1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [bmcUtil.c] |
---|
4 | |
---|
5 | PackageName [bmc] |
---|
6 | |
---|
7 | Synopsis [Utilities for BMC package] |
---|
8 | |
---|
9 | Author [Mohammad Awedh] |
---|
10 | |
---|
11 | Copyright [This file was created at the University of Colorado at Boulder. |
---|
12 | The University of Colorado at Boulder makes no warranty about the suitability |
---|
13 | of this software for any purpose. It is presented on an AS IS basis.] |
---|
14 | |
---|
15 | ******************************************************************************/ |
---|
16 | |
---|
17 | #include "bmcInt.h" |
---|
18 | #include "sat.h" |
---|
19 | #include "baig.h" |
---|
20 | |
---|
21 | static char rcsid[] UNUSED = "$Id: bmcUtil.c,v 1.82 2010/04/10 04:07:06 fabio Exp $"; |
---|
22 | |
---|
23 | /*---------------------------------------------------------------------------*/ |
---|
24 | /* Constant declarations */ |
---|
25 | /*---------------------------------------------------------------------------*/ |
---|
26 | |
---|
27 | #define MAX_LENGTH 320 /* Max. length of a string while reading a file */ |
---|
28 | |
---|
29 | /*---------------------------------------------------------------------------*/ |
---|
30 | /* Type declarations */ |
---|
31 | /*---------------------------------------------------------------------------*/ |
---|
32 | |
---|
33 | |
---|
34 | /*---------------------------------------------------------------------------*/ |
---|
35 | /* Structure declarations */ |
---|
36 | /*---------------------------------------------------------------------------*/ |
---|
37 | |
---|
38 | |
---|
39 | /*---------------------------------------------------------------------------*/ |
---|
40 | /* Variable declarations */ |
---|
41 | /*---------------------------------------------------------------------------*/ |
---|
42 | |
---|
43 | |
---|
44 | /**AutomaticStart*************************************************************/ |
---|
45 | |
---|
46 | /*---------------------------------------------------------------------------*/ |
---|
47 | /* Static function prototypes */ |
---|
48 | /*---------------------------------------------------------------------------*/ |
---|
49 | |
---|
50 | static int StringCheckIsInteger(char *string, int *value); |
---|
51 | static int nameCompare(const void * name1, const void * name2); |
---|
52 | static void printValue(mAig_Manager_t *manager, Ntk_Network_t *network, st_table *nodeToMvfAigTable, BmcCnfClauses_t *cnfClauses, array_t *varNames, st_table *resultTable, int state, int *prevValue); |
---|
53 | static void printValueAiger(mAig_Manager_t *manager, Ntk_Network_t *network, st_table *nodeToMvfAigTable, BmcCnfClauses_t *cnfClauses, array_t *varNames, st_table *resultTable, int state, int *prevValue); |
---|
54 | static void printValueAigerInputs(mAig_Manager_t *manager, Ntk_Network_t *network, st_table *nodeToMvfAigTable, BmcCnfClauses_t *cnfClauses, array_t *varNames, st_table *resultTable, int state, int *prevValue); |
---|
55 | |
---|
56 | /**AutomaticEnd***************************************************************/ |
---|
57 | |
---|
58 | /*---------------------------------------------------------------------------*/ |
---|
59 | /* Definition of exported functions */ |
---|
60 | /*---------------------------------------------------------------------------*/ |
---|
61 | |
---|
62 | |
---|
63 | /**Function******************************************************************** |
---|
64 | |
---|
65 | Synopsis [Compute cube that is close to target states.] |
---|
66 | |
---|
67 | SideEffects [] |
---|
68 | |
---|
69 | ******************************************************************************/ |
---|
70 | mdd_t * |
---|
71 | Bmc_ComputeCloseCube( |
---|
72 | mdd_t *states, |
---|
73 | mdd_t *target, |
---|
74 | int *dist, |
---|
75 | Fsm_Fsm_t *modelFsm) |
---|
76 | { |
---|
77 | array_t *PSVars = Fsm_FsmReadPresentStateVars( modelFsm ); |
---|
78 | mdd_manager *mddMgr = Ntk_NetworkReadMddManager( Fsm_FsmReadNetwork( modelFsm ) ); |
---|
79 | mdd_t *result = BmcComputeCloseCube( states, target, dist, PSVars, mddMgr ); |
---|
80 | |
---|
81 | return result; |
---|
82 | } |
---|
83 | |
---|
84 | /**Function******************************************************************** |
---|
85 | |
---|
86 | Synopsis [Build multi-valued function for a given node.] |
---|
87 | |
---|
88 | SideEffects [The mvf of this node is a function of combinational input |
---|
89 | nodes.] |
---|
90 | |
---|
91 | ******************************************************************************/ |
---|
92 | MvfAig_Function_t * |
---|
93 | Bmc_NodeBuildMVF( |
---|
94 | Ntk_Network_t *network, |
---|
95 | Ntk_Node_t *node) |
---|
96 | { |
---|
97 | MvfAig_Function_t * MvfAig; |
---|
98 | lsGen tmpGen; |
---|
99 | Ntk_Node_t *tmpNode; |
---|
100 | array_t *mvfArray; |
---|
101 | array_t *tmpRoots = array_alloc(Ntk_Node_t *, 0); |
---|
102 | st_table *tmpLeaves = st_init_table(st_ptrcmp, st_ptrhash); |
---|
103 | array_insert_last(Ntk_Node_t *, tmpRoots, node); |
---|
104 | |
---|
105 | Ntk_NetworkForEachCombInput(network, tmpGen, tmpNode) { |
---|
106 | st_insert(tmpLeaves, (char *) tmpNode, (char *) ntmaig_UNUSED); |
---|
107 | } |
---|
108 | |
---|
109 | mvfArray = ntmaig_NetworkBuildMvfAigs(network, tmpRoots, tmpLeaves); |
---|
110 | MvfAig = array_fetch(MvfAig_Function_t *, mvfArray, 0); |
---|
111 | array_free(tmpRoots); |
---|
112 | st_free_table(tmpLeaves); |
---|
113 | array_free(mvfArray); |
---|
114 | return MvfAig; |
---|
115 | } |
---|
116 | |
---|
117 | |
---|
118 | /**Function******************************************************************** |
---|
119 | |
---|
120 | Synopsis [Returns MvfAig corresponding to a node; returns NIL if node not in |
---|
121 | table.] |
---|
122 | |
---|
123 | SideEffects [None] |
---|
124 | |
---|
125 | ******************************************************************************/ |
---|
126 | MvfAig_Function_t * |
---|
127 | Bmc_ReadMvfAig( |
---|
128 | Ntk_Node_t * node, |
---|
129 | st_table * nodeToMvfAigTable) |
---|
130 | { |
---|
131 | MvfAig_Function_t *result; |
---|
132 | if (st_lookup(nodeToMvfAigTable, node, &result)){ |
---|
133 | return result; |
---|
134 | } |
---|
135 | return NIL(MvfAig_Function_t); |
---|
136 | } |
---|
137 | |
---|
138 | |
---|
139 | /*---------------------------------------------------------------------------*/ |
---|
140 | /* Definition of internal functions */ |
---|
141 | /*---------------------------------------------------------------------------*/ |
---|
142 | |
---|
143 | /**Function******************************************************************** |
---|
144 | |
---|
145 | Synopsis [Evaluate states satisfying X target] |
---|
146 | |
---|
147 | Description [Evaluate states satisfying X target.] |
---|
148 | |
---|
149 | SideEffects [] |
---|
150 | |
---|
151 | ******************************************************************************/ |
---|
152 | mdd_t * |
---|
153 | BmcFsmEvaluateX( |
---|
154 | Fsm_Fsm_t *modelFsm, |
---|
155 | mdd_t *targetMdd) |
---|
156 | { |
---|
157 | mdd_t *fromLowerBound; |
---|
158 | mdd_t *fromUpperBound; |
---|
159 | mdd_t *result; |
---|
160 | Img_ImageInfo_t * imageInfo; |
---|
161 | mdd_t *careStates; |
---|
162 | array_t *careStatesArray = array_alloc(array_t *, 0); |
---|
163 | |
---|
164 | imageInfo = Fsm_FsmReadOrCreateImageInfo(modelFsm, 1, 0); |
---|
165 | |
---|
166 | /* |
---|
167 | * The lower bound is the conjunction of the fair states, |
---|
168 | * and the target states. |
---|
169 | */ |
---|
170 | fromLowerBound = mdd_dup(targetMdd); |
---|
171 | /* |
---|
172 | * The upper bound is the same as the lower bound. |
---|
173 | */ |
---|
174 | fromUpperBound = mdd_dup(fromLowerBound); |
---|
175 | /* |
---|
176 | careSet is the set of all unreachabel states. |
---|
177 | */ |
---|
178 | careStates = mdd_one(Fsm_FsmReadMddManager(modelFsm)); |
---|
179 | array_insert(mdd_t *, careStatesArray, 0, careStates); |
---|
180 | |
---|
181 | result = Img_ImageInfoComputePreImageWithDomainVars(imageInfo, |
---|
182 | fromLowerBound, fromUpperBound, careStatesArray); |
---|
183 | mdd_free(fromLowerBound); |
---|
184 | mdd_free(fromUpperBound); |
---|
185 | |
---|
186 | return result; |
---|
187 | |
---|
188 | } /* BmcFsmEvaluateX */ |
---|
189 | |
---|
190 | |
---|
191 | /**Function******************************************************************** |
---|
192 | |
---|
193 | Synopsis [Compute cube that is close to target states. Support |
---|
194 | is an array of mddids representing the total support; that is, all |
---|
195 | the variables on which aSet may depend. It dos the function only |
---|
196 | if CUDD is the BDD package.] |
---|
197 | |
---|
198 | SideEffects [] |
---|
199 | |
---|
200 | ******************************************************************************/ |
---|
201 | mdd_t * |
---|
202 | BmcComputeCloseCube( |
---|
203 | mdd_t *aSet, |
---|
204 | mdd_t *target, |
---|
205 | int *dist, |
---|
206 | array_t *Support, |
---|
207 | mdd_manager *mddMgr) |
---|
208 | { |
---|
209 | if (bdd_get_package_name() == CUDD && target != NIL(mdd_t)) { |
---|
210 | mdd_t *range; /* range of Support */ |
---|
211 | mdd_t *legalSet; /* aSet without the don't cares */ |
---|
212 | mdd_t *closeCube; |
---|
213 | |
---|
214 | |
---|
215 | /* Check that support of set is contained in Support. |
---|
216 | assert(SetCheckSupport(aSet, Support, mddMgr)); */ |
---|
217 | assert(!mdd_is_tautology(aSet, 0)); |
---|
218 | range = mdd_range_mdd(mddMgr, Support); |
---|
219 | legalSet = bdd_and(aSet, range, 1, 1); |
---|
220 | mdd_free(range); |
---|
221 | closeCube = mdd_closest_cube(legalSet, target, dist); |
---|
222 | |
---|
223 | mdd_free(legalSet); |
---|
224 | |
---|
225 | return closeCube; |
---|
226 | } else { |
---|
227 | return aSet; |
---|
228 | /*return BMC_ComputeAMinterm(aSet, Support, mddMgr);*/ |
---|
229 | }/* if CUDD */ |
---|
230 | |
---|
231 | } /* BmcComputeCloseCube */ |
---|
232 | |
---|
233 | |
---|
234 | /**Function******************************************************************** |
---|
235 | |
---|
236 | Synopsis [Build AND/INV graph for intial states] |
---|
237 | |
---|
238 | Description [Build AND/INV graph for intial states. Returns bAig Id |
---|
239 | of the bAig Function that represents the intial states. |
---|
240 | |
---|
241 | The initial states are computed as follows. For each latch i, the relation |
---|
242 | (x_i = g_i(u)) is built, where x_i is the present state variable of latch i, |
---|
243 | and g_i(u) is the multi-valued initialization function of latch i, in terms |
---|
244 | of the input variables u. These relations are then conjuncted. |
---|
245 | ] |
---|
246 | |
---|
247 | SideEffects [] |
---|
248 | |
---|
249 | SeeAlso [] |
---|
250 | |
---|
251 | ******************************************************************************/ |
---|
252 | mAigEdge_t |
---|
253 | BmcCreateMaigOfInitialStates( |
---|
254 | Ntk_Network_t *network, |
---|
255 | st_table *nodeToMvfAigTable, |
---|
256 | st_table *CoiTable) |
---|
257 | { |
---|
258 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
259 | st_generator *stGen; |
---|
260 | |
---|
261 | Ntk_Node_t *latch, *latchInit; |
---|
262 | MvfAig_Function_t *initMvfAig, *latchMvfAig; |
---|
263 | |
---|
264 | bAigEdge_t resultAnd = bAig_One; |
---|
265 | bAigEdge_t resultOr; |
---|
266 | int i; |
---|
267 | |
---|
268 | st_foreach_item(CoiTable, stGen, &latch, NULL) { |
---|
269 | |
---|
270 | |
---|
271 | latchInit = Ntk_LatchReadInitialInput(latch); |
---|
272 | |
---|
273 | /* Get the multi-valued function for each node*/ |
---|
274 | initMvfAig = Bmc_ReadMvfAig(latchInit, nodeToMvfAigTable); |
---|
275 | if (initMvfAig == NIL(MvfAig_Function_t)){ |
---|
276 | (void) fprintf(vis_stdout, "No multi-valued function for this node %s \n", Ntk_NodeReadName(latchInit)); |
---|
277 | return bAig_NULL; |
---|
278 | } |
---|
279 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
280 | if (latchMvfAig == NIL(MvfAig_Function_t)){ |
---|
281 | latchMvfAig = Bmc_NodeBuildMVF(network, latch); |
---|
282 | array_free(latchMvfAig); |
---|
283 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
284 | } |
---|
285 | resultOr = bAig_Zero; |
---|
286 | for(i=0; i<array_n(initMvfAig); i++){ |
---|
287 | resultOr = mAig_Or(manager, resultOr, |
---|
288 | bAig_Eq(manager, |
---|
289 | bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(initMvfAig, i)), |
---|
290 | bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(latchMvfAig, i)) |
---|
291 | ) |
---|
292 | ); |
---|
293 | if(resultOr == bAig_One){ |
---|
294 | break; |
---|
295 | } |
---|
296 | } |
---|
297 | resultAnd = mAig_And(manager, resultAnd, resultOr); |
---|
298 | if(resultAnd == bAig_Zero){ |
---|
299 | break; |
---|
300 | } |
---|
301 | }/* for each latch*/ |
---|
302 | |
---|
303 | return resultAnd; |
---|
304 | } |
---|
305 | |
---|
306 | |
---|
307 | /**Function******************************************************************** |
---|
308 | |
---|
309 | Synopsis [Builds AND/INVERTER graph (aig) for a propsitional formula] |
---|
310 | |
---|
311 | Description [Builds AND/INVERTER graph for a propsitional formula. |
---|
312 | Returns bAig ID of the function that is quivalent to the propositional |
---|
313 | fomula] |
---|
314 | |
---|
315 | SideEffects [] |
---|
316 | |
---|
317 | SeeAlso [] |
---|
318 | |
---|
319 | ******************************************************************************/ |
---|
320 | |
---|
321 | mAigEdge_t |
---|
322 | BmcCreateMaigOfPropFormula( |
---|
323 | Ntk_Network_t *network, |
---|
324 | mAig_Manager_t *manager, |
---|
325 | Ctlsp_Formula_t *formula) |
---|
326 | { |
---|
327 | mAigEdge_t left, right, result; |
---|
328 | |
---|
329 | if (formula == NIL(Ctlsp_Formula_t)) { |
---|
330 | return mAig_NULL; |
---|
331 | } |
---|
332 | if (formula->type == Ctlsp_TRUE_c){ |
---|
333 | return mAig_One; |
---|
334 | } |
---|
335 | if (formula->type == Ctlsp_FALSE_c){ |
---|
336 | return mAig_Zero; |
---|
337 | } |
---|
338 | |
---|
339 | assert(Ctlsp_isPropositionalFormula(formula)); |
---|
340 | |
---|
341 | if (formula->type == Ctlsp_ID_c){ |
---|
342 | char *nodeNameString = Ctlsp_FormulaReadVariableName(formula); |
---|
343 | char *nodeValueString = Ctlsp_FormulaReadValueName(formula); |
---|
344 | Ntk_Node_t *node = Ntk_NetworkFindNodeByName(network, nodeNameString); |
---|
345 | |
---|
346 | Var_Variable_t *nodeVar; |
---|
347 | int nodeValue; |
---|
348 | |
---|
349 | MvfAig_Function_t *tmpMvfAig; |
---|
350 | st_table *nodeToMvfAigTable; /* maps each node to its mvfAig */ |
---|
351 | |
---|
352 | if (node == NIL(Ntk_Node_t)) { |
---|
353 | (void) fprintf(vis_stderr, "bmc error: Could not find node corresponding to the name\t %s\n", nodeNameString); |
---|
354 | return mAig_NULL; |
---|
355 | } |
---|
356 | nodeToMvfAigTable = (st_table *) Ntk_NetworkReadApplInfo(network, MVFAIG_NETWORK_APPL_KEY); |
---|
357 | if (nodeToMvfAigTable == NIL(st_table)){ |
---|
358 | (void) fprintf(vis_stderr, "bmc error: please run build_partiton_maigs first"); |
---|
359 | return mAig_NULL; |
---|
360 | } |
---|
361 | tmpMvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
362 | if (tmpMvfAig == NIL(MvfAig_Function_t)){ |
---|
363 | tmpMvfAig = Bmc_NodeBuildMVF(network, node); |
---|
364 | array_free(tmpMvfAig); |
---|
365 | tmpMvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
366 | } |
---|
367 | nodeVar = Ntk_NodeReadVariable(node); |
---|
368 | if (Var_VariableTestIsSymbolic(nodeVar)) { |
---|
369 | nodeValue = Var_VariableReadIndexFromSymbolicValue(nodeVar, nodeValueString); |
---|
370 | if ( nodeValue == -1 ) { |
---|
371 | (void) fprintf(vis_stderr, "Value specified in RHS is not in domain of variable\n"); |
---|
372 | (void) fprintf(vis_stderr,"%s = %s\n", nodeNameString, nodeValueString); |
---|
373 | return mAig_NULL; |
---|
374 | } |
---|
375 | } |
---|
376 | else { |
---|
377 | int check; |
---|
378 | check = StringCheckIsInteger(nodeValueString, &nodeValue); |
---|
379 | if( check == 0 ) { |
---|
380 | (void) fprintf(vis_stderr,"Illegal value in the RHS\n"); |
---|
381 | (void) fprintf(vis_stderr,"%s = %s\n", nodeNameString, nodeValueString); |
---|
382 | return mAig_NULL; |
---|
383 | } |
---|
384 | if( check == 1 ) { |
---|
385 | (void) fprintf(vis_stderr,"Value in the RHS is out of range of int\n"); |
---|
386 | (void) fprintf(vis_stderr,"%s = %s", nodeNameString, nodeValueString); |
---|
387 | return mAig_NULL; |
---|
388 | } |
---|
389 | if ( !(Var_VariableTestIsValueInRange(nodeVar, nodeValue))) { |
---|
390 | (void) fprintf(vis_stderr,"Value specified in RHS is not in domain of variable\n"); |
---|
391 | (void) fprintf(vis_stderr,"%s = %s\n", nodeNameString, nodeValueString); |
---|
392 | return mAig_NULL; |
---|
393 | |
---|
394 | } |
---|
395 | } |
---|
396 | result = MvfAig_FunctionReadComponent(tmpMvfAig, nodeValue); |
---|
397 | return bAig_GetCanonical(manager, result); |
---|
398 | } |
---|
399 | /* |
---|
400 | right can be mAig_NULL for unery operators, but left can't be mAig_Null |
---|
401 | */ |
---|
402 | left = BmcCreateMaigOfPropFormula(network, manager, formula->left); |
---|
403 | if (left == mAig_NULL){ |
---|
404 | return mAig_NULL; |
---|
405 | } |
---|
406 | right = BmcCreateMaigOfPropFormula(network, manager, formula->right); |
---|
407 | |
---|
408 | switch(formula->type) { |
---|
409 | case Ctlsp_NOT_c: |
---|
410 | result = mAig_Not(left); |
---|
411 | break; |
---|
412 | case Ctlsp_OR_c: |
---|
413 | result = mAig_Or(manager, left, right); |
---|
414 | break; |
---|
415 | case Ctlsp_AND_c: |
---|
416 | result = mAig_And(manager, left, right); |
---|
417 | break; |
---|
418 | case Ctlsp_THEN_c: |
---|
419 | result = mAig_Then(manager, left, right); |
---|
420 | break; |
---|
421 | case Ctlsp_EQ_c: |
---|
422 | result = mAig_Eq(manager, left, right); |
---|
423 | break; |
---|
424 | case Ctlsp_XOR_c: |
---|
425 | result = mAig_Xor(manager, left, right); |
---|
426 | break; |
---|
427 | default: |
---|
428 | fail("Unexpected LTL type"); |
---|
429 | } |
---|
430 | return result; |
---|
431 | } /* BmcCreateMaigOfPropFormula */ |
---|
432 | |
---|
433 | /**Function******************************************************************** |
---|
434 | |
---|
435 | Synopsis [Build MDD for safety property in form of AG(p). Where p is either a |
---|
436 | propositional formula or a path formula contains only the temporal property X.] |
---|
437 | |
---|
438 | Description [Build MDD for a safety formula. Returns NIL if the conversion |
---|
439 | fails. The calling application is responsible for freeing the returned MDD.] |
---|
440 | |
---|
441 | SideEffects [] |
---|
442 | |
---|
443 | SeeAlso [Ctlsp_FormulaReadClass] |
---|
444 | |
---|
445 | ******************************************************************************/ |
---|
446 | mdd_t * |
---|
447 | BmcCreateMddOfSafetyProperty( |
---|
448 | Fsm_Fsm_t *fsm, |
---|
449 | Ctlsp_Formula_t *formula) |
---|
450 | { |
---|
451 | |
---|
452 | mdd_manager *manager = Ntk_NetworkReadMddManager(Fsm_FsmReadNetwork(fsm)); |
---|
453 | mdd_t *left, *right, *result; |
---|
454 | |
---|
455 | if (formula == NIL(Ctlsp_Formula_t)) { |
---|
456 | return NIL(mdd_t); |
---|
457 | } |
---|
458 | if (formula->type == Ctlsp_TRUE_c){ |
---|
459 | return bdd_one(manager); |
---|
460 | } |
---|
461 | if (formula->type == Ctlsp_FALSE_c){ |
---|
462 | return mdd_zero(manager); |
---|
463 | } |
---|
464 | |
---|
465 | #if 0 |
---|
466 | if (!Ctlsp_isPropositionalFormula(formula)) { |
---|
467 | (void) fprintf(vis_stderr, "bmc error: Only propositional formula can be converted to bdd \n"); |
---|
468 | fprintf(vis_stdout, "\nFormula: "); |
---|
469 | Ctlsp_FormulaPrint(vis_stdout, formula); |
---|
470 | fprintf(vis_stdout, "\n"); |
---|
471 | return NIL(mdd_t); |
---|
472 | } |
---|
473 | #endif |
---|
474 | /* |
---|
475 | Atomic proposition. |
---|
476 | */ |
---|
477 | if (formula->type == Ctlsp_ID_c){ |
---|
478 | return BmcModelCheckAtomicFormula(fsm, formula); |
---|
479 | } |
---|
480 | /* |
---|
481 | right can be NIL(mdd_t) for unery operators, but left can't be NIL(mdd_t) |
---|
482 | */ |
---|
483 | left = BmcCreateMddOfSafetyProperty(fsm, formula->left); |
---|
484 | if (left == NIL(mdd_t)){ |
---|
485 | return NIL(mdd_t); |
---|
486 | } |
---|
487 | right = BmcCreateMddOfSafetyProperty(fsm, formula->right); |
---|
488 | assert(right != NIL(mdd_t)); |
---|
489 | switch(formula->type) { |
---|
490 | case Ctlsp_NOT_c: |
---|
491 | result = mdd_not(left); |
---|
492 | break; |
---|
493 | case Ctlsp_OR_c: |
---|
494 | result = mdd_or(left, right, 1, 1); |
---|
495 | break; |
---|
496 | case Ctlsp_AND_c: |
---|
497 | result = mdd_and(left, right, 1, 1); |
---|
498 | break; |
---|
499 | case Ctlsp_THEN_c: |
---|
500 | result = mdd_or(left, right, 0, 1); |
---|
501 | break; |
---|
502 | case Ctlsp_EQ_c: |
---|
503 | result = mdd_xnor(left, right); |
---|
504 | break; |
---|
505 | case Ctlsp_XOR_c: |
---|
506 | result = mdd_xor(left, right); |
---|
507 | break; |
---|
508 | case Ctlsp_X_c: |
---|
509 | result = BmcFsmEvaluateX(fsm, left); |
---|
510 | break; |
---|
511 | default: |
---|
512 | /* |
---|
513 | return NIL(mdd_t) if the type is not supported |
---|
514 | */ |
---|
515 | return NIL(mdd_t); |
---|
516 | /* |
---|
517 | fail("Unexpected type"); |
---|
518 | */ |
---|
519 | } |
---|
520 | return result; |
---|
521 | } |
---|
522 | |
---|
523 | |
---|
524 | /**Function******************************************************************** |
---|
525 | |
---|
526 | Synopsis [Generate the CNF formula of a given function represented by |
---|
527 | AND/INVERTER graph] |
---|
528 | |
---|
529 | Description [Generate an array of clausese for a function represented in |
---|
530 | AND/INVERETER graph structure. |
---|
531 | |
---|
532 | the CNF formula of node to the output file specifies by cnfFile. |
---|
533 | It stores CNF index for each node in the cnfIndexTable. The generated CNF |
---|
534 | is in dimacs format. |
---|
535 | It is an error to call this function on a constand zero/one node.] |
---|
536 | |
---|
537 | SideEffects [] |
---|
538 | |
---|
539 | SeeAlso [] |
---|
540 | |
---|
541 | ******************************************************************************/ |
---|
542 | int |
---|
543 | BmcGenerateCnfFormulaForAigFunction( |
---|
544 | bAig_Manager_t *manager, |
---|
545 | bAigEdge_t node, |
---|
546 | int k, |
---|
547 | BmcCnfClauses_t *cnfClauses) |
---|
548 | { |
---|
549 | int leftIndex, rightIndex, nodeIndex; |
---|
550 | array_t *clause; |
---|
551 | |
---|
552 | assert( (node != bAig_One) && (node != bAig_Zero)); |
---|
553 | |
---|
554 | if(bAig_IsInverted(node)){ |
---|
555 | /* |
---|
556 | The generated clauses are in dimacs formate that uses negative number to indicate complement |
---|
557 | */ |
---|
558 | return -1*BmcGenerateCnfFormulaForAigFunction(manager, bAig_NonInvertedEdge(node), k, cnfClauses); |
---|
559 | } |
---|
560 | if (BmcCnfReadOrInsertNode(cnfClauses, bAig_NodeReadName(manager, node), k, &nodeIndex)){ |
---|
561 | return nodeIndex; |
---|
562 | } |
---|
563 | if (bAig_isVarNode(manager, node)){ |
---|
564 | return nodeIndex; |
---|
565 | } |
---|
566 | leftIndex = BmcGenerateCnfFormulaForAigFunction(manager, |
---|
567 | bAig_GetCanonical(manager, leftChild(node)), |
---|
568 | k, cnfClauses); |
---|
569 | rightIndex = BmcGenerateCnfFormulaForAigFunction(manager, |
---|
570 | bAig_GetCanonical(manager, rightChild(node)), |
---|
571 | k, cnfClauses); |
---|
572 | clause = array_alloc(int, 3); |
---|
573 | array_insert(int, clause, 0, -leftIndex ); |
---|
574 | array_insert(int, clause, 1, -rightIndex); |
---|
575 | array_insert(int, clause, 2, nodeIndex ); |
---|
576 | BmcCnfInsertClause(cnfClauses, clause); |
---|
577 | array_free(clause); |
---|
578 | |
---|
579 | clause = array_alloc(int, 2); |
---|
580 | array_insert(int, clause, 0, leftIndex); |
---|
581 | array_insert(int, clause, 1, -nodeIndex); |
---|
582 | BmcCnfInsertClause(cnfClauses, clause); |
---|
583 | array_free(clause); |
---|
584 | |
---|
585 | clause = array_alloc(int, 2); |
---|
586 | array_insert(int, clause, 0, rightIndex); |
---|
587 | array_insert(int, clause, 1, -nodeIndex); |
---|
588 | BmcCnfInsertClause(cnfClauses, clause); |
---|
589 | array_free(clause); |
---|
590 | |
---|
591 | return(nodeIndex); |
---|
592 | } |
---|
593 | |
---|
594 | /**Function******************************************************************** |
---|
595 | |
---|
596 | Synopsis [Generate CNF for bdd function] |
---|
597 | |
---|
598 | Description [ |
---|
599 | The function of each node f = var*thenChild + -var*elseChild |
---|
600 | var is the variable at this node. |
---|
601 | For each node there are four cases: |
---|
602 | - both childeren are constant -> do nothing. |
---|
603 | - the then child is constant 1 -> generate clauses for f = var + elseChild. |
---|
604 | - the else child is constant 0 -> generate clauses for f = var * thenChild. |
---|
605 | - the else child is constant 1 -> generate clauses for f = -var + thenChild. |
---|
606 | - else -> generate clauses for f = var*thenChild + -var*elseChild. |
---|
607 | ------------------------------------------------ |
---|
608 | function | clauses |
---|
609 | ------------------------------------------------ |
---|
610 | c = a*b | (-a + -b + c)*(a + -c)*(b + -c) |
---|
611 | c = a+b | (a + b + -c)*(-a + c)*(-b + c) |
---|
612 | f = c*a + -c*b | (-a + -c + f)*(a + -c + -f)* |
---|
613 | | (-b + c + f)*(b + c + -f) |
---|
614 | |
---|
615 | return the cnf index of the bdd function |
---|
616 | ] |
---|
617 | |
---|
618 | SideEffects [] |
---|
619 | |
---|
620 | SeeAlso [] |
---|
621 | |
---|
622 | ******************************************************************************/ |
---|
623 | int |
---|
624 | BmcGenerateCnfFormulaForBdd( |
---|
625 | bdd_t *bddFunction, |
---|
626 | int k, |
---|
627 | BmcCnfClauses_t *cnfClauses) |
---|
628 | { |
---|
629 | bdd_manager *bddManager = bdd_get_manager(bddFunction); |
---|
630 | bdd_node *node, *thenNode, *elseNode, *funcNode; |
---|
631 | int is_complemented; |
---|
632 | int nodeIndex=0, thenIndex, elseIndex; |
---|
633 | bdd_gen *gen; |
---|
634 | int varIndex, flag; |
---|
635 | array_t *tmpClause; |
---|
636 | |
---|
637 | st_table *bddToCnfIndexTable; |
---|
638 | |
---|
639 | bdd_t *currentBddNode; |
---|
640 | int cut = 5; |
---|
641 | |
---|
642 | if (bddFunction == NULL){ |
---|
643 | return 0; |
---|
644 | } |
---|
645 | funcNode = bdd_get_node(bddFunction, &is_complemented); |
---|
646 | if (bdd_is_constant(funcNode)){ |
---|
647 | if (is_complemented){ |
---|
648 | /* add an empty clause to indicate FALSE (un-satisfiable)*/ |
---|
649 | BmcAddEmptyClause(cnfClauses); |
---|
650 | } |
---|
651 | return 0; |
---|
652 | } |
---|
653 | if(bdd_size(bddFunction) <= cut){ |
---|
654 | return BmcGenerateCnfFormulaForBddOffSet(bddFunction, k, cnfClauses); |
---|
655 | } |
---|
656 | |
---|
657 | bddToCnfIndexTable = st_init_table(st_numcmp, st_numhash); |
---|
658 | foreach_bdd_node(bddFunction, gen, node){ |
---|
659 | if (bdd_is_constant(node)){ /* do nothing */ |
---|
660 | continue; |
---|
661 | } |
---|
662 | |
---|
663 | /* |
---|
664 | bdd_size() returns 1 if bdd is constant one. |
---|
665 | */ |
---|
666 | /* |
---|
667 | Use offset method to generate CNF if the size of the node <= cut (include the constant 1 node). |
---|
668 | */ |
---|
669 | /*#if 0*/ |
---|
670 | if(bdd_size(currentBddNode = bdd_construct_bdd_t(bddManager, bdd_regular(node))) <= cut){ |
---|
671 | if (bdd_size(currentBddNode) == cut){ |
---|
672 | nodeIndex = BmcGenerateCnfFormulaForBddOffSet(currentBddNode, k, cnfClauses); |
---|
673 | st_insert(bddToCnfIndexTable, (char *) (long) bdd_regular(node), (char *) (long)nodeIndex); |
---|
674 | continue; |
---|
675 | } |
---|
676 | continue; |
---|
677 | } |
---|
678 | /*#endif*/ |
---|
679 | varIndex = BmcGetCnfVarIndexForBddNode(bddManager, bdd_regular(node), k, cnfClauses); |
---|
680 | nodeIndex = varIndex; |
---|
681 | |
---|
682 | thenNode = bdd_bdd_T(node); |
---|
683 | elseNode = bdd_bdd_E(node); |
---|
684 | |
---|
685 | if (!((bdd_is_constant(thenNode)) && (bdd_is_constant(elseNode)))){ |
---|
686 | nodeIndex = cnfClauses->cnfGlobalIndex++; /* index of the function of this node */ |
---|
687 | |
---|
688 | if (bdd_is_constant(thenNode)){ /* the thenNode can be only constant one*/ |
---|
689 | flag = st_lookup_int(bddToCnfIndexTable, bdd_regular(elseNode), &elseIndex); |
---|
690 | assert(flag); |
---|
691 | /* |
---|
692 | test if the elseNode is complemented arc? |
---|
693 | */ |
---|
694 | if (bdd_is_complement(elseNode)){ |
---|
695 | elseIndex = -1*elseIndex; |
---|
696 | } |
---|
697 | BmcCnfGenerateClausesForOR(elseIndex, varIndex, nodeIndex, cnfClauses); |
---|
698 | } else if (bdd_is_constant(elseNode)){ /* one or zero */ |
---|
699 | flag = st_lookup_int(bddToCnfIndexTable, bdd_regular(thenNode), &thenIndex); |
---|
700 | assert(flag); |
---|
701 | /* |
---|
702 | test if the elseNode is complemented arc? |
---|
703 | */ |
---|
704 | if (bdd_is_complement(elseNode)){ /* Constant zero */ |
---|
705 | BmcCnfGenerateClausesForAND(thenIndex, varIndex, nodeIndex, cnfClauses); |
---|
706 | } else { /* Constant one */ |
---|
707 | BmcCnfGenerateClausesForOR(thenIndex, -varIndex, nodeIndex, cnfClauses); |
---|
708 | } |
---|
709 | } else { |
---|
710 | flag = st_lookup_int(bddToCnfIndexTable, bdd_regular(thenNode), &thenIndex); |
---|
711 | if(flag == 0){ |
---|
712 | thenIndex = BmcGenerateCnfFormulaForBddOffSet(bdd_construct_bdd_t(bddManager, bdd_regular(thenNode)), k, cnfClauses); |
---|
713 | st_insert(bddToCnfIndexTable, (char *) (long) bdd_regular(thenNode), (char *) (long)thenIndex); |
---|
714 | } |
---|
715 | /*assert(flag);*/ |
---|
716 | |
---|
717 | flag = st_lookup_int(bddToCnfIndexTable, bdd_regular(elseNode), &elseIndex); |
---|
718 | if(flag == 0){ |
---|
719 | elseIndex = BmcGenerateCnfFormulaForBddOffSet( bdd_construct_bdd_t(bddManager, bdd_regular(elseNode)), k, cnfClauses); |
---|
720 | st_insert(bddToCnfIndexTable, (char *) (long) bdd_regular(elseNode), (char *)(long) elseIndex); |
---|
721 | } |
---|
722 | /*assert(flag);*/ |
---|
723 | /* |
---|
724 | test if the elseNode is complemented arc? |
---|
725 | */ |
---|
726 | if (bdd_is_complement(elseNode)){ |
---|
727 | elseIndex = -1*elseIndex; |
---|
728 | } |
---|
729 | tmpClause = array_alloc(int, 3); |
---|
730 | |
---|
731 | assert(abs(thenIndex) <= cnfClauses->cnfGlobalIndex); |
---|
732 | assert(abs(varIndex) <= cnfClauses->cnfGlobalIndex); |
---|
733 | assert(abs(nodeIndex) <= cnfClauses->cnfGlobalIndex); |
---|
734 | |
---|
735 | array_insert(int, tmpClause, 0, -thenIndex); |
---|
736 | array_insert(int, tmpClause, 1, -varIndex); |
---|
737 | array_insert(int, tmpClause, 2, nodeIndex); |
---|
738 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
739 | |
---|
740 | array_insert(int, tmpClause, 0, thenIndex); |
---|
741 | array_insert(int, tmpClause, 1, -varIndex); |
---|
742 | array_insert(int, tmpClause, 2, -nodeIndex); |
---|
743 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
744 | |
---|
745 | array_insert(int, tmpClause, 0, -elseIndex); |
---|
746 | array_insert(int, tmpClause, 1, varIndex); |
---|
747 | array_insert(int, tmpClause, 2, nodeIndex); |
---|
748 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
749 | |
---|
750 | array_insert(int, tmpClause, 0, elseIndex); |
---|
751 | array_insert(int, tmpClause, 1, varIndex); |
---|
752 | array_insert(int, tmpClause, 2, -nodeIndex); |
---|
753 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
754 | |
---|
755 | array_free(tmpClause); |
---|
756 | } |
---|
757 | } |
---|
758 | st_insert(bddToCnfIndexTable, (char *) (long) bdd_regular(node), (char *) (long) nodeIndex); |
---|
759 | } /* foreach_bdd_node() */ |
---|
760 | st_free_table(bddToCnfIndexTable); |
---|
761 | return (is_complemented? -nodeIndex: nodeIndex); |
---|
762 | } /* BmcGenerateCnfFormulaForBdd() */ |
---|
763 | |
---|
764 | |
---|
765 | |
---|
766 | /**Function******************************************************************** |
---|
767 | |
---|
768 | Synopsis [Generate CNF for bdd function based on the off set of the |
---|
769 | bdd function] |
---|
770 | |
---|
771 | Description [Express the negation of bdd function in disjunctive |
---|
772 | normal form(DNF), and generate a clause for each disjunct in the |
---|
773 | DNF.] |
---|
774 | |
---|
775 | SideEffects [] |
---|
776 | |
---|
777 | SeeAlso [] |
---|
778 | |
---|
779 | ******************************************************************************/ |
---|
780 | int |
---|
781 | BmcGenerateCnfFormulaForBddOffSet( |
---|
782 | bdd_t *bddFunction, |
---|
783 | int k, |
---|
784 | BmcCnfClauses_t *cnfClauses) |
---|
785 | { |
---|
786 | bdd_manager *bddManager = bdd_get_manager(bddFunction); |
---|
787 | bdd_node *node, *funcNode; |
---|
788 | int is_complemented; |
---|
789 | bdd_gen *gen; |
---|
790 | int varIndex; |
---|
791 | array_t *tmpClause; |
---|
792 | array_t *cube; |
---|
793 | int i, value; |
---|
794 | bdd_t *newVar; |
---|
795 | |
---|
796 | if (bddFunction == NULL){ |
---|
797 | return 0; |
---|
798 | } |
---|
799 | /* |
---|
800 | Because the top node of bddFunction represents a variable in |
---|
801 | bddFunction, newVar is used to represent the function of |
---|
802 | bddFunction. Setting the cnfIndex of newVar to 1(0) is like |
---|
803 | setting the function of bddFunction to 1(0). |
---|
804 | */ |
---|
805 | newVar = bdd_create_variable(bddManager); |
---|
806 | bddFunction = bdd_xnor(newVar, bddFunction); |
---|
807 | funcNode = bdd_get_node(bddFunction, &is_complemented); |
---|
808 | if (bdd_is_constant(funcNode)){ |
---|
809 | if (is_complemented){ |
---|
810 | /* add an empty clause to indicate FALSE (un-satisfiable)*/ |
---|
811 | BmcAddEmptyClause(cnfClauses); |
---|
812 | } |
---|
813 | return 0; |
---|
814 | } |
---|
815 | bddFunction = bdd_not(bddFunction); |
---|
816 | |
---|
817 | foreach_bdd_cube(bddFunction, gen, cube){ |
---|
818 | tmpClause = array_alloc(int,0); |
---|
819 | arrayForEachItem(int, cube, i, value) { |
---|
820 | if (value != 2){ |
---|
821 | node = bdd_bdd_ith_var(bddManager, i); |
---|
822 | varIndex = BmcGetCnfVarIndexForBddNode(bddManager, bdd_regular(node), k, cnfClauses); |
---|
823 | if (value == 1){ |
---|
824 | varIndex = -varIndex; |
---|
825 | } |
---|
826 | array_insert_last(int, tmpClause, varIndex); |
---|
827 | } |
---|
828 | } |
---|
829 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
830 | array_free(tmpClause); |
---|
831 | }/* foreach_bdd_cube() */ |
---|
832 | varIndex = BmcGetCnfVarIndexForBddNode(bddManager, |
---|
833 | bdd_regular(bdd_get_node(newVar, &is_complemented)), |
---|
834 | k, cnfClauses); |
---|
835 | return (varIndex); |
---|
836 | } /* BmcGenerateCnfFormulaForBddOffSet() */ |
---|
837 | |
---|
838 | #if 0 |
---|
839 | /**Function******************************************************************** |
---|
840 | |
---|
841 | Synopsis [Generate the CNF formula of a given function represented by |
---|
842 | AND/INVERTER graph] |
---|
843 | |
---|
844 | Description [Generate an array of clausese for a function represented in |
---|
845 | AND/INVERETER graph structure. |
---|
846 | |
---|
847 | the CNF formula of node to the output file specifies by cnfFile. |
---|
848 | It stores CNF index for each node in the cnfIndexTable. The generated CNF |
---|
849 | is in dimacs format. |
---|
850 | It is an error to call this function on a constand zero/one node.] |
---|
851 | |
---|
852 | SideEffects [] |
---|
853 | |
---|
854 | SeeAlso [] |
---|
855 | |
---|
856 | ******************************************************************************/ |
---|
857 | int |
---|
858 | BmcGenerateCnfForAigFunction( |
---|
859 | bAig_Manager_t *manager, |
---|
860 | Ntk_Network_t *network, |
---|
861 | bAigEdge_t node, |
---|
862 | int k, |
---|
863 | BmcCnfClauses_t *cnfClauses) |
---|
864 | { |
---|
865 | int leftIndex, rightIndex, nodeIndex; |
---|
866 | array_t *clause; |
---|
867 | |
---|
868 | if(bAig_IsInverted(node)){ |
---|
869 | /* |
---|
870 | The generated clauses are in dimacs formate that uses negative number to indicate complement |
---|
871 | */ |
---|
872 | return -1*BmcGenerateCnfFormulaForAigFunction(manager, bAig_NonInvertedEdge(node), k, cnfClauses); |
---|
873 | } |
---|
874 | { |
---|
875 | char *name = bAig_NodeReadName(manager, node); |
---|
876 | char *found = strchr(name, '='); |
---|
877 | |
---|
878 | if (found != NIL(char)){ |
---|
879 | int value = atoi(found+1); |
---|
880 | int length = found-name; |
---|
881 | char toName[length+1]; |
---|
882 | Ntk_Node_t *node; |
---|
883 | |
---|
884 | toName[length] = '\0'; |
---|
885 | strncpy(toName, name, length); |
---|
886 | node = Ntk_NetworkFindNodeByName(network, toName); |
---|
887 | if ((node != NIL( Ntk_Node_t)) && Ntk_NodeTestIsLatch(node)){ |
---|
888 | MvfAig_Function_t *tmpMvfAig; |
---|
889 | st_table *nodeToMvfAigTable = (st_table *) Ntk_NetworkReadApplInfo(network, MVFAIG_NETWORK_APPL_KEY); |
---|
890 | bAigEdge_t mAigNode; |
---|
891 | |
---|
892 | if (nodeToMvfAigTable == NIL(st_table)){ |
---|
893 | (void) fprintf(vis_stderr, "bmc error: please run build_partiton_maigs first"); |
---|
894 | return mAig_NULL; |
---|
895 | } |
---|
896 | if (k==0){ |
---|
897 | node = Ntk_LatchReadInitialInput(node); |
---|
898 | } else { |
---|
899 | node = Ntk_LatchReadDataInput(node); |
---|
900 | k--; |
---|
901 | } |
---|
902 | tmpMvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
903 | if (tmpMvfAig == NIL(MvfAig_Function_t)){ |
---|
904 | tmpMvfAig = Bmc_NodeBuildMVF(network, node); |
---|
905 | array_free(tmpMvfAig); |
---|
906 | tmpMvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
907 | } |
---|
908 | mAigNode = MvfAig_FunctionReadComponent(tmpMvfAig, value); |
---|
909 | BmcGenerateCnfForAigFunction(manager, network, mAigNode, k, cnfClauses); |
---|
910 | } |
---|
911 | } |
---|
912 | } |
---|
913 | if (BmcCnfReadOrInsertNode(cnfClauses, bAig_NodeReadName(manager, node), k, &nodeIndex)){ |
---|
914 | return nodeIndex; |
---|
915 | } |
---|
916 | if (bAig_isVarNode(manager, node)){ |
---|
917 | return nodeIndex; |
---|
918 | } |
---|
919 | leftIndex = BmcGenerateCnfForAigFunction(manager, network, leftChild(node), k, cnfClauses); |
---|
920 | rightIndex = BmcGenerateCnfForAigFunction(manager, network, rightChild(node), k, cnfClauses); |
---|
921 | |
---|
922 | clause = array_alloc(int, 3); |
---|
923 | array_insert(int, clause, 0, -leftIndex ); |
---|
924 | array_insert(int, clause, 1, -rightIndex); |
---|
925 | array_insert(int, clause, 2, nodeIndex ); |
---|
926 | BmcCnfInsertClause(cnfClauses, clause); |
---|
927 | array_free(clause); |
---|
928 | |
---|
929 | clause = array_alloc(int, 2); |
---|
930 | array_insert(int, clause, 0, leftIndex); |
---|
931 | array_insert(int, clause, 1, -nodeIndex); |
---|
932 | BmcCnfInsertClause(cnfClauses, clause); |
---|
933 | array_free(clause); |
---|
934 | |
---|
935 | clause = array_alloc(int, 2); |
---|
936 | array_insert(int, clause, 0, rightIndex); |
---|
937 | array_insert(int, clause, 1, -nodeIndex); |
---|
938 | BmcCnfInsertClause(cnfClauses, clause); |
---|
939 | array_free(clause); |
---|
940 | |
---|
941 | return(nodeIndex); |
---|
942 | |
---|
943 | } |
---|
944 | #endif |
---|
945 | /**Function******************************************************************** |
---|
946 | |
---|
947 | Synopsis [ |
---|
948 | c = a <-> b = (a=0)*(b=0) + (a=1)*(b=1) .... |
---|
949 | For a given term (a=i)*(b=i), if either is Zero, don't generate |
---|
950 | clauses for this term. |
---|
951 | if both are One, don't generate clauses |
---|
952 | for c. |
---|
953 | ] |
---|
954 | |
---|
955 | SideEffects [] |
---|
956 | |
---|
957 | ******************************************************************************/ |
---|
958 | void |
---|
959 | BmcGenerateClausesFromStateTostate( |
---|
960 | bAig_Manager_t *manager, |
---|
961 | bAigEdge_t *fromAigArray, |
---|
962 | bAigEdge_t *toAigArray, |
---|
963 | int mvfSize, |
---|
964 | int fromState, |
---|
965 | int toState, |
---|
966 | BmcCnfClauses_t *cnfClauses, |
---|
967 | int outIndex) |
---|
968 | { |
---|
969 | array_t *clause, *tmpclause; |
---|
970 | int toIndex, fromIndex, cnfIndex; |
---|
971 | int i; |
---|
972 | |
---|
973 | /* used to turn off the warning messages: might be left uninitialized. |
---|
974 | We are sure that these two variables will not be used uninitialized. |
---|
975 | */ |
---|
976 | toIndex =0; |
---|
977 | fromIndex = 0; |
---|
978 | |
---|
979 | for(i=0; i< mvfSize; i++){ |
---|
980 | if ((fromAigArray[i] == bAig_One) && (toAigArray[i] == bAig_One)){ |
---|
981 | return; /* the clause is always true */ |
---|
982 | } |
---|
983 | } |
---|
984 | clause = array_alloc(int, 0); |
---|
985 | for(i=0; i< mvfSize; i++){ |
---|
986 | if ((fromAigArray[i] != bAig_Zero) && (toAigArray[i] != bAig_Zero)){ |
---|
987 | if (toAigArray[i] != bAig_One){ |
---|
988 | /* to State */ |
---|
989 | |
---|
990 | toIndex = BmcGenerateCnfFormulaForAigFunction(manager,toAigArray[i], |
---|
991 | toState,cnfClauses); |
---|
992 | } |
---|
993 | if (fromAigArray[i] != bAig_One){ |
---|
994 | /* from State */ |
---|
995 | fromIndex = BmcGenerateCnfFormulaForAigFunction(manager, |
---|
996 | fromAigArray[i], |
---|
997 | fromState, |
---|
998 | cnfClauses); |
---|
999 | } |
---|
1000 | /* |
---|
1001 | Create new var for the output of this node. We don't create variable for this node, we only |
---|
1002 | use its index number. |
---|
1003 | */ |
---|
1004 | cnfIndex = cnfClauses->cnfGlobalIndex++; /* index of the output of the OR of T(from, to) */ |
---|
1005 | |
---|
1006 | assert(abs(cnfIndex) <= cnfClauses->cnfGlobalIndex); |
---|
1007 | assert(abs(fromIndex) <= cnfClauses->cnfGlobalIndex); |
---|
1008 | assert(abs(toIndex) <= cnfClauses->cnfGlobalIndex); |
---|
1009 | |
---|
1010 | if (toAigArray[i] == bAig_One){ |
---|
1011 | tmpclause = array_alloc(int, 2); |
---|
1012 | array_insert(int, tmpclause, 0, -fromIndex); |
---|
1013 | array_insert(int, tmpclause, 1, cnfIndex); |
---|
1014 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
1015 | array_free(tmpclause); |
---|
1016 | |
---|
1017 | tmpclause = array_alloc(int, 2); |
---|
1018 | array_insert(int, tmpclause, 0, fromIndex); |
---|
1019 | array_insert(int, tmpclause, 1, -cnfIndex); |
---|
1020 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
1021 | array_free(tmpclause); |
---|
1022 | |
---|
1023 | } else if (fromAigArray[i] == bAig_One){ |
---|
1024 | tmpclause = array_alloc(int, 2); |
---|
1025 | array_insert(int, tmpclause, 0, -toIndex); |
---|
1026 | array_insert(int, tmpclause, 1, cnfIndex); |
---|
1027 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
1028 | array_free(tmpclause); |
---|
1029 | |
---|
1030 | tmpclause = array_alloc(int, 2); |
---|
1031 | array_insert(int, tmpclause, 0, toIndex); |
---|
1032 | array_insert(int, tmpclause, 1, -cnfIndex); |
---|
1033 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
1034 | array_free(tmpclause); |
---|
1035 | |
---|
1036 | } else { |
---|
1037 | tmpclause = array_alloc(int, 3); |
---|
1038 | array_insert(int, tmpclause, 0, -toIndex); |
---|
1039 | array_insert(int, tmpclause, 1, -fromIndex); |
---|
1040 | array_insert(int, tmpclause, 2, cnfIndex); |
---|
1041 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
1042 | array_free(tmpclause); |
---|
1043 | |
---|
1044 | tmpclause = array_alloc(int, 2); |
---|
1045 | array_insert(int, tmpclause, 0, toIndex); |
---|
1046 | array_insert(int, tmpclause, 1, -cnfIndex); |
---|
1047 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
1048 | array_free(tmpclause); |
---|
1049 | |
---|
1050 | tmpclause = array_alloc(int, 2); |
---|
1051 | array_insert(int, tmpclause, 0, fromIndex); |
---|
1052 | array_insert(int, tmpclause, 1, -cnfIndex); |
---|
1053 | BmcCnfInsertClause(cnfClauses, tmpclause); |
---|
1054 | array_free(tmpclause); |
---|
1055 | } |
---|
1056 | array_insert_last(int, clause, cnfIndex); |
---|
1057 | } /* if */ |
---|
1058 | } /* for i loop */ |
---|
1059 | if (outIndex != 0 ){ |
---|
1060 | array_insert_last(int, clause, -outIndex); |
---|
1061 | } |
---|
1062 | BmcCnfInsertClause(cnfClauses, clause); |
---|
1063 | array_free(clause); |
---|
1064 | |
---|
1065 | return; |
---|
1066 | } |
---|
1067 | |
---|
1068 | /**Function******************************************************************** |
---|
1069 | |
---|
1070 | Synopsis [Write the set of clauses in diamacs format to the output file.] |
---|
1071 | |
---|
1072 | SideEffects [] |
---|
1073 | |
---|
1074 | ******************************************************************************/ |
---|
1075 | void |
---|
1076 | BmcWriteClauses( |
---|
1077 | mAig_Manager_t *maigManager, |
---|
1078 | FILE *cnfFile, |
---|
1079 | BmcCnfClauses_t *cnfClauses, |
---|
1080 | BmcOption_t *options) |
---|
1081 | { |
---|
1082 | st_generator *stGen; |
---|
1083 | char *name; |
---|
1084 | int cnfIndex, i, k; |
---|
1085 | |
---|
1086 | if (options->verbosityLevel == BmcVerbosityMax_c) { |
---|
1087 | fprintf(vis_stdout, |
---|
1088 | "Number of Variables = %d Number of Clauses = %d\n", |
---|
1089 | cnfClauses->cnfGlobalIndex-1, cnfClauses->noOfClauses); |
---|
1090 | } |
---|
1091 | st_foreach_item_int(cnfClauses->cnfIndexTable, stGen, &name, &cnfIndex) { |
---|
1092 | fprintf(cnfFile, "c %s %d\n",name, cnfIndex); |
---|
1093 | } |
---|
1094 | (void) fprintf(cnfFile, "p cnf %d %d\n", cnfClauses->cnfGlobalIndex-1, |
---|
1095 | cnfClauses->noOfClauses); |
---|
1096 | if (cnfClauses->clauseArray != NIL(array_t)) { |
---|
1097 | for (i = 0; i < cnfClauses->nextIndex; i++) { |
---|
1098 | k = array_fetch(int, cnfClauses->clauseArray, i); |
---|
1099 | (void) fprintf(cnfFile, "%d%c", k, (k == 0) ? '\n' : ' '); |
---|
1100 | } |
---|
1101 | } |
---|
1102 | return; |
---|
1103 | } |
---|
1104 | |
---|
1105 | /**Function******************************************************************** |
---|
1106 | |
---|
1107 | Synopsis [Check the satisfiability of CNF formula written in file] |
---|
1108 | |
---|
1109 | Description [Run SAT solver on input file] |
---|
1110 | |
---|
1111 | SideEffects [] |
---|
1112 | |
---|
1113 | ******************************************************************************/ |
---|
1114 | array_t * |
---|
1115 | BmcCheckSAT(BmcOption_t *options) |
---|
1116 | { |
---|
1117 | array_t *result = NIL(array_t); |
---|
1118 | |
---|
1119 | |
---|
1120 | if(options->satSolver == cusp){ |
---|
1121 | result = BmcCallCusp(options); |
---|
1122 | } |
---|
1123 | if(options->satSolver == CirCUs){ |
---|
1124 | result = BmcCallCirCUs(options); |
---|
1125 | } |
---|
1126 | /* Adjust alarm if timeout in effect. This is necessary because the |
---|
1127 | * alarm may have gone off while the SAT solver is running. Since |
---|
1128 | * the CPU time of a child process is charged to the parent only when |
---|
1129 | * the child terminates, the SIGALRM handler assumes that more time |
---|
1130 | * is left than it is in reality. We could do this adjustment right |
---|
1131 | * after calling the SAT solver, but we prefer to give ourselves the |
---|
1132 | * extra time to report the result even if this means using more time |
---|
1133 | * than we are allotted. |
---|
1134 | */ |
---|
1135 | if (options->timeOutPeriod > 0) { |
---|
1136 | int residualTime = options->timeOutPeriod - |
---|
1137 | (util_cpu_ctime() - options->startTime) / 1000; |
---|
1138 | /* Make sure we do not cancel the alarm if no time is left. */ |
---|
1139 | if (residualTime <= 0) { |
---|
1140 | residualTime = 1; |
---|
1141 | } |
---|
1142 | (void) alarm(residualTime); |
---|
1143 | } |
---|
1144 | |
---|
1145 | return result; |
---|
1146 | } |
---|
1147 | |
---|
1148 | /**Function******************************************************************** |
---|
1149 | |
---|
1150 | Synopsis [Check the satisfiability of CNF formula written in file] |
---|
1151 | |
---|
1152 | Description [Run CirCUs on input file] |
---|
1153 | |
---|
1154 | SideEffects [] |
---|
1155 | |
---|
1156 | ******************************************************************************/ |
---|
1157 | array_t * |
---|
1158 | BmcCallCirCUs( |
---|
1159 | BmcOption_t *options) |
---|
1160 | { |
---|
1161 | satOption_t *satOption; |
---|
1162 | array_t *result = NIL(array_t); |
---|
1163 | satManager_t *cm; |
---|
1164 | int maxSize; |
---|
1165 | |
---|
1166 | satOption = sat_InitOption(); |
---|
1167 | satOption->verbose = options->verbosityLevel; |
---|
1168 | satOption->verbose = 0; |
---|
1169 | |
---|
1170 | cm = sat_InitManager(0); |
---|
1171 | cm->comment = ALLOC(char, 2); |
---|
1172 | cm->comment[0] = ' '; |
---|
1173 | cm->comment[1] = '\0'; |
---|
1174 | cm->stdOut = stdout; |
---|
1175 | cm->stdErr = stderr; |
---|
1176 | |
---|
1177 | cm->option = satOption; |
---|
1178 | cm->each = sat_InitStatistics(); |
---|
1179 | |
---|
1180 | cm->unitLits = sat_ArrayAlloc(16); |
---|
1181 | cm->pureLits = sat_ArrayAlloc(16); |
---|
1182 | |
---|
1183 | maxSize = 10000 << (bAigNodeSize-4); |
---|
1184 | cm->nodesArray = ALLOC(bAigEdge_t, maxSize); |
---|
1185 | cm->maxNodesArraySize = maxSize; |
---|
1186 | cm->nodesArraySize = bAigNodeSize; |
---|
1187 | |
---|
1188 | sat_AllocLiteralsDB(cm); |
---|
1189 | |
---|
1190 | sat_ReadCNF(cm, options->satInFile); |
---|
1191 | |
---|
1192 | if (options->verbosityLevel == BmcVerbosityMax_c) { |
---|
1193 | (void)fprintf(vis_stdout,"Calling SAT solver (CirCUs) ..."); |
---|
1194 | (void) fflush(vis_stdout); |
---|
1195 | } |
---|
1196 | sat_Main(cm); |
---|
1197 | if (options->verbosityLevel == BmcVerbosityMax_c) { |
---|
1198 | (void) fprintf(vis_stdout," done "); |
---|
1199 | (void) fprintf(vis_stdout, "(%g s)\n", cm->each->satTime); |
---|
1200 | } |
---|
1201 | if(cm->status == SAT_UNSAT) { |
---|
1202 | if (options->verbosityLevel != BmcVerbosityNone_c){ |
---|
1203 | (void) fprintf(vis_stdout, "# SAT: Counterexample not found\n"); |
---|
1204 | |
---|
1205 | } |
---|
1206 | fflush(cm->stdOut); |
---|
1207 | } else if(cm->status == SAT_SAT) { |
---|
1208 | if (options->verbosityLevel != BmcVerbosityNone_c){ |
---|
1209 | (void) fprintf(vis_stdout, "# SAT: Counterexample found\n"); |
---|
1210 | } |
---|
1211 | if (options->verbosityLevel == BmcVerbosityMax_c){ |
---|
1212 | sat_ReportStatistics(cm, cm->each); |
---|
1213 | } |
---|
1214 | fflush(cm->stdOut); |
---|
1215 | result = array_alloc(int, 0); |
---|
1216 | { |
---|
1217 | int i, size, value; |
---|
1218 | |
---|
1219 | size = cm->initNumVariables * bAigNodeSize; |
---|
1220 | for(i=bAigNodeSize; i<=size; i+=bAigNodeSize) { |
---|
1221 | value = SATvalue(i); |
---|
1222 | if(value == 1) { |
---|
1223 | array_insert_last(int, result, SATnodeID(i)); |
---|
1224 | } |
---|
1225 | else if(value == 0) { |
---|
1226 | array_insert_last(int, result, -(SATnodeID(i))); |
---|
1227 | } |
---|
1228 | } |
---|
1229 | } |
---|
1230 | } |
---|
1231 | //Bing: To avoid SEVERE memory leakage |
---|
1232 | FREE(cm->nodesArray); |
---|
1233 | |
---|
1234 | sat_FreeManager(cm); |
---|
1235 | |
---|
1236 | return result; |
---|
1237 | } /* BmcCallCirCUs */ |
---|
1238 | |
---|
1239 | /**Function******************************************************************** |
---|
1240 | |
---|
1241 | Synopsis [Check the satisfiability of CNF formula written in file] |
---|
1242 | |
---|
1243 | Description [Run external solver on input file] |
---|
1244 | |
---|
1245 | SideEffects [] |
---|
1246 | |
---|
1247 | ******************************************************************************/ |
---|
1248 | array_t * |
---|
1249 | BmcCallCusp(BmcOption_t *options) |
---|
1250 | { |
---|
1251 | FILE *fp; |
---|
1252 | static char parseBuffer[1024]; |
---|
1253 | int satStatus; |
---|
1254 | char line[MAX_LENGTH]; |
---|
1255 | int num = 0; |
---|
1256 | array_t *result = NIL(array_t); |
---|
1257 | char *tmpStr, *tmpStr1, *tmpStr2; |
---|
1258 | long solverStart; |
---|
1259 | int satTimeOutPeriod = 0; |
---|
1260 | |
---|
1261 | strcpy(parseBuffer,"cusp -distill -velim -cnf "); |
---|
1262 | options->satSolverError = FALSE; /* assume no error*/ |
---|
1263 | if (options->timeOutPeriod > 0) { |
---|
1264 | /* Compute the residual CPU time and subtract a little time to |
---|
1265 | give vis a chance to clean up before its own time out expires. |
---|
1266 | */ |
---|
1267 | satTimeOutPeriod = options->timeOutPeriod - 1 - |
---|
1268 | (util_cpu_ctime() - options->startTime) / 1000; |
---|
1269 | if (satTimeOutPeriod <= 0){ /* no time left to run SAT solver*/ |
---|
1270 | options->satSolverError=TRUE; |
---|
1271 | return NIL(array_t); |
---|
1272 | } |
---|
1273 | tmpStr2 = util_inttostr(satTimeOutPeriod); |
---|
1274 | tmpStr1 = util_strcat3(options->satInFile," -t ", tmpStr2); |
---|
1275 | tmpStr = util_strcat3(tmpStr1, " >", options->satOutFile); |
---|
1276 | FREE(tmpStr1); |
---|
1277 | FREE(tmpStr2); |
---|
1278 | } else { |
---|
1279 | tmpStr = util_strcat3(options->satInFile, " >", options->satOutFile); |
---|
1280 | } |
---|
1281 | strcat(parseBuffer, tmpStr); |
---|
1282 | FREE(tmpStr); |
---|
1283 | |
---|
1284 | if (options->verbosityLevel == BmcVerbosityMax_c) { |
---|
1285 | (void)fprintf(vis_stdout,"Calling SAT solver (cusp) ..."); |
---|
1286 | (void) fflush(vis_stdout); |
---|
1287 | solverStart = util_cpu_ctime(); |
---|
1288 | } else { /* to remove uninitialized variables warning */ |
---|
1289 | solverStart = 0; |
---|
1290 | } |
---|
1291 | /* Call Sat Solver*/ |
---|
1292 | satStatus = system(parseBuffer); |
---|
1293 | if (satStatus != 0){ |
---|
1294 | (void) fprintf(vis_stderr, "Can't run cusp. It may not be in your path. Status = %d\n", satStatus); |
---|
1295 | options->satSolverError = TRUE; |
---|
1296 | return NIL(array_t); |
---|
1297 | } |
---|
1298 | |
---|
1299 | if (options->verbosityLevel == BmcVerbosityMax_c) { |
---|
1300 | (void) fprintf(vis_stdout," done "); |
---|
1301 | (void) fprintf(vis_stdout, "(%g s)\n", |
---|
1302 | (double) (util_cpu_ctime() - solverStart)/1000.0); |
---|
1303 | } |
---|
1304 | fp = Cmd_FileOpen(options->satOutFile, "r", NIL(char *), 0); |
---|
1305 | if (fp == NIL(FILE)) { |
---|
1306 | (void) fprintf(vis_stderr, "** bmc error: Cannot open the file %s\n", |
---|
1307 | options->satOutFile); |
---|
1308 | options->satSolverError = TRUE; |
---|
1309 | return NIL(array_t); |
---|
1310 | } |
---|
1311 | /* Skip the lines until the result */ |
---|
1312 | while(1) { |
---|
1313 | if (fgets(line, MAX_LENGTH - 1, fp) == NULL) break; |
---|
1314 | if(strstr(line,"UNSATISFIABLE") || |
---|
1315 | strstr(line,"SATISFIABLE") || |
---|
1316 | strstr(line,"MEMOUT") || |
---|
1317 | strstr(line,"TIMEOUT")) |
---|
1318 | break; |
---|
1319 | } |
---|
1320 | |
---|
1321 | if(strstr(line,"UNSATISFIABLE") != NIL(char)) { |
---|
1322 | if (options->verbosityLevel != BmcVerbosityNone_c){ |
---|
1323 | (void) fprintf(vis_stdout, "# SAT: Counterexample not found\n"); |
---|
1324 | |
---|
1325 | } |
---|
1326 | } else if(strstr(line,"SATISFIABLE") != NIL(char)) { |
---|
1327 | if (options->verbosityLevel != BmcVerbosityNone_c){ |
---|
1328 | (void) fprintf(vis_stdout, "# SAT: Counterexample found\n"); |
---|
1329 | } |
---|
1330 | /* Skip the initial v of the result line */ |
---|
1331 | result = array_alloc(int, 0); |
---|
1332 | while (fgets(line, MAX_LENGTH - 1, fp) != NULL) { |
---|
1333 | char *word; |
---|
1334 | if (line[0] != 'v') { |
---|
1335 | (void) fprintf(vis_stderr, |
---|
1336 | "** bmc error: Cannot find assignment in file %s\n", |
---|
1337 | options->satOutFile); |
---|
1338 | options->satSolverError = TRUE; |
---|
1339 | return NIL(array_t); |
---|
1340 | } |
---|
1341 | word = strtok(&(line[1])," \n"); |
---|
1342 | while (word != NIL(char)) { |
---|
1343 | num = atoi(word); |
---|
1344 | if (num == 0) break; |
---|
1345 | array_insert_last(int, result, num); |
---|
1346 | word = strtok(NIL(char)," \n"); |
---|
1347 | } |
---|
1348 | if (num == 0) break; |
---|
1349 | } |
---|
1350 | } else if(strstr(line,"MEMOUT") != NIL(char)) { |
---|
1351 | (void) fprintf(vis_stdout,"# SAT: SAT Solver Memory out\n"); |
---|
1352 | options->satSolverError = TRUE; |
---|
1353 | } else if(strstr(line,"TIMEOUT") != NIL(char)) { |
---|
1354 | (void) fprintf(vis_stdout, |
---|
1355 | "# SAT: SAT Solver Time out occurred after %d seconds.\n", |
---|
1356 | satTimeOutPeriod); |
---|
1357 | options->satSolverError = TRUE; |
---|
1358 | } else { |
---|
1359 | (void) fprintf(vis_stdout, "# SAT: SAT Solver failed, try again\n"); |
---|
1360 | options->satSolverError = TRUE; |
---|
1361 | } |
---|
1362 | (void) fflush(vis_stdout); |
---|
1363 | (void) fclose(fp); |
---|
1364 | |
---|
1365 | return result; |
---|
1366 | } /* BmcCallCusp */ |
---|
1367 | |
---|
1368 | |
---|
1369 | /**Function******************************************************************** |
---|
1370 | |
---|
1371 | Synopsis [Print CounterExample.] |
---|
1372 | |
---|
1373 | SideEffects [Print a counterexample that was returned from the SAT |
---|
1374 | solver in term of an array of integer "result". The counterexample |
---|
1375 | starts from state 0 and of lenght eqaual to "length". If loopClause |
---|
1376 | is not empty, this function print a loopback from the last state to |
---|
1377 | a state in loopClause that exist in "result".] |
---|
1378 | |
---|
1379 | ******************************************************************************/ |
---|
1380 | void |
---|
1381 | BmcPrintCounterExample( |
---|
1382 | Ntk_Network_t *network, |
---|
1383 | st_table *nodeToMvfAigTable, |
---|
1384 | BmcCnfClauses_t *cnfClauses, |
---|
1385 | array_t *result, |
---|
1386 | int length, |
---|
1387 | st_table *CoiTable, |
---|
1388 | BmcOption_t *options, |
---|
1389 | array_t *loopClause) |
---|
1390 | { |
---|
1391 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
1392 | lsGen gen; |
---|
1393 | st_generator *stGen; |
---|
1394 | Ntk_Node_t *node; |
---|
1395 | int k; |
---|
1396 | array_t *latches = array_alloc(int, 0); |
---|
1397 | int *prevValueLatches; |
---|
1398 | array_t *inputs = array_alloc(int, 0); |
---|
1399 | int *prevValueInputs; |
---|
1400 | int tmp; |
---|
1401 | int loop; |
---|
1402 | st_table *resultTable = st_init_table(st_numcmp, st_numhash); |
---|
1403 | |
---|
1404 | /* |
---|
1405 | Initialize resultTable from the result to speed up the search in the result array. |
---|
1406 | */ |
---|
1407 | for(k=0; k< array_n(result); k++){ |
---|
1408 | st_insert(resultTable, (char *) (long) array_fetch(int, result, k), (char *) 0); |
---|
1409 | } |
---|
1410 | /* sort latches by name */ |
---|
1411 | st_foreach_item(CoiTable, stGen, &node, NULL) { |
---|
1412 | array_insert_last(char*, latches, Ntk_NodeReadName(node)); |
---|
1413 | } |
---|
1414 | array_sort(latches, nameCompare); |
---|
1415 | /* |
---|
1416 | Use to store the last value of each latch. If the current value of a latch |
---|
1417 | differs from its corresponding value in this array, we will print the new values. |
---|
1418 | */ |
---|
1419 | prevValueLatches = ALLOC(int, array_n(latches)); |
---|
1420 | prevValueInputs = 0; |
---|
1421 | if(options->printInputs == TRUE){ |
---|
1422 | /* sort inputs by name */ |
---|
1423 | Ntk_NetworkForEachInput(network, gen, node){ |
---|
1424 | array_insert_last(char*, inputs, Ntk_NodeReadName(node)); |
---|
1425 | } |
---|
1426 | array_sort(inputs, nameCompare); |
---|
1427 | prevValueInputs = ALLOC(int, array_n(inputs)); |
---|
1428 | } |
---|
1429 | loop = -1; /* no loop back */ |
---|
1430 | if(loopClause != NIL(array_t)){ |
---|
1431 | for(k=0; k < array_n(loopClause); k++){ |
---|
1432 | /* if (searchArray(result, array_fetch(int, loopClause, k)) > -1){ */ |
---|
1433 | if (st_lookup_int(resultTable, (char *)(long)array_fetch(int, loopClause, k), &tmp)){ |
---|
1434 | loop = k; |
---|
1435 | break; |
---|
1436 | } |
---|
1437 | } |
---|
1438 | } |
---|
1439 | /* |
---|
1440 | Ntk_NetworkForEachPrimaryOutput(network, gen, node){ |
---|
1441 | array_insert_last(char*, outputs, Ntk_NodeReadName(node)); |
---|
1442 | } |
---|
1443 | array_sort(outputs, nameCompare); |
---|
1444 | */ |
---|
1445 | for (k=0; k<= length; k++){ |
---|
1446 | if (k == 0){ |
---|
1447 | (void) fprintf(vis_stdout, "\n--State %d:\n", k); |
---|
1448 | } else { |
---|
1449 | (void) fprintf(vis_stdout, "\n--Goes to state %d:\n", k); |
---|
1450 | } |
---|
1451 | /* |
---|
1452 | Print the current values of the latches if they are different form their |
---|
1453 | previous values. |
---|
1454 | */ |
---|
1455 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1456 | latches, resultTable, k, prevValueLatches); |
---|
1457 | #if 0 |
---|
1458 | (void) fprintf(vis_stdout, "--Primary output:\n"); |
---|
1459 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, outputs, result, k); |
---|
1460 | #endif |
---|
1461 | if((options->printInputs == TRUE) && (k !=0)) { |
---|
1462 | (void) fprintf(vis_stdout, "--On input:\n"); |
---|
1463 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1464 | inputs, resultTable, k-1, prevValueInputs); |
---|
1465 | } |
---|
1466 | } /* for k loop */ |
---|
1467 | if(loop != -1){ |
---|
1468 | (void) fprintf(vis_stdout, "\n--Goes back to state %d:\n", loop); |
---|
1469 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1470 | latches, resultTable, loop, prevValueLatches); |
---|
1471 | if((options->printInputs == TRUE)) { |
---|
1472 | (void) fprintf(vis_stdout, "--On input:\n"); |
---|
1473 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1474 | inputs, resultTable, length, prevValueInputs); |
---|
1475 | } |
---|
1476 | } |
---|
1477 | array_free(latches); |
---|
1478 | FREE(prevValueLatches); |
---|
1479 | if(options->printInputs == TRUE){ |
---|
1480 | array_free(inputs); |
---|
1481 | FREE(prevValueInputs); |
---|
1482 | } |
---|
1483 | st_free_table(resultTable); |
---|
1484 | return; |
---|
1485 | } /* BmcPrintCounterExample() */ |
---|
1486 | |
---|
1487 | /**Function******************************************************************** |
---|
1488 | |
---|
1489 | Synopsis [Print CounterExample in Aiger format.] |
---|
1490 | |
---|
1491 | SideEffects [Print a counterexample that was returned from the SAT |
---|
1492 | solver in term of an array of integer "result". The counterexample |
---|
1493 | starts from state 0 and of lenght eqaual to "length". If loopClause |
---|
1494 | is not empty, this function print a loopback from the last state to |
---|
1495 | a state in loopClause that exist in "result".] |
---|
1496 | |
---|
1497 | ******************************************************************************/ |
---|
1498 | void |
---|
1499 | BmcPrintCounterExampleAiger( |
---|
1500 | Ntk_Network_t *network, |
---|
1501 | st_table *nodeToMvfAigTable, |
---|
1502 | BmcCnfClauses_t *cnfClauses, |
---|
1503 | array_t *result, |
---|
1504 | int length, |
---|
1505 | st_table *CoiTable, |
---|
1506 | BmcOption_t *options, |
---|
1507 | array_t *loopClause) |
---|
1508 | { |
---|
1509 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
1510 | lsGen gen; |
---|
1511 | st_generator *stGen; |
---|
1512 | Ntk_Node_t *node; |
---|
1513 | int k; |
---|
1514 | array_t *latches = array_alloc(int, 0); |
---|
1515 | int *prevValueLatches; |
---|
1516 | array_t *inputs = array_alloc(int, 0); |
---|
1517 | array_t *outputs = array_alloc(int, 0); |
---|
1518 | int *prevValueInputs; |
---|
1519 | int *prevValueOutputs; |
---|
1520 | int tmp; |
---|
1521 | int loop; |
---|
1522 | st_table *resultTable = st_init_table(st_numcmp, st_numhash); |
---|
1523 | char *nodeName; |
---|
1524 | |
---|
1525 | /* |
---|
1526 | Initialize resultTable from the result to speed up the search in the result array. |
---|
1527 | */ |
---|
1528 | for(k=0; k< array_n(result); k++){ |
---|
1529 | st_insert(resultTable, (char *) (long) array_fetch(int, result, k), (char *) 0); |
---|
1530 | } |
---|
1531 | /* sort latches by name */ |
---|
1532 | st_foreach_item(CoiTable, stGen, &node, NULL) { |
---|
1533 | array_insert_last(char*, latches, Ntk_NodeReadName(node)); |
---|
1534 | } |
---|
1535 | /* |
---|
1536 | Use to store the last value of each latch. If the current value of a latch |
---|
1537 | differs from its corresponding value in this array, we will print the new values. |
---|
1538 | */ |
---|
1539 | |
---|
1540 | /* the file generation needs to be removed for final vis release */ |
---|
1541 | |
---|
1542 | FILE *order = Cmd_FileOpen("inputOrder.txt", "w", NIL(char *), 0); |
---|
1543 | for (k=0; k< array_n(latches); k++) |
---|
1544 | { |
---|
1545 | nodeName = array_fetch(char *, latches, k); |
---|
1546 | if((nodeName[0] == '$') && (nodeName[1] == '_')) |
---|
1547 | { |
---|
1548 | fprintf(order, "%s\n", &nodeName[2]); |
---|
1549 | } |
---|
1550 | } |
---|
1551 | fclose(order); |
---|
1552 | |
---|
1553 | prevValueLatches = ALLOC(int, array_n(latches)); |
---|
1554 | Ntk_NetworkForEachInput(network, gen, node){ |
---|
1555 | array_insert_last(char*, inputs, Ntk_NodeReadName(node)); |
---|
1556 | } |
---|
1557 | |
---|
1558 | prevValueInputs = ALLOC(int, array_n(inputs)); |
---|
1559 | loop = -1; /* no loop back */ |
---|
1560 | if(loopClause != NIL(array_t)){ |
---|
1561 | for(k=0; k < array_n(loopClause); k++){ |
---|
1562 | /* if (searchArray(result, array_fetch(int, loopClause, k)) > -1){ */ |
---|
1563 | if (st_lookup_int(resultTable, (char *)(long)array_fetch(int, loopClause, k), &tmp)){ |
---|
1564 | loop = k; |
---|
1565 | break; |
---|
1566 | } |
---|
1567 | } |
---|
1568 | } |
---|
1569 | |
---|
1570 | Ntk_NetworkForEachPrimaryOutput(network, gen, node){ |
---|
1571 | array_insert_last(char*, outputs, Ntk_NodeReadName(node)); |
---|
1572 | } |
---|
1573 | prevValueOutputs = ALLOC(int, array_n(outputs)); |
---|
1574 | |
---|
1575 | for (k=0; k< length; k++){ |
---|
1576 | /* This will print latches whose name doesn't start with $_. The latches whose |
---|
1577 | name starts with $_ are latches added to the model by the aigtoblif translator. |
---|
1578 | */ |
---|
1579 | printValueAiger(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1580 | latches, resultTable, k, prevValueLatches); |
---|
1581 | fprintf(vis_stdout, " "); |
---|
1582 | #if 0 |
---|
1583 | (void) fprintf(vis_stdout, "--Primary output:\n"); |
---|
1584 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, outputs, result, k); |
---|
1585 | #endif |
---|
1586 | |
---|
1587 | if((loop<0)||(k<length)) |
---|
1588 | { |
---|
1589 | |
---|
1590 | /* we augment the original .mv model with latches in front of inputs and hence |
---|
1591 | instead of inputs we print out the value of latches, this would have to be |
---|
1592 | restored in the final release */ |
---|
1593 | |
---|
1594 | printValueAigerInputs(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1595 | latches, resultTable, k, prevValueInputs); |
---|
1596 | fprintf(vis_stdout, " "); |
---|
1597 | |
---|
1598 | /* the sat-solver doesn't propagate the values to output so we generate the output |
---|
1599 | 1 knowing when ouptut would be 1, we will have to remove this for vis release */ |
---|
1600 | |
---|
1601 | if((k+1)==length) |
---|
1602 | { |
---|
1603 | fprintf(vis_stdout, "1 "); |
---|
1604 | } |
---|
1605 | else |
---|
1606 | { |
---|
1607 | fprintf(vis_stdout, "0 "); |
---|
1608 | } |
---|
1609 | |
---|
1610 | printValueAiger(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1611 | latches, resultTable, k+1, prevValueLatches); |
---|
1612 | } |
---|
1613 | if((loop < 0)||(k!=length)) |
---|
1614 | { |
---|
1615 | fprintf(vis_stdout, "\n"); |
---|
1616 | } |
---|
1617 | |
---|
1618 | } /* for k loop */ |
---|
1619 | if(loop != -1){ |
---|
1620 | (void) fprintf(vis_stdout, "\n--Goes back to state %d:\n", loop); |
---|
1621 | printValueAiger(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1622 | latches, resultTable, loop, prevValueLatches); |
---|
1623 | (void) fprintf(vis_stdout, "--On input:\n"); |
---|
1624 | printValueAiger(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1625 | inputs, resultTable, length, prevValueInputs); |
---|
1626 | } |
---|
1627 | array_free(latches); |
---|
1628 | FREE(prevValueLatches); |
---|
1629 | if(options->printInputs == TRUE){ |
---|
1630 | array_free(inputs); |
---|
1631 | FREE(prevValueInputs); |
---|
1632 | } |
---|
1633 | st_free_table(resultTable); |
---|
1634 | return; |
---|
1635 | } /* BmcPrintCounterExampleAiger() */ |
---|
1636 | |
---|
1637 | |
---|
1638 | /**Function******************************************************************** |
---|
1639 | |
---|
1640 | Synopsis [Print CounterExample.] |
---|
1641 | |
---|
1642 | SideEffects [Print a counterexample that was returned from the SAT |
---|
1643 | solver in term of an array of integer "result". The counterexample |
---|
1644 | starts from state 0 and of lenght eqaual to "length". If loopClause |
---|
1645 | is not empty, this function print a loopback from the last state to |
---|
1646 | a state in loopClause that exist in "result".] |
---|
1647 | |
---|
1648 | ******************************************************************************/ |
---|
1649 | void |
---|
1650 | BmcAutPrintCounterExample( |
---|
1651 | Ntk_Network_t *network, |
---|
1652 | Ltl_Automaton_t *automaton, |
---|
1653 | st_table *nodeToMvfAigTable, |
---|
1654 | BmcCnfClauses_t *cnfClauses, |
---|
1655 | array_t *result, |
---|
1656 | int length, |
---|
1657 | st_table *CoiTable, |
---|
1658 | BmcOption_t *options, |
---|
1659 | array_t *loopClause) |
---|
1660 | { |
---|
1661 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
1662 | lsGen gen; |
---|
1663 | st_generator *stGen; |
---|
1664 | Ntk_Node_t *node; |
---|
1665 | int k; |
---|
1666 | array_t *latches = array_alloc(int, 0); |
---|
1667 | int *prevValueLatches; |
---|
1668 | array_t *inputs = array_alloc(int, 0); |
---|
1669 | int *prevValueInputs; |
---|
1670 | int tmp; |
---|
1671 | int loop; |
---|
1672 | st_table *resultTable = st_init_table(st_numcmp, st_numhash); |
---|
1673 | |
---|
1674 | /* |
---|
1675 | Initialize resultTable from the result to speed up the search in the result array. |
---|
1676 | */ |
---|
1677 | for(k=0; k< array_n(result); k++){ |
---|
1678 | st_insert(resultTable, (char *) (long) array_fetch(int, result, k), (char *) 0); |
---|
1679 | } |
---|
1680 | /* sort latches by name */ |
---|
1681 | st_foreach_item(CoiTable, stGen, &node, NULL) { |
---|
1682 | array_insert_last(char*, latches, Ntk_NodeReadName(node)); |
---|
1683 | } |
---|
1684 | array_sort(latches, nameCompare); |
---|
1685 | /* |
---|
1686 | Use to store the last value of each latch. If the current value of a latch |
---|
1687 | differs from its corresponding value in this array, we will print the new values. |
---|
1688 | */ |
---|
1689 | prevValueLatches = ALLOC(int, array_n(latches)); |
---|
1690 | prevValueInputs = 0; |
---|
1691 | if(options->printInputs == TRUE){ |
---|
1692 | /* sort inputs by name */ |
---|
1693 | Ntk_NetworkForEachInput(network, gen, node){ |
---|
1694 | array_insert_last(char*, inputs, Ntk_NodeReadName(node)); |
---|
1695 | } |
---|
1696 | array_sort(inputs, nameCompare); |
---|
1697 | prevValueInputs = ALLOC(int, array_n(inputs)); |
---|
1698 | } |
---|
1699 | loop = -1; /* no loop back */ |
---|
1700 | if(loopClause != NIL(array_t)){ |
---|
1701 | for(k=0; k < array_n(loopClause); k++){ |
---|
1702 | /* if (searchArray(result, array_fetch(int, loopClause, k)) > -1){ */ |
---|
1703 | if (st_lookup_int(resultTable, (char *)(long)array_fetch(int, loopClause, k), &tmp)){ |
---|
1704 | loop = k; |
---|
1705 | break; |
---|
1706 | } |
---|
1707 | } |
---|
1708 | } |
---|
1709 | /* |
---|
1710 | Ntk_NetworkForEachPrimaryOutput(network, gen, node){ |
---|
1711 | array_insert_last(char*, outputs, Ntk_NodeReadName(node)); |
---|
1712 | } |
---|
1713 | array_sort(outputs, nameCompare); |
---|
1714 | */ |
---|
1715 | for (k=0; k<= length; k++){ |
---|
1716 | if (k == 0){ |
---|
1717 | (void) fprintf(vis_stdout, "\n--State %d:\n", k); |
---|
1718 | } else { |
---|
1719 | (void) fprintf(vis_stdout, "\n--Goes to state %d:\n", k); |
---|
1720 | } |
---|
1721 | /* |
---|
1722 | Print the current values of the latches if they are different form their |
---|
1723 | previous values. |
---|
1724 | */ |
---|
1725 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1726 | latches, resultTable, k, prevValueLatches); |
---|
1727 | |
---|
1728 | { |
---|
1729 | lsGen lsGen; |
---|
1730 | vertex_t *vtx; |
---|
1731 | Ltl_AutomatonNode_t *state; |
---|
1732 | int stateIndex; |
---|
1733 | bdd_node *node; |
---|
1734 | int is_complemented; |
---|
1735 | |
---|
1736 | |
---|
1737 | foreach_vertex(automaton->G, lsGen, vtx) { |
---|
1738 | state = (Ltl_AutomatonNode_t *) vtx->user_data; |
---|
1739 | |
---|
1740 | node = bdd_get_node(state->Encode, &is_complemented); |
---|
1741 | |
---|
1742 | stateIndex = state->cnfIndex[k]; |
---|
1743 | |
---|
1744 | |
---|
1745 | |
---|
1746 | |
---|
1747 | if (st_lookup_int(resultTable, (char *)(long)stateIndex, &tmp)){ |
---|
1748 | (void) fprintf(vis_stdout,"n%d \n", state->index); |
---|
1749 | } |
---|
1750 | } |
---|
1751 | } |
---|
1752 | #if 0 |
---|
1753 | (void) fprintf(vis_stdout, "--Primary output:\n"); |
---|
1754 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, outputs, result, k); |
---|
1755 | #endif |
---|
1756 | if((options->printInputs == TRUE) && (k !=0)) { |
---|
1757 | (void) fprintf(vis_stdout, "--On input:\n"); |
---|
1758 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1759 | inputs, resultTable, k-1, prevValueInputs); |
---|
1760 | } |
---|
1761 | } /* for k loop */ |
---|
1762 | if(loop != -1){ |
---|
1763 | (void) fprintf(vis_stdout, "\n--Goes back to state %d:\n", loop); |
---|
1764 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1765 | latches, resultTable, loop, prevValueLatches); |
---|
1766 | if((options->printInputs == TRUE)) { |
---|
1767 | (void) fprintf(vis_stdout, "--On input:\n"); |
---|
1768 | printValue(manager, network, nodeToMvfAigTable, cnfClauses, |
---|
1769 | inputs, resultTable, length, prevValueInputs); |
---|
1770 | } |
---|
1771 | } |
---|
1772 | array_free(latches); |
---|
1773 | FREE(prevValueLatches); |
---|
1774 | if(options->printInputs == TRUE){ |
---|
1775 | array_free(inputs); |
---|
1776 | FREE(prevValueInputs); |
---|
1777 | } |
---|
1778 | st_free_table(resultTable); |
---|
1779 | return; |
---|
1780 | } /* BmcPrintCounterExample() */ |
---|
1781 | |
---|
1782 | |
---|
1783 | /**Function******************************************************************** |
---|
1784 | |
---|
1785 | Synopsis [Generate CNF formula for a path from state 'from' to state 'to'] |
---|
1786 | |
---|
1787 | Description [Unfold the transition relation 'k' states (k = to-from +1), and |
---|
1788 | generate clauses for each state. |
---|
1789 | |
---|
1790 | For a multi-valued latch of 4 vlaues. Two binary variables are used |
---|
1791 | to rpresent X, x1 and x0. For this latch, there exist three multi-valued |
---|
1792 | functions. |
---|
1793 | One for the binary reoresentation of the variable. For example the |
---|
1794 | second entry of the mvf = 1, iff ~x1 and x0. |
---|
1795 | The second mfv is for the data input of the latch. If the And/Inv graph |
---|
1796 | attached to an entry of this mvf equal to 1, X equal to the binary |
---|
1797 | representation corresponding to this entry. For example, if the And/ |
---|
1798 | INV graph attached to the first entry =1, then X = ~x1 & ~x0. |
---|
1799 | To generate the CNF to the transition relation, first generate CNF to |
---|
1800 | next state varaible using mvf of the latch. Then, generate CNF for |
---|
1801 | latch data input using current state variavles. Finaly, generate CNF |
---|
1802 | for the AND of these two MVF. This for every entry of the MVF. Then |
---|
1803 | OR the results. |
---|
1804 | The third MVF is for the initial value of the latch. It is treat the |
---|
1805 | same as the latch data input except if the initial value is constant. |
---|
1806 | |
---|
1807 | The initialState value may be either BMC_INITIAL_STATES to generate the clause for the intial states. |
---|
1808 | BMC_NO_INITIAL_STATES otherwise. |
---|
1809 | ] |
---|
1810 | |
---|
1811 | SideEffects [] |
---|
1812 | |
---|
1813 | SeeAlso [] |
---|
1814 | |
---|
1815 | ******************************************************************************/ |
---|
1816 | void |
---|
1817 | BmcCnfGenerateClausesForPath( |
---|
1818 | Ntk_Network_t *network, |
---|
1819 | int from, |
---|
1820 | int to, |
---|
1821 | int initialState, |
---|
1822 | BmcCnfClauses_t *cnfClauses, |
---|
1823 | st_table *nodeToMvfAigTable, |
---|
1824 | st_table *CoiTable) |
---|
1825 | { |
---|
1826 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
1827 | st_generator *stGen; |
---|
1828 | |
---|
1829 | Ntk_Node_t *latch, *latchData, *latchInit; |
---|
1830 | MvfAig_Function_t *initMvfAig, *dataMvfAig, *latchMvfAig; |
---|
1831 | bAigEdge_t *initBAig, *latchBAig, *dataBAig; |
---|
1832 | |
---|
1833 | int i, k, mvfSize; |
---|
1834 | |
---|
1835 | st_foreach_item(CoiTable, stGen, &latch, NULL) { |
---|
1836 | |
---|
1837 | |
---|
1838 | latchInit = Ntk_LatchReadInitialInput(latch); |
---|
1839 | latchData = Ntk_LatchReadDataInput(latch); |
---|
1840 | |
---|
1841 | /* Get the multi-valued function for each node*/ |
---|
1842 | initMvfAig = Bmc_ReadMvfAig(latchInit, nodeToMvfAigTable); |
---|
1843 | if (initMvfAig == NIL(MvfAig_Function_t)){ |
---|
1844 | (void) fprintf(vis_stdout, "No multi-valued function for this node %s \n", Ntk_NodeReadName(latchInit)); |
---|
1845 | return; |
---|
1846 | } |
---|
1847 | dataMvfAig = Bmc_ReadMvfAig(latchData, nodeToMvfAigTable); |
---|
1848 | if (dataMvfAig == NIL(MvfAig_Function_t)){ |
---|
1849 | (void) fprintf(vis_stdout, "No multi-valued function for this node %s \n", Ntk_NodeReadName(latchData)); |
---|
1850 | return; |
---|
1851 | } |
---|
1852 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
1853 | if (latchMvfAig == NIL(MvfAig_Function_t)){ |
---|
1854 | latchMvfAig = Bmc_NodeBuildMVF(network, latch); |
---|
1855 | array_free(latchMvfAig); |
---|
1856 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
1857 | } |
---|
1858 | |
---|
1859 | mvfSize = array_n(initMvfAig); |
---|
1860 | initBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
1861 | dataBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
1862 | latchBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
1863 | |
---|
1864 | for(i=0; i< mvfSize; i++){ |
---|
1865 | dataBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(dataMvfAig, i)); |
---|
1866 | latchBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(latchMvfAig, i)); |
---|
1867 | initBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(initMvfAig, i)); |
---|
1868 | } |
---|
1869 | /* |
---|
1870 | if (from == 0){ |
---|
1871 | */ |
---|
1872 | if (initialState == BMC_INITIAL_STATES){ |
---|
1873 | /* Generate the CNF for the initial state of the latch */ |
---|
1874 | BmcGenerateClausesFromStateTostate(manager, initBAig, latchBAig, mvfSize, -1, 0, cnfClauses, 0); |
---|
1875 | } |
---|
1876 | /* Generate the CNF for the transition functions */ |
---|
1877 | for (k=from; k < to; k++){ |
---|
1878 | BmcGenerateClausesFromStateTostate(manager, dataBAig, latchBAig, mvfSize, k, k+1, cnfClauses, 0); |
---|
1879 | } /* for k state loop */ |
---|
1880 | |
---|
1881 | FREE(initBAig); |
---|
1882 | FREE(dataBAig); |
---|
1883 | FREE(latchBAig); |
---|
1884 | }/* For each latch loop*/ |
---|
1885 | |
---|
1886 | return; |
---|
1887 | } |
---|
1888 | |
---|
1889 | /**Function******************************************************************** |
---|
1890 | |
---|
1891 | Synopsis [Generate CNF formula for a loop-free path] |
---|
1892 | |
---|
1893 | Description [This function generates CNF formula for a loop-free path from |
---|
1894 | state fromState to state toState. A loop free path is a path from a state S0 |
---|
1895 | to state Sn such that every state in the path is distinct. i.e for all states |
---|
1896 | in the path Si != Sj for 0<= i < j <= n. |
---|
1897 | |
---|
1898 | The initialState value may be either BMC_INITIAL_STATES to generate the clause |
---|
1899 | for the intial states. BMC_NO_INITIAL_STATES otherwise. |
---|
1900 | ] |
---|
1901 | |
---|
1902 | SideEffects [] |
---|
1903 | |
---|
1904 | SeeAlso [] |
---|
1905 | |
---|
1906 | ******************************************************************************/ |
---|
1907 | void |
---|
1908 | BmcCnfGenerateClausesForLoopFreePath( |
---|
1909 | Ntk_Network_t *network, |
---|
1910 | int fromState, |
---|
1911 | int toState, |
---|
1912 | int initialState, |
---|
1913 | BmcCnfClauses_t *cnfClauses, |
---|
1914 | st_table *nodeToMvfAigTable, |
---|
1915 | st_table *CoiTable) |
---|
1916 | { |
---|
1917 | int state; |
---|
1918 | |
---|
1919 | /* |
---|
1920 | Generate clauses for a path from fromState to toState. |
---|
1921 | */ |
---|
1922 | BmcCnfGenerateClausesForPath(network, fromState, toState, initialState, cnfClauses, nodeToMvfAigTable, CoiTable); |
---|
1923 | |
---|
1924 | /* |
---|
1925 | Restrict the above path to be loop-free path. |
---|
1926 | */ |
---|
1927 | /* |
---|
1928 | for(state=0; state< toState; state++){ |
---|
1929 | */ |
---|
1930 | /* |
---|
1931 | Don't include the last state because we know it is not equal any of the previous states. |
---|
1932 | The property fails at this state, and true at all other states. |
---|
1933 | */ |
---|
1934 | /* |
---|
1935 | for(state=1; state < toState; state++){ |
---|
1936 | */ |
---|
1937 | for(state= fromState + 1; state <= toState; state++){ |
---|
1938 | BmcCnfGenerateClausesForNoLoopToAnyPreviouseStates(network, fromState, state, cnfClauses, nodeToMvfAigTable, CoiTable); |
---|
1939 | } |
---|
1940 | |
---|
1941 | return; |
---|
1942 | } |
---|
1943 | |
---|
1944 | /**Function******************************************************************** |
---|
1945 | |
---|
1946 | Synopsis [Generate Clauses for no loop from last state to any of the |
---|
1947 | previouse states] |
---|
1948 | |
---|
1949 | Description [Generate Clauses for no loop from last state (toState) to |
---|
1950 | any of the previous states starting from fromState. It generates the CNF |
---|
1951 | clauses such that the last state of the path is not equal to any of the |
---|
1952 | path previous states. |
---|
1953 | ] |
---|
1954 | |
---|
1955 | SideEffects [] |
---|
1956 | |
---|
1957 | SeeAlso [] |
---|
1958 | |
---|
1959 | ******************************************************************************/ |
---|
1960 | void |
---|
1961 | BmcCnfGenerateClausesForNoLoopToAnyPreviouseStates( |
---|
1962 | Ntk_Network_t *network, |
---|
1963 | int fromState, |
---|
1964 | int toState, |
---|
1965 | BmcCnfClauses_t *cnfClauses, |
---|
1966 | st_table *nodeToMvfAigTable, |
---|
1967 | st_table *CoiTable) |
---|
1968 | { |
---|
1969 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
1970 | st_generator *stGen; |
---|
1971 | |
---|
1972 | Ntk_Node_t *latch; |
---|
1973 | MvfAig_Function_t *latchMvfAig; |
---|
1974 | bAigEdge_t *latchBAig; |
---|
1975 | array_t *orClause; |
---|
1976 | int lastIndex, prevIndex, andIndex1, andIndex2; |
---|
1977 | int i, k, mvfSize; |
---|
1978 | |
---|
1979 | /* |
---|
1980 | Generates the clauses to check if the toState is not equal to any previouse states starting |
---|
1981 | from fromState. |
---|
1982 | |
---|
1983 | Assume there are two state varaibles a and b. To check if Si != Sj, we must generate clauses |
---|
1984 | for the formula ( ai != aj + bi != bj). |
---|
1985 | */ |
---|
1986 | for(k=fromState; k < toState; k++){ |
---|
1987 | orClause = array_alloc(int,0); |
---|
1988 | st_foreach_item(CoiTable, stGen, &latch, NULL) { |
---|
1989 | |
---|
1990 | |
---|
1991 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
1992 | if (latchMvfAig == NIL(MvfAig_Function_t)){ |
---|
1993 | latchMvfAig = Bmc_NodeBuildMVF(network, latch); |
---|
1994 | array_free(latchMvfAig); |
---|
1995 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
1996 | } |
---|
1997 | mvfSize = array_n(latchMvfAig); |
---|
1998 | latchBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
1999 | |
---|
2000 | for(i=0; i< mvfSize; i++){ |
---|
2001 | latchBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(latchMvfAig, i)); |
---|
2002 | } |
---|
2003 | |
---|
2004 | for (i=0; i< mvfSize; i++){ |
---|
2005 | prevIndex = BmcGenerateCnfFormulaForAigFunction(manager, latchBAig[i], k ,cnfClauses); |
---|
2006 | lastIndex = BmcGenerateCnfFormulaForAigFunction(manager, latchBAig[i], toState ,cnfClauses); |
---|
2007 | andIndex1 = cnfClauses->cnfGlobalIndex++; |
---|
2008 | BmcCnfGenerateClausesForAND(prevIndex, -lastIndex, andIndex1, cnfClauses); |
---|
2009 | andIndex2 = cnfClauses->cnfGlobalIndex++; |
---|
2010 | BmcCnfGenerateClausesForAND(-prevIndex, lastIndex, andIndex2, cnfClauses); |
---|
2011 | |
---|
2012 | array_insert_last(int, orClause, andIndex1); |
---|
2013 | array_insert_last(int, orClause, andIndex2); |
---|
2014 | } |
---|
2015 | FREE(latchBAig); |
---|
2016 | }/* For each latch loop*/ |
---|
2017 | BmcCnfInsertClause(cnfClauses, orClause); |
---|
2018 | array_free(orClause); |
---|
2019 | } /* foreach k*/ |
---|
2020 | return; |
---|
2021 | } |
---|
2022 | |
---|
2023 | |
---|
2024 | /**Function******************************************************************** |
---|
2025 | |
---|
2026 | Synopsis [Generate Clauses for last state equal to any of the |
---|
2027 | previouse states] |
---|
2028 | |
---|
2029 | Description [ Change it! |
---|
2030 | Generate Clauses for no loop from last state (toState) to |
---|
2031 | any of the previous states starting from fromState. It generates the CNF |
---|
2032 | clauses such that the last state of the path is not equal to any of the |
---|
2033 | path previous states. |
---|
2034 | ] |
---|
2035 | |
---|
2036 | SideEffects [] |
---|
2037 | |
---|
2038 | SeeAlso [] |
---|
2039 | |
---|
2040 | ******************************************************************************/ |
---|
2041 | void |
---|
2042 | BmcCnfGenerateClausesForLoopToAnyPreviouseStates( |
---|
2043 | Ntk_Network_t *network, |
---|
2044 | int fromState, |
---|
2045 | int toState, |
---|
2046 | BmcCnfClauses_t *cnfClauses, |
---|
2047 | st_table *nodeToMvfAigTable, |
---|
2048 | st_table *CoiTable) |
---|
2049 | { |
---|
2050 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
2051 | st_generator *stGen; |
---|
2052 | |
---|
2053 | Ntk_Node_t *latch; |
---|
2054 | MvfAig_Function_t *latchMvfAig; |
---|
2055 | bAigEdge_t *latchBAig; |
---|
2056 | array_t *orClause; |
---|
2057 | int lastIndex, prevIndex, andIndex1, andIndex2; |
---|
2058 | int i, k, mvfSize; |
---|
2059 | |
---|
2060 | /* |
---|
2061 | Generates the clauses to check if the toState is not equal to any previouse states starting |
---|
2062 | from fromState. |
---|
2063 | |
---|
2064 | Assume there are two state varaibles a and b. To check if Si != Sj, we must generate clauses |
---|
2065 | for the formula ( ai != aj + bi != bj). |
---|
2066 | */ |
---|
2067 | for(k=fromState; k < toState; k++){ |
---|
2068 | orClause = array_alloc(int,0); |
---|
2069 | st_foreach_item(CoiTable, stGen, &latch, NULL) { |
---|
2070 | |
---|
2071 | |
---|
2072 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
2073 | if (latchMvfAig == NIL(MvfAig_Function_t)){ |
---|
2074 | latchMvfAig = Bmc_NodeBuildMVF(network, latch); |
---|
2075 | array_free(latchMvfAig); |
---|
2076 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
2077 | } |
---|
2078 | mvfSize = array_n(latchMvfAig); |
---|
2079 | latchBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
2080 | |
---|
2081 | for(i=0; i< mvfSize; i++){ |
---|
2082 | latchBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(latchMvfAig, i)); |
---|
2083 | } |
---|
2084 | |
---|
2085 | for (i=0; i< mvfSize; i++){ |
---|
2086 | prevIndex = BmcGenerateCnfFormulaForAigFunction(manager, latchBAig[i], k ,cnfClauses); |
---|
2087 | lastIndex = BmcGenerateCnfFormulaForAigFunction(manager, latchBAig[i], toState ,cnfClauses); |
---|
2088 | andIndex1 = cnfClauses->cnfGlobalIndex++; |
---|
2089 | BmcCnfGenerateClausesForAND(prevIndex, lastIndex, andIndex1, cnfClauses); |
---|
2090 | andIndex2 = cnfClauses->cnfGlobalIndex++; |
---|
2091 | BmcCnfGenerateClausesForAND(-prevIndex, -lastIndex, andIndex2, cnfClauses); |
---|
2092 | |
---|
2093 | array_insert_last(int, orClause, andIndex1); |
---|
2094 | array_insert_last(int, orClause, andIndex2); |
---|
2095 | } |
---|
2096 | FREE(latchBAig); |
---|
2097 | }/* For each latch loop*/ |
---|
2098 | BmcCnfInsertClause(cnfClauses, orClause); |
---|
2099 | array_free(orClause); |
---|
2100 | } /* foreach k*/ |
---|
2101 | return; |
---|
2102 | } |
---|
2103 | |
---|
2104 | /**Function******************************************************************** |
---|
2105 | |
---|
2106 | Synopsis [Generate CNF formula for a path from state 'from' to state 'to'] |
---|
2107 | |
---|
2108 | Description [Unfold the transition relation 'k' states (k = to-from +1), and |
---|
2109 | generate clauses for each state. |
---|
2110 | For a multi-valued latch of 4 vlaues. Two binary variables are used |
---|
2111 | to rpresent X, x1 and x0. For this latch, there exist three multi-valued |
---|
2112 | functions. |
---|
2113 | One for the binary reoresentation of the variable. For example the |
---|
2114 | second entry of the mvf = 1, iff ~x1 and x0. |
---|
2115 | The second mfv is for the data input of the latch. If the And/Inv graph |
---|
2116 | attached to an entry of this mvf equal to 1, X equal to the binary |
---|
2117 | representation corresponding to this entry. For example, if the And/ |
---|
2118 | INV graph attached to the first entry =1, then X = ~x1 & ~x0. |
---|
2119 | To generate the CNF to the transition relation, first generate CNF to |
---|
2120 | next state varaible using mvf of the latch. Then, generate CNF for |
---|
2121 | latch data input using current state variavles. Finaly, generate CNF |
---|
2122 | for the AND of these two MVF. This for every entry of the MVF. Then |
---|
2123 | OR the results. |
---|
2124 | The third MVF is for the initial value of the latch. It is treat the |
---|
2125 | same as the latch data input except if the initial value is constant. |
---|
2126 | ] |
---|
2127 | |
---|
2128 | SideEffects [] |
---|
2129 | |
---|
2130 | SeeAlso [] |
---|
2131 | |
---|
2132 | ******************************************************************************/ |
---|
2133 | void |
---|
2134 | BmcCnfGenerateClausesFromStateToState( |
---|
2135 | Ntk_Network_t *network, |
---|
2136 | int from, |
---|
2137 | int to, |
---|
2138 | BmcCnfClauses_t *cnfClauses, |
---|
2139 | st_table *nodeToMvfAigTable, |
---|
2140 | st_table *CoiTable, |
---|
2141 | int loop) |
---|
2142 | { |
---|
2143 | mAig_Manager_t *manager = Ntk_NetworkReadMAigManager(network); |
---|
2144 | st_generator *stGen; |
---|
2145 | Ntk_Node_t *latch, *latchData; |
---|
2146 | MvfAig_Function_t *dataMvfAig, *latchMvfAig; |
---|
2147 | bAigEdge_t *latchBAig, *dataBAig; |
---|
2148 | int i, mvfSize; |
---|
2149 | |
---|
2150 | st_foreach_item(CoiTable, stGen, &latch, NULL) { |
---|
2151 | latchData = Ntk_LatchReadDataInput(latch); |
---|
2152 | |
---|
2153 | dataMvfAig = Bmc_ReadMvfAig(latchData, nodeToMvfAigTable); |
---|
2154 | if (dataMvfAig == NIL(MvfAig_Function_t)){ |
---|
2155 | (void) fprintf(vis_stdout, |
---|
2156 | "No multi-valued function for this node %s \n", |
---|
2157 | Ntk_NodeReadName(latchData)); |
---|
2158 | return; |
---|
2159 | } |
---|
2160 | latchMvfAig = Bmc_ReadMvfAig(latch, nodeToMvfAigTable); |
---|
2161 | if (latchMvfAig == NIL(MvfAig_Function_t)){ |
---|
2162 | latchMvfAig = Bmc_NodeBuildMVF(network, latch); |
---|
2163 | } |
---|
2164 | mvfSize = array_n(dataMvfAig); |
---|
2165 | dataBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
2166 | latchBAig = ALLOC(bAigEdge_t, mvfSize); |
---|
2167 | for(i=0; i< mvfSize; i++){ |
---|
2168 | dataBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(dataMvfAig, i)); |
---|
2169 | latchBAig[i] = bAig_GetCanonical(manager, MvfAig_FunctionReadComponent(latchMvfAig, i)); |
---|
2170 | } |
---|
2171 | BmcGenerateClausesFromStateTostate(manager, dataBAig, latchBAig, mvfSize, |
---|
2172 | from, to, cnfClauses, loop); |
---|
2173 | FREE(dataBAig); |
---|
2174 | FREE(latchBAig); |
---|
2175 | } /* For each latch loop*/ |
---|
2176 | return; |
---|
2177 | } |
---|
2178 | |
---|
2179 | /**Function******************************************************************** |
---|
2180 | |
---|
2181 | Synopsis [Generate CNF clauses for the AND gate] |
---|
2182 | |
---|
2183 | Description [] |
---|
2184 | |
---|
2185 | SideEffects [] |
---|
2186 | |
---|
2187 | SeeAlso [] |
---|
2188 | |
---|
2189 | ******************************************************************************/ |
---|
2190 | void |
---|
2191 | BmcCnfGenerateClausesForAND( |
---|
2192 | int a, |
---|
2193 | int b, |
---|
2194 | int c, |
---|
2195 | BmcCnfClauses_t *cnfClauses) |
---|
2196 | { |
---|
2197 | array_t *tmpClause; |
---|
2198 | |
---|
2199 | tmpClause = array_alloc(int, 3); |
---|
2200 | array_insert(int, tmpClause, 0, -a); |
---|
2201 | array_insert(int, tmpClause, 1, -b); |
---|
2202 | array_insert(int, tmpClause, 2, c); |
---|
2203 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
2204 | array_free(tmpClause); |
---|
2205 | |
---|
2206 | tmpClause = array_alloc(int, 2); |
---|
2207 | |
---|
2208 | array_insert(int, tmpClause, 0, a); |
---|
2209 | array_insert(int, tmpClause, 1, -c); |
---|
2210 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
2211 | |
---|
2212 | array_insert(int, tmpClause, 0, b); |
---|
2213 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
2214 | |
---|
2215 | array_free(tmpClause); |
---|
2216 | return; |
---|
2217 | } |
---|
2218 | |
---|
2219 | /**Function******************************************************************** |
---|
2220 | |
---|
2221 | Synopsis [Generate CNF clauses for the OR gate] |
---|
2222 | |
---|
2223 | Description [] |
---|
2224 | |
---|
2225 | SideEffects [] |
---|
2226 | |
---|
2227 | SeeAlso [] |
---|
2228 | |
---|
2229 | ******************************************************************************/ |
---|
2230 | void |
---|
2231 | BmcCnfGenerateClausesForOR( |
---|
2232 | int a, |
---|
2233 | int b, |
---|
2234 | int c, |
---|
2235 | BmcCnfClauses_t *cnfClauses) |
---|
2236 | { |
---|
2237 | array_t *tmpClause; |
---|
2238 | |
---|
2239 | tmpClause = array_alloc(int, 3); |
---|
2240 | array_insert(int, tmpClause, 0, a); |
---|
2241 | array_insert(int, tmpClause, 1, b); |
---|
2242 | array_insert(int, tmpClause, 2, -c); |
---|
2243 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
2244 | array_free(tmpClause); |
---|
2245 | |
---|
2246 | tmpClause = array_alloc(int, 2); |
---|
2247 | array_insert(int, tmpClause, 0, -a); |
---|
2248 | array_insert(int, tmpClause, 1, c); |
---|
2249 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
2250 | |
---|
2251 | array_insert(int, tmpClause, 0, -b); |
---|
2252 | BmcCnfInsertClause(cnfClauses, tmpClause); |
---|
2253 | |
---|
2254 | array_free(tmpClause); |
---|
2255 | return; |
---|
2256 | } |
---|
2257 | |
---|
2258 | /**Function******************************************************************** |
---|
2259 | |
---|
2260 | Synopsis [Alloc Memory for BmcCnfClauses_t] |
---|
2261 | |
---|
2262 | SideEffects [] |
---|
2263 | |
---|
2264 | SeeAlso [] |
---|
2265 | ******************************************************************************/ |
---|
2266 | BmcCnfClauses_t * |
---|
2267 | BmcCnfClausesAlloc(void) |
---|
2268 | { |
---|
2269 | BmcCnfClauses_t *result = ALLOC(BmcCnfClauses_t, 1); |
---|
2270 | |
---|
2271 | if (!result){ |
---|
2272 | return result; |
---|
2273 | } |
---|
2274 | result->clauseArray = array_alloc(int, 0); |
---|
2275 | result->cnfIndexTable = st_init_table(strcmp, st_strhash); |
---|
2276 | result->freezedKeys = array_alloc(nameType_t *, 0); |
---|
2277 | |
---|
2278 | result->nextIndex = 0; |
---|
2279 | result->noOfClauses = 0; |
---|
2280 | result->cnfGlobalIndex = 1; |
---|
2281 | result->emptyClause = FALSE; |
---|
2282 | result->freezed = FALSE; |
---|
2283 | |
---|
2284 | return result; |
---|
2285 | } /*BmcCnfClausesAlloc()*/ |
---|
2286 | |
---|
2287 | /**Function******************************************************************** |
---|
2288 | |
---|
2289 | Synopsis [Free Memory for BmcCnfClauses_t] |
---|
2290 | |
---|
2291 | SideEffects [] |
---|
2292 | |
---|
2293 | SeeAlso [] |
---|
2294 | ******************************************************************************/ |
---|
2295 | void |
---|
2296 | BmcCnfClausesFree( |
---|
2297 | BmcCnfClauses_t *cnfClauses) |
---|
2298 | { |
---|
2299 | st_generator *stGen; |
---|
2300 | char *name; |
---|
2301 | int cnfIndex; |
---|
2302 | |
---|
2303 | array_free(cnfClauses->clauseArray); |
---|
2304 | array_free(cnfClauses->freezedKeys); |
---|
2305 | |
---|
2306 | if (cnfClauses->cnfIndexTable != NIL(st_table)){ |
---|
2307 | st_foreach_item_int(cnfClauses->cnfIndexTable, stGen, (char **) &name, &cnfIndex) { |
---|
2308 | FREE(name); |
---|
2309 | } |
---|
2310 | st_free_table(cnfClauses->cnfIndexTable); |
---|
2311 | } |
---|
2312 | FREE(cnfClauses); |
---|
2313 | cnfClauses = NIL(BmcCnfClauses_t); |
---|
2314 | } /* BmcCnfClausesFree() */ |
---|
2315 | |
---|
2316 | /**Function******************************************************************** |
---|
2317 | |
---|
2318 | Synopsis [Freeze the current state of CNF] |
---|
2319 | |
---|
2320 | Description [The current state of CNF is stored in the structure BmcCnfStates_t. |
---|
2321 | This information may use later to store CNF to this state by calling |
---|
2322 | BmcCnfClausesRestore().] |
---|
2323 | |
---|
2324 | SideEffects [] |
---|
2325 | |
---|
2326 | SeeAlso [BmcCnfClausesRestore() BmcCnfClausesUnFreeze() ] |
---|
2327 | ******************************************************************************/ |
---|
2328 | BmcCnfStates_t * |
---|
2329 | BmcCnfClausesFreeze( |
---|
2330 | BmcCnfClauses_t * cnfClauses) |
---|
2331 | { |
---|
2332 | BmcCnfStates_t *state = ALLOC(BmcCnfStates_t, 1); |
---|
2333 | |
---|
2334 | state->nextIndex = cnfClauses->nextIndex; |
---|
2335 | state->noOfClauses = cnfClauses->noOfClauses; |
---|
2336 | state->cnfGlobalIndex = cnfClauses->cnfGlobalIndex; |
---|
2337 | |
---|
2338 | /* This variable is used when deleting any new entries in cnfClauses->freezedKeys |
---|
2339 | that will be added after CNF is freezed.*/ |
---|
2340 | state->freezedKeySize = array_n(cnfClauses->freezedKeys); |
---|
2341 | |
---|
2342 | state->emptyClause = cnfClauses->emptyClause; |
---|
2343 | state->freezed = cnfClauses->freezed; |
---|
2344 | cnfClauses->freezed = TRUE; |
---|
2345 | return state; |
---|
2346 | } /* mcCnfClausesFreeze() */ |
---|
2347 | |
---|
2348 | /**Function******************************************************************** |
---|
2349 | |
---|
2350 | Synopsis [Unfreeze CNF] |
---|
2351 | |
---|
2352 | Description [Keeps the current state of CNF] |
---|
2353 | |
---|
2354 | SideEffects [] |
---|
2355 | |
---|
2356 | SeeAlso [] |
---|
2357 | ******************************************************************************/ |
---|
2358 | void |
---|
2359 | BmcCnfClausesUnFreeze( |
---|
2360 | BmcCnfClauses_t *cnfClauses, |
---|
2361 | BmcCnfStates_t *state) |
---|
2362 | { |
---|
2363 | int i; |
---|
2364 | |
---|
2365 | cnfClauses->freezed = FALSE; |
---|
2366 | if (array_n(cnfClauses->freezedKeys) != 0){ |
---|
2367 | int freezedKeySize = array_n(cnfClauses->freezedKeys); |
---|
2368 | |
---|
2369 | for (i=0; i< (freezedKeySize-state->freezedKeySize); i++){ |
---|
2370 | (cnfClauses->freezedKeys)->num--; |
---|
2371 | } |
---|
2372 | } |
---|
2373 | } /* BmcCnfClausesUnFreeze() */ |
---|
2374 | |
---|
2375 | /**Function******************************************************************** |
---|
2376 | |
---|
2377 | Synopsis [Restore the CNF to its previouse state] |
---|
2378 | |
---|
2379 | Description [Restore the CNF to its previouse state that CNF was when |
---|
2380 | BmcCnfClausesFreeze() was last called] |
---|
2381 | |
---|
2382 | SideEffects [] |
---|
2383 | |
---|
2384 | SeeAlso [] |
---|
2385 | ******************************************************************************/ |
---|
2386 | void |
---|
2387 | BmcCnfClausesRestore( |
---|
2388 | BmcCnfClauses_t *cnfClauses, |
---|
2389 | BmcCnfStates_t *state) |
---|
2390 | { |
---|
2391 | int i, index; |
---|
2392 | nameType_t *key; |
---|
2393 | |
---|
2394 | cnfClauses->nextIndex = state->nextIndex; |
---|
2395 | cnfClauses->noOfClauses = state->noOfClauses; |
---|
2396 | cnfClauses->cnfGlobalIndex = state->cnfGlobalIndex; |
---|
2397 | cnfClauses->emptyClause = state->emptyClause; |
---|
2398 | cnfClauses->freezed = state->freezed; |
---|
2399 | |
---|
2400 | if (array_n(cnfClauses->freezedKeys) != 0){ |
---|
2401 | int freezedKeySize = array_n(cnfClauses->freezedKeys); |
---|
2402 | |
---|
2403 | for (i=0; i< (freezedKeySize-state->freezedKeySize); i++){ |
---|
2404 | key = array_fetch_last(nameType_t *, cnfClauses->freezedKeys); |
---|
2405 | if (st_delete_int(cnfClauses->cnfIndexTable, &key, &index)){ |
---|
2406 | FREE(key); |
---|
2407 | } |
---|
2408 | (cnfClauses->freezedKeys)->num--; |
---|
2409 | } |
---|
2410 | } |
---|
2411 | } /* BmcCnfClausesRestore() */ |
---|
2412 | |
---|
2413 | /**Function******************************************************************** |
---|
2414 | |
---|
2415 | Synopsis [Add clause to the clauseArray] |
---|
2416 | |
---|
2417 | Description [Add a clause to the clause array. clause is of type array_t. |
---|
2418 | The user must free clause.] |
---|
2419 | |
---|
2420 | SideEffects [] |
---|
2421 | |
---|
2422 | SeeAlso [] |
---|
2423 | ******************************************************************************/ |
---|
2424 | void |
---|
2425 | BmcCnfInsertClause( |
---|
2426 | BmcCnfClauses_t *cnfClauses, |
---|
2427 | array_t *clause) |
---|
2428 | { |
---|
2429 | int i, lit; |
---|
2430 | |
---|
2431 | if (clause != NIL(array_t)){ |
---|
2432 | if (array_n(clause) == 0){ /* empty clause */ |
---|
2433 | cnfClauses->emptyClause = TRUE; |
---|
2434 | return; |
---|
2435 | } |
---|
2436 | for (i=0; i< array_n(clause); i++){ |
---|
2437 | lit = array_fetch(int, clause, i); |
---|
2438 | array_insert(int, cnfClauses->clauseArray, cnfClauses->nextIndex++, lit); |
---|
2439 | } |
---|
2440 | array_insert(int, cnfClauses->clauseArray, cnfClauses->nextIndex++, 0); /*End Of clause*/ |
---|
2441 | cnfClauses->noOfClauses++; |
---|
2442 | cnfClauses->emptyClause = FALSE; |
---|
2443 | } |
---|
2444 | return; |
---|
2445 | }/* BmcCnfInsertClause() */ |
---|
2446 | |
---|
2447 | /**Function******************************************************************** |
---|
2448 | |
---|
2449 | Synopsis [Add an empty clause] |
---|
2450 | |
---|
2451 | SideEffects [] |
---|
2452 | |
---|
2453 | SeeAlso [] |
---|
2454 | ******************************************************************************/ |
---|
2455 | void |
---|
2456 | BmcAddEmptyClause( |
---|
2457 | BmcCnfClauses_t *cnfClauses) |
---|
2458 | { |
---|
2459 | cnfClauses->emptyClause = TRUE; |
---|
2460 | }/* BmcAddEmptyClause() */ |
---|
2461 | |
---|
2462 | /**Function******************************************************************** |
---|
2463 | |
---|
2464 | Synopsis [Return the cnfIndex of the node] |
---|
2465 | |
---|
2466 | Description [If CNF was generated for this node, return its cnfIndex, otherwise |
---|
2467 | insert the name of this node in the cnfIndexTable, and return its cnfIndex. The |
---|
2468 | key to the cnfIndexTable is (nodeName_state).] |
---|
2469 | |
---|
2470 | SideEffects [] |
---|
2471 | ******************************************************************************/ |
---|
2472 | int |
---|
2473 | BmcCnfReadOrInsertNode( |
---|
2474 | BmcCnfClauses_t *cnfClauses, |
---|
2475 | nameType_t *nodeName, |
---|
2476 | int state, |
---|
2477 | int *nodeIndex) |
---|
2478 | { |
---|
2479 | nameType_t *varName; |
---|
2480 | int index; |
---|
2481 | char *stateStr = util_inttostr(state); |
---|
2482 | |
---|
2483 | varName = util_strcat3(nodeName, "_", stateStr); |
---|
2484 | FREE(stateStr); |
---|
2485 | if (!st_lookup_int(cnfClauses->cnfIndexTable, varName, &index)) { |
---|
2486 | index = cnfClauses->cnfGlobalIndex++; |
---|
2487 | st_insert(cnfClauses->cnfIndexTable, varName, (char*) (long) index); |
---|
2488 | if(cnfClauses->freezed == TRUE){ |
---|
2489 | array_insert_last(nameType_t *, cnfClauses->freezedKeys, varName); |
---|
2490 | } |
---|
2491 | *nodeIndex = index; |
---|
2492 | return 0; /* Inserted */ |
---|
2493 | } |
---|
2494 | else { /* The node has been visited */ |
---|
2495 | *nodeIndex = index; |
---|
2496 | FREE(varName); |
---|
2497 | return 1; |
---|
2498 | } |
---|
2499 | } |
---|
2500 | |
---|
2501 | |
---|
2502 | /**Function******************************************************************** |
---|
2503 | |
---|
2504 | Synopsis [Find the Cone of Influnce (COI) for an LTL formula] |
---|
2505 | |
---|
2506 | Description [Return a list of state variables (latches) that are in the COI of the |
---|
2507 | LTL formula.] |
---|
2508 | |
---|
2509 | SideEffects [] |
---|
2510 | |
---|
2511 | ******************************************************************************/ |
---|
2512 | void |
---|
2513 | BmcGetCoiForLtlFormula( |
---|
2514 | Ntk_Network_t *network, |
---|
2515 | Ctlsp_Formula_t *formula, |
---|
2516 | st_table *ltlCoiTable) |
---|
2517 | { |
---|
2518 | st_table *visited = st_init_table(st_ptrcmp, st_ptrhash); |
---|
2519 | |
---|
2520 | BmcGetCoiForLtlFormulaRecursive(network, formula, ltlCoiTable, visited); |
---|
2521 | st_free_table(visited); |
---|
2522 | return; |
---|
2523 | } /* BmcGetCoiForLtlFormula() */ |
---|
2524 | |
---|
2525 | /**Function******************************************************************** |
---|
2526 | |
---|
2527 | Synopsis [Recursive function to find the COI of a network node.] |
---|
2528 | |
---|
2529 | Description [] |
---|
2530 | |
---|
2531 | SideEffects [] |
---|
2532 | |
---|
2533 | ******************************************************************************/ |
---|
2534 | void |
---|
2535 | BmcGetCoiForLtlFormulaRecursive( |
---|
2536 | Ntk_Network_t *network, |
---|
2537 | Ctlsp_Formula_t *formula, |
---|
2538 | st_table *ltlCoiTable, |
---|
2539 | st_table *visited) |
---|
2540 | { |
---|
2541 | if (formula == NIL(Ctlsp_Formula_t)) { |
---|
2542 | return; |
---|
2543 | } |
---|
2544 | /* leaf node */ |
---|
2545 | if (formula->type == Ctlsp_ID_c){ |
---|
2546 | char *name = Ctlsp_FormulaReadVariableName(formula); |
---|
2547 | Ntk_Node_t *node = Ntk_NetworkFindNodeByName(network, name); |
---|
2548 | int tmp; |
---|
2549 | |
---|
2550 | if (st_lookup_int(visited, (char *) node, &tmp)){ |
---|
2551 | /* Node already visited */ |
---|
2552 | return; |
---|
2553 | } |
---|
2554 | BmcGetCoiForNtkNode(node, ltlCoiTable, visited); |
---|
2555 | return; |
---|
2556 | } |
---|
2557 | BmcGetCoiForLtlFormulaRecursive(network, formula->left, ltlCoiTable, visited); |
---|
2558 | BmcGetCoiForLtlFormulaRecursive(network, formula->right, ltlCoiTable, visited); |
---|
2559 | |
---|
2560 | return; |
---|
2561 | } /* BmcGetCoiForLtlFormulaRecursive() */ |
---|
2562 | |
---|
2563 | /**Function******************************************************************** |
---|
2564 | |
---|
2565 | Synopsis [Genrate COI for a non-latch network node] |
---|
2566 | |
---|
2567 | Description [For each fanins of the given node, if its latch, add it |
---|
2568 | to the CoiTable and return. If it is not latch, call this function to |
---|
2569 | look for any latches in the fanins of this node.] |
---|
2570 | |
---|
2571 | SideEffects [] |
---|
2572 | |
---|
2573 | ******************************************************************************/ |
---|
2574 | void |
---|
2575 | BmcGetCoiForNtkNode( |
---|
2576 | Ntk_Node_t *node, |
---|
2577 | st_table *CoiTable, |
---|
2578 | st_table *visited) |
---|
2579 | { |
---|
2580 | int i, j; |
---|
2581 | Ntk_Node_t *faninNode; |
---|
2582 | |
---|
2583 | if(node == NIL(Ntk_Node_t)){ |
---|
2584 | return; |
---|
2585 | } |
---|
2586 | if (st_lookup_int(visited, (char *) node, &j)){ |
---|
2587 | /* Node already visited */ |
---|
2588 | return; |
---|
2589 | } |
---|
2590 | st_insert(visited, (char *) node, (char *) 0); |
---|
2591 | if (Ntk_NodeTestIsLatch(node)){ |
---|
2592 | st_insert(CoiTable, (char *) node, (char *) 0); |
---|
2593 | } |
---|
2594 | Ntk_NodeForEachFanin(node, i, faninNode) { |
---|
2595 | BmcGetCoiForNtkNode(faninNode, CoiTable, visited); |
---|
2596 | } |
---|
2597 | return; |
---|
2598 | } /* BmcGetCoiForNtkNode() */ |
---|
2599 | |
---|
2600 | |
---|
2601 | /**Function******************************************************************** |
---|
2602 | |
---|
2603 | Synopsis [Find Mdd for states satisfying Atomic Formula.] |
---|
2604 | |
---|
2605 | Description [An atomic formula defines a set of states in the following |
---|
2606 | way: it states a designated ``net'' (specified by the full path name) |
---|
2607 | takes a certain value. The net should be purely a function of latches; |
---|
2608 | as a result an evaluation of the net yields a set of states.] |
---|
2609 | |
---|
2610 | SideEffects [] |
---|
2611 | |
---|
2612 | ******************************************************************************/ |
---|
2613 | |
---|
2614 | mdd_t * |
---|
2615 | BmcModelCheckAtomicFormula( |
---|
2616 | Fsm_Fsm_t *modelFsm, |
---|
2617 | Ctlsp_Formula_t *ctlFormula) |
---|
2618 | { |
---|
2619 | mdd_t * resultMdd; |
---|
2620 | mdd_t *tmpMdd; |
---|
2621 | Ntk_Network_t *network = Fsm_FsmReadNetwork(modelFsm); |
---|
2622 | char *nodeNameString = Ctlsp_FormulaReadVariableName(ctlFormula); |
---|
2623 | char *nodeValueString = Ctlsp_FormulaReadValueName(ctlFormula); |
---|
2624 | Ntk_Node_t *node = Ntk_NetworkFindNodeByName(network, nodeNameString); |
---|
2625 | |
---|
2626 | Var_Variable_t *nodeVar; |
---|
2627 | int nodeValue; |
---|
2628 | |
---|
2629 | graph_t *modelPartition; |
---|
2630 | vertex_t *partitionVertex; |
---|
2631 | Mvf_Function_t *MVF; |
---|
2632 | |
---|
2633 | nodeVar = Ntk_NodeReadVariable(node); |
---|
2634 | if (Var_VariableTestIsSymbolic(nodeVar)) { |
---|
2635 | nodeValue = Var_VariableReadIndexFromSymbolicValue(nodeVar, nodeValueString); |
---|
2636 | } |
---|
2637 | else { |
---|
2638 | nodeValue = atoi(nodeValueString); |
---|
2639 | } |
---|
2640 | |
---|
2641 | modelPartition = Part_NetworkReadPartition(network); |
---|
2642 | if (!(partitionVertex = Part_PartitionFindVertexByName(modelPartition, |
---|
2643 | nodeNameString))) { |
---|
2644 | lsGen tmpGen; |
---|
2645 | Ntk_Node_t *tmpNode; |
---|
2646 | array_t *mvfArray; |
---|
2647 | array_t *tmpRoots = array_alloc(Ntk_Node_t *, 0); |
---|
2648 | st_table *tmpLeaves = st_init_table(st_ptrcmp, st_ptrhash); |
---|
2649 | array_insert_last(Ntk_Node_t *, tmpRoots, node); |
---|
2650 | |
---|
2651 | Ntk_NetworkForEachCombInput(network, tmpGen, tmpNode) { |
---|
2652 | st_insert(tmpLeaves, (char *) tmpNode, (char *) NTM_UNUSED); |
---|
2653 | } |
---|
2654 | |
---|
2655 | mvfArray = Ntm_NetworkBuildMvfs(network, tmpRoots, tmpLeaves, |
---|
2656 | NIL(mdd_t)); |
---|
2657 | MVF = array_fetch(Mvf_Function_t *, mvfArray, 0); |
---|
2658 | array_free(tmpRoots); |
---|
2659 | st_free_table(tmpLeaves); |
---|
2660 | array_free(mvfArray); |
---|
2661 | |
---|
2662 | tmpMdd = Mvf_FunctionReadComponent(MVF, nodeValue); |
---|
2663 | resultMdd = mdd_dup(tmpMdd); |
---|
2664 | Mvf_FunctionFree(MVF); |
---|
2665 | } |
---|
2666 | else { |
---|
2667 | MVF = Part_VertexReadFunction(partitionVertex); |
---|
2668 | tmpMdd = Mvf_FunctionReadComponent(MVF, nodeValue); |
---|
2669 | resultMdd = mdd_dup(tmpMdd); |
---|
2670 | } |
---|
2671 | if (Part_PartitionReadMethod(modelPartition) == Part_Frontier_c && |
---|
2672 | Ntk_NodeTestIsCombOutput(node)) { |
---|
2673 | array_t *psVars = Fsm_FsmReadPresentStateVars(modelFsm); |
---|
2674 | mdd_manager *mgr = Ntk_NetworkReadMddManager(Fsm_FsmReadNetwork(modelFsm)); |
---|
2675 | array_t *supportList; |
---|
2676 | st_table *supportTable = st_init_table(st_numcmp, st_numhash); |
---|
2677 | int i, j; |
---|
2678 | int existIntermediateVars; |
---|
2679 | int mddId; |
---|
2680 | Mvf_Function_t *mvf; |
---|
2681 | vertex_t *vertex; |
---|
2682 | array_t *varBddRelationArray, *varArray; |
---|
2683 | mdd_t *iv, *ivMdd, *relation; |
---|
2684 | |
---|
2685 | for (i = 0; i < array_n(psVars); i++) { |
---|
2686 | mddId = array_fetch(int, psVars, i); |
---|
2687 | st_insert(supportTable, (char *)(long)mddId, NULL); |
---|
2688 | } |
---|
2689 | |
---|
2690 | existIntermediateVars = 1; |
---|
2691 | while (existIntermediateVars) { |
---|
2692 | existIntermediateVars = 0; |
---|
2693 | supportList = mdd_get_support(mgr, resultMdd); |
---|
2694 | for (i = 0; i < array_n(supportList); i++) { |
---|
2695 | mddId = array_fetch(int, supportList, i); |
---|
2696 | if (!st_lookup(supportTable, (char *)(long)mddId, NULL)) { |
---|
2697 | vertex = Part_PartitionFindVertexByMddId(modelPartition, mddId); |
---|
2698 | mvf = Part_VertexReadFunction(vertex); |
---|
2699 | varBddRelationArray = mdd_fn_array_to_bdd_rel_array(mgr, mddId, mvf); |
---|
2700 | varArray = mdd_id_to_bdd_array(mgr, mddId); |
---|
2701 | assert(array_n(varBddRelationArray) == array_n(varArray)); |
---|
2702 | for (j = 0; j < array_n(varBddRelationArray); j++) { |
---|
2703 | iv = array_fetch(mdd_t *, varArray, j); |
---|
2704 | relation = array_fetch(mdd_t *, varBddRelationArray, j); |
---|
2705 | ivMdd = bdd_cofactor(relation, iv); |
---|
2706 | mdd_free(relation); |
---|
2707 | tmpMdd = resultMdd; |
---|
2708 | resultMdd = bdd_compose(resultMdd, iv, ivMdd); |
---|
2709 | mdd_free(tmpMdd); |
---|
2710 | mdd_free(iv); |
---|
2711 | mdd_free(ivMdd); |
---|
2712 | } |
---|
2713 | array_free(varBddRelationArray); |
---|
2714 | array_free(varArray); |
---|
2715 | existIntermediateVars = 1; |
---|
2716 | } |
---|
2717 | } |
---|
2718 | array_free(supportList); |
---|
2719 | } |
---|
2720 | st_free_table(supportTable); |
---|
2721 | } |
---|
2722 | return resultMdd; |
---|
2723 | } |
---|
2724 | |
---|
2725 | /**Function******************************************************************** |
---|
2726 | |
---|
2727 | Synopsis [Read fairness constraints from file and check for errors.] |
---|
2728 | |
---|
2729 | Description [] |
---|
2730 | |
---|
2731 | SideEffects [] |
---|
2732 | |
---|
2733 | SeeAlso [] |
---|
2734 | |
---|
2735 | ******************************************************************************/ |
---|
2736 | array_t * |
---|
2737 | BmcReadFairnessConstraints( |
---|
2738 | FILE *fp /* pointer to the fairness constraint file */) |
---|
2739 | { |
---|
2740 | array_t *constraintArray; /* raw fairness constraints */ |
---|
2741 | array_t *ltlConstraintArray; /* constraints converted to LTL */ |
---|
2742 | |
---|
2743 | if (fp == NIL(FILE) ) { |
---|
2744 | /* Nothing to be done. */ |
---|
2745 | return NIL(array_t); |
---|
2746 | } |
---|
2747 | |
---|
2748 | /* Read constraints from file and check for errors. */ |
---|
2749 | constraintArray = Ctlsp_FileParseFormulaArray(fp); |
---|
2750 | if (constraintArray == NIL(array_t)) { |
---|
2751 | (void) fprintf(vis_stderr, |
---|
2752 | "** ctlsp error: error reading fairness constraints.\n"); |
---|
2753 | return NIL(array_t); |
---|
2754 | } |
---|
2755 | if (array_n(constraintArray) == 0) { |
---|
2756 | (void) fprintf(vis_stderr, "** ctlsp error: fairness file is empty.\n"); |
---|
2757 | return NIL(array_t); |
---|
2758 | } |
---|
2759 | /* |
---|
2760 | * Check that each constraint is an LTL formula. |
---|
2761 | */ |
---|
2762 | ltlConstraintArray = Ctlsp_FormulaArrayConvertToLTL(constraintArray); |
---|
2763 | Ctlsp_FormulaArrayFree(constraintArray); |
---|
2764 | if (ltlConstraintArray == NIL(array_t)) { |
---|
2765 | (void) fprintf(vis_stderr, |
---|
2766 | "** ctlsp error: fairness constraints are not LTL formulae.\n"); |
---|
2767 | return NIL(array_t); |
---|
2768 | } |
---|
2769 | |
---|
2770 | return ltlConstraintArray; |
---|
2771 | |
---|
2772 | } /* BmcReadFairnessConstraints */ |
---|
2773 | |
---|
2774 | |
---|
2775 | /**Function******************************************************************** |
---|
2776 | |
---|
2777 | Synopsis [return the cnf index for a bdd node] |
---|
2778 | |
---|
2779 | SideEffects [] |
---|
2780 | |
---|
2781 | ******************************************************************************/ |
---|
2782 | int |
---|
2783 | BmcGetCnfVarIndexForBddNode( |
---|
2784 | bdd_manager *bddManager, |
---|
2785 | bdd_node *node, |
---|
2786 | int state, |
---|
2787 | BmcCnfClauses_t *cnfClauses) |
---|
2788 | { |
---|
2789 | array_t *mvar_list = mdd_ret_mvar_list(bddManager); |
---|
2790 | array_t *bvar_list = mdd_ret_bvar_list(bddManager); |
---|
2791 | |
---|
2792 | char name[100]; |
---|
2793 | char *nodeName; |
---|
2794 | bvar_type bv; |
---|
2795 | mvar_type mv; |
---|
2796 | int nodeIndex = bdd_node_read_index(node); |
---|
2797 | int index, rtnNodeIndex, rtnCode; |
---|
2798 | |
---|
2799 | |
---|
2800 | /* |
---|
2801 | If the node is for a multi-valued varaible. |
---|
2802 | */ |
---|
2803 | if (nodeIndex < array_n(bvar_list)){ |
---|
2804 | bv = array_fetch(bvar_type, bvar_list, nodeIndex); |
---|
2805 | /* |
---|
2806 | get the multi-valued varaible. |
---|
2807 | */ |
---|
2808 | mv = array_fetch(mvar_type, mvar_list, bv.mvar_id); |
---|
2809 | arrayForEachItem(int, mv.bvars, index, rtnNodeIndex) { |
---|
2810 | if (nodeIndex == rtnNodeIndex){ |
---|
2811 | break; |
---|
2812 | } |
---|
2813 | } |
---|
2814 | assert(index < mv.encode_length); |
---|
2815 | /* |
---|
2816 | printf("Name of bdd node %s %d\n", mv.name, index); |
---|
2817 | */ |
---|
2818 | sprintf(name, "%s_%d", mv.name, index); |
---|
2819 | } else { |
---|
2820 | sprintf(name, "Bdd_%d", nodeIndex); |
---|
2821 | } |
---|
2822 | nodeName = util_strsav(name); |
---|
2823 | rtnCode = BmcCnfReadOrInsertNode(cnfClauses, nodeName, state, &nodeIndex); |
---|
2824 | if(rtnCode == 1) { |
---|
2825 | FREE(nodeName); |
---|
2826 | } |
---|
2827 | return nodeIndex; |
---|
2828 | } |
---|
2829 | |
---|
2830 | /*---------------------------------------------------------------------------*/ |
---|
2831 | /* Definition of static functions */ |
---|
2832 | /*---------------------------------------------------------------------------*/ |
---|
2833 | |
---|
2834 | /**Function******************************************************************** |
---|
2835 | |
---|
2836 | Synopsis [Test that the given string is an integer. Returns 0 if string is |
---|
2837 | not an integer, 1 if the integer is too big for int, and 2 if integer fits |
---|
2838 | in int.] |
---|
2839 | |
---|
2840 | SideEffects [Sets the pointer value if the string is an integer small enough |
---|
2841 | for int.] |
---|
2842 | |
---|
2843 | ******************************************************************************/ |
---|
2844 | static int |
---|
2845 | StringCheckIsInteger( |
---|
2846 | char *string, |
---|
2847 | int *value) |
---|
2848 | { |
---|
2849 | char *ptr; |
---|
2850 | long l; |
---|
2851 | |
---|
2852 | l = strtol (string, &ptr, 0) ; |
---|
2853 | if(*ptr != '\0') |
---|
2854 | return 0; |
---|
2855 | if ((l > MAXINT) || (l < -1 - MAXINT)) |
---|
2856 | return 1 ; |
---|
2857 | *value = (int) l; |
---|
2858 | return 2 ; |
---|
2859 | } |
---|
2860 | |
---|
2861 | /**Function******************************************************************** |
---|
2862 | |
---|
2863 | Synopsis [Compare procedure for name comparison.] |
---|
2864 | |
---|
2865 | Description [Compare procedure for name comparison.] |
---|
2866 | |
---|
2867 | SideEffects [] |
---|
2868 | |
---|
2869 | ******************************************************************************/ |
---|
2870 | static int |
---|
2871 | nameCompare( |
---|
2872 | const void * name1, |
---|
2873 | const void * name2) |
---|
2874 | { |
---|
2875 | return(strcmp(*(char**)name1, *(char **)name2)); |
---|
2876 | |
---|
2877 | } /* end of signatureCompare */ |
---|
2878 | |
---|
2879 | |
---|
2880 | |
---|
2881 | |
---|
2882 | /**Function******************************************************************** |
---|
2883 | |
---|
2884 | Synopsis [Print the valuse of variables in the variable list "varNames".] |
---|
2885 | |
---|
2886 | Description [For each variable in the variable list, this functions prints its |
---|
2887 | value in the resultTable if it is different for its value in prevValue. If this |
---|
2888 | variable is a symbolic variable, this function prints its symbolic value.] |
---|
2889 | |
---|
2890 | SideEffects [] |
---|
2891 | |
---|
2892 | ******************************************************************************/ |
---|
2893 | static void |
---|
2894 | printValue( |
---|
2895 | mAig_Manager_t *manager, |
---|
2896 | Ntk_Network_t *network, |
---|
2897 | st_table *nodeToMvfAigTable, |
---|
2898 | BmcCnfClauses_t *cnfClauses, |
---|
2899 | array_t *varNames, |
---|
2900 | st_table *resultTable, |
---|
2901 | int state, |
---|
2902 | int *prevValue) |
---|
2903 | { |
---|
2904 | Ntk_Node_t *node; |
---|
2905 | int i, j; |
---|
2906 | bAigEdge_t bAigId; |
---|
2907 | nameType_t *varName, *nodeName; |
---|
2908 | int value, index; |
---|
2909 | MvfAig_Function_t *MvfAig; |
---|
2910 | int changed = 0; |
---|
2911 | int tmp; |
---|
2912 | |
---|
2913 | for (j=0; j< array_n(varNames); j++) { |
---|
2914 | if (state == 0){ |
---|
2915 | prevValue[j] = -1; |
---|
2916 | } |
---|
2917 | nodeName = array_fetch(char *, varNames, j); |
---|
2918 | /* |
---|
2919 | Fetch the node corresponding to this node name. |
---|
2920 | */ |
---|
2921 | node = Ntk_NetworkFindNodeByName(network, nodeName); |
---|
2922 | /* |
---|
2923 | Get the multi-valued function for each node |
---|
2924 | */ |
---|
2925 | MvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
2926 | /* |
---|
2927 | In case of the multi-valued function is not build for this node, do nothing. |
---|
2928 | We may notify the user. |
---|
2929 | */ |
---|
2930 | if (MvfAig == NIL(MvfAig_Function_t)){ |
---|
2931 | continue; |
---|
2932 | } |
---|
2933 | /* |
---|
2934 | No CNF index for this variable at time "state in the " |
---|
2935 | */ |
---|
2936 | value = -1; |
---|
2937 | for (i=0; i< array_n(MvfAig); i++) { |
---|
2938 | bAigId = MvfAig_FunctionReadComponent(MvfAig, i); |
---|
2939 | /* |
---|
2940 | constant value |
---|
2941 | */ |
---|
2942 | if (bAigId == bAig_One){ |
---|
2943 | /* |
---|
2944 | This variable equal the constant i. |
---|
2945 | */ |
---|
2946 | value = i; |
---|
2947 | break; |
---|
2948 | } |
---|
2949 | if (bAigId != bAig_Zero){ |
---|
2950 | char *tmpStr; |
---|
2951 | |
---|
2952 | nodeName = bAig_NodeReadName(manager, bAigId); |
---|
2953 | /* |
---|
2954 | Build the variable name at state "state". |
---|
2955 | */ |
---|
2956 | tmpStr = util_inttostr(state); |
---|
2957 | varName = util_strcat3(nodeName, "_", tmpStr); |
---|
2958 | if (st_lookup_int(cnfClauses->cnfIndexTable, varName, &index)) { |
---|
2959 | if (bAig_IsInverted(bAigId)){ |
---|
2960 | index = -index; |
---|
2961 | } |
---|
2962 | /*if (searchArray(result, index) > -1){*/ |
---|
2963 | if (st_lookup_int(resultTable, (char *)(long)index, &tmp)){ |
---|
2964 | value = i; |
---|
2965 | break; |
---|
2966 | } |
---|
2967 | } /* if st_lookup_int() */ |
---|
2968 | FREE(tmpStr); |
---|
2969 | FREE(varName); |
---|
2970 | } /* if (bAigId != bAig_Zero) */ |
---|
2971 | } |
---|
2972 | if (value >= 0){ |
---|
2973 | if (value != prevValue[j]){ |
---|
2974 | Var_Variable_t *nodeVar = Ntk_NodeReadVariable(node); |
---|
2975 | |
---|
2976 | prevValue[j] = value; |
---|
2977 | changed = 1; |
---|
2978 | if (Var_VariableTestIsSymbolic(nodeVar)) { |
---|
2979 | char *symbolicValue = Var_VariableReadSymbolicValueFromIndex(nodeVar, value); |
---|
2980 | |
---|
2981 | (void) fprintf(vis_stdout,"%s:%s\n", Ntk_NodeReadName(node), symbolicValue); |
---|
2982 | } |
---|
2983 | else { |
---|
2984 | (void) fprintf(vis_stdout,"%s:%d\n", Ntk_NodeReadName(node), value); |
---|
2985 | } |
---|
2986 | } |
---|
2987 | } else { |
---|
2988 | /* |
---|
2989 | This variable does not have value in the current time frame. It means its value |
---|
2990 | is not important at this time frame. |
---|
2991 | */ |
---|
2992 | (void) fprintf(vis_stdout,"%s:X\n", Ntk_NodeReadName(node)); |
---|
2993 | } |
---|
2994 | } /* for j loop */ |
---|
2995 | if (changed == 0){ |
---|
2996 | fprintf( vis_stdout, "<Unchanged>\n"); |
---|
2997 | } |
---|
2998 | |
---|
2999 | }/* end of printValue() */ |
---|
3000 | |
---|
3001 | |
---|
3002 | |
---|
3003 | /**Function******************************************************************** |
---|
3004 | |
---|
3005 | Synopsis [Print the valuse of variables in the variable list "varNames".] |
---|
3006 | |
---|
3007 | Description [For each variable in the variable list, this functions prints the |
---|
3008 | values of names, which do not start with $_ as these are true |
---|
3009 | latches of the model. Since this is in aiger format, hence all |
---|
3010 | the values are printed even if they didn't change from the |
---|
3011 | previous values.] |
---|
3012 | |
---|
3013 | SideEffects [] |
---|
3014 | |
---|
3015 | ******************************************************************************/ |
---|
3016 | static void |
---|
3017 | printValueAiger( |
---|
3018 | mAig_Manager_t *manager, |
---|
3019 | Ntk_Network_t *network, |
---|
3020 | st_table *nodeToMvfAigTable, |
---|
3021 | BmcCnfClauses_t *cnfClauses, |
---|
3022 | array_t *varNames, |
---|
3023 | st_table *resultTable, |
---|
3024 | int state, |
---|
3025 | int *prevValue) |
---|
3026 | { |
---|
3027 | Ntk_Node_t *node; |
---|
3028 | int i, j; |
---|
3029 | bAigEdge_t bAigId; |
---|
3030 | nameType_t *varName, *nodeName; |
---|
3031 | int value, index; |
---|
3032 | MvfAig_Function_t *MvfAig; |
---|
3033 | int tmp; |
---|
3034 | char * NodeName; |
---|
3035 | |
---|
3036 | for (j=0; j< array_n(varNames); j++) { |
---|
3037 | if (state == 0){ |
---|
3038 | prevValue[j] = -1; |
---|
3039 | } |
---|
3040 | nodeName = array_fetch(char *, varNames, j); |
---|
3041 | /* |
---|
3042 | Fetch the node corresponding to this node name. |
---|
3043 | */ |
---|
3044 | node = Ntk_NetworkFindNodeByName(network, nodeName); |
---|
3045 | /* |
---|
3046 | Get the multi-valued function for each node |
---|
3047 | */ |
---|
3048 | MvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
3049 | /* |
---|
3050 | In case of the multi-valued function is not build for this node, do nothing. |
---|
3051 | We may notify the user. |
---|
3052 | */ |
---|
3053 | if (MvfAig == NIL(MvfAig_Function_t)){ |
---|
3054 | continue; |
---|
3055 | } |
---|
3056 | /* |
---|
3057 | No CNF index for this variable at time "state in the " |
---|
3058 | */ |
---|
3059 | value = -1; |
---|
3060 | for (i=0; i< array_n(MvfAig); i++) { |
---|
3061 | bAigId = MvfAig_FunctionReadComponent(MvfAig, i); |
---|
3062 | /* |
---|
3063 | constant value |
---|
3064 | */ |
---|
3065 | if (bAigId == bAig_One){ |
---|
3066 | /* |
---|
3067 | This variable equal the constant i. |
---|
3068 | */ |
---|
3069 | value = i; |
---|
3070 | break; |
---|
3071 | } |
---|
3072 | if (bAigId != bAig_Zero){ |
---|
3073 | char *tmpStr; |
---|
3074 | |
---|
3075 | nodeName = bAig_NodeReadName(manager, bAigId); |
---|
3076 | /* |
---|
3077 | Build the variable name at state "state". |
---|
3078 | */ |
---|
3079 | tmpStr = util_inttostr(state); |
---|
3080 | varName = util_strcat3(nodeName, "_", tmpStr); |
---|
3081 | if (st_lookup_int(cnfClauses->cnfIndexTable, varName, &index)) { |
---|
3082 | if (bAig_IsInverted(bAigId)){ |
---|
3083 | index = -index; |
---|
3084 | } |
---|
3085 | /*if (searchArray(result, index) > -1){*/ |
---|
3086 | if (st_lookup_int(resultTable, (char *)(long)index, &tmp)){ |
---|
3087 | value = i; |
---|
3088 | break; |
---|
3089 | } |
---|
3090 | } /* if st_lookup_int() */ |
---|
3091 | FREE(tmpStr); |
---|
3092 | FREE(varName); |
---|
3093 | } /* if (bAigId != bAig_Zero) */ |
---|
3094 | } |
---|
3095 | NodeName = Ntk_NodeReadName(node); |
---|
3096 | if(!((NodeName[0] == '$') && (NodeName[1] == '_'))) |
---|
3097 | { |
---|
3098 | if (value >= 0){ |
---|
3099 | Var_Variable_t *nodeVar = Ntk_NodeReadVariable(node); |
---|
3100 | |
---|
3101 | prevValue[j] = value; |
---|
3102 | if (Var_VariableTestIsSymbolic(nodeVar)) { |
---|
3103 | char *symbolicValue = Var_VariableReadSymbolicValueFromIndex(nodeVar, value); |
---|
3104 | |
---|
3105 | (void) fprintf(vis_stdout,"%s", symbolicValue); |
---|
3106 | } |
---|
3107 | else { |
---|
3108 | (void) fprintf(vis_stdout,"%d", value); |
---|
3109 | } |
---|
3110 | } else { |
---|
3111 | /* |
---|
3112 | This variable does not have value in the current time frame. It means its value |
---|
3113 | is not important at this time frame. |
---|
3114 | */ |
---|
3115 | (void) fprintf(vis_stdout,"x" ); |
---|
3116 | } |
---|
3117 | } /* these nodes are latches in front of inputs so they will be printed out as inputs */ |
---|
3118 | } /* for j loop */ |
---|
3119 | }/* end of printValueAiger() */ |
---|
3120 | |
---|
3121 | |
---|
3122 | /**Function******************************************************************** |
---|
3123 | |
---|
3124 | Synopsis [Print the valuse of variables in the variable list "varNames".] |
---|
3125 | |
---|
3126 | Description [For each variable in the variable list, this functions checks if |
---|
3127 | the name starts with $_, which means that those latches are |
---|
3128 | actually storing the value of inputs. This modification to the |
---|
3129 | model is externally done and not done by VIS so this method is |
---|
3130 | only specific to certain type of model, the output of aigtoblif |
---|
3131 | translator.] |
---|
3132 | |
---|
3133 | SideEffects [] |
---|
3134 | |
---|
3135 | ******************************************************************************/ |
---|
3136 | static void |
---|
3137 | printValueAigerInputs( |
---|
3138 | mAig_Manager_t *manager, |
---|
3139 | Ntk_Network_t *network, |
---|
3140 | st_table *nodeToMvfAigTable, |
---|
3141 | BmcCnfClauses_t *cnfClauses, |
---|
3142 | array_t *varNames, |
---|
3143 | st_table *resultTable, |
---|
3144 | int state, |
---|
3145 | int *prevValue) |
---|
3146 | { |
---|
3147 | Ntk_Node_t *node; |
---|
3148 | int i, j; |
---|
3149 | bAigEdge_t bAigId; |
---|
3150 | nameType_t *varName, *nodeName; |
---|
3151 | int value, index; |
---|
3152 | MvfAig_Function_t *MvfAig; |
---|
3153 | int tmp; |
---|
3154 | char * NodeName; |
---|
3155 | |
---|
3156 | for (j=0; j< array_n(varNames); j++) { |
---|
3157 | if (state == 0){ |
---|
3158 | prevValue[j] = -1; |
---|
3159 | } |
---|
3160 | nodeName = array_fetch(char *, varNames, j); |
---|
3161 | /* |
---|
3162 | Fetch the node corresponding to this node name. |
---|
3163 | */ |
---|
3164 | node = Ntk_NetworkFindNodeByName(network, nodeName); |
---|
3165 | /* |
---|
3166 | Get the multi-valued function for each node |
---|
3167 | */ |
---|
3168 | MvfAig = Bmc_ReadMvfAig(node, nodeToMvfAigTable); |
---|
3169 | /* |
---|
3170 | In case of the multi-valued function is not build for this node, do nothing. |
---|
3171 | We may notify the user. |
---|
3172 | */ |
---|
3173 | if (MvfAig == NIL(MvfAig_Function_t)){ |
---|
3174 | continue; |
---|
3175 | } |
---|
3176 | /* |
---|
3177 | No CNF index for this variable at time "state in the " |
---|
3178 | */ |
---|
3179 | value = -1; |
---|
3180 | for (i=0; i< array_n(MvfAig); i++) { |
---|
3181 | bAigId = MvfAig_FunctionReadComponent(MvfAig, i); |
---|
3182 | /* |
---|
3183 | constant value |
---|
3184 | */ |
---|
3185 | if (bAigId == bAig_One){ |
---|
3186 | /* |
---|
3187 | This variable equal the constant i. |
---|
3188 | */ |
---|
3189 | value = i; |
---|
3190 | break; |
---|
3191 | } |
---|
3192 | if (bAigId != bAig_Zero){ |
---|
3193 | char *tmpStr; |
---|
3194 | |
---|
3195 | nodeName = bAig_NodeReadName(manager, bAigId); |
---|
3196 | /* |
---|
3197 | Build the variable name at state "state". |
---|
3198 | */ |
---|
3199 | tmpStr = util_inttostr(state); |
---|
3200 | varName = util_strcat3(nodeName, "_", tmpStr); |
---|
3201 | if (st_lookup_int(cnfClauses->cnfIndexTable, varName, &index)) { |
---|
3202 | if (bAig_IsInverted(bAigId)){ |
---|
3203 | index = -index; |
---|
3204 | } |
---|
3205 | /*if (searchArray(result, index) > -1){*/ |
---|
3206 | if (st_lookup_int(resultTable, (char *)(long)index, &tmp)){ |
---|
3207 | value = i; |
---|
3208 | break; |
---|
3209 | } |
---|
3210 | } /* if st_lookup_int() */ |
---|
3211 | FREE(tmpStr); |
---|
3212 | FREE(varName); |
---|
3213 | } /* if (bAigId != bAig_Zero) */ |
---|
3214 | } |
---|
3215 | NodeName = Ntk_NodeReadName(node); |
---|
3216 | if((NodeName[0] == '$') && (NodeName[1] == '_')) |
---|
3217 | { |
---|
3218 | if (value >= 0){ |
---|
3219 | Var_Variable_t *nodeVar = Ntk_NodeReadVariable(node); |
---|
3220 | |
---|
3221 | prevValue[j] = value; |
---|
3222 | if (Var_VariableTestIsSymbolic(nodeVar)) { |
---|
3223 | char *symbolicValue = Var_VariableReadSymbolicValueFromIndex(nodeVar, value); |
---|
3224 | |
---|
3225 | (void) fprintf(vis_stdout,"%s", symbolicValue); |
---|
3226 | } |
---|
3227 | else { |
---|
3228 | (void) fprintf(vis_stdout,"%d", value); |
---|
3229 | } |
---|
3230 | } else { |
---|
3231 | /* |
---|
3232 | This variable does not have value in the current time frame. It means its value |
---|
3233 | is not important at this time frame. |
---|
3234 | */ |
---|
3235 | (void) fprintf(vis_stdout,"x" ); |
---|
3236 | } |
---|
3237 | } /* these nodes are latches in front of inputs so they will be printed out as inputs */ |
---|
3238 | } /* for j loop */ |
---|
3239 | }/* end of printValueAigerInputs() */ |
---|
3240 | |
---|
3241 | |
---|
3242 | |
---|