | } |
---|
| 1104 | |
---|
| 1105 | /**Function******************************************************************** |
---|
| 1106 | |
---|
| 1107 | Synopsis [Check the satisfiability of CNF formula written in file] |
---|
| 1108 | |
---|
| 1109 | Description [Run SAT solver on input file] |
---|
| 1110 | |
---|
| 1111 | SideEffects [] |
---|
| 1112 | |
---|
| 1113 | ******************************************************************************/ |
---|
| 1114 | array_t * |
---|
| 1115 | BmcCheckSAT(BmcOption_t *options) |
---|
| 1116 | { |
---|
| 1117 | array_t *result = NIL(array_t); |
---|
| 1118 | |
---|
| 1119 | |
---|
| 1120 | if(options->satSolver == cusp){ |
---|
| 1121 | result = BmcCallCusp(options); |
---|
| 1122 | } |
---|
| 1123 | if(options->satSolver == CirCUs){ |
---|
| 1124 | result = BmcCallCirCUs(options); |
---|
| 1125 | } |
---|
| 1126 | /* Adjust alarm if timeout in effect. This is necessary because the |
---|
| 1127 | * alarm may have gone off while the SAT solver is running. Since |
---|
| 1128 | * the CPU time of a child process is charged to the parent only when |
---|
| 1129 | * the child terminates, the SIGALRM handler assumes that more time |
---|
| 1130 | * is left than it is in reality. We could do this adjustment right |
---|
| 1131 | * after calling the SAT solver, but we prefer to give ourselves the |
---|
| 1132 | * extra time to report the result even if this means using more time |
---|
| 1133 | * than we are allotted. |
---|
| 1134 | */ |
---|
| 1135 | if (options->timeOutPeriod > 0) { |
---|
| 1136 | int residualTime = options->timeOutPeriod - |
---|
| 1137 | (util_cpu_ctime() - options->startTime) / 1000; |
---|
| 1138 | /* Make sure we do not cancel the alarm if no time is left. */ |
---|
| 1139 | if (residualTime <= 0) { |
---|
| 1140 | residualTime = 1; |
---|
| 1141 | } |
---|
| 1142 | (void) alarm(residualTime); |
---|
| 1143 | } |
---|
| 1144 | |
---|
| 1145 | return result; |
---|
| 1146 | } |
---|
| 1147 | |
---|
| 1148 | /**Function******************************************************************** |
---|
| 1149 | |
---|
| 1150 | Synopsis [Check the satisfiability of CNF formula written in file] |
---|
| 1151 | |
---|
| 1152 | Description [Run CirCUs on input file] |
---|
| 1153 | |
---|
| 1154 | SideEffects [] |
---|
| 1155 | |
---|
| 1156 | ******************************************************************************/ |
---|
| 1157 | array_t * |
---|
| 1158 | BmcCallCirCUs( |
---|
| 1159 | BmcOption_t *options) |
---|
| 1160 | { |
---|
| 1161 | satOption_t *satOption; |
---|
| 1162 | array_t *result = NIL(array_t); |
---|
| 1163 | satManager_t *cm; |
---|
| 1164 | int maxSize; |
---|
| 1165 | |
---|
| 1166 | satOption = sat_InitOption(); |
---|
| 1167 | satOption->verbose = options->verbosityLevel; |
---|
| 1168 | satOption->verbose = 0; |
---|
| 1169 | |
---|
| 1170 | cm = sat_InitManager(0); |
---|
| 1171 | cm->comment = ALLOC(char, 2); |
---|
| 1172 | cm->comment[0] = ' '; |
---|
| 1173 | cm->comment[1] = '\0'; |
---|
| 1174 | cm->stdOut = stdout; |
---|
| 1175 | cm->stdErr = stderr; |
---|
| 1176 | |
---|
| 1177 | cm->option = satOption; |
---|
| 1178 | cm->each = sat_InitStatistics(); |
---|
| 1179 | |
---|
| 1180 | cm->unitLits = sat_ArrayAlloc(16); |
---|
| 1181 | cm->pureLits = sat_ArrayAlloc(16); |
---|
| 1182 | |
---|
| 1183 | maxSize = 10000 << (bAigNodeSize-4); |
---|
| 1184 | cm->nodesArray = ALLOC(bAigEdge_t, maxSize); |
---|
| 1185 | cm->maxNodesArraySize = maxSize; |
---|
| 1186 | cm->nodesArraySize = bAigNodeSize; |
---|
| 1187 | |
---|
| 1188 | sat_AllocLiteralsDB(cm); |
---|
| 1189 | |
---|
| 1190 | sat_ReadCNF(cm, options->satInFile); |
---|
| 1191 | |
---|
| 1192 | if (options->verbosityLevel == BmcVerbosityMax_c) { |
---|
| 1193 | (void)fprintf(vis_stdout,"Calling SAT solver (CirCUs) ..."); |
---|
| 1194 | (void) fflush(vis_stdout); |
---|
| 1195 | } |
---|
| 1196 | sat_Main(cm); |
---|
| 1197 | if (options->verbosityLevel == BmcVerbosityMax_c) { |
---|
| 1198 | (void) fprintf(vis_stdout," done "); |
---|
| 1199 | (void) fprintf(vis_stdout, "(%g s)\n", cm->each->satTime); |
---|
| 1200 | } |
---|
| 1201 | if(cm->status == SAT_UNSAT) { |
---|
| 1202 | if (options->verbosityLevel != BmcVerbosityNone_c){ |
---|
| 1203 | (void) fprintf(vis_stdout, "# SAT: Counterexample not found\n"); |
---|
| 1204 | |
---|
| 1205 | } |
---|
| 1206 | fflush(cm->stdOut); |
---|
| 1207 | } else if(cm->status == SAT_SAT) { |
---|
| 1208 | if (options->verbosityLevel != BmcVerbosityNone_c){ |
---|
| 1209 | (void) fprintf(vis_stdout, "# SAT: Counterexample found\n"); |
---|
| 1210 | } |
---|
| 1211 | if (options->verbosityLevel == BmcVerbosityMax_c){ |
---|
| 1212 | sat_ReportStatistics(cm, cm->each); |
---|
| 1213 | } |
---|
| 1214 | fflush(cm->stdOut); |
---|
| 1215 | result = array_alloc(int, 0); |
---|
| 1216 | { |
---|
| 1217 | int i, size, value; |
---|
| 1218 | |
---|
| 1219 | size = cm->initNumVariables * bAigNodeSize; |
---|
| 1220 | for(i=bAigNodeSize; i<=size; i+=bAigNodeSize) { |
---|
| 1221 | value = SATvalue(i); |
---|
| 1222 | if(value == 1) { |
---|
| 1223 | array_insert_last(int, result, SATnodeID(i)); |
---|
| 1224 | } |
---|
| 1225 | else if(value == 0) { |
---|
| 1226 | array_insert_last(int, result, -(SATnodeID(i))); |
---|
| 1227 | } |
---|
| 1228 | } |
---|
| 1229 | } |
---|
| 1230 | } |
---|
| 1231 | //Bing: To avoid SEVERE memory leakage |
---|
| 1232 | FREE(cm->nodesArray); |
---|
| 1233 | |
---|
| 1234 | sat_FreeManager(cm); |
---|
| 1235 | |
---|
| 1236 | return result; |
---|
| 1237 | } /* BmcCallCirCUs */ |
---|
| 1238 | |
---|
| 1239 | /**Function******************************************************************** |
---|
| 1240 | |
---|
| 1241 | Synopsis [Check the satisfiability of CNF formula written in file] |
---|
| 1242 | |
---|
| 1243 | Description [Run external solver on input file] |
---|
| 1244 | |
---|
| 1245 | SideEffects [] |
---|
| 1246 | |
---|
| 1247 | ******************************************************************************/ |
---|
| 1248 | array_t * |
---|
| 1249 | BmcCallCusp(BmcOption_t *options) |
---|
| 1250 | { |
---|
| 1251 | FILE *fp; |
---|
| 1252 | static char parseBuffer[1024]; |
---|
| 1253 | int satStatus; |
---|
| 1254 | char line[MAX_LENGTH]; |
---|
| 1255 | int num = 0; |
---|
| 1256 | array_t *result = NIL(array_t); |
---|
| 1257 | char *tmpStr, *tmpStr1, *tmpStr2; |
---|
| 1258 | long solverStart; |
---|
| 1259 | int satTimeOutPeriod = 0; |
---|
| 1260 | |
---|
| 1261 | strcpy(parseBuffer,"cusp -distill -velim -cnf "); |
---|
| 1262 | options->satSolverError = FALSE; /* assume no error*/ |
---|
| 1263 | if (options->timeOutPeriod > 0) { |
---|
| 1264 | /* Compute the residual CPU time and subtract a little time to |
---|
| 1265 | give vis a chance to clean up before its own time out expires. |
---|
| 1266 | */ |
---|
| 1267 | satTimeOutPeriod = options->timeOutPeriod - 1 - |
---|
| 1268 | (util_cpu_ctime() - options->startTime) / 1000; |
---|
| 1269 | if (satTimeOutPeriod <= 0){ /* no time left to run SAT solver*/ |
---|
| 1270 | options->satSolverError=TRUE; |
---|
| 1271 | return NIL(array_t); |
---|
| 1272 | } |
---|
| 1273 | tmpStr2 = util_inttostr(satTimeOutPeriod); |
---|
| 1274 | tmpStr1 = util_strcat3(options->satInFile," -t ", tmpStr2); |
---|
| 1275 | tmpStr = util_strcat3(tmpStr1, " >", options->satOutFile); |
---|
| 1276 | FREE(tmpStr1); |
---|
| 1277 | FREE(tmpStr2); |
---|
| 1278 | } else { |
---|
| 1279 | tmpStr = util_strcat3(options->satInFile, " >", options->satOutFile); |
---|
| 1280 | } |
---|
| 1281 | strcat(parseBuffer, tmpStr); |
---|
| 1282 | FREE(tmpStr); |
---|
| 1283 | |
---|
| 1284 | if (options->verbosityLevel == BmcVerbosityMax_c) { |
---|
| 1285 | (void)fprintf(vis_stdout,"Calling SAT solver (cusp) ..."); |
---|
| 1286 | (void) fflush(vis_stdout); |
---|
| 1287 | solverStart = util_cpu_ctime(); |
---|
| 1288 | } else { /* to remove uninitialized variables warning */ |
---|
| 1289 | solverStart = 0; |
---|
| 1290 | } |
---|
| 1291 | /* Call Sat Solver*/ |
---|
| 1292 | satStatus = system(parseBuffer); |
---|
| 1293 | if (satStatus != 0){ |
---|
| 1294 | (void) fprintf(vis_stderr, "Can't run cusp. It may not be in your path. Status = %d\n", satStatus); |
---|
| 1295 | options->satSolverError = TRUE; |
---|
| 1296 | return NIL(array_t); |
---|
| 1297 | } |
---|
| 1298 | |
---|
| 1299 | if (options->verbosityLevel == BmcVerbosityMax_c) { |
---|
| 1300 | (void) fprintf(vis_stdout," done "); |
---|
| 1301 | (void) fprintf(vis_stdout, "(%g s)\n", |
---|
| 1302 | (double) (util_cpu_ctime() - solverStart)/1000.0); |
---|
| 1303 | } |
---|
| 1304 | fp = Cmd_FileOpen(options->satOutFile, "r", NIL(char *), 0); |
---|
| 1305 | if (fp == NIL(FILE)) { |
---|
| 1306 | (void) fprintf(vis_stderr, "** bmc error: Cannot open the file %s\n", |
---|
| 1307 | options->satOutFile); |
---|
| 1308 | options->satSolverError = TRUE; |
---|
| 1309 | return NIL(array_t); |
---|
| 1310 | } |
---|
| 1311 | /* Skip the lines until the result */ |
---|
| 1312 | while(1) { |
---|
| 1313 | if (fgets(line, MAX_LENGTH - 1, fp) == NULL) break; |
---|
| 1314 | if(strstr(line,"UNSATISFIABLE") || |
---|
| 1315 | strstr(line,"SATISFIABLE") || |
---|
| 1316 | strstr(line,"MEMOUT") || |
---|
| 1317 | strstr(line,"TIMEOUT")) |
---|
| 1318 | break; |
---|
| 1319 | } |
---|
| 1320 | |
---|
| 1321 | if(strstr(line,"UNSATISFIABLE") != NIL(char)) { |
---|
| 1322 | if (options->verbosityLevel != BmcVerbosityNone_c){ |
---|
| 1323 | (void) fprintf(vis_stdout, "# SAT: Counterexample not found\n"); |
---|
| 1324 | |
---|
| 1325 | } |
---|
| 1326 | } else if(strstr(line,"SATISFIABLE") != NIL(char)) { |
---|
| 1327 | if (options->verbosityLevel != BmcVerbosityNone_c){ |
---|
| 1328 | (void) fprintf(vis_stdout, "# SAT: Counterexample found\n"); |
---|
| 1329 | } |
---|
| 1330 | /* Skip the initial v of the result line */ |
---|
| 1331 | result = array_alloc(int, 0); |
---|
| 1332 | while (fgets(line, MAX_LENGTH - 1, fp) != NULL) { |
---|
| 1333 | char *word; |
---|
| 1334 | if (line[0] != 'v') { |
---|
| 1335 | (void) fprintf(vis_stderr, |
---|
| 1336 | "** bmc error: Cannot find assignment in file %s\n", |
---|
| 1337 | options->satOutFile); |
---|
| 1338 | options->satSolverError = TRUE; |
---|
| 1339 | return NIL(array_t); |
---|
| 1340 | } |
---|
| 1341 | word = strtok(&(line[1])," \n"); |
---|
| 1342 | while (word != NIL(char)) { |
---|
| 1343 | num = atoi(word); |
---|
| 1344 | if (num == 0) break; |
---|
| 1345 | array_insert_last(int, result, num); |
---|
| 1346 | word = strtok(NIL(char)," \n"); |
---|
| 1347 | } |
---|
| 1348 | if (num == 0) break; |
---|
| 1349 | } |
---|
| 1350 | } else if(strstr(line,"MEMOUT") != NIL(char)) { |
---|
| 1351 | (void) fprintf(vis_stdout,"# SAT: SAT Solver Memory out\n"); |
---|
| 1352 | options->satSolverError = TRUE; |
---|
| 1353 | } else if(strstr(line,"TIMEOUT") != NIL(char)) { |
---|
| 1354 | (void) fprintf(vis_stdout, |
---|
| 1355 | "# SAT: SAT Solver Time out occurred after %d seconds.\n", |
---|
| 1356 | satTimeOutPeriod); |
---|
| 1357 | options->satSolverError = TRUE; |
---|
| 1358 | } else { |
---|
| 1359 | (void) fprintf(vis_stdout, "# SAT: SAT Solver failed, try again\n"); |
---|
| 1360 | options->satSolverError = TRUE; |
---|
| 1361 | } |
---|
| 1362 | (void) fflush(vis_stdout); |
---|
| 1363 | (void) fclose(fp); |
---|
| 1364 | |
---|
| 1365 | return result; |
---|
| 1366 | } /* BmcCallCusp */ |
---|
| 1367 | |
---|
| 1368 | |
---|
| 1369 | /**Function******************************************************************** |
---|
| 1370 | |
---|
| 1371 | Synopsis [Print CounterExample.] |
---|
| 1372 | |
---|
| 1373 | SideEffects [Print a counterexample that was returned from the SAT |
---|
| 1374 | solver in term of an array of integer "result". The counterexample |
---|
| 1375 | starts from state 0 and of lenght eqaual to "length". If loopClause |
---|
| 1376 | is not empty, this function print a loopback from the last state to |
---|
| 1377 | a state in loopClause that exist in "result".] |
---|
| 1378 | |
---|
| 1379 | ******************************************************************************/ |
---|
| 1380 | void |
---|
| 1381 | BmcPrintCounterExample( |
---|
| 1382 | Ntk_Network_t *network, |
---|
| 1383 | st_table *nodeToMvfAigTable, |
---|
| 1384 | BmcCnfClauses_t *cnfClauses, |
---|
| 1385 | array_t *result, |
---|
| 1386 | int length, |
---|
| 1387 | st_table *CoiTable, |
---|
| 1388 | BmcOption_t *options, |
---|
| 1389 | array_t *loopClause) |
---|
| 1390 | { |
---|
| 1391 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
| 1392 | lsGen gen; |
---|
| 1393 | st_generator *stGen; |
---|
| 1394 | Ntk_Node_t *node; |
---|
| 1395 | int k; |
---|
| 1396 | array_t *latches = array_alloc(int, 0); |
---|
| 1397 | int *prevValueLatches; |
---|
| 1398 | array_t *inputs = array_alloc(int, 0); |
---|
| 1399 | int *prevValueInputs; |
---|
| 1400 | int tmp; |
---|
| 1401 | int loop; |
---|
| 1402 | st_table *resultTable = st_init_table(st_numcmp, st_numhash); |
---|
| 1403 | |
---|
| 1404 | /* |
---|
| 1405 | Initialize resultTable from the result to speed up the search in the result array. |
---|
| 1406 | */ |
---|
| 1407 | for(k=0; k< array_n(result); k++){ |
---|
| 1408 | st_insert(resultTable, (char *) (long) array_fetch(int, result, k), (char *) 0); |
---|
| 1409 | } |
---|
| 1410 | /* sort latches by name */ |
---|
| 1411 | st_foreach_item(CoiTable, stGen, &node, NULL) { |
---|
| 1412 | array_insert_last(char*, latches, Ntk_NodeReadName(node)); |
---|
| 1413 | } |
---|
| 1414 | array_sort(latches, nameCompare); |
---|
| 1415 | /* |
---|
| 1416 | Use to store the last value of each latch. If the current value of a latch |
---|
| 1417 | differs from its corresponding value in this array, we will print the new values. |
---|
| 1418 | */ |
---|
| 1419 | prevValueLatches = ALLOC(int, array_n(latches)); |
---|
| 1420 | prevValueInputs = 0; |
---|
| 1421 | if(options->printInputs == TRUE){ |
---|
| 1422 | /* sort inputs by name */ |
---|
| 1423 | Ntk_NetworkForEachInput(network, gen, node){ |
---|
| 1424 | array_insert_last(char*, inputs, Ntk_NodeReadName(node)); |
---|
| 1425 | } |
---|
| 1426 | array_sort(inputs, nameCompare); |
---|
| 1427 | prevValueInputs = ALLOC(int, array_n(inputs)); |
---|
| 1428 | } |
---|
| 1429 | loop = -1; /* no loop back */ |
---|
| 1430 | if(loopClause != NIL(array_t)){ |
---|
| 1431 | for(k=0; k < array_n(loopClause); k++){ |
---|
| 1432 | /* if (searchArray(result, array_fetch(int, loopClause, k)) > -1){ */ |
---|
| 1433 | if (st_lookup_int(resultTable, (char *)(long)array_fetch(int, loopClause, k), &tmp)){ |
---|
| 1434 | loop = k; |
---|
| 1435 | break; |
---|
| 1436 | } |
---|
| 1437 | } |
---|
| 1438 | } |
---|
| 1439 | /* |
---|
| 1440 | Ntk_NetworkForEachPrimaryOutput(network, gen, node){ |
---|
| 1441 | array_insert_last(char*, outputs, Ntk_NodeReadName(node)); |
---|
| 1442 | } |
---|
| 1443 | array_sort(outputs, nameCompare); |
---|
| 1444 | */ |
---|
| 1445 | for (k=0; k<= length; k++){ |
---|
| 1446 | if (k == 0){ |
---|
| 1447 | (void) fprintf(vis_stdout, "\n--State %d:\n", k); |
---|
| 1448 | } else { |
---|
| 1449 | (void) fprintf(vis_stdout, "\n--Goes to state %d:\n", k); |
---|
| 1450 | } |
---|
| 1451 | /* |
---|
| 1452 | Print the current values of the latches if they are different form their |
---|
| 1453 | previous values. |
---|
| 1454 | */ |
---|
| 1455 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1456 | latches, resultTable, k, prevValueLatches); |
---|
| 1457 | #if 0 |
---|
| 1458 | (void) fprintf(vis_stdout, "--Primary output:\n"); |
---|
| 1459 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, outputs, result, k); |
---|
| 1460 | #endif |
---|
| 1461 | if((options->printInputs == TRUE) && (k !=0)) { |
---|
| 1462 | (void) fprintf(vis_stdout, "--On input:\n"); |
---|
| 1463 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1464 | inputs, resultTable, k-1, prevValueInputs); |
---|
| 1465 | } |
---|
| 1466 | } /* for k loop */ |
---|
| 1467 | if(loop != -1){ |
---|
| 1468 | (void) fprintf(vis_stdout, "\n--Goes back to state %d:\n", loop); |
---|
| 1469 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1470 | latches, resultTable, loop, prevValueLatches); |
---|
| 1471 | if((options->printInputs == TRUE)) { |
---|
| 1472 | (void) fprintf(vis_stdout, "--On input:\n"); |
---|
| 1473 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1474 | inputs, resultTable, length, prevValueInputs); |
---|
| 1475 | } |
---|
| 1476 | } |
---|
| 1477 | array_free(latches); |
---|
| 1478 | FREE(prevValueLatches); |
---|
| 1479 | if(options->printInputs == TRUE){ |
---|
| 1480 | array_free(inputs); |
---|
| 1481 | FREE(prevValueInputs); |
---|
| 1482 | } |
---|
| 1483 | st_free_table(resultTable); |
---|
| 1484 | return; |
---|
| 1485 | } /* BmcPrintCounterExample() */ |
---|
| 1486 | |
---|
| 1487 | /**Function******************************************************************** |
---|
| 1488 | |
---|
| 1489 | Synopsis [Print CounterExample in Aiger format.] |
---|
| 1490 | |
---|
| 1491 | SideEffects [Print a counterexample that was returned from the SAT |
---|
| 1492 | solver in term of an array of integer "result". The counterexample |
---|
| 1493 | starts from state 0 and of lenght eqaual to "length". If loopClause |
---|
| 1494 | is not empty, this function print a loopback from the last state to |
---|
| 1495 | a state in loopClause that exist in "result".] |
---|
| 1496 | |
---|
| 1497 | ******************************************************************************/ |
---|
| 1498 | void |
---|
| 1499 | BmcPrintCounterExampleAiger( |
---|
| 1500 | Ntk_Network_t *network, |
---|
| 1501 | st_table *nodeToMvfAigTable, |
---|
| 1502 | BmcCnfClauses_t *cnfClauses, |
---|
| 1503 | array_t *result, |
---|
| 1504 | int length, |
---|
| 1505 | st_table *CoiTable, |
---|
| 1506 | BmcOption_t *options, |
---|
| 1507 | array_t *loopClause) |
---|
| 1508 | { |
---|
| 1509 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
| 1510 | lsGen gen; |
---|
| 1511 | st_generator *stGen; |
---|
| 1512 | Ntk_Node_t *node; |
---|
| 1513 | int k; |
---|
| 1514 | array_t *latches = array_alloc(int, 0); |
---|
| 1515 | int *prevValueLatches; |
---|
| 1516 | array_t *inputs = array_alloc(int, 0); |
---|
| 1517 | array_t *outputs = array_alloc(int, 0); |
---|
| 1518 | int *prevValueInputs; |
---|
| 1519 | int *prevValueOutputs; |
---|
| 1520 | int tmp; |
---|
| 1521 | int loop; |
---|
| 1522 | st_table *resultTable = st_init_table(st_numcmp, st_numhash); |
---|
| 1523 | char *nodeName; |
---|
| 1524 | |
---|
| 1525 | /* |
---|
| 1526 | Initialize resultTable from the result to speed up the search in the result array. |
---|
| 1527 | */ |
---|
| 1528 | for(k=0; k< array_n(result); k++){ |
---|
| 1529 | st_insert(resultTable, (char *) (long) array_fetch(int, result, k), (char *) 0); |
---|
| 1530 | } |
---|
| 1531 | /* sort latches by name */ |
---|
| 1532 | st_foreach_item(CoiTable, stGen, &node, NULL) { |
---|
| 1533 | array_insert_last(char*, latches, Ntk_NodeReadName(node)); |
---|
| 1534 | } |
---|
| 1535 | /* |
---|
| 1536 | Use to store the last value of each latch. If the current value of a latch |
---|
| 1537 | differs from its corresponding value in this array, we will print the new values. |
---|
| 1538 | */ |
---|
| 1539 | |
---|
| 1540 | /* the file generation needs to be removed for final vis release */ |
---|
| 1541 | |
---|
| 1542 | FILE *order = Cmd_FileOpen("inputOrder.txt", "w", NIL(char *), 0); |
---|
| 1543 | for (k=0; k< array_n(latches); k++) |
---|
| 1544 | { |
---|
| 1545 | nodeName = array_fetch(char *, latches, k); |
---|
| 1546 | if((nodeName[0] == '$') && (nodeName[1] == '_')) |
---|
| 1547 | { |
---|
| 1548 | fprintf(order, "%s\n", &nodeName[2]); |
---|
| 1549 | } |
---|
| 1550 | } |
---|
| 1551 | fclose(order); |
---|
| 1552 | |
---|
| 1553 | prevValueLatches = ALLOC(int, array_n(latches)); |
---|
| 1554 | Ntk_NetworkForEachInput(network, gen, node){ |
---|
| 1555 | array_insert_last(char*, inputs, Ntk_NodeReadName(node)); |
---|
| 1556 | } |
---|
| 1557 | |
---|
| 1558 | prevValueInputs = ALLOC(int, array_n(inputs)); |
---|
| 1559 | loop = -1; /* no loop back */ |
---|
| 1560 | if(loopClause != NIL(array_t)){ |
---|
| 1561 | for(k=0; k < array_n(loopClause); k++){ |
---|
| 1562 | /* if (searchArray(result, array_fetch(int, loopClause, k)) > -1){ */ |
---|
| 1563 | if (st_lookup_int(resultTable, (char *)(long)array_fetch(int, loopClause, k), &tmp)){ |
---|
| 1564 | loop = k; |
---|
| 1565 | break; |
---|
| 1566 | } |
---|
| 1567 | } |
---|
| 1568 | } |
---|
| 1569 | |
---|
| 1570 | Ntk_NetworkForEachPrimaryOutput(network, gen, node){ |
---|
| 1571 | array_insert_last(char*, outputs, Ntk_NodeReadName(node)); |
---|
| 1572 | } |
---|
| 1573 | prevValueOutputs = ALLOC(int, array_n(outputs)); |
---|
| 1574 | |
---|
| 1575 | for (k=0; k< length; k++){ |
---|
| 1576 | /* This will print latches whose name doesn't start with $_. The latches whose |
---|
| 1577 | name starts with $_ are latches added to the model by the aigtoblif translator. |
---|
| 1578 | */ |
---|
| 1579 | printValueAiger(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1580 | latches, resultTable, k, prevValueLatches); |
---|
| 1581 | fprintf(vis_stdout, " "); |
---|
| 1582 | #if 0 |
---|
| 1583 | (void) fprintf(vis_stdout, "--Primary output:\n"); |
---|
| 1584 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, outputs, result, k); |
---|
| 1585 | #endif |
---|
| 1586 | |
---|
| 1587 | if((loop<0)||(k<length)) |
---|
| 1588 | { |
---|
| 1589 | |
---|
| 1590 | /* we augment the original .mv model with latches in front of inputs and hence |
---|
| 1591 | instead of inputs we print out the value of latches, this would have to be |
---|
| 1592 | restored in the final release */ |
---|
| 1593 | |
---|
| 1594 | printValueAigerInputs(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1595 | latches, resultTable, k, prevValueInputs); |
---|
| 1596 | fprintf(vis_stdout, " "); |
---|
| 1597 | |
---|
| 1598 | /* the sat-solver doesn't propagate the values to output so we generate the output |
---|
| 1599 | 1 knowing when ouptut would be 1, we will have to remove this for vis release */ |
---|
| 1600 | |
---|
| 1601 | if((k+1)==length) |
---|
| 1602 | { |
---|
| 1603 | fprintf(vis_stdout, "1 "); |
---|
| 1604 | } |
---|
| 1605 | else |
---|
| 1606 | { |
---|
| 1607 | fprintf(vis_stdout, "0 "); |
---|
| 1608 | } |
---|
| 1609 | |
---|
| 1610 | printValueAiger(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1611 | latches, resultTable, k+1, prevValueLatches); |
---|
| 1612 | } |
---|
| 1613 | if((loop < 0)||(k!=length)) |
---|
| 1614 | { |
---|
| 1615 | fprintf(vis_stdout, "\n"); |
---|
| 1616 | } |
---|
| 1617 | |
---|
| 1618 | } /* for k loop */ |
---|
| 1619 | if(loop != -1){ |
---|
| 1620 | (void) fprintf(vis_stdout, "\n--Goes back to state %d:\n", loop); |
---|
| 1621 | printValueAiger(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1622 | latches, resultTable, loop, prevValueLatches); |
---|
| 1623 | (void) fprintf(vis_stdout, "--On input:\n"); |
---|
| 1624 | printValueAiger(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1625 | inputs, resultTable, length, prevValueInputs); |
---|
| 1626 | } |
---|
| 1627 | array_free(latches); |
---|
| 1628 | FREE(prevValueLatches); |
---|
| 1629 | if(options->printInputs == TRUE){ |
---|
| 1630 | array_free(inputs); |
---|
| 1631 | FREE(prevValueInputs); |
---|
| 1632 | } |
---|
| 1633 | st_free_table(resultTable); |
---|
| 1634 | return; |
---|
| 1635 | } /* BmcPrintCounterExampleAiger() */ |
---|
| 1636 | |
---|
| 1637 | |
---|
| 1638 | /**Function******************************************************************** |
---|
| 1639 | |
---|
| 1640 | Synopsis [Print CounterExample.] |
---|
| 1641 | |
---|
| 1642 | SideEffects [Print a counterexample that was returned from the SAT |
---|
| 1643 | solver in term of an array of integer "result". The counterexample |
---|
| 1644 | starts from state 0 and of lenght eqaual to "length". If loopClause |
---|
| 1645 | is not empty, this function print a loopback from the last state to |
---|
| 1646 | a state in loopClause that exist in "result".] |
---|
| 1647 | |
---|
| 1648 | ******************************************************************************/ |
---|
| 1649 | void |
---|
| 1650 | BmcAutPrintCounterExample( |
---|
| 1651 | Ntk_Network_t *network, |
---|
| 1652 | Ltl_Automaton_t *automaton, |
---|
| 1653 | st_table *nodeToMvfAigTable, |
---|
| 1654 | BmcCnfClauses_t *cnfClauses, |
---|
| 1655 | array_t *result, |
---|
| 1656 | int length, |
---|
| 1657 | st_table *CoiTable, |
---|
| 1658 | BmcOption_t *options, |
---|
| 1659 | array_t *loopClause) |
---|
| 1660 | { |
---|
| 1661 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
| 1662 | lsGen gen; |
---|
| 1663 | st_generator *stGen; |
---|
| 1664 | Ntk_Node_t *node; |
---|
| 1665 | int k; |
---|
| 1666 | array_t *latches = array_alloc(int, 0); |
---|
| 1667 | int *prevValueLatches; |
---|
| 1668 | array_t *inputs = array_alloc(int, 0); |
---|
| 1669 | int *prevValueInputs; |
---|
| 1670 | int tmp; |
---|
| 1671 | int loop; |
---|
| 1672 | st_table *resultTable = st_init_table(st_numcmp, st_numhash); |
---|
| 1673 | |
---|
| 1674 | /* |
---|
| 1675 | Initialize resultTable from the result to speed up the search in the result array. |
---|
| 1676 | */ |
---|
| 1677 | for(k=0; k< array_n(result); k++){ |
---|
| 1678 | st_insert(resultTable, (char *) (long) array_fetch(int, result, k), (char *) 0); |
---|
| 1679 | } |
---|
| 1680 | /* sort latches by name */ |
---|
| 1681 | st_foreach_item(CoiTable, stGen, &node, NULL) { |
---|
| 1682 | array_insert_last(char*, latches, Ntk_NodeReadName(node)); |
---|
| 1683 | } |
---|
| 1684 | array_sort(latches, nameCompare); |
---|
| 1685 | /* |
---|
| 1686 | Use to store the last value of each latch. If the current value of a latch |
---|
| 1687 | differs from its corresponding value in this array, we will print the new values. |
---|
| 1688 | */ |
---|
| 1689 | prevValueLatches = ALLOC(int, array_n(latches)); |
---|
| 1690 | prevValueInputs = 0; |
---|
| 1691 | if(options->printInputs == TRUE){ |
---|
| 1692 | /* sort inputs by name */ |
---|
| 1693 | Ntk_NetworkForEachInput(network, gen, node){ |
---|
| 1694 | array_insert_last(char*, inputs, Ntk_NodeReadName(node)); |
---|
| 1695 | } |
---|
| 1696 | array_sort(inputs, nameCompare); |
---|
| 1697 | prevValueInputs = ALLOC(int, array_n(inputs)); |
---|
| 1698 | } |
---|
| 1699 | loop = -1; /* no loop back */ |
---|
| 1700 | if(loopClause != NIL(array_t)){ |
---|
| 1701 | for(k=0; k < array_n(loopClause); k++){ |
---|
| 1702 | /* if (searchArray(result, array_fetch(int, loopClause, k)) > -1){ */ |
---|
| 1703 | if (st_lookup_int(resultTable, (char *)(long)array_fetch(int, loopClause, k), &tmp)){ |
---|
| 1704 | loop = k; |
---|
| 1705 | break; |
---|
| 1706 | } |
---|
| 1707 | } |
---|
| 1708 | } |
---|
| 1709 | /* |
---|
| 1710 | Ntk_NetworkForEachPrimaryOutput(network, gen, node){ |
---|
| 1711 | array_insert_last(char*, outputs, Ntk_NodeReadName(node)); |
---|
| 1712 | } |
---|
| 1713 | array_sort(outputs, nameCompare); |
---|
| 1714 | */ |
---|
| 1715 | for (k=0; k<= length; k++){ |
---|
| 1716 | if (k == 0){ |
---|
| 1717 | (void) fprintf(vis_stdout, "\n--State %d:\n", k); |
---|
| 1718 | } else { |
---|
| 1719 | (void) fprintf(vis_stdout, "\n--Goes to state %d:\n", k); |
---|
| 1720 | } |
---|
| 1721 | /* |
---|
| 1722 | Print the current values of the latches if they are different form their |
---|
| 1723 | previous values. |
---|
| 1724 | */ |
---|
| 1725 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1726 | latches, resultTable, k, prevValueLatches); |
---|
| 1727 | |
---|
| 1728 | { |
---|
| 1729 | lsGen lsGen; |
---|
| 1730 | vertex_t *vtx; |
---|
| 1731 | Ltl_AutomatonNode_t *state; |
---|
| 1732 | int stateIndex; |
---|
| 1733 | bdd_node *node; |
---|
| 1734 | int is_complemented; |
---|
| 1735 | |
---|
| 1736 | |
---|
| 1737 | foreach_vertex(automaton->G, lsGen, vtx) { |
---|
| 1738 | state = (Ltl_AutomatonNode_t *) vtx->user_data; |
---|
| 1739 | |
---|
| 1740 | node = bdd_get_node(state->Encode, &is_complemented); |
---|
| 1741 | |
---|
| 1742 | stateIndex = state->cnfIndex[k]; |
---|
| 1743 | |
---|
| 1744 | |
---|
| 1745 | |
---|
| 1746 | |
---|
| 1747 | if (st_lookup_int(resultTable, (char *)(long)stateIndex, &tmp)){ |
---|
| 1748 | (void) fprintf(vis_stdout,"n%d \n", state->index); |
---|
| 1749 | } |
---|
| 1750 | } |
---|
| 1751 | } |
---|
| 1752 | #if 0 |
---|
| 1753 | (void) fprintf(vis_stdout, "--Primary output:\n"); |
---|
| 1754 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, outputs, result, k); |
---|
| 1755 | #endif |
---|
| 1756 | if((options->printInputs == TRUE) && (k !=0)) { |
---|
| 1757 | (void) fprintf(vis_stdout, "--On input:\n"); |
---|
| 1758 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1759 | inputs, resultTable, k-1, prevValueInputs); |
---|
| 1760 | } |
---|
| 1761 | } /* for k loop */ |
---|
| 1762 | if(loop != -1){ |
---|
| 1763 | (void) fprintf(vis_stdout, "\n--Goes back to state %d:\n", loop); |
---|
| 1764 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1765 | latches, resultTable, loop, prevValueLatches); |
---|
| 1766 | if((options->printInputs == TRUE)) { |
---|
| 1767 | (void) fprintf(vis_stdout, "--On input:\n"); |
---|
| 1768 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
| 1769 | inputs, resultTable, length, prevValueInputs); |
---|
| 1770 | } |
---|
| 1771 | } |
---|
| 1772 | array_free(latches); |
---|
| 1773 | FREE(prevValueLatches); |
---|
| 1774 | if(options->printInputs == TRUE){ |
---|
| 1775 | array_free(inputs); |
---|
| 1776 | FREE(prevValueInputs); |
---|
| 1777 | } |
---|
| 1778 | st_free_table(resultTable); |
---|
| 1779 | return; |
---|
| 1780 | } /* BmcPrintCounterExample() */ |
---|
| 1781 | |
---|
| 1782 | |
---|
| 1783 | /**Function******************************************************************** |
---|
| 1784 | |
---|
| 1785 | Synopsis [Generate CNF formula for a path from state 'from' to state 'to'] |
---|
| 1786 | |
---|
| 1787 | Description [Unfold the transition relation 'k' states (k = to-from +1), and |
---|
| 1788 | generate clauses for each state. |
---|
| 1789 | |
---|
| 1790 | For a multi-valued latch of 4 vlaues. Two binary variables are used |
---|
| 1791 | to rpresent X, x1 and x0. For this latch, there exist three multi-valued |
---|
| 1792 | functions. |
---|
| 1793 | One for the binary reoresentation of the variable. For example the |
---|
| 1794 | second entry of the mvf = 1, iff ~x1 and x0. |
---|
| 1795 | The second mfv is for the data input of the latch. If the And/Inv graph |
---|
| 1796 | attached to an entry of this mvf equal to 1, X equal to the binary |
---|
| 1797 | representation corresponding to this entry. For example, if the And/ |
---|
| 1798 | INV graph attached to the first entry =1, then X = ~x1 & ~x0. |
---|
| 1799 | To generate the CNF to the transition relation, first generate CNF to |
---|
| 1800 | next state varaible using mvf of the latch. Then, generate CNF for |
---|
| 1801 | latch data input using current state variavles. Finaly, generate CNF |
---|
| 1802 | for the AND of these two MVF. This for every entry of the MVF. Then |
---|
| 1803 | OR the results. |
---|
| 1804 | The third MVF is for the initial value of the latch. It is treat the |
---|
| 1805 | same as the latch data input except if the initial value is constant. |
---|
| 1806 | |
---|
| 1807 | The initialState value may be either BMC_INITIAL_STATES to generate the clause for the intial states. |
---|
| 1808 | BMC_NO_INITIAL_STATES otherwise. |
---|
| 1809 | ] |
---|
| 1810 | |
---|
| 1811 | SideEffects [] |
---|
| 1812 | |
---|
| 1813 | SeeAlso [] |
---|
| 1814 | |
---|
| 1815 | ******************************************************************************/ |
---|
| 1816 | void |
---|
| 1817 | BmcCnfGenerateClausesForPath( |
---|
| 1818 | Ntk_Network_t *network, |
---|
| 1819 | int from, |
---|
| 1820 | int to, |
---|
| 1821 | int initialState, |
---|
| 1822 | BmcCnfClauses_t *cnfClauses, |
---|
| 1823 | st_table *nodeToMvfAigTable, |
---|
| 1824 | st_table *CoiTable) |
---|
| 1825 | { |
---|
| 1826 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
| 1827 | st_generator *stGen; |
---|
| 1828 | |
---|
| 1829 | Ntk_Node_t *latch, *latchData, *latchInit; |
---|
| 1830 | MvfAig_Function_t *initMvfAig, *dataMvfAig, *latchMvfAig; |
---|
| 1831 | bAigEdge_t *initBAig, *latchBAig, *dataBAig; |
---|
| 1832 | |
---|
| 1833 | int i, k, mvfSize; |
---|
| 1834 | |
---|
| 1835 | st_foreach_item(CoiTable, stGen, &latch, NULL) { |
---|
| 1836 | |
---|
| 1837 | |
---|
| 1838 | latchInit = Ntk_LatchReadInitialInput(latch); |
---|
| 1839 | latchData = Ntk_LatchReadDataInput(latch); |
---|
| 1840 | |
---|
| 1841 | /* Get the multi-valued function for each node*/ |
---|
| 1842 | initMvfAig = Bmc_ReadMvfAig(latchInit, nodeToMvfAigTable); |
---|
| 1843 | if (initMvfAig == NIL(MvfAig_Function_t)){ |
---|
| 1844 | (void) fprintf(vis_stdout, "No multi-valued function for this node %s \n", Ntk_NodeReadName(latchInit)); |
---|
| 1845 | return; |
---|
| 1846 | } |
---|
| 1847 | dataMvfAig = Bmc_ReadMvfAig(latchData, nodeToMvfAigTable); |
---|
| 1848 | if (dataMvfAig == NIL(MvfAig_Function_t)){ |
---|
| 1849 | (void) fprintf(vis_stdout, "No multi-valued function for this node %s \n", Ntk_NodeReadName(latchData)); |
---|
| 1850 | return; |
---|
| 1851 | } |
---|
| 1852 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
| 1853 | if (latchMvfAig == NIL(MvfAig_Function_t)){ |
---|
| 1854 | latchMvfAig = Bmc_NodeBuildMVF(network, latch); |
---|
| 1855 | array_free(latchMvfAig); |
---|
| 1856 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
| 1857 | } |
---|
| 1858 | |
---|
| 1859 | mvfSize = array_n(initMvfAig); |
---|
| 1860 | initBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
| 1861 | dataBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
| 1862 | latchBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
| 1863 | |
---|
| 1864 | for(i=0; i< mvfSize; i++){ |
---|
| 1865 | dataBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(dataMvfAig, i)); |
---|
| 1866 | latchBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(latchMvfAig, i)); |
---|
| 1867 | initBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(initMvfAig, i)); |
---|
| 1868 | } |
---|
| 1869 | /* |
---|
| 1870 | if (from == 0){ |
---|
| 1871 | */ |
---|
| 1872 | if (initialState == BMC_INITIAL_STATES){ |
---|
| 1873 | /* Generate the CNF for the initial state of the latch */ |
---|
| 1874 | BmcGenerateClausesFromStateTostate(manager, initBAig, latchBAig, mvfSize, -1, 0, cnfClauses, 0); |
---|
| 1875 | } |
---|
| 1876 | /* Generate the CNF for the transition functions */ |
---|
| 1877 | for (k=from; k < to; k++){ |
---|
| 1878 | BmcGenerateClausesFromStateTostate(manager, dataBAig, latchBAig, mvfSize, k, k+1, cnfClauses, 0); |
---|
| 1879 | } /* for k state loop */ |
---|
| 1880 | |
---|
| 1881 | FREE(initBAig); |
---|
| 1882 | FREE(dataBAig); |
---|
| 1883 | FREE(latchBAig); |
---|
| 1884 | }/* For each latch loop*/ |
---|
| 1885 | |
---|
| 1886 | return; |
---|
| 1887 | } |
---|
| 1888 | |
---|
| 1889 | /**Function******************************************************************** |
---|
| 1890 | |
---|
| 1891 | Synopsis [Generate CNF formula for a loop-free path] |
---|
| 1892 | |
---|
| 1893 | Description [This function generates CNF formula for a loop-free path from |
---|
| 1894 | state fromState to state toState. A loop free path is a path from a state S0 |
---|
| 1895 | to state Sn such that every state in the path is distinct. i.e for all states |
---|
| 1896 | in the path Si != Sj for 0<= i < j <= n. |
---|
| 1897 | |
---|
| 1898 | The initialState value may be either BMC_INITIAL_STATES to generate the clause |
---|
| 1899 | for the intial states. BMC_NO_INITIAL_STATES otherwise. |
---|
| 1900 | ] |
---|
| 1901 | |
---|
| 1902 | SideEffects [] |
---|
| 1903 | |
---|
| 1904 | SeeAlso [] |
---|
| 1905 | |
---|
| 1906 | ******************************************************************************/ |
---|
| 1907 | void |
---|
| 1908 | BmcCnfGenerateClausesForLoopFreePath( |
---|
| 1909 | Ntk_Network_t *network, |
---|
| 1910 | int fromState, |
---|
| 1911 | int toState, |
---|
| 1912 | int initialState, |
---|
| 1913 | BmcCnfClauses_t *cnfClauses, |
---|
| 1914 | st_table *nodeToMvfAigTable, |
---|
| 1915 | st_table *CoiTable) |
---|
| 1916 | { |
---|
| 1917 | int state; |
---|
| 1918 | |
---|
| 1919 | /* |
---|
| 1920 | Generate clauses for a path from fromState to toState. |
---|
| 1921 | */ |
---|
| 1922 | BmcCnfGenerateClausesForPath(network, fromState, toState, initialState, cnfClauses, nodeToMvfAigTable, CoiTable); |
---|
| 1923 | |
---|
| 1924 | /* |
---|
| 1925 | Restrict the above path to be loop-free path. |
---|
| 1926 | */ |
---|
| 1927 | /* |
---|
| 1928 | for(state=0; state< toState; state++){ |
---|
| 1929 | */ |
---|
| 1930 | /* |
---|
| 1931 | Don't include the last state because we know it is not equal any of the previous states. |
---|
| 1932 | The property fails at this state, and true at all other states. |
---|
| 1933 | */ |
---|
| 1934 | /* |
---|
| 1935 | for(state=1; state < toState; state++){ |
---|
| 1936 | */ |
---|
| 1937 | for(state= fromState + 1; state <= toState; state++){ |
---|
| 1938 | BmcCnfGenerateClausesForNoLoopToAnyPreviouseStates(network, fromState, state, cnfClauses, nodeToMvfAigTable, CoiTable); |
---|
| 1939 | } |
---|
| 1940 | |
---|
| 1941 | return; |
---|
| 1942 | } |
---|
| 1943 | |
---|
| 1944 | /**Function******************************************************************** |
---|
| 1945 | |
---|
| 1946 | Synopsis [Generate Clauses for no loop from last state to any of the |
---|
| 1947 | previouse states] |
---|
| 1948 | |
---|
| 1949 | Description [Generate Clauses for no loop from last state (toState) to |
---|
| 1950 | any of the previous states starting from fromState. It generates the CNF |
---|
| 1951 | clauses such that the last state of the path is not equal to any of the |
---|
| 1952 | path previous states. |
---|
| 1953 | ] |
---|
| 1954 | |
---|
| 1955 | SideEffects [] |
---|
| 1956 | |
---|
| 1957 | SeeAlso [] |
---|
| 1958 | |
---|
| 1959 | ******************************************************************************/ |
---|
| 1960 | void |
---|
| 1961 | BmcCnfGenerateClausesForNoLoopToAnyPreviouseStates( |
---|
| 1962 | Ntk_Network_t *network, |
---|
| 1963 | int fromState, |
---|
| 1964 | int toState, |
---|
| 1965 | BmcCnfClauses_t *cnfClauses, |
---|
| 1966 | st_table *nodeToMvfAigTable, |
---|
| 1967 | st_table *CoiTable) |
---|
| 1968 | { |
---|
| 1969 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
| 1970 | st_generator *stGen; |
---|
| 1971 | |
---|
| 1972 | Ntk_Node_t *latch; |
---|
| 1973 | MvfAig_Function_t *latchMvfAig; |
---|
| 1974 | bAigEdge_t *latchBAig; |
---|
| 1975 | array_t *orClause; |
---|
| 1976 | int lastIndex, prevIndex, andIndex1, andIndex2; |
---|
| 1977 | int i, k, mvfSize; |
---|
| 1978 | |
---|
| 1979 | /* |
---|
| 1980 | Generates the clauses to check if the toState is not equal to any previouse states starting |
---|
| 1981 | from fromState. |
---|
| 1982 | |
---|
| 1983 | Assume there are two state varaibles a and b. To check if Si != Sj, we must generate clauses |
---|
| 1984 | for the formula ( ai != aj + bi != bj). |
---|
| 1985 | */ |
---|
| 1986 | for(k=fromState; k < toState; k++){ |
---|
| 1987 | orClause = array_alloc(int,0); |
---|
| 1988 | st_foreach_item(CoiTable, stGen, &latch, NULL) { |
---|
| 1989 | |
---|
| 1990 | |
---|
| 1991 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
| 1992 | if (latchMvfAig == NIL(MvfAig_Function_t)){ |
---|
| 1993 | latchMvfAig = Bmc_NodeBuildMVF(network, latch); |
---|
| 1994 | array_free(latchMvfAig); |
---|
| 1995 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
| 1996 | } |
---|
| 1997 | mvfSize = array_n(latchMvfAig); |
---|
| 1998 | latchBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
| 1999 | |
---|
| 2000 | for(i=0; i< mvfSize; i++){ |
---|
| 2001 | latchBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(latchMvfAig, i)); |
---|
| 2002 | } |
---|
| 2003 | |
---|
| 2004 | for (i=0; i< mvfSize; i++){ |
---|
| 2005 | prevIndex = BmcGenerateCnfFormulaForAigFunction(manager, latchBAig[i], k ,cnfClauses); |
---|
| 2006 | lastIndex = BmcGenerateCnfFormulaForAigFunction(manager, latchBAig[i], toState ,cnfClauses); |
---|
| 2007 | andIndex1 = cnfClauses->cnfGlobalIndex++; |
---|
| 2008 | BmcCnfGenerateClausesForAND(prevIndex, -lastIndex, andIndex1, cnfClauses); |
---|
| 2009 | andIndex2 = cnfClauses->cnfGlobalIndex++; |
---|
| 2010 | BmcCnfGenerateClausesForAND(-prevIndex, lastIndex, andIndex2, cnfClauses); |
---|
| 2011 | |
---|
| 2012 | array_insert_last(int, orClause, andIndex1); |
---|
| 2013 | array_insert_last(int, orClause, andIndex2); |
---|
| 2014 | } |
---|
| 2015 | FREE(latchBAig); |
---|
| 2016 | }/* For each latch loop*/ |
---|
| 2017 | BmcCnfInsertClause(cnfClauses, orClause); |
---|
| 2018 | array_free(orClause); |
---|
| 2019 | } /* foreach k*/ |
---|
| 2020 | return; |
---|
| 2021 | } |
---|
| 2022 | |
---|
| 2023 | |
---|
| 2024 | /**Function******************************************************************** |
---|
| 2025 | |
---|
| 2026 | Synopsis [Generate Clauses for last state equal to any of the |
---|
| 2027 | previouse states] |
---|
| 2028 | |
---|
| 2029 | Description [ Change it! |
---|
| 2030 | Generate Clauses for no loop from last state (toState) to |
---|
| 2031 | any of the previous states starting from fromState. It generates the CNF |
---|
| 2032 | clauses such that the last state of the path is not equal to any of the |
---|
| 2033 | path previous states. |
---|
| 2034 | ] |
---|
| 2035 | |
---|
| 2036 | SideEffects [] |
---|
| 2037 | |
---|
| 2038 | SeeAlso [] |
---|
| 2039 | |
---|
| 2040 | ******************************************************************************/ |
---|
| 2041 | void |
---|
| 2042 | BmcCnfGenerateClausesForLoopToAnyPreviouseStates( |
---|
| 2043 | Ntk_Network_t *network, |
---|
| 2044 | int fromState, |
---|
| 2045 | int toState, |
---|
| 2046 | BmcCnfClauses_t *cnfClauses, |
---|
| 2047 | st_table *nodeToMvfAigTable, |
---|
| 2048 | st_table *CoiTable) |
---|
| 2049 | { |
---|
| 2050 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
| 2051 | st_generator *stGen; |
---|
| 2052 | |
---|
| 2053 | Ntk_Node_t *latch; |
---|
| 2054 | MvfAig_Function_t *latchMvfAig; |
---|
| 2055 | bAigEdge_t *latchBAig; |
---|
| 2056 | array_t *orClause; |
---|
| 2057 | int lastIndex, prevIndex, andIndex1, andIndex2; |
---|
| 2058 | int i, k, mvfSize; |
---|
| 2059 | |
---|
| 2060 | /* |
---|
| 2061 | Generates the clauses to check if the toState is not equal to any previouse states starting |
---|
| 2062 | from fromState. |
---|
| 2063 | |
---|
| 2064 | Assume there are two state varaibles a and b. To check if Si != Sj, we must generate clauses |
---|
| 2065 | for the formula ( ai != aj + bi != bj). |
---|
| 2066 | */ |
---|
| 2067 | for(k=fromState; k < toState; k++){ |
---|
| 2068 | orClause = array_alloc(int,0); |
---|
| 2069 | st_foreach_item(CoiTable, stGen, &latch, NULL) { |
---|
| 2070 | |
---|
| 2071 | |
---|
| 2072 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
| 2073 | if (latchMvfAig == NIL(MvfAig_Function_t)){ |
---|
| 2074 | latchMvfAig = Bmc_NodeBuildMVF(network, latch); |
---|
| 2075 | array_free(latchMvfAig); |
---|
| 2076 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
| 2077 | } |
---|
| 2078 | mvfSize = array_n(latchMvfAig); |
---|
| 2079 | latchBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
| 2080 | |
---|
| 2081 | for(i=0; i< mvfSize; i++){ |
---|
| 2082 | latchBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(latchMvfAig, i)); |
---|
| 2083 | } |
---|
| 2084 | |
---|
| 2085 | for (i=0; i< mvfSize; i++){ |
---|
| 2086 | prevIndex = BmcGenerateCnfFormulaForAigFunction(manager, latchBAig[i], k ,cnfClauses); |
---|
| 2087 | lastIndex = BmcGenerateCnfFormulaForAigFunction(manager, latchBAig[i], toState ,cnfClauses); |
---|
| 2088 | andIndex1 = cnfClauses->cnfGlobalIndex++; |
---|
| 2089 | BmcCnfGenerateClausesForAND(prevIndex, lastIndex, andIndex1, cnfClauses); |
---|
| 2090 | andIndex2 = cnfClauses->cnfGlobalIndex++; |
---|
| 2091 | BmcCnfGenerateClausesForAND(-prevIndex, -lastIndex, andIndex2, cnfClauses); |
---|
| 2092 | |
---|
| 2093 | array_insert_last(int, orClause, andIndex1); |
---|
| 2094 | array_insert_last(int, orClause, andIndex2); |
---|
| 2095 | } |
---|
| 2096 | FREE(latchBAig); |
---|
| 2097 | }/* For each latch loop*/ |
---|
| 2098 | BmcCnfInsertClause(cnfClauses, orClause); |
---|
| 2099 | array_free(orClause); |
---|
| 2100 | } /* foreach k*/ |
---|
| 2101 | return; |
---|
| 2102 | } |
---|
| 2103 | |
---|
| 2104 | /**Function******************************************************************** |
---|
| 2105 | |
---|
| 2106 | Synopsis [Generate CNF formula for a path from state 'from' to state 'to'] |
---|
| 2107 | |
---|
| 2108 | Description [Unfold the transition relation 'k' states (k = to-from +1), and |
---|
| 2109 | generate clauses for each state. |
---|
| 2110 | For a multi-valued latch of 4 vlaues. Two binary variables are used |
---|
| 2111 | to rpresent X, x1 and x0. For this latch, there exist three multi-valued |
---|
| 2112 | functions. |
---|
| 2113 | One for the binary reoresentation of the variable. For example the |
---|
| 2114 | second entry of the mvf = 1, iff ~x1 and x0. |
---|
| 2115 | The second mfv is for the data input of the latch. If the And/Inv graph |
---|
| 2116 | attached to an entry of this mvf equal to 1, X equal to the binary |
---|
| 2117 | representation corresponding to this entry. For example, if the And/ |
---|
| 2118 | INV graph attached to the first entry =1, then X = ~x1 & ~x0. |
---|
| 2119 | To generate the CNF to the transition relation, first generate CNF to |
---|
| 2120 | next state varaible using mvf of the latch. Then, generate CNF for |
---|
| 2121 | latch data input using current state variavles. Finaly, generate CNF |
---|
| 2122 | for the AND of these two MVF. This for every entry of the MVF. Then |
---|
| 2123 | OR the results. |
---|
| 2124 | The third MVF is for the initial value of the latch. It is treat the |
---|
| 2125 | same as the latch data input except if the initial value is constant. |
---|
| 2126 | ] |
---|
| 2127 | |
---|
| 2128 | SideEffects [] |
---|
| 2129 | |
---|
| 2130 | SeeAlso [] |
---|
| 2131 | |
---|
| 2132 | ******************************************************************************/ |
---|
| 2133 | void |
---|
| 2134 | BmcCnfGenerateClausesFromStateToState( |
---|
| 2135 | Ntk_Network_t *network, |
---|
| 2136 | int from, |
---|
| 2137 | int to, |
---|
| 2138 | BmcCnfClauses_t *cnfClauses, |
---|
| 2139 | st_table *nodeToMvfAigTable, |
---|
| 2140 | st_table *CoiTable, |
---|
| 2141 | int loop) |
---|
| 2142 | { |
---|
| 2143 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
| 2144 | st_generator *stGen; |
---|
| 2145 | Ntk_Node_t *latch, *latchData; |
---|
| 2146 | MvfAig_Function_t *dataMvfAig, *latchMvfAig; |
---|
| 2147 | bAigEdge_t *latchBAig, *dataBAig; |
---|
| 2148 | int i, mvfSize; |
---|
| 2149 | |
---|
| 2150 | st_foreach_item(CoiTable, stGen, &latch, NULL) { |
---|
| 2151 | latchData = Ntk_LatchReadDataInput(latch); |
---|
| 2152 | |
---|
| 2153 | dataMvfAig = Bmc_ReadMvfAig(latchData, nodeToMvfAigTable); |
---|
| 2154 | if (dataMvfAig == NIL(MvfAig_Function_t)){ |
---|
| 2155 | (void) fprintf(vis_stdout, |
---|
| 2156 | "No multi-valued function for this node %s \n", |
---|
| 2157 | Ntk_NodeReadName(latchData)); |
---|
| 2158 | return; |
---|
| 2159 | } |
---|
| 2160 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
| 2161 | if (latchMvfAig == NIL(MvfAig_Function_t)){ |
---|
| 2162 | latchMvfAig = Bmc_NodeBuildMVF(network, latch); |
---|
| 2163 | } |
---|
| 2164 | mvfSize = array_n(dataMvfAig); |
---|
| 2165 | dataBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
| 2166 | latchBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
| 2167 | for(i=0; i< mvfSize; i++){ |
---|
| 2168 | dataBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(dataMvfAig, i)); |
---|
| 2169 | latchBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(latchMvfAig, i)); |
---|
| 2170 | } |
---|
| 2171 | BmcGenerateClausesFromStateTostate(manager, dataBAig, latchBAig, mvfSize, |
---|
| 2172 | from, to, cnfClauses, loop); |
---|
| 2173 | FREE(dataBAig); |
---|
| 2174 | FREE(latchBAig); |
---|
| 2175 | } /* For each latch loop*/ |
---|
| 2176 | return; |
---|
| 2177 | } |
---|
| 2178 | |
---|
| 2179 | /**Function******************************************************************** |
---|
| 2180 | |
---|
| 2181 | Synopsis [Generate CNF clauses for the AND gate] |
---|
| 2182 | |
---|
| 2183 | Description [] |
---|
| 2184 | |
---|
| 2185 | SideEffects [] |
---|
| 2186 | |
---|
| 2187 | SeeAlso [] |
---|
| 2188 | |
---|
| 2189 | ******************************************************************************/ |
---|
| 2190 | void |
---|
| 2191 | BmcCnfGenerateClausesForAND( |
---|
| 2192 | int a, |
---|
| 2193 | int b, |
---|
| 2194 | int c, |
---|
| 2195 | BmcCnfClauses_t *cnfClauses) |
---|
| 2196 | { |
---|
| 2197 | array_t *tmpClause; |
---|
| 2198 | |
---|
| 2199 | tmpClause = array_alloc(int, 3); |
---|
| 2200 | array_insert(int, tmpClause, 0, -a); |
---|
| 2201 | array_insert(int, tmpClause, 1, -b); |
---|
| 2202 | array_insert(int, tmpClause, 2, c); |
---|
| 2203 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
| 2204 | array_free(tmpClause); |
---|
| 2205 | |
---|
| 2206 | tmpClause = array_alloc(int, 2); |
---|
| 2207 | |
---|
| 2208 | array_insert(int, tmpClause, 0, a); |
---|
| 2209 | array_insert(int, tmpClause, 1, -c); |
---|
| 2210 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
| 2211 | |
---|
| 2212 | array_insert(int, tmpClause, 0, b); |
---|
| 2213 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
| 2214 | |
---|
| 2215 | array_free(tmpClause); |
---|
| 2216 | return; |
---|
| 2217 | } |
---|
| 2218 | |
---|
| 2219 | /**Function******************************************************************** |
---|
| 2220 | |
---|
| 2221 | Synopsis [Generate CNF clauses for the OR gate] |
---|
| 2222 | |
---|
| 2223 | Description [] |
---|
| 2224 | |
---|
| 2225 | SideEffects [] |
---|
| 2226 | |
---|
| 2227 | SeeAlso [] |
---|
| 2228 | |
---|
| 2229 | ******************************************************************************/ |
---|
| 2230 | void |
---|
| 2231 | BmcCnfGenerateClausesForOR( |
---|
| 2232 | int a, |
---|
| 2233 | int b, |
---|
| 2234 | int c, |
---|
| 2235 | BmcCnfClauses_t *cnfClauses) |
---|
| 2236 | { |
---|
| 2237 | array_t *tmpClause; |
---|
| 2238 | |
---|
| 2239 | tmpClause = array_alloc(int, 3); |
---|
| 2240 | array_insert(int, tmpClause, 0, a); |
---|
| 2241 | array_insert(int, tmpClause, 1, b); |
---|
| 2242 | array_insert(int, tmpClause, 2, -c); |
---|
| 2243 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
| 2244 | array_free(tmpClause); |
---|
| 2245 | |
---|
| 2246 | tmpClause = array_alloc(int, 2); |
---|
| 2247 | array_insert(int, tmpClause, 0, -a); |
---|
| 2248 | array_insert(int, tmpClause, 1, c); |
---|
| 2249 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
| 2250 | |
---|
| 2251 | array_insert(int, tmpClause, 0, -b); |
---|
| 2252 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
| 2253 | |
---|
| 2254 | array_free(tmpClause); |
---|
| 2255 | return; |
---|
| 2256 | } |
---|
| 2257 | |
---|
| 2258 | /**Function******************************************************************** |
---|
| 2259 | |
---|
| 2260 | Synopsis [Alloc Memory for BmcCnfClauses_t] |
---|
| 2261 | |
---|
| 2262 | SideEffects [] |
---|
| 2263 | |
---|
| 2264 | SeeAlso [] |
---|
| 2265 | ******************************************************************************/ |
---|
| 2266 | BmcCnfClauses_t * |
---|
| 2267 | BmcCnfClausesAlloc(void) |
---|
| 2268 | { |
---|
| 2269 | BmcCnfClauses_t *result = ALLOC(BmcCnfClauses_t, 1); |
---|
| 2270 | |
---|
| 2271 | if (!result){ |
---|
| 2272 | return result; |
---|
| 2273 | } |
---|
| 2274 | result->clauseArray = array_alloc(int, 0); |
---|
| 2275 | result->cnfIndexTable = st_init_table(strcmp, st_strhash); |
---|
| 2276 | result->freezedKeys = array_alloc(nameType_t *, 0); |
---|
| 2277 | |
---|
| 2278 | result->nextIndex = 0; |
---|
| 2279 | result->noOfClauses = 0; |
---|
| 2280 | result->cnfGlobalIndex = 1; |
---|
| 2281 | result->emptyClause = FALSE; |
---|
| 2282 | result->freezed = FALSE; |
---|
| 2283 | |
---|
| 2284 | return result; |
---|
| 2285 | } /*BmcCnfClausesAlloc()*/ |
---|
| 2286 | |
---|
| 2287 | /**Function******************************************************************** |
---|
| 2288 | |
---|
| 2289 | Synopsis [Free Memory for BmcCnfClauses_t] |
---|
| 2290 | |
---|
| 2291 | SideEffects [] |
---|
| 2292 | |
---|
| 2293 | SeeAlso [] |
---|
| 2294 | ******************************************************************************/ |
---|
| 2295 | void |
---|
| 2296 | BmcCnfClausesFree( |
---|
| 2297 | BmcCnfClauses_t *cnfClauses) |
---|
| 2298 | { |
---|
| 2299 | st_generator *stGen; |
---|
| 2300 | char *name; |
---|
| 2301 | int cnfIndex; |
---|
| 2302 | |
---|
| 2303 | array_free(cnfClauses->clauseArray); |
---|
| 2304 | array_free(cnfClauses->freezedKeys); |
---|
| 2305 | |
---|
| 2306 | if (cnfClauses->cnfIndexTable != NIL(st_table)){ |
---|
| 2307 | st_foreach_item_int(cnfClauses->cnfIndexTable, stGen, (char **) &name, &cnfIndex) { |
---|
| 2308 | FREE(name); |
---|
| 2309 | } |
---|
| 2310 | st_free_table(cnfClauses->cnfIndexTable); |
---|
| 2311 | } |
---|
| 2312 | FREE(cnfClauses); |
---|
| 2313 | cnfClauses = NIL(BmcCnfClauses_t); |
---|
| 2314 | } /* BmcCnfClausesFree() */ |
---|
| 2315 | |
---|
| 2316 | /**Function******************************************************************** |
---|
| 2317 | |
---|
| 2318 | Synopsis [Freeze the current state of CNF] |
---|
| 2319 | |
---|
| 2320 | Description [The current state of CNF is stored in the structure BmcCnfStates_t. |
---|
| 2321 | This information may use later to store CNF to this state by calling |
---|
| 2322 | BmcCnfClausesRestore().] |
---|
| 2323 | |
---|
| 2324 | SideEffects [] |
---|
| 2325 | |
---|
| 2326 | SeeAlso [BmcCnfClausesRestore() BmcCnfClausesUnFreeze() ] |
---|
| 2327 | ******************************************************************************/ |
---|
| 2328 | BmcCnfStates_t * |
---|
| 2329 | BmcCnfClausesFreeze( |
---|
| 2330 | BmcCnfClauses_t * cnfClauses) |
---|
| 2331 | { |
---|
| 2332 | BmcCnfStates_t *state = ALLOC(BmcCnfStates_t, 1); |
---|
| 2333 | |
---|
| 2334 | state->nextIndex = cnfClauses->nextIndex; |
---|
| 2335 | state->noOfClauses = cnfClauses->noOfClauses; |
---|
| 2336 | state->cnfGlobalIndex = cnfClauses->cnfGlobalIndex; |
---|
| 2337 | |
---|
| 2338 | /* This variable is used when deleting any new entries in cnfClauses->freezedKeys |
---|
| 2339 | that will be added after CNF is freezed.*/ |
---|
| 2340 | state->freezedKeySize = array_n(cnfClauses->freezedKeys); |
---|
| 2341 | |
---|
| 2342 | state->emptyClause = cnfClauses->emptyClause; |
---|
| 2343 | state->freezed = cnfClauses->freezed; |
---|
| 2344 | cnfClauses->freezed = TRUE; |
---|
| 2345 | return state; |
---|
| 2346 | } /* mcCnfClausesFreeze() */ |
---|
| 2347 | |
---|
| 2348 | /**Function******************************************************************** |
---|
| 2349 | |
---|
| 2350 | Synopsis [Unfreeze CNF] |
---|
| 2351 | |
---|
| 2352 | Description [Keeps the current state of CNF] |
---|
| 2353 | |
---|
| 2354 | SideEffects [] |
---|
| 2355 | |
---|
| 2356 | SeeAlso [] |
---|
| 2357 | ******************************************************************************/ |
---|
| 2358 | void |
---|
| 2359 | BmcCnfClausesUnFreeze( |
---|
| 2360 | BmcCnfClauses_t *cnfClauses, |
---|
| 2361 | BmcCnfStates_t *state) |
---|
| 2362 | { |
---|
| 2363 | int i; |
---|
| 2364 | |
---|
| 2365 | cnfClauses->freezed = FALSE; |
---|
| 2366 | if (array_n(cnfClauses->freezedKeys) != 0){ |
---|
| 2367 | int freezedKeySize = array_n(cnfClauses->freezedKeys); |
---|
| 2368 | |
---|
| 2369 | for (i=0; i< (freezedKeySize-state->freezedKeySize); i++){ |
---|
| 2370 | (cnfClauses->freezedKeys)->num--; |
---|
| 2371 | } |
---|
| 2372 | } |
---|
| 2373 | } /* BmcCnfClausesUnFreeze() */ |
---|
| 2374 | |
---|
| 2375 | /**Function******************************************************************** |
---|
| 2376 | |
---|
| 2377 | Synopsis [Restore the CNF to its previouse state] |
---|
| 2378 | |
---|
| 2379 | Description [Restore the CNF to its previouse state that CNF was when |
---|
| 2380 | BmcCnfClausesFreeze() was last called] |
---|
| 2381 | |
---|
| 2382 | SideEffects [] |
---|
| 2383 | |
---|
| 2384 | SeeAlso [] |
---|
| 2385 | ******************************************************************************/ |
---|
| 2386 | void |
---|
| 2387 | BmcCnfClausesRestore( |
---|
| 2388 | BmcCnfClauses_t *cnfClauses, |
---|
| 2389 | BmcCnfStates_t *state) |
---|
| 2390 | { |
---|
| 2391 | int i, index; |
---|
| 2392 | nameType_t *key; |
---|
| 2393 | |
---|
| 2394 | cnfClauses->nextIndex = state->nextIndex; |
---|
| 2395 | cnfClauses->noOfClauses = state->noOfClauses; |
---|
| 2396 | cnfClauses->cnfGlobalIndex = state->cnfGlobalIndex; |
---|
| 2397 | cnfClauses->emptyClause = state->emptyClause; |
---|
| 2398 | cnfClauses->freezed = state->freezed; |
---|
| 2399 | |
---|
| 2400 | if (array_n(cnfClauses->freezedKeys) != 0){ |
---|
| 2401 | int freezedKeySize = array_n(cnfClauses->freezedKeys); |
---|
| 2402 | |
---|
| 2403 | for (i=0; i< (freezedKeySize-state->freezedKeySize); i++){ |
---|
| 2404 | key = array_fetch_last(nameType_t *, cnfClauses->freezedKeys); |
---|
| 2405 | if (st_delete_int(cnfClauses->cnfIndexTable, &key, &index)){ |
---|
| 2406 | FREE(key); |
---|
| 2407 | } |
---|
| 2408 | (cnfClauses->freezedKeys)->num--; |
---|
| 2409 | } |
---|
| 2410 | } |
---|
| 2411 | } /* BmcCnfClausesRestore() */ |
---|
| 2412 | |
---|
| 2413 | /**Function******************************************************************** |
---|
| 2414 | |
---|
| 2415 | Synopsis [Add clause to the clauseArray] |
---|
| 2416 | |
---|
| 2417 | Description [Add a clause to the clause array. clause is of type array_t. |
---|
| 2418 | The user must free clause.] |
---|
| 2419 | |
---|
| 2420 | SideEffects [] |
---|
| 2421 | |
---|
| 2422 | SeeAlso [] |
---|
| 2423 | ******************************************************************************/ |
---|
| 2424 | void |
---|
| 2425 | BmcCnfInsertClause( |
---|
| 2426 | BmcCnfClauses_t *cnfClauses, |
---|
| 2427 | array_t *clause) |
---|
| 2428 | { |
---|
| 2429 | int i, lit; |
---|
| 2430 | |
---|
| 2431 | if (clause != NIL(array_t)){ |
---|
| 2432 | if (array_n(clause) == 0){ /* empty clause */ |
---|
| 2433 | cnfClauses->emptyClause = TRUE; |
---|
| 2434 | return; |
---|
| 2435 | } |
---|
| 2436 | for (i=0; i< array_n(clause); i++){ |
---|
| 2437 | lit = array_fetch(int, clause, i); |
---|
| 2438 | array_insert(int, cnfClauses->clauseArray, cnfClauses->nextIndex++, lit); |
---|
| 2439 | } |
---|
| 2440 | array_insert(int, cnfClauses->clauseArray, cnfClauses->nextIndex++, 0); /*End Of clause*/ |
---|
| 2441 | cnfClauses->noOfClauses++; |
---|
| 2442 | cnfClauses->emptyClause = FALSE; |
---|
| 2443 | } |
---|
| 2444 | return; |
---|
| 2445 | }/* BmcCnfInsertClause() */ |
---|
| 2446 | |
---|
| 2447 | /**Function******************************************************************** |
---|
| 2448 | |
---|
| 2449 | Synopsis [Add an empty clause] |
---|
| 2450 | |
---|
| 2451 | SideEffects [] |
---|
| 2452 | |
---|
| 2453 | SeeAlso [] |
---|
| 2454 | ******************************************************************************/ |
---|
| 2455 | void |
---|
| 2456 | BmcAddEmptyClause( |
---|
| 2457 | BmcCnfClauses_t *cnfClauses) |
---|
| 2458 | { |
---|
| 2459 | cnfClauses->emptyClause = TRUE; |
---|
| 2460 | }/* BmcAddEmptyClause() */ |
---|
| 2461 | |
---|
| 2462 | /**Function******************************************************************** |
---|
| 2463 | |
---|
| 2464 | Synopsis [Return the cnfIndex of the node] |
---|
| 2465 | |
---|
| 2466 | Description [If CNF was generated for this node, return its cnfIndex, otherwise |
---|
| 2467 | insert the name of this node in the cnfIndexTable, and return its cnfIndex. The |
---|
| 2468 | key to the cnfIndexTable is (nodeName_state).] |
---|
| 2469 | |
---|
| 2470 | SideEffects [] |
---|
| 2471 | ******************************************************************************/ |
---|
| 2472 | int |
---|
| 2473 | BmcCnfReadOrInsertNode( |
---|
| 2474 | BmcCnfClauses_t *cnfClauses, |
---|
| 2475 | nameType_t *nodeName, |
---|
| 2476 | int state, |
---|
| 2477 | int *nodeIndex) |
---|
| 2478 | { |
---|
| 2479 | nameType_t *varName; |
---|
| 2480 | int index; |
---|
| 2481 | char *stateStr = util_inttostr(state); |
---|
| 2482 | |
---|
| 2483 | varName = util_strcat3(nodeName, "_", stateStr); |
---|
| 2484 | FREE(stateStr); |
---|
| 2485 | if (!st_lookup_int(cnfClauses->cnfIndexTable, varName, &index)) { |
---|
| 2486 | index = cnfClauses->cnfGlobalIndex++; |
---|
| 2487 | st_insert(cnfClauses->cnfIndexTable, varName, (char*) (long) index); |
---|
| 2488 | if(cnfClauses->freezed == TRUE){ |
---|
| 2489 | array_insert_last(nameType_t *, cnfClauses->freezedKeys, varName); |
---|
| 2490 | } |
---|
| 2491 | *nodeIndex = index; |
---|
| 2492 | return 0; /* Inserted */ |
---|
| 2493 | } |
---|
| 2494 | else { /* The node has been visited */ |
---|
| 2495 | *nodeIndex = index; |
---|
| 2496 | FREE(varName); |
---|
| 2497 | return 1; |
---|
| 2498 | } |
---|
| 2499 | } |
---|
| 2500 | |
---|
| 2501 | |
---|
| 2502 | /**Function******************************************************************** |
---|
| 2503 | |
---|
| 2504 | Synopsis [Find the Cone of Influnce (COI) for an LTL formula] |
---|
| 2505 | |
---|
| 2506 | Description [Return a list of state variables (latches) that are in the COI of the |
---|
| 2507 | LTL formula.] |
---|
| 2508 | |
---|
| 2509 | SideEffects [] |
---|
| 2510 | |
---|
| 2511 | ******************************************************************************/ |
---|
| 2512 | void |
---|
| 2513 | BmcGetCoiForLtlFormula( |
---|
| 2514 | Ntk_Network_t *network, |
---|
| 2515 | Ctlsp_Formula_t *formula, |
---|
| 2516 | st_table *ltlCoiTable) |
---|
| 2517 | { |
---|
| 2518 | st_table *visited = st_init_table(st_ptrcmp, st_ptrhash); |
---|
| 2519 | |
---|
| 2520 | BmcGetCoiForLtlFormulaRecursive(network, formula, ltlCoiTable, visited); |
---|
| 2521 | st_free_table(visited); |
---|
| 2522 | return; |
---|
| 2523 | } /* BmcGetCoiForLtlFormula() */ |
---|
| 2524 | |
---|
| 2525 | /**Function******************************************************************** |
---|
| 2526 | |
---|
| 2527 | Synopsis [Recursive function to find the COI of a network node.] |
---|
| 2528 | |
---|
| 2529 | Description [] |
---|
| 2530 | |
---|
| 2531 | SideEffects [] |
---|
| 2532 | |
---|
| 2533 | ******************************************************************************/ |
---|
| 2534 | void |
---|
| 2535 | BmcGetCoiForLtlFormulaRecursive( |
---|
| 2536 | Ntk_Network_t *network, |
---|
| 2537 | Ctlsp_Formula_t *formula, |
---|
| 2538 | st_table *ltlCoiTable, |
---|
| 2539 | st_table *visited) |
---|
| 2540 | { |
---|
| 2541 | if (formula == NIL(Ctlsp_Formula_t)) { |
---|
| 2542 | return; |
---|
| 2543 | } |
---|
| 2544 | /* leaf node */ |
---|
| 2545 | if (formula->type == Ctlsp_ID_c){ |
---|
| 2546 | char *name = Ctlsp_FormulaReadVariableName(formula); |
---|
| 2547 | Ntk_Node_t *node = Ntk_NetworkFindNodeByName(network, name); |
---|
| 2548 | int tmp; |
---|
| 2549 | |
---|
| 2550 | if (st_lookup_int(visited, (char *) node, &tmp)){ |
---|
| 2551 | /* Node already visited */ |
---|
| 2552 | return; |
---|
| 2553 | } |
---|
| 2554 | BmcGetCoiForNtkNode(node, ltlCoiTable, visited); |
---|
| 2555 | return; |
---|
| 2556 | } |
---|
| 2557 | BmcGetCoiForLtlFormulaRecursive(network, formula->left, ltlCoiTable, visited); |
---|
| 2558 | BmcGetCoiForLtlFormulaRecursive(network, formula->right, ltlCoiTable, visited); |
---|
| 2559 | |
---|
| 2560 | return; |
---|
| 2561 | } /* BmcGetCoiForLtlFormulaRecursive() */ |
---|
| 2562 | |
---|
| 2563 | /**Function******************************************************************** |
---|
| 2564 | |
---|
| 2565 | Synopsis [Genrate COI for a non-latch network node] |
---|
| 2566 | |
---|
| 2567 | Description [For each fanins of the given node, if its latch, add it |
---|
| 2568 | to the CoiTable and return. If it is not latch, call this function to |
---|
| 2569 | look for any latches in the fanins of this node.] |
---|
| 2570 | |
---|
| 2571 | SideEffects [] |
---|
| 2572 | |
---|
| 2573 | ******************************************************************************/ |
---|
| 2574 | void |
---|
| 2575 | BmcGetCoiForNtkNode( |
---|
| 2576 | Ntk_Node_t *node, |
---|
| 2577 | st_table *CoiTable, |
---|
| 2578 | st_table *visited) |
---|
| 2579 | { |
---|
| 2580 | int i, j; |
---|
| 2581 | Ntk_Node_t *faninNode; |
---|
| 2582 | |
---|
| 2583 | if(node == NIL(Ntk_Node_t)){ |
---|
| 2584 | return; |
---|
| 2585 | } |
---|
| 2586 | if (st_lookup_int(visited, (char *) node, &j)){ |
---|
| 2587 | /* Node already visited */ |
---|
| 2588 | return; |
---|
| 2589 | } |
---|
| 2590 | st_insert(visited, (char *) node, (char *) 0); |
---|
| 2591 | if (Ntk_NodeTestIsLatch(node)){ |
---|
| 2592 | st_insert(CoiTable, (char *) node, (char *) 0); |
---|
| 2593 | } |
---|
| 2594 | Ntk_NodeForEachFanin(node, i, faninNode) { |
---|
| 2595 | BmcGetCoiForNtkNode(faninNode, CoiTable, visited); |
---|
| 2596 | } |
---|
| 2597 | return; |
---|
| 2598 | } /* BmcGetCoiForNtkNode() */ |
---|
| 2599 | |
---|
| 2600 | |
---|
| 2601 | /**Function******************************************************************** |
---|
| 2602 | |
---|
| 2603 | Synopsis [Find Mdd for states satisfying Atomic Formula.] |
---|
| 2604 | |
---|
| 2605 | Description [An atomic formula defines a set of states in the following |
---|
| 2606 | way: it states a designated ``net'' (specified by the full path name) |
---|
| 2607 | takes a certain value. The net should be purely a function of latches; |
---|
| 2608 | as a result an evaluation of the net yields a set of states.] |
---|
| 2609 | |
---|
| 2610 | SideEffects [] |
---|
| 2611 | |
---|
| 2612 | ******************************************************************************/ |
---|
| 2613 | |
---|
| 2614 | mdd_t * |
---|
| 2615 | BmcModelCheckAtomicFormula( |
---|
| 2616 | Fsm_Fsm_t *modelFsm, |
---|
| 2617 | Ctlsp_Formula_t *ctlFormula) |
---|
| 2618 | { |
---|
| 2619 | mdd_t * resultMdd; |
---|
| 2620 | mdd_t *tmpMdd; |
---|
| 2621 | Ntk_Network_t *network = Fsm_FsmReadNetwork(modelFsm); |
---|
| 2622 | char *nodeNameString = Ctlsp_FormulaReadVariableName(ctlFormula); |
---|
| 2623 | char *nodeValueString = Ctlsp_FormulaReadValueName(ctlFormula); |
---|
| 2624 | Ntk_Node_t *node = Ntk_NetworkFindNodeByName(network, nodeNameString); |
---|
| 2625 | |
---|
| 2626 | Var_Variable_t *nodeVar; |
---|
| 2627 | int nodeValue; |
---|
| 2628 | |
---|
| 2629 | graph_t *modelPartition; |
---|
| 2630 | vertex_t *partitionVertex; |
---|
| 2631 | Mvf_Function_t *MVF; |
---|
| 2632 | |
---|
| 2633 | nodeVar = Ntk_NodeReadVariable(node); |
---|
| 2634 | if (Var_VariableTestIsSymbolic(nodeVar)) { |
---|
| 2635 | nodeValue = Var_VariableReadIndexFromSymbolicValue(nodeVar, nodeValueString); |
---|
| 2636 | } |
---|
| 2637 | else { |
---|
| 2638 | nodeValue = atoi(nodeValueString); |
---|
| 2639 | } |
---|
| 2640 | |
---|
| 2641 | modelPartition = Part_NetworkReadPartition(network); |
---|
| 2642 | if (!(partitionVertex = Part_PartitionFindVertexByName(modelPartition, |
---|
| 2643 | nodeNameString))) { |
---|
| 2644 | lsGen tmpGen; |
---|
| 2645 | Ntk_Node_t *tmpNode; |
---|
| 2646 | array_t *mvfArray; |
---|
| 2647 | array_t *tmpRoots = array_alloc(Ntk_Node_t *, 0); |
---|
| 2648 | st_table *tmpLeaves = st_init_table(st_ptrcmp, st_ptrhash); |
---|
| 2649 | array_insert_last(Ntk_Node_t *, tmpRoots, node); |
---|
| 2650 | |
---|
| 2651 | Ntk_NetworkForEachCombInput(network, tmpGen, tmpNode) { |
---|
| 2652 | st_insert(tmpLeaves, (char *) tmpNode, (char *) NTM_UNUSED); |
---|
| 2653 | } |
---|
| 2654 | |
---|
| 2655 | mvfArray = Ntm_NetworkBuildMvfs(network, tmpRoots, tmpLeaves, |
---|
| 2656 | NIL(mdd_t)); |
---|
| 2657 | MVF = array_fetch(Mvf_Function_t *, mvfArray, 0); |
---|
| 2658 | array_free(tmpRoots); |
---|
| 2659 | st_free_table(tmpLeaves); |
---|
| 2660 | array_free(mvfArray); |
---|
| 2661 | |
---|
| 2662 | tmpMdd = Mvf_FunctionReadComponent(MVF, nodeValue); |
---|
| 2663 | resultMdd = mdd_dup(tmpMdd); |
---|
| 2664 | Mvf_FunctionFree(MVF); |
---|
| 2665 | } |
---|
| 2666 | else { |
---|
| 2667 | MVF = Part_VertexReadFunction(partitionVertex); |
---|
| 2668 | tmpMdd = Mvf_FunctionReadComponent(MVF, nodeValue); |
---|
| 2669 | resultMdd = mdd_dup(tmpMdd); |
---|
| 2670 | } |
---|
| 2671 | if (Part_PartitionReadMethod(modelPartition) == Part_Frontier_c && |
---|
| 2672 | Ntk_NodeTestIsCombOutput(node)) { |
---|
| 2673 | array_t *psVars = Fsm_FsmReadPresentStateVars(modelFsm); |
---|
| 2674 | mdd_manager *mgr = Ntk_NetworkReadMddManager(Fsm_FsmReadNetwork(modelFsm)); |
---|
| 2675 | array_t *supportList; |
---|
| 2676 | st_table *supportTable = st_init_table(st_numcmp, st_numhash); |
---|
| 2677 | int i, j; |
---|
| 2678 | int existIntermediateVars; |
---|
| 2679 | int mddId; |
---|
| 2680 | Mvf_Function_t *mvf; |
---|
| 2681 | vertex_t *vertex; |
---|
| 2682 | array_t *varBddRelationArray, *varArray; |
---|
| 2683 | mdd_t *iv, *ivMdd, *relation; |
---|
| 2684 | |
---|
| 2685 | for (i = 0; i < array_n(psVars); i++) { |
---|
| 2686 | mddId = array_fetch(int, psVars, i); |
---|
| 2687 | st_insert(supportTable, (char *)(long)mddId, NULL); |
---|
| 2688 | } |
---|
| 2689 | |
---|
| 2690 | existIntermediateVars = 1; |
---|
| 2691 | while (existIntermediateVars) { |
---|
| 2692 | existIntermediateVars = 0; |
---|
| 2693 | supportList = mdd_get_support(mgr, resultMdd); |
---|
| 2694 | for (i = 0; i < array_n(supportList); i++) { |
---|
| 2695 | mddId = array_fetch(int, supportList, i); |
---|
| 2696 | if (!st_lookup(supportTable, (char *)(long)mddId, NULL)) { |
---|
| 2697 | vertex = Part_PartitionFindVertexByMddId(modelPartition, mddId); |
---|
| 2698 | mvf = Part_VertexReadFunction(vertex); |
---|
| 2699 | varBddRelationArray = mdd_fn_array_to_bdd_rel_array(mgr, mddId, mvf); |
---|
| 2700 | varArray = mdd_id_to_bdd_array(mgr, mddId); |
---|
| 2701 | assert(array_n(varBddRelationArray) == array_n(varArray)); |
---|
| 2702 | for (j = 0; j < array_n(varBddRelationArray); j++) { |
---|
| 2703 | iv = array_fetch(mdd_t *, varArray, j); |
---|
| 2704 | relation = array_fetch(mdd_t *, varBddRelationArray, j); |
---|
| 2705 | ivMdd = bdd_cofactor(relation, iv); |
---|
| 2706 | mdd_free(relation); |
---|
| 2707 | tmpMdd = resultMdd; |
---|
| 2708 | resultMdd = bdd_compose(resultMdd, iv, ivMdd); |
---|
| 2709 | mdd_free(tmpMdd); |
---|
| 2710 | mdd_free(iv); |
---|
| 2711 | mdd_free(ivMdd); |
---|
| 2712 | } |
---|
| 2713 | array_free(varBddRelationArray); |
---|
| 2714 | array_free(varArray); |
---|
| 2715 | existIntermediateVars = 1; |
---|
| 2716 | } |
---|
| 2717 | } |
---|
| 2718 | array_free(supportList); |
---|
| 2719 | } |
---|
| 2720 | st_free_table(supportTable); |
---|
| 2721 | } |
---|
| 2722 | return resultMdd; |
---|
| 2723 | } |
---|
| 2724 | |
---|
| 2725 | /**Function******************************************************************** |
---|
| 2726 | |
---|
| 2727 | Synopsis [Read fairness constraints from file and check for errors.] |
---|
| 2728 | |
---|
| 2729 | Description [] |
---|
| 2730 | |
---|
| 2731 | SideEffects [] |
---|
| 2732 | |
---|
| 2733 | SeeAlso [] |
---|
| 2734 | |
---|
| 2735 | ******************************************************************************/ |
---|
| 2736 | array_t * |
---|
| 2737 | BmcReadFairnessConstraints( |
---|
| 2738 | FILE *fp /* pointer to the fairness constraint file */) |
---|
| 2739 | { |
---|
| 2740 | array_t *constraintArray; /* raw fairness constraints */ |
---|
| 2741 | array_t *ltlConstraintArray; /* constraints converted to LTL */ |
---|
| 2742 | |
---|
| 2743 | if (fp == NIL(FILE) ) { |
---|
| 2744 | /* Nothing to be done. */ |
---|
| 2745 | return NIL(array_t); |
---|
| 2746 | } |
---|
| 2747 | |
---|
| 2748 | /* Read constraints from file and check for errors. */ |
---|
| 2749 | constraintArray = Ctlsp_FileParseFormulaArray(fp); |
---|
| 2750 | if (constraintArray == NIL(array_t)) { |
---|
| 2751 | (void) fprintf(vis_stderr, |
---|
| 2752 | "** ctlsp error: error reading fairness constraints.\n"); |
---|
| 2753 | return NIL(array_t); |
---|
| 2754 | } |
---|
| 2755 | if (array_n(constraintArray) == 0) { |
---|
| 2756 | (void) fprintf(vis_stderr, "** ctlsp error: fairness file is empty.\n"); |
---|
| 2757 | return NIL(array_t); |
---|
| 2758 | } |
---|
| 2759 | /* |
---|
| 2760 | * Check that each constraint is an LTL formula. |
---|
| 2761 | */ |
---|
| 2762 | ltlConstraintArray = Ctlsp_FormulaArrayConvertToLTL(constraintArray); |
---|
| 2763 | Ctlsp_FormulaArrayFree(constraintArray); |
---|
| 2764 | if (ltlConstraintArray == NIL(array_t)) { |
---|
| 2765 | (void) fprintf(vis_stderr, |
---|
| 2766 | "** ctlsp error: fairness constraints are not LTL formulae.\n"); |
---|
| 2767 | return NIL(array_t); |
---|
| 2768 | } |
---|
| 2769 | |
---|
| 2770 | return ltlConstraintArray; |
---|
| 2771 | |
---|
| 2772 | } /* BmcReadFairnessConstraints */ |
---|
| 2773 | |
---|
| 2774 | |
---|
| 2775 | /**Function******************************************************************** |
---|
| 2776 | |
---|
| 2777 | Synopsis [return the cnf index for a bdd node] |
---|
| 2778 | |
---|
| 2779 | SideEffects [] |
---|
| 2780 | |
---|
| 2781 | ******************************************************************************/ |
---|
| 2782 | int |
---|
| 2783 | BmcGetCnfVarIndexForBddNode( |
---|
| 2784 | bdd_manager *bddManager, |
---|
| 2785 | bdd_node *node, |
---|
| 2786 | int state, |
---|
| 2787 | BmcCnfClauses_t *cnfClauses) |
---|
| 2788 | { |
---|
| 2789 | array_t *mvar_list = mdd_ret_mvar_list(bddManager); |
---|
| 2790 | array_t *bvar_list = mdd_ret_bvar_list(bddManager); |
---|
| 2791 | |
---|
| 2792 | char name[100]; |
---|
| 2793 | char *nodeName; |
---|
| 2794 | bvar_type bv; |
---|
| 2795 | mvar_type mv; |
---|
| 2796 | int nodeIndex = bdd_node_read_index(node); |
---|
| 2797 | int index, rtnNodeIndex, rtnCode; |
---|
| 2798 | |
---|
| 2799 | |
---|
| 2800 | /* |
---|
| 2801 | If the node is for a multi-valued varaible. |
---|
| 2802 | */ |
---|
| 2803 | if (nodeIndex < array_n(bvar_list)){ |
---|
| 2804 | bv = array_fetch(bvar_type, bvar_list, nodeIndex); |
---|
| 2805 | /* |
---|
| 2806 | get the multi-valued varaible. |
---|
| 2807 | */ |
---|
| 2808 | mv = array_fetch(mvar_type, mvar_list, bv.mvar_id); |
---|
| 2809 | arrayForEachItem(int, mv.bvars, index, rtnNodeIndex) { |
---|
| 2810 | if (nodeIndex == rtnNodeIndex){ |
---|
| 2811 | break; |
---|
| 2812 | } |
---|
| 2813 | } |
---|
| 2814 | assert(index < mv.encode_length); |
---|
| 2815 | /* |
---|
| 2816 | printf("Name of bdd node %s %d\n", mv.name, index); |
---|
| 2817 | */ |
---|
| 2818 | sprintf(name, "%s_%d", mv.name, index); |
---|
| 2819 | } else { |
---|
| 2820 | sprintf(name, "Bdd_%d", nodeIndex); |
---|
| 2821 | } |
---|
| 2822 | nodeName = util_strsav(name); |
---|
| 2823 | rtnCode = BmcCnfReadOrInsertNode(cnfClauses, nodeName, state, &nodeIndex); |
---|
| 2824 | if(rtnCode == 1) { |
---|
| 2825 | FREE(nodeName); |
---|
| 2826 | } |
---|
| 2827 | return nodeIndex; |
---|
| 2828 | } |
---|
| 2829 | |
---|
| 2830 | /*---------------------------------------------------------------------------*/ |
---|
| 2831 | /* Definition of static functions */ |
---|
| 2832 | /*---------------------------------------------------------------------------*/ |
---|
| 2833 | |
---|
| 2834 | /**Function******************************************************************** |
---|
| 2835 | |
---|
| 2836 | Synopsis [Test that the given string is an integer. Returns 0 if string is |
---|
| 2837 | not an integer, 1 if the integer is too big for int, and 2 if integer fits |
---|
| 2838 | in int.] |
---|
| 2839 | |
---|
| 2840 | SideEffects [Sets the pointer value if the string is an integer small enough |
---|
| 2841 | for int.] |
---|
| 2842 | |
---|
| 2843 | ******************************************************************************/ |
---|
| 2844 | static int |
---|
| 2845 | StringCheckIsInteger( |
---|
| 2846 | char *string, |
---|
| 2847 | int *value) |
---|
| 2848 | { |
---|
| 2849 | char *ptr; |
---|
| 2850 | long l; |
---|
| 2851 | |
---|
| 2852 | l = strtol (string, &ptr, 0) ; |
---|
| 2853 | if(*ptr != '\0') |
---|
| 2854 | return 0; |
---|
| 2855 | if ((l > MAXINT) || (l < -1 - MAXINT)) |
---|
| 2856 | return 1 ; |
---|
| 2857 | *value = (int) l; |
---|
| 2858 | return 2 ; |
---|
| 2859 | } |
---|
| 2860 | |
---|
| 2861 | /**Function******************************************************************** |
---|
| 2862 | |
---|
| 2863 | Synopsis [Compare procedure for name comparison.] |
---|
| 2864 | |
---|
| 2865 | Description [Compare procedure for name comparison.] |
---|
| 2866 | |
---|
| 2867 | SideEffects [] |
---|
| 2868 | |
---|
| 2869 | ******************************************************************************/ |
---|
| 2870 | static int |
---|
| 2871 | nameCompare( |
---|
| 2872 | const void * name1, |
---|
| 2873 | const void * name2) |
---|
| 2874 | { |
---|
| 2875 | return(strcmp(*(char**)name1, *(char **)name2)); |
---|
| 2876 | |
---|
| 2877 | } /* end of signatureCompare */ |
---|
| 2878 | |
---|
| 2879 | |
---|
| 2880 | |
---|
| 2881 | |
---|
| 2882 | /**Function******************************************************************** |
---|
| 2883 | |
---|
| 2884 | Synopsis [Print the valuse of variables in the variable list "varNames".] |
---|
| 2885 | |
---|
| 2886 | Description [For each variable in the variable list, this functions prints its |
---|
| 2887 | value in the resultTable if it is different for its value in prevValue. If this |
---|
| 2888 | variable is a symbolic variable, this function prints its symbolic value.] |
---|
| 2889 | |
---|
| 2890 | SideEffects [] |
---|
| 2891 | |
---|
| 2892 | ******************************************************************************/ |
---|
| 2893 | static void |
---|
| 2894 | printValue( |
---|
| 2895 | mAig_Manager_t *manager, |
---|
| 2896 | Ntk_Network_t *network, |
---|
| 2897 | st_table *nodeToMvfAigTable, |
---|
| 2898 | BmcCnfClauses_t *cnfClauses, |
---|
| 2899 | array_t *varNames, |
---|
| 2900 | st_table *resultTable, |
---|
| 2901 | int state, |
---|
| 2902 | int *prevValue) |
---|
| 2903 | { |
---|
| 2904 | Ntk_Node_t *node; |
---|
| 2905 | int i, j; |
---|
| 2906 | bAigEdge_t bAigId; |
---|
| 2907 | nameType_t *varName, *nodeName; |
---|
| 2908 | int value, index; |
---|
| 2909 | MvfAig_Function_t *MvfAig; |
---|
| 2910 | int changed = 0; |
---|
| 2911 | int tmp; |
---|
| 2912 | |
---|
| 2913 | for (j=0; j< array_n(varNames); j++) { |
---|
| 2914 | if (state == 0){ |
---|
| 2915 | prevValue[j] = -1; |
---|
| 2916 | } |
---|
| 2917 | nodeName = array_fetch(char *, varNames, j); |
---|
| 2918 | /* |
---|
| 2919 | Fetch the node corresponding to this node name. |
---|
| 2920 | */ |
---|
| 2921 | node = Ntk_NetworkFindNodeByName(network, nodeName); |
---|
| 2922 | /* |
---|
| 2923 | Get the multi-valued function for each node |
---|
| 2924 | */ |
---|
| 2925 | MvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
| 2926 | /* |
---|
| 2927 | In case of the multi-valued function is not build for this node, do nothing. |
---|
| 2928 | We may notify the user. |
---|
| 2929 | */ |
---|
| 2930 | if (MvfAig == NIL(MvfAig_Function_t)){ |
---|
| 2931 | continue; |
---|
| 2932 | } |
---|
| 2933 | /* |
---|
| 2934 | No CNF index for this variable at time "state in the " |
---|
| 2935 | */ |
---|
| 2936 | value = -1; |
---|
| 2937 | for (i=0; i< array_n(MvfAig); i++) { |
---|
| 2938 | bAigId = MvfAig_FunctionReadComponent(MvfAig, i); |
---|
| 2939 | /* |
---|
| 2940 | constant value |
---|
| 2941 | */ |
---|
| 2942 | if (bAigId == bAig_One){ |
---|
| 2943 | /* |
---|
| 2944 | This variable equal the constant i. |
---|
| 2945 | */ |
---|
| 2946 | value = i; |
---|
| 2947 | break; |
---|
| 2948 | } |
---|
| 2949 | if (bAigId != bAig_Zero){ |
---|
| 2950 | char *tmpStr; |
---|
| 2951 | |
---|
| 2952 | nodeName = bAig_NodeReadName(manager, bAigId); |
---|
| 2953 | /* |
---|
| 2954 | Build the variable name at state "state". |
---|
| 2955 | */ |
---|
| 2956 | tmpStr = util_inttostr(state); |
---|
| 2957 | varName = util_strcat3(nodeName, "_", tmpStr); |
---|
| 2958 | if (st_lookup_int(cnfClauses->cnfIndexTable, varName, &index)) { |
---|
| 2959 | if (bAig_IsInverted(bAigId)){ |
---|
| 2960 | index = -index; |
---|
| 2961 | } |
---|
| 2962 | /*if (searchArray(result, index) > -1){*/ |
---|
| 2963 | if (st_lookup_int(resultTable, (char *)(long)index, &tmp)){ |
---|
| 2964 | value = i; |
---|
| 2965 | break; |
---|
| 2966 | } |
---|
| 2967 | } /* if st_lookup_int() */ |
---|
| 2968 | FREE(tmpStr); |
---|
| 2969 | FREE(varName); |
---|
| 2970 | } /* if (bAigId != bAig_Zero) */ |
---|
| 2971 | } |
---|
| 2972 | if (value >= 0){ |
---|
| 2973 | if (value != prevValue[j]){ |
---|
| 2974 | Var_Variable_t *nodeVar = Ntk_NodeReadVariable(node); |
---|
| 2975 | |
---|
| 2976 | prevValue[j] = value; |
---|
| 2977 | changed = 1; |
---|
| 2978 | if (Var_VariableTestIsSymbolic(nodeVar)) { |
---|
| 2979 | char *symbolicValue = Var_VariableReadSymbolicValueFromIndex(nodeVar, value); |
---|
| 2980 | |
---|
| 2981 | (void) fprintf(vis_stdout,"%s:%s\n", Ntk_NodeReadName(node), symbolicValue); |
---|
| 2982 | } |
---|
| 2983 | else { |
---|
| 2984 | (void) fprintf(vis_stdout,"%s:%d\n", Ntk_NodeReadName(node), value); |
---|
| 2985 | } |
---|
| 2986 | } |
---|
| 2987 | } else { |
---|
| 2988 | /* |
---|
| 2989 | This variable does not have value in the current time frame. It means its value |
---|
| 2990 | is not important at this time frame. |
---|
| 2991 | */ |
---|
| 2992 | (void) fprintf(vis_stdout,"%s:X\n", Ntk_NodeReadName(node)); |
---|
| 2993 | } |
---|
| 2994 | } /* for j loop */ |
---|
| 2995 | if (changed == 0){ |
---|
| 2996 | fprintf( vis_stdout, "<Unchanged>\n"); |
---|
| 2997 | } |
---|
| 2998 | |
---|
| 2999 | }/* end of printValue() */ |
---|
| 3000 | |
---|
| 3001 | |
---|
| 3002 | |
---|
| 3003 | /**Function******************************************************************** |
---|
| 3004 | |
---|
| 3005 | Synopsis [Print the valuse of variables in the variable list "varNames".] |
---|
| 3006 | |
---|
| 3007 | Description [For each variable in the variable list, this functions prints the |
---|
| 3008 | values of names, which do not start with $_ as these are true |
---|
| 3009 | latches of the model. Since this is in aiger format, hence all |
---|
| 3010 | the values are printed even if they didn't change from the |
---|
| 3011 | previous values.] |
---|
| 3012 | |
---|
| 3013 | SideEffects [] |
---|
| 3014 | |
---|
| 3015 | ******************************************************************************/ |
---|
| 3016 | static void |
---|
| 3017 | printValueAiger( |
---|
| 3018 | mAig_Manager_t *manager, |
---|
| 3019 | Ntk_Network_t *network, |
---|
| 3020 | st_table *nodeToMvfAigTable, |
---|
| 3021 | BmcCnfClauses_t *cnfClauses, |
---|
| 3022 | array_t *varNames, |
---|
| 3023 | st_table *resultTable, |
---|
| 3024 | int state, |
---|
| 3025 | int *prevValue) |
---|
| 3026 | { |
---|
| 3027 | Ntk_Node_t *node; |
---|
| 3028 | int i, j; |
---|
| 3029 | bAigEdge_t bAigId; |
---|
| 3030 | nameType_t *varName, *nodeName; |
---|
| 3031 | int value, index; |
---|
| 3032 | MvfAig_Function_t *MvfAig; |
---|
| 3033 | int tmp; |
---|
| 3034 | char * NodeName; |
---|
| 3035 | |
---|
| 3036 | for (j=0; j< array_n(varNames); j++) { |
---|
| 3037 | if (state == 0){ |
---|
| 3038 | prevValue[j] = -1; |
---|
| 3039 | } |
---|
| 3040 | nodeName = array_fetch(char *, varNames, j); |
---|
| 3041 | /* |
---|
| 3042 | Fetch the node corresponding to this node name. |
---|
| 3043 | */ |
---|
| 3044 | node = Ntk_NetworkFindNodeByName(network, nodeName); |
---|
| 3045 | /* |
---|
| 3046 | Get the multi-valued function for each node |
---|
| 3047 | */ |
---|
| 3048 | MvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
| 3049 | /* |
---|
| 3050 | In case of the multi-valued function is not build for this node, do nothing. |
---|
| 3051 | We may notify the user. |
---|
| 3052 | */ |
---|
| 3053 | if (MvfAig == NIL(MvfAig_Function_t)){ |
---|
| 3054 | continue; |
---|
| 3055 | } |
---|
| 3056 | /* |
---|
| 3057 | No CNF index for this variable at time "state in the " |
---|
| 3058 | */ |
---|
| 3059 | value = -1; |
---|
| 3060 | for (i=0; i< array_n(MvfAig); i++) { |
---|
| 3061 | bAigId = MvfAig_FunctionReadComponent(MvfAig, i); |
---|
| 3062 | /* |
---|
| 3063 | constant value |
---|
| 3064 | */ |
---|
| 3065 | if (bAigId == bAig_One){ |
---|
| 3066 | /* |
---|
| 3067 | This variable equal the constant i. |
---|
| 3068 | */ |
---|
| 3069 | value = i; |
---|
| 3070 | break; |
---|
| 3071 | } |
---|
| 3072 | if (bAigId != bAig_Zero){ |
---|
| 3073 | char *tmpStr; |
---|
| 3074 | |
---|
| 3075 | nodeName = bAig_NodeReadName(manager, bAigId); |
---|
| 3076 | /* |
---|
| 3077 | Build the variable name at state "state". |
---|
| 3078 | */ |
---|
| 3079 | tmpStr = util_inttostr(state); |
---|
| 3080 | varName = util_strcat3(nodeName, "_", tmpStr); |
---|
| 3081 | if (st_lookup_int(cnfClauses->cnfIndexTable, varName, &index)) { |
---|
| 3082 | if (bAig_IsInverted(bAigId)){ |
---|
| 3083 | index = -index; |
---|
| 3084 | } |
---|
| 3085 | /*if (searchArray(result, index) > -1){*/ |
---|
| 3086 | if (st_lookup_int(resultTable, (char *)(long)index, &tmp)){ |
---|
| 3087 | value = i; |
---|
| 3088 | break; |
---|
| 3089 | } |
---|
| 3090 | } /* if st_lookup_int() */ |
---|
| 3091 | FREE(tmpStr); |
---|
| 3092 | FREE(varName); |
---|
| 3093 | } /* if (bAigId != bAig_Zero) */ |
---|
| 3094 | } |
---|
| 3095 | NodeName = Ntk_NodeReadName(node); |
---|
| 3096 | if(!((NodeName[0] == '$') && (NodeName[1] == '_'))) |
---|
| 3097 | { |
---|
| 3098 | if (value >= 0){ |
---|
| 3099 | Var_Variable_t *nodeVar = Ntk_NodeReadVariable(node); |
---|
| 3100 | |
---|
| 3101 | prevValue[j] = value; |
---|
| 3102 | if (Var_VariableTestIsSymbolic(nodeVar)) { |
---|
| 3103 | char *symbolicValue = Var_VariableReadSymbolicValueFromIndex(nodeVar, value); |
---|
| 3104 | |
---|
| 3105 | (void) fprintf(vis_stdout,"%s", symbolicValue); |
---|
| 3106 | } |
---|
| 3107 | else { |
---|
| 3108 | (void) fprintf(vis_stdout,"%d", value); |
---|
| 3109 | } |
---|
| 3110 | } else { |
---|
| 3111 | /* |
---|
| 3112 | This variable does not have value in the current time frame. It means its value |
---|
| 3113 | is not important at this time frame. |
---|
| 3114 | */ |
---|
| 3115 | (void) fprintf(vis_stdout,"x" ); |
---|
| 3116 | } |
---|
| 3117 | } /* these nodes are latches in front of inputs so they will be printed out as inputs */ |
---|
| 3118 | } /* for j loop */ |
---|
| 3119 | }/* end of printValueAiger() */ |
---|
| 3120 | |
---|
| 3121 | |
---|
| 3122 | /**Function******************************************************************** |
---|
| 3123 | |
---|
| 3124 | Synopsis [Print the valuse of variables in the variable list "varNames".] |
---|
| 3125 | |
---|
| 3126 | Description [For each variable in the variable list, this functions checks if |
---|
| 3127 | the name starts with $_, which means that those latches are |
---|
| 3128 | actually storing the value of inputs. This modification to the |
---|
| 3129 | model is externally done and not done by VIS so this method is |
---|
| 3130 | only specific to certain type of model, the output of aigtoblif |
---|
| 3131 | translator.] |
---|
| 3132 | |
---|
| 3133 | SideEffects [] |
---|
| 3134 | |
---|
| 3135 | ******************************************************************************/ |
---|
| 3136 | static void |
---|
| 3137 | printValueAigerInputs( |
---|
| 3138 | mAig_Manager_t *manager, |
---|
| 3139 | Ntk_Network_t *network, |
---|
| 3140 | st_table *nodeToMvfAigTable, |
---|
| 3141 | BmcCnfClauses_t *cnfClauses, |
---|
| 3142 | array_t *varNames, |
---|
| 3143 | st_table *resultTable, |
---|
| 3144 | int state, |
---|
| 3145 | int *prevValue) |
---|
| 3146 | { |
---|
| 3147 | Ntk_Node_t *node; |
---|
| 3148 | int i, j; |
---|
| 3149 | bAigEdge_t bAigId; |
---|
| 3150 | nameType_t *varName, *nodeName; |
---|
| 3151 | int value, index; |
---|
| 3152 | MvfAig_Function_t *MvfAig; |
---|
| 3153 | int tmp; |
---|
| 3154 | char * NodeName; |
---|
| 3155 | |
---|
| 3156 | for (j=0; j< array_n(varNames); j++) { |
---|
| 3157 | if (state == 0){ |
---|
| 3158 | prevValue[j] = -1; |
---|
| 3159 | } |
---|
| 3160 | nodeName = array_fetch(char *, varNames, j); |
---|
| 3161 | /* |
---|
| 3162 | Fetch the node corresponding to this node name. |
---|
| 3163 | */ |
---|
| 3164 | node = Ntk_NetworkFindNodeByName(network, nodeName); |
---|
| 3165 | /* |
---|
| 3166 | Get the multi-valued function for each node |
---|
| 3167 | */ |
---|
| 3168 | MvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
| 3169 | /* |
---|
| 3170 | In case of the multi-valued function is not build for this node, do nothing. |
---|
| 3171 | We may notify the user. |
---|
| 3172 | */ |
---|
| 3173 | if (MvfAig == NIL(MvfAig_Function_t)){ |
---|
| 3174 | continue; |
---|
| 3175 | } |
---|
| 3176 | /* |
---|
| 3177 | No CNF index for this variable at time "state in the " |
---|
| 3178 | */ |
---|
| 3179 | value = -1; |
---|
| 3180 | for (i=0; i< array_n(MvfAig); i++) { |
---|
| 3181 | bAigId = MvfAig_FunctionReadComponent(MvfAig, i); |
---|
| 3182 | /* |
---|
| 3183 | constant value |
---|
| 3184 | */ |
---|
| 3185 | if (bAigId == bAig_One){ |
---|
| 3186 | /* |
---|
| 3187 | This variable equal the constant i. |
---|
| 3188 | */ |
---|
| 3189 | value = i; |
---|
| 3190 | break; |
---|
| 3191 | } |
---|
| 3192 | if (bAigId != bAig_Zero){ |
---|
| 3193 | char *tmpStr; |
---|
| 3194 | |
---|
| 3195 | nodeName = bAig_NodeReadName(manager, bAigId); |
---|
| 3196 | /* |
---|
| 3197 | Build the variable name at state "state". |
---|
| 3198 | */ |
---|
| 3199 | tmpStr = util_inttostr(state); |
---|
| 3200 | varName = util_strcat3(nodeName, "_", tmpStr); |
---|
| 3201 | if (st_lookup_int(cnfClauses->cnfIndexTable, varName, &index)) { |
---|
| 3202 | if (bAig_IsInverted(bAigId)){ |
---|
| 3203 | index = -index; |
---|
| 3204 | } |
---|
| 3205 | /*if (searchArray(result, index) > -1){*/ |
---|
| 3206 | if (st_lookup_int(resultTable, (char *)(long)index, &tmp)){ |
---|
| 3207 | value = i; |
---|
| 3208 | break; |
---|
| 3209 | } |
---|
| 3210 | } /* if st_lookup_int() */ |
---|
| 3211 | FREE(tmpStr); |
---|
| 3212 | FREE(varName); |
---|
| 3213 | } /* if (bAigId != bAig_Zero) */ |
---|
| 3214 | } |
---|
| 3215 | NodeName = Ntk_NodeReadName(node); |
---|
| 3216 | if((NodeName[0] == '$') && (NodeName[1] == '_')) |
---|
| 3217 | { |
---|
| 3218 | if (value >= 0){ |
---|
| 3219 | Var_Variable_t *nodeVar = Ntk_NodeReadVariable(node); |
---|
| 3220 | |
---|
| 3221 | prevValue[j] = value; |
---|
| 3222 | if (Var_VariableTestIsSymbolic(nodeVar)) { |
---|
| 3223 | char *symbolicValue = Var_VariableReadSymbolicValueFromIndex(nodeVar, value); |
---|
| 3224 | |
---|
| 3225 | (void) fprintf(vis_stdout,"%s", symbolicValue); |
---|
| 3226 | } |
---|
| 3227 | else { |
---|
| 3228 | (void) fprintf(vis_stdout,"%d", value); |
---|
| 3229 | } |
---|
| 3230 | } else { |
---|
| 3231 | /* |
---|
| 3232 | This variable does not have value in the current time frame. It means its value |
---|
| 3233 | is not important at this time frame. |
---|
| 3234 | */ |
---|
| 3235 | (void) fprintf(vis_stdout,"x" ); |
---|
| 3236 | } |
---|
| 3237 | } /* these nodes are latches in front of inputs so they will be printed out as inputs */ |
---|
| 3238 | } /* for j loop */ |
---|
| 3239 | }/* end of printValueAigerInputs() */ |
---|
| 3240 | |
---|
| 3241 | |
---|
| 3242 | |
---|