1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [eqvMisc.c] |
---|
4 | |
---|
5 | PackageName [eqv] |
---|
6 | |
---|
7 | Synopsis [This file provides some miscellaneous functions for the eqv |
---|
8 | package.] |
---|
9 | |
---|
10 | Description [] |
---|
11 | |
---|
12 | SeeAlso [] |
---|
13 | |
---|
14 | Author [Shaz Qadeer] |
---|
15 | |
---|
16 | Copyright [Copyright (c) 1994-1996 The Regents of the Univ. of California. |
---|
17 | All rights reserved. |
---|
18 | |
---|
19 | Permission is hereby granted, without written agreement and without license |
---|
20 | or royalty fees, to use, copy, modify, and distribute this software and its |
---|
21 | documentation for any purpose, provided that the above copyright notice and |
---|
22 | the following two paragraphs appear in all copies of this software. |
---|
23 | |
---|
24 | IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR |
---|
25 | DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT |
---|
26 | OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF |
---|
27 | CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
28 | |
---|
29 | THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, |
---|
30 | INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
---|
31 | FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN |
---|
32 | "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO PROVIDE |
---|
33 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.] |
---|
34 | |
---|
35 | ******************************************************************************/ |
---|
36 | |
---|
37 | #include "eqvInt.h" |
---|
38 | |
---|
39 | static char rcsid[] UNUSED = "$Id: eqvMisc.c,v 1.10 2009/04/11 01:40:06 fabio Exp $"; |
---|
40 | |
---|
41 | /*---------------------------------------------------------------------------*/ |
---|
42 | /* Constant declarations */ |
---|
43 | /*---------------------------------------------------------------------------*/ |
---|
44 | |
---|
45 | |
---|
46 | /*---------------------------------------------------------------------------*/ |
---|
47 | /* Type declarations */ |
---|
48 | /*---------------------------------------------------------------------------*/ |
---|
49 | |
---|
50 | |
---|
51 | /*---------------------------------------------------------------------------*/ |
---|
52 | /* Structure declarations */ |
---|
53 | /*---------------------------------------------------------------------------*/ |
---|
54 | |
---|
55 | |
---|
56 | /*---------------------------------------------------------------------------*/ |
---|
57 | /* Variable declarations */ |
---|
58 | /*---------------------------------------------------------------------------*/ |
---|
59 | |
---|
60 | |
---|
61 | /*---------------------------------------------------------------------------*/ |
---|
62 | /* Macro declarations */ |
---|
63 | /*---------------------------------------------------------------------------*/ |
---|
64 | |
---|
65 | |
---|
66 | /**AutomaticStart*************************************************************/ |
---|
67 | |
---|
68 | /*---------------------------------------------------------------------------*/ |
---|
69 | /* Static function prototypes */ |
---|
70 | /*---------------------------------------------------------------------------*/ |
---|
71 | |
---|
72 | static boolean NodesMatchUp(Ntk_Node_t *node1, Ntk_Node_t *node2); |
---|
73 | |
---|
74 | /**AutomaticEnd***************************************************************/ |
---|
75 | |
---|
76 | |
---|
77 | /*---------------------------------------------------------------------------*/ |
---|
78 | /* Definition of exported functions */ |
---|
79 | /*---------------------------------------------------------------------------*/ |
---|
80 | |
---|
81 | |
---|
82 | /*---------------------------------------------------------------------------*/ |
---|
83 | /* Definition of internal functions */ |
---|
84 | /*---------------------------------------------------------------------------*/ |
---|
85 | /**Function******************************************************************** |
---|
86 | |
---|
87 | Synopsis [This function returns a hash table of corresponding primary input |
---|
88 | nodes in network1 and network2.] |
---|
89 | |
---|
90 | Description [The hash table returned by the function contains corresponding |
---|
91 | primary input nodes in network1 and network2. The correspondence |
---|
92 | is based on the names of the nodes. The following conditions |
---|
93 | constitute an error: |
---|
94 | 1) the number of primary inputs in the two networks is different. |
---|
95 | 2) there is no primary input in network2 by the same name as |
---|
96 | one occurring in network1. |
---|
97 | 3) the two primary inputs in network1 and network2 having the |
---|
98 | same names have different variable types. |
---|
99 | If an error occurs, NULL is returned.] |
---|
100 | |
---|
101 | SideEffects [] |
---|
102 | |
---|
103 | SeeAlso [] |
---|
104 | |
---|
105 | ******************************************************************************/ |
---|
106 | st_table * |
---|
107 | MapPrimaryInputsByName( |
---|
108 | Ntk_Network_t *network1, |
---|
109 | Ntk_Network_t *network2) |
---|
110 | { |
---|
111 | lsGen gen1, gen2; |
---|
112 | Ntk_Node_t *node1, *node2; |
---|
113 | Var_Variable_t *var1, *var2; |
---|
114 | char *name1, *name2; |
---|
115 | boolean flag = FALSE; |
---|
116 | boolean equivalent = TRUE; |
---|
117 | boolean causeOfError = TRUE; |
---|
118 | st_table *inputMap; |
---|
119 | int numValues; |
---|
120 | int i; |
---|
121 | |
---|
122 | if(Ntk_NetworkReadNumPrimaryInputs(network1) != |
---|
123 | Ntk_NetworkReadNumPrimaryInputs(network2)) { |
---|
124 | error_append("Different number of primary inputs in the two networks\n"); |
---|
125 | return NIL(st_table); |
---|
126 | } |
---|
127 | inputMap = st_init_table(st_ptrcmp, st_ptrhash); |
---|
128 | Ntk_NetworkForEachPrimaryInput(network1, gen1, node1) { |
---|
129 | name1 = Ntk_NodeReadName(node1); |
---|
130 | Ntk_NetworkForEachPrimaryInput(network2, gen2, node2) { |
---|
131 | name2 = Ntk_NodeReadName(node2); |
---|
132 | if (strcmp(name1, name2) == 0) { |
---|
133 | boolean a, b; |
---|
134 | |
---|
135 | var1 = Ntk_NodeReadVariable(node1); |
---|
136 | var2 = Ntk_NodeReadVariable(node2); |
---|
137 | a = Var_VariableTestIsEnumerative(var1); |
---|
138 | b = Var_VariableTestIsEnumerative(var2); |
---|
139 | if((a && !b) || (!a && b)) { |
---|
140 | error_append("Input "); |
---|
141 | error_append(name1); |
---|
142 | error_append(" and "); |
---|
143 | error_append(name2); |
---|
144 | error_append(" have different variable types\n"); |
---|
145 | causeOfError = FALSE; |
---|
146 | } |
---|
147 | else { |
---|
148 | numValues = Var_VariableReadNumValues(var1); |
---|
149 | if(a && b) { |
---|
150 | if(numValues == Var_VariableReadNumValues(var2)) { |
---|
151 | st_insert(inputMap, (char *) node1, (char *) node2); |
---|
152 | flag = TRUE; |
---|
153 | } |
---|
154 | else { |
---|
155 | error_append("Input "); |
---|
156 | error_append(name1); |
---|
157 | error_append(" and "); |
---|
158 | error_append(name2); |
---|
159 | error_append(" have different range of values\n"); |
---|
160 | causeOfError = FALSE; |
---|
161 | } |
---|
162 | } |
---|
163 | else {/* both are symbolic */ |
---|
164 | boolean flag2 = TRUE; |
---|
165 | for(i=0; i<numValues; i++) { |
---|
166 | if(strcmp(Var_VariableReadSymbolicValueFromIndex(var1, i), |
---|
167 | Var_VariableReadSymbolicValueFromIndex(var2, i))) |
---|
168 | { |
---|
169 | flag2 = FALSE; |
---|
170 | error_append("Input "); |
---|
171 | error_append(name1); |
---|
172 | error_append(" and "); |
---|
173 | error_append(name2); |
---|
174 | error_append(" have different symbolic values\n"); |
---|
175 | causeOfError = FALSE; |
---|
176 | } |
---|
177 | } |
---|
178 | if(flag2) { |
---|
179 | st_insert(inputMap, (char *) node1, (char *) node2); |
---|
180 | flag = TRUE; |
---|
181 | } |
---|
182 | } |
---|
183 | } |
---|
184 | } |
---|
185 | } |
---|
186 | |
---|
187 | if(!flag) { |
---|
188 | equivalent = FALSE; /* name1 did not find a match in network2 */ |
---|
189 | if(causeOfError) { |
---|
190 | error_append("Input "); |
---|
191 | error_append(name1); |
---|
192 | error_append(" does not have a match\n"); |
---|
193 | } |
---|
194 | else { |
---|
195 | causeOfError = TRUE; |
---|
196 | } |
---|
197 | } |
---|
198 | else { |
---|
199 | flag = FALSE; |
---|
200 | } |
---|
201 | } |
---|
202 | |
---|
203 | |
---|
204 | if(!equivalent) { |
---|
205 | st_free_table(inputMap); |
---|
206 | return NIL(st_table); |
---|
207 | } |
---|
208 | else { |
---|
209 | return inputMap; |
---|
210 | } |
---|
211 | } |
---|
212 | |
---|
213 | /**Function******************************************************************** |
---|
214 | |
---|
215 | Synopsis [The function returns a hash table of corresponding |
---|
216 | combinational input nodes in network1 and network2.] |
---|
217 | |
---|
218 | Description [The hash table returned by the function contains corresponding |
---|
219 | combinational input nodes in network1 and network2. The |
---|
220 | correspondence is based on the names of the nodes. The |
---|
221 | following conditions constitute an error: |
---|
222 | 1) the number of combinational inputs in the two networks is |
---|
223 | different. |
---|
224 | 2) there is no combinational input in network2 by the same name as |
---|
225 | one occurring in network1. |
---|
226 | 3) the two combinational inputs in network1 and network2 having |
---|
227 | same names have different variable types. |
---|
228 | If an error occurs, NULL is returned.] |
---|
229 | |
---|
230 | SideEffects [] |
---|
231 | |
---|
232 | SeeAlso [] |
---|
233 | |
---|
234 | ******************************************************************************/ |
---|
235 | st_table * |
---|
236 | MapCombInputsByName( |
---|
237 | Ntk_Network_t *network1, |
---|
238 | Ntk_Network_t *network2) |
---|
239 | { |
---|
240 | lsGen gen1, gen2; |
---|
241 | Ntk_Node_t *node1, *node2; |
---|
242 | Var_Variable_t *var1, *var2; |
---|
243 | char *name1, *name2; |
---|
244 | boolean flag = FALSE; |
---|
245 | boolean equivalent = TRUE; |
---|
246 | boolean causeOfError = TRUE; |
---|
247 | st_table *inputMap; |
---|
248 | int numValues; |
---|
249 | int i; |
---|
250 | |
---|
251 | if(Ntk_NetworkReadNumCombInputs(network1) != |
---|
252 | Ntk_NetworkReadNumCombInputs(network2)) { |
---|
253 | error_append("Different number of combinational inputs in the two networks\n"); |
---|
254 | return NIL(st_table); |
---|
255 | } |
---|
256 | inputMap = st_init_table(st_ptrcmp, st_ptrhash); |
---|
257 | Ntk_NetworkForEachCombInput(network1, gen1, node1) { |
---|
258 | name1 = Ntk_NodeReadName(node1); |
---|
259 | Ntk_NetworkForEachCombInput(network2, gen2, node2) { |
---|
260 | name2 = Ntk_NodeReadName(node2); |
---|
261 | if (strcmp(name1, name2) == 0) { |
---|
262 | boolean a, b; |
---|
263 | |
---|
264 | var1 = Ntk_NodeReadVariable(node1); |
---|
265 | var2 = Ntk_NodeReadVariable(node2); |
---|
266 | a = Var_VariableTestIsEnumerative(var1); |
---|
267 | b = Var_VariableTestIsEnumerative(var2); |
---|
268 | if((a && !b) || (!a && b)) { |
---|
269 | error_append("Input "); |
---|
270 | error_append(name1); |
---|
271 | error_append(" and "); |
---|
272 | error_append(name2); |
---|
273 | error_append(" have different variable types\n"); |
---|
274 | causeOfError = FALSE; |
---|
275 | } |
---|
276 | else { |
---|
277 | numValues = Var_VariableReadNumValues(var1); |
---|
278 | if(a && b) { |
---|
279 | if(numValues == Var_VariableReadNumValues(var2)) { |
---|
280 | st_insert(inputMap, (char *) node1, (char *) node2); |
---|
281 | flag = TRUE; |
---|
282 | } |
---|
283 | else { |
---|
284 | error_append("Input "); |
---|
285 | error_append(name1); |
---|
286 | error_append(" and "); |
---|
287 | error_append(name2); |
---|
288 | error_append(" have different range of values\n"); |
---|
289 | causeOfError = FALSE; |
---|
290 | } |
---|
291 | } |
---|
292 | else {/* both are symbolic */ |
---|
293 | boolean flag2 = TRUE; |
---|
294 | for(i=0; i<numValues; i++) { |
---|
295 | if(strcmp(Var_VariableReadSymbolicValueFromIndex(var1, i), |
---|
296 | Var_VariableReadSymbolicValueFromIndex(var2, i))) |
---|
297 | { |
---|
298 | flag2 = FALSE; |
---|
299 | error_append("Input "); |
---|
300 | error_append(name1); |
---|
301 | error_append(" and "); |
---|
302 | error_append(name2); |
---|
303 | error_append(" have different symbolic values\n"); |
---|
304 | causeOfError = FALSE; |
---|
305 | } |
---|
306 | } |
---|
307 | if(flag2) { |
---|
308 | st_insert(inputMap, (char *) node1, (char *) node2); |
---|
309 | flag = TRUE; |
---|
310 | } |
---|
311 | } |
---|
312 | } |
---|
313 | } |
---|
314 | } |
---|
315 | |
---|
316 | if(!flag) { |
---|
317 | equivalent = FALSE; /* name1 did not find a match in network2 */ |
---|
318 | if(causeOfError) { |
---|
319 | error_append("Input "); |
---|
320 | error_append(name1); |
---|
321 | error_append(" does not have a match\n"); |
---|
322 | } |
---|
323 | else { |
---|
324 | causeOfError = TRUE; |
---|
325 | } |
---|
326 | } |
---|
327 | else { |
---|
328 | flag = FALSE; |
---|
329 | } |
---|
330 | } |
---|
331 | |
---|
332 | |
---|
333 | if(!equivalent) { |
---|
334 | st_free_table(inputMap); |
---|
335 | return NIL(st_table); |
---|
336 | } |
---|
337 | else { |
---|
338 | return inputMap; |
---|
339 | } |
---|
340 | } |
---|
341 | |
---|
342 | /**Function******************************************************************** |
---|
343 | |
---|
344 | Synopsis [This function returns a hash table of corresponding primary |
---|
345 | output nodes in network1 and network2.] |
---|
346 | |
---|
347 | Description [The hash table returned by the function contains corresponding |
---|
348 | primary output nodes in network1 and network2. The correspondence |
---|
349 | is based on the names of the nodes. The following conditions |
---|
350 | constitute an error: |
---|
351 | 1) the number of primary outputs in the two networks is different. |
---|
352 | 2) there is no primary output in network2 by the same name as |
---|
353 | one occurring in network1. |
---|
354 | 3) the two primary outputs in network1 and network2 having the |
---|
355 | same names have different variable types. |
---|
356 | If an error occurs, NULL is returned.] |
---|
357 | |
---|
358 | SideEffects [] |
---|
359 | |
---|
360 | SeeAlso [] |
---|
361 | |
---|
362 | ******************************************************************************/ |
---|
363 | st_table * |
---|
364 | MapPrimaryOutputsByName( |
---|
365 | Ntk_Network_t *network1, |
---|
366 | Ntk_Network_t *network2) |
---|
367 | { |
---|
368 | lsGen gen1, gen2; |
---|
369 | Ntk_Node_t *node1, *node2; |
---|
370 | Var_Variable_t *var1, *var2; |
---|
371 | char *name1, *name2; |
---|
372 | boolean flag = FALSE; |
---|
373 | boolean equivalent = TRUE; |
---|
374 | boolean causeOfError = TRUE; |
---|
375 | st_table *outputMap; |
---|
376 | int numValues; |
---|
377 | int i; |
---|
378 | |
---|
379 | if(Ntk_NetworkReadNumPrimaryOutputs(network1) != |
---|
380 | Ntk_NetworkReadNumPrimaryOutputs(network2)) { |
---|
381 | error_append("Different number of primary outputs in the two networks\n"); |
---|
382 | return NIL(st_table); |
---|
383 | } |
---|
384 | outputMap = st_init_table(st_ptrcmp, st_ptrhash); |
---|
385 | Ntk_NetworkForEachPrimaryOutput(network1, gen1, node1) { |
---|
386 | name1 = Ntk_NodeReadName(node1); |
---|
387 | Ntk_NetworkForEachPrimaryOutput(network2, gen2, node2) { |
---|
388 | name2 = Ntk_NodeReadName(node2); |
---|
389 | if (strcmp(name1, name2) == 0) { |
---|
390 | boolean a, b; |
---|
391 | |
---|
392 | var1 = Ntk_NodeReadVariable(node1); |
---|
393 | var2 = Ntk_NodeReadVariable(node2); |
---|
394 | a = Var_VariableTestIsEnumerative(var1); |
---|
395 | b = Var_VariableTestIsEnumerative(var2); |
---|
396 | if((a && !b) || (!a && b)) { |
---|
397 | error_append("Output "); |
---|
398 | error_append(name1); |
---|
399 | error_append(" and "); |
---|
400 | error_append(name2); |
---|
401 | error_append(" have different variable types\n"); |
---|
402 | causeOfError = FALSE; |
---|
403 | } |
---|
404 | else { |
---|
405 | numValues = Var_VariableReadNumValues(var1); |
---|
406 | if(a && b) { |
---|
407 | if(numValues == Var_VariableReadNumValues(var2)) { |
---|
408 | st_insert(outputMap, (char *) node1, (char *) node2); |
---|
409 | flag = TRUE; |
---|
410 | } |
---|
411 | else { |
---|
412 | error_append("Output "); |
---|
413 | error_append(name1); |
---|
414 | error_append(" and "); |
---|
415 | error_append(name2); |
---|
416 | error_append(" have different range of values\n"); |
---|
417 | causeOfError = FALSE; |
---|
418 | } |
---|
419 | } |
---|
420 | else {/* both are symbolic */ |
---|
421 | boolean flag2 = TRUE; |
---|
422 | for(i=0; i<numValues; i++) { |
---|
423 | if(strcmp(Var_VariableReadSymbolicValueFromIndex(var1, i), |
---|
424 | Var_VariableReadSymbolicValueFromIndex(var2, i))) |
---|
425 | { |
---|
426 | flag2 = FALSE; |
---|
427 | error_append("Output "); |
---|
428 | error_append(name1); |
---|
429 | error_append(" and "); |
---|
430 | error_append(name2); |
---|
431 | error_append(" have different symbolic values\n"); |
---|
432 | causeOfError = FALSE; |
---|
433 | } |
---|
434 | } |
---|
435 | if(flag2) { |
---|
436 | st_insert(outputMap, (char *) node1, (char *) node2); |
---|
437 | flag = TRUE; |
---|
438 | } |
---|
439 | } |
---|
440 | } |
---|
441 | |
---|
442 | } |
---|
443 | } |
---|
444 | |
---|
445 | if(!flag) { |
---|
446 | equivalent = FALSE; /* name1 did not find a match in network2 */ |
---|
447 | if(causeOfError) { |
---|
448 | error_append("Output "); |
---|
449 | error_append(name1); |
---|
450 | error_append(" does not have a match\n"); |
---|
451 | } |
---|
452 | else { |
---|
453 | causeOfError = TRUE; |
---|
454 | } |
---|
455 | } |
---|
456 | else { |
---|
457 | flag = FALSE; |
---|
458 | } |
---|
459 | } |
---|
460 | |
---|
461 | |
---|
462 | if(!equivalent) { |
---|
463 | st_free_table(outputMap); |
---|
464 | return NIL(st_table); |
---|
465 | } |
---|
466 | else { |
---|
467 | return outputMap; |
---|
468 | } |
---|
469 | } |
---|
470 | |
---|
471 | /**Function******************************************************************** |
---|
472 | |
---|
473 | Synopsis [This function returns a hash table of corresponding |
---|
474 | combinational output nodes in network1 and network2.] |
---|
475 | |
---|
476 | Description [The hash table returned by the function contains corresponding |
---|
477 | combinational output nodes in network1 and network2. The |
---|
478 | correspondence is based on the names of the nodes. The |
---|
479 | following conditions constitute an error: |
---|
480 | 1) the number of combinational outputs in the two networks is |
---|
481 | different. |
---|
482 | 2) there is no combinational output in network2 by the same |
---|
483 | name as one occurring in network1. |
---|
484 | 3) the two combinational outputs in network1 and network2 having |
---|
485 | same names have different variable types. |
---|
486 | If an error occurs, NULL is returned.] |
---|
487 | |
---|
488 | SideEffects [] |
---|
489 | |
---|
490 | SeeAlso [] |
---|
491 | |
---|
492 | ******************************************************************************/ |
---|
493 | st_table * |
---|
494 | MapCombOutputsByName( |
---|
495 | Ntk_Network_t *network1, |
---|
496 | Ntk_Network_t *network2) |
---|
497 | { |
---|
498 | lsGen gen1, gen2; |
---|
499 | Ntk_Node_t *node1, *node2; |
---|
500 | Var_Variable_t *var1, *var2; |
---|
501 | char *name1, *name2; |
---|
502 | boolean flag = FALSE; |
---|
503 | boolean equivalent = TRUE; |
---|
504 | boolean causeOfError = TRUE; |
---|
505 | st_table *outputMap; |
---|
506 | int numValues; |
---|
507 | int i; |
---|
508 | |
---|
509 | if(Ntk_NetworkReadNumCombOutputs(network1) != |
---|
510 | Ntk_NetworkReadNumCombOutputs(network2)) { |
---|
511 | error_append("Different number of combinational outputs in the two networks\n"); |
---|
512 | return NIL(st_table); |
---|
513 | } |
---|
514 | outputMap = st_init_table(st_ptrcmp, st_ptrhash); |
---|
515 | Ntk_NetworkForEachCombOutput(network1, gen1, node1) { |
---|
516 | name1 = Ntk_NodeReadName(node1); |
---|
517 | Ntk_NetworkForEachCombOutput(network2, gen2, node2) { |
---|
518 | name2 = Ntk_NodeReadName(node2); |
---|
519 | if (NodesMatchUp(node1, node2)) { |
---|
520 | boolean a, b; |
---|
521 | |
---|
522 | var1 = Ntk_NodeReadVariable(node1); |
---|
523 | var2 = Ntk_NodeReadVariable(node2); |
---|
524 | a = Var_VariableTestIsEnumerative(var1); |
---|
525 | b = Var_VariableTestIsEnumerative(var2); |
---|
526 | if((a && !b) || (!a && b)) { |
---|
527 | error_append("Output "); |
---|
528 | error_append(name1); |
---|
529 | error_append(" and "); |
---|
530 | error_append(name2); |
---|
531 | error_append(" have different variable types\n"); |
---|
532 | causeOfError = FALSE; |
---|
533 | } |
---|
534 | else { |
---|
535 | numValues = Var_VariableReadNumValues(var1); |
---|
536 | if(a && b) { |
---|
537 | if(numValues == Var_VariableReadNumValues(var2)) { |
---|
538 | st_insert(outputMap, (char *) node1, (char *) node2); |
---|
539 | flag = TRUE; |
---|
540 | } |
---|
541 | else { |
---|
542 | error_append("Output "); |
---|
543 | error_append(name1); |
---|
544 | error_append(" and "); |
---|
545 | error_append(name2); |
---|
546 | error_append(" have different range of values\n"); |
---|
547 | causeOfError = FALSE; |
---|
548 | } |
---|
549 | } |
---|
550 | else {/* both are symbolic */ |
---|
551 | boolean flag2 = TRUE; |
---|
552 | for(i=0; i<numValues; i++) { |
---|
553 | if(strcmp(Var_VariableReadSymbolicValueFromIndex(var1, i), |
---|
554 | Var_VariableReadSymbolicValueFromIndex(var2, i))) |
---|
555 | { |
---|
556 | flag2 = FALSE; |
---|
557 | error_append("Output "); |
---|
558 | error_append(name1); |
---|
559 | error_append(" and "); |
---|
560 | error_append(name2); |
---|
561 | error_append(" have different symbolic values\n"); |
---|
562 | causeOfError = FALSE; |
---|
563 | } |
---|
564 | } |
---|
565 | if(flag2) { |
---|
566 | st_insert(outputMap, (char *) node1, (char *) node2); |
---|
567 | flag = TRUE; |
---|
568 | break; |
---|
569 | } |
---|
570 | } |
---|
571 | } |
---|
572 | } |
---|
573 | } |
---|
574 | |
---|
575 | if(!flag) { |
---|
576 | equivalent = FALSE; /* name1 did not find a match in network2 */ |
---|
577 | if(causeOfError) { |
---|
578 | error_append("Output "); |
---|
579 | error_append(name1); |
---|
580 | error_append(" does not have a match\n"); |
---|
581 | } |
---|
582 | else { |
---|
583 | causeOfError = TRUE; |
---|
584 | } |
---|
585 | } |
---|
586 | else { |
---|
587 | flag = FALSE; |
---|
588 | } |
---|
589 | } |
---|
590 | |
---|
591 | |
---|
592 | if(!equivalent) { |
---|
593 | st_free_table(outputMap); |
---|
594 | return NIL(st_table); |
---|
595 | } |
---|
596 | else { |
---|
597 | return outputMap; |
---|
598 | } |
---|
599 | } |
---|
600 | |
---|
601 | /**Function******************************************************************** |
---|
602 | |
---|
603 | Synopsis [This function returns the ordering method to be used.] |
---|
604 | |
---|
605 | SideEffects [] |
---|
606 | |
---|
607 | SeeAlso [] |
---|
608 | |
---|
609 | ******************************************************************************/ |
---|
610 | OFT |
---|
611 | FindOrderingMethod(void) |
---|
612 | { |
---|
613 | return (OFT) NULL; |
---|
614 | } |
---|
615 | |
---|
616 | /**Function******************************************************************** |
---|
617 | |
---|
618 | Synopsis [The function checks whether inputMap and outputMap form valid |
---|
619 | roots and leaves for network1 and network2.] |
---|
620 | |
---|
621 | Description [inputMap is a hash table of the corresponding leaves in |
---|
622 | network1 and network2. outputMap is a hash table of the corresponding roots |
---|
623 | in network1 and network2. The function checks whether the leaves of each |
---|
624 | network form a complete support of its roots. If this turns out to be false |
---|
625 | for any network, FALSE is returned otherwise TRUE is returned.] |
---|
626 | |
---|
627 | SideEffects [] |
---|
628 | |
---|
629 | SeeAlso [] |
---|
630 | |
---|
631 | ******************************************************************************/ |
---|
632 | boolean |
---|
633 | TestRootsAndLeavesAreValid( |
---|
634 | Ntk_Network_t *network1, |
---|
635 | Ntk_Network_t *network2, |
---|
636 | st_table *inputMap, |
---|
637 | st_table *outputMap) |
---|
638 | { |
---|
639 | |
---|
640 | st_generator *gen; |
---|
641 | array_t *roots1, *roots2; |
---|
642 | st_table *leaves1, *leaves2; |
---|
643 | Ntk_Node_t *node1, *node2; |
---|
644 | boolean test = TRUE; |
---|
645 | |
---|
646 | roots1 = array_alloc(Ntk_Node_t *, 0); |
---|
647 | roots2 = array_alloc(Ntk_Node_t *, 0); |
---|
648 | st_foreach_item(outputMap, gen, &node1, &node2) { |
---|
649 | array_insert_last(Ntk_Node_t *, roots1, node1); |
---|
650 | array_insert_last(Ntk_Node_t *, roots2, node2); |
---|
651 | } |
---|
652 | leaves1 = st_init_table(st_ptrcmp, st_ptrhash); |
---|
653 | leaves2 = st_init_table(st_ptrcmp, st_ptrhash); |
---|
654 | st_foreach_item(inputMap, gen, &node1, &node2) { |
---|
655 | st_insert(leaves1, node1, NULL); |
---|
656 | st_insert(leaves2, node2, NULL); |
---|
657 | } |
---|
658 | if(!Ntk_NetworkTestLeavesCoverSupportOfRoots(network1, roots1, |
---|
659 | leaves1)) { |
---|
660 | error_append("Leaves do not form a complete support for roots in network1.\n"); |
---|
661 | test = FALSE; |
---|
662 | } |
---|
663 | if(!Ntk_NetworkTestLeavesCoverSupportOfRoots(network2, roots2, |
---|
664 | leaves2)) { |
---|
665 | error_append("Leaves do not form a complete support for roots in network2.\n"); |
---|
666 | test = FALSE; |
---|
667 | } |
---|
668 | array_free(roots1); |
---|
669 | array_free(roots2); |
---|
670 | st_free_table(leaves1); |
---|
671 | st_free_table(leaves2); |
---|
672 | return test; |
---|
673 | } |
---|
674 | |
---|
675 | /**Function******************************************************************** |
---|
676 | |
---|
677 | Synopsis [This function takes a hash table of names and generates a |
---|
678 | hash table of nodes.] |
---|
679 | |
---|
680 | Description [The input to the function is a hash table of names of nodes. |
---|
681 | It returns a hash table of nodes corresponding to the names. |
---|
682 | In the hash table names, key is a name in network1 and value |
---|
683 | is a name in network2. Similarly, in the table which is |
---|
684 | returned, key is a node in network1 and value a node in |
---|
685 | network2. If no node by a certain name is found in a network, |
---|
686 | NULL is returned.] |
---|
687 | |
---|
688 | SideEffects [] |
---|
689 | |
---|
690 | SeeAlso [] |
---|
691 | |
---|
692 | ******************************************************************************/ |
---|
693 | st_table * |
---|
694 | MapNamesToNodes( |
---|
695 | Ntk_Network_t *network1, |
---|
696 | Ntk_Network_t *network2, |
---|
697 | st_table *names) |
---|
698 | { |
---|
699 | st_table *nodes = st_init_table(st_ptrcmp, st_ptrhash); |
---|
700 | char *name1, *name2; |
---|
701 | Ntk_Node_t *node1, *node2; |
---|
702 | boolean error = FALSE; |
---|
703 | st_generator *gen; |
---|
704 | |
---|
705 | |
---|
706 | st_foreach_item(names, gen, &name1, &name2) { |
---|
707 | if((node1 = Ntk_NetworkFindNodeByName(network1, name1)) == |
---|
708 | NIL(Ntk_Node_t)) { |
---|
709 | error = TRUE; |
---|
710 | error_append(name1); |
---|
711 | error_append(" not present in network1.\n"); |
---|
712 | } |
---|
713 | |
---|
714 | if((node2 = Ntk_NetworkFindNodeByName(network2, name2)) == |
---|
715 | NIL(Ntk_Node_t)) { |
---|
716 | error = TRUE; |
---|
717 | error_append(name2); |
---|
718 | error_append(" not present in network2.\n"); |
---|
719 | } |
---|
720 | st_insert(nodes, (char *) node1, (char *) node2); |
---|
721 | } |
---|
722 | if(error) { |
---|
723 | st_free_table(nodes); |
---|
724 | return NIL(st_table); |
---|
725 | } |
---|
726 | else { |
---|
727 | return nodes; |
---|
728 | } |
---|
729 | } |
---|
730 | |
---|
731 | |
---|
732 | /**Function******************************************************************** |
---|
733 | |
---|
734 | Synopsis [This function reads an input file containing names of roots and |
---|
735 | leaves, and stores the corresponding names in the two hash tables- |
---|
736 | rootsTable and leavesTable.] |
---|
737 | |
---|
738 | Description [The function returns 0 if there are no roots or leaves in the |
---|
739 | file. It is an error not to have either roots or leaves in the |
---|
740 | file. It returns 1 if there are roots but no leaves, 2 if there |
---|
741 | are leaves but no roots, and 3 if there are both roots and |
---|
742 | leaves.] |
---|
743 | |
---|
744 | SideEffects [] |
---|
745 | |
---|
746 | SeeAlso [] |
---|
747 | |
---|
748 | ******************************************************************************/ |
---|
749 | int |
---|
750 | ReadRootLeafMap( |
---|
751 | FILE *inputFile, |
---|
752 | st_table *rootsTable, |
---|
753 | st_table *leavesTable) |
---|
754 | { |
---|
755 | char *name; |
---|
756 | char *rootName1, *rootName2; |
---|
757 | char *leafName1, *leafName2; |
---|
758 | char c; |
---|
759 | boolean rootsFlag= 0; |
---|
760 | boolean leavesFlag = 0; |
---|
761 | st_generator *gen; |
---|
762 | |
---|
763 | while(((c = fgetc(inputFile)) == ' ') || (c == '\t') || (c== '\n' )); |
---|
764 | ungetc(c, inputFile); |
---|
765 | name = ALLOC(char, 20); |
---|
766 | |
---|
767 | if(fscanf(inputFile, "%s", name) == EOF) { |
---|
768 | FREE(name); |
---|
769 | return 0; |
---|
770 | /* both roots and leaves absent */ |
---|
771 | } |
---|
772 | if(!strcmp(name, ".roots")) { |
---|
773 | rootsFlag = 1; |
---|
774 | while(((c = fgetc(inputFile)) == ' ') || (c == '\t') || (c== '\n' )); |
---|
775 | ungetc(c, inputFile); |
---|
776 | while((fscanf(inputFile, "%s", name) != EOF) && strcmp(name, ".leaves")) { |
---|
777 | rootName1 = ALLOC(char, strlen(name) + 1); |
---|
778 | strcpy(rootName1, name); |
---|
779 | while(((c = fgetc(inputFile)) == ' ') || (c == '\t') || (c== '\n' )); |
---|
780 | ungetc(c, inputFile); |
---|
781 | if((fscanf(inputFile, "%s", name) == EOF) || (!strcmp(name, ".leaves"))) { |
---|
782 | FREE(name); |
---|
783 | FREE(rootName1); |
---|
784 | st_foreach_item(rootsTable, gen, &rootName1, &rootName2) { |
---|
785 | FREE(rootName1); |
---|
786 | FREE(rootName2); |
---|
787 | return 0; |
---|
788 | } |
---|
789 | } |
---|
790 | rootName2 = ALLOC(char, strlen(name) + 1); |
---|
791 | strcpy(rootName2, name); |
---|
792 | st_insert(rootsTable, rootName1, rootName2); |
---|
793 | while(((c = fgetc(inputFile)) == ' ') || (c == '\t') || (c== '\n' )); |
---|
794 | ungetc(c, inputFile); |
---|
795 | name[0] = '\0'; /* this is to insure that whenever the while loop |
---|
796 | is terminated, only one of the conditions is false */ |
---|
797 | } |
---|
798 | } |
---|
799 | if(!strcmp(name, ".leaves")) { |
---|
800 | leavesFlag = 1; |
---|
801 | while(((c = fgetc(inputFile)) == ' ') || (c == '\t') || (c== '\n' )); |
---|
802 | ungetc(c, inputFile); |
---|
803 | while(fscanf(inputFile, "%s", name) != EOF) { |
---|
804 | leafName1 = ALLOC(char, strlen(name) + 1); |
---|
805 | strcpy(leafName1, name); |
---|
806 | while(((c = fgetc(inputFile)) == ' ') || (c == '\t') || (c== '\n' )); |
---|
807 | ungetc(c, inputFile); |
---|
808 | if(fscanf(inputFile, "%s", name) == EOF) { |
---|
809 | FREE(name); |
---|
810 | FREE(leafName1); |
---|
811 | st_foreach_item(leavesTable, gen, &leafName1, &leafName2) { |
---|
812 | FREE(leafName1); |
---|
813 | FREE(leafName2); |
---|
814 | return 0; |
---|
815 | } |
---|
816 | } |
---|
817 | leafName2 = ALLOC(char, strlen(name) + 1); |
---|
818 | strcpy(leafName2, name); |
---|
819 | st_insert(leavesTable, leafName1, leafName2); |
---|
820 | while(((c = fgetc(inputFile)) == ' ') || (c == '\t') || (c== '\n' )); |
---|
821 | ungetc(c, inputFile); |
---|
822 | } |
---|
823 | } |
---|
824 | FREE(name); |
---|
825 | if(rootsFlag == 1) { |
---|
826 | if(leavesFlag == 1) { |
---|
827 | return 3; /* both leaves and roots present */ |
---|
828 | } |
---|
829 | else { |
---|
830 | return 2; /* roots present but leaves absent */ |
---|
831 | } |
---|
832 | } |
---|
833 | else { |
---|
834 | if(leavesFlag == 1) { |
---|
835 | return 1; /* roots absent but leaves present */ |
---|
836 | } |
---|
837 | else { |
---|
838 | return 0; |
---|
839 | } |
---|
840 | } |
---|
841 | } |
---|
842 | |
---|
843 | /**Function******************************************************************** |
---|
844 | |
---|
845 | Synopsis [This function generates the default ordering of leaf nodes.] |
---|
846 | |
---|
847 | Description [The function checks if network1 has a partition registered with |
---|
848 | it. If there is no partition, The function orders the variables of network1, |
---|
849 | using the option Ord_All_c i.e. orders all the nodes. If a partition exists, |
---|
850 | the existing ordering is left undisturbed. It then copies the mddIds |
---|
851 | of those nodes of network1 which are present in inputMap into |
---|
852 | the corresponding nodes of network2.] |
---|
853 | |
---|
854 | SideEffects [] |
---|
855 | |
---|
856 | SeeAlso [] |
---|
857 | |
---|
858 | ******************************************************************************/ |
---|
859 | void |
---|
860 | DefaultCommonOrder( |
---|
861 | Ntk_Network_t *network1, |
---|
862 | Ntk_Network_t *network2, |
---|
863 | st_table *inputMap) |
---|
864 | { |
---|
865 | st_generator *gen; |
---|
866 | Ntk_Node_t *node1, *node2; |
---|
867 | int id; |
---|
868 | lsList dummy = (lsList) 0; |
---|
869 | |
---|
870 | if(Ntk_NetworkReadApplInfo(network1, PART_NETWORK_APPL_KEY) == NIL(void)) { |
---|
871 | Ord_NetworkOrderVariables(network1, Ord_RootsByDefault_c, |
---|
872 | Ord_NodesByDefault_c, FALSE, Ord_All_c, |
---|
873 | Ord_Unassigned_c, dummy, 0); |
---|
874 | } |
---|
875 | |
---|
876 | st_foreach_item(inputMap, gen, &node1, &node2) { |
---|
877 | id = Ntk_NodeReadMddId(node1); |
---|
878 | Ntk_NodeSetMddId(node2, id); |
---|
879 | } |
---|
880 | } |
---|
881 | |
---|
882 | |
---|
883 | |
---|
884 | /**Function******************************************************************** |
---|
885 | |
---|
886 | Synopsis [This function checks whether the leaves present in leavesTable |
---|
887 | constitute the full set of primary inputs of network1 and network2.] |
---|
888 | |
---|
889 | Description [leavesTable contains names of corresponding leaves in network1 |
---|
890 | and network2. The function returns TRUE if the leaves present in leavesTable |
---|
891 | constitute the full set of primary inputs of network1 and network2. The |
---|
892 | following conditions result in a return value of FALSE: |
---|
893 | a) there is no node by a name present in leavesTable. |
---|
894 | b) the node with a particular name is not a primary input |
---|
895 | c) the number of leaves is different from the number of primary inputs in |
---|
896 | either network.] |
---|
897 | |
---|
898 | SideEffects [] |
---|
899 | |
---|
900 | SeeAlso [] |
---|
901 | |
---|
902 | ******************************************************************************/ |
---|
903 | boolean |
---|
904 | TestLeavesAreValid( |
---|
905 | Ntk_Network_t *network1, |
---|
906 | Ntk_Network_t *network2, |
---|
907 | st_table *leavesTable) |
---|
908 | |
---|
909 | { |
---|
910 | st_generator *gen; |
---|
911 | Ntk_Node_t *node1, *node2; |
---|
912 | char *name1, *name2; |
---|
913 | boolean valid = TRUE; |
---|
914 | int count = 0; |
---|
915 | |
---|
916 | st_foreach_item(leavesTable, gen, &name1, &name2) { |
---|
917 | node1 = Ntk_NetworkFindNodeByName(network1, name1); |
---|
918 | node2 = Ntk_NetworkFindNodeByName(network2, name2); |
---|
919 | if(node1 == NIL(Ntk_Node_t)) { |
---|
920 | error_append(name1); |
---|
921 | error_append(" not found in network1.\n"); |
---|
922 | valid = FALSE; |
---|
923 | } |
---|
924 | else { |
---|
925 | if(!Ntk_NodeTestIsPrimaryInput(node1)) { |
---|
926 | error_append(name1); |
---|
927 | error_append(" is not a primary input node\n"); |
---|
928 | valid = FALSE; |
---|
929 | } |
---|
930 | } |
---|
931 | |
---|
932 | if(node2 == NIL(Ntk_Node_t)) { |
---|
933 | error_append(name2); |
---|
934 | error_append(" not found in network2.\n"); |
---|
935 | valid = FALSE; |
---|
936 | } |
---|
937 | else { |
---|
938 | if(!Ntk_NodeTestIsPrimaryInput(node2)) { |
---|
939 | error_append(name2); |
---|
940 | error_append(" is not a primary input node\n"); |
---|
941 | valid = FALSE; |
---|
942 | } |
---|
943 | } |
---|
944 | |
---|
945 | count ++; |
---|
946 | } |
---|
947 | if(valid) { |
---|
948 | if(!((Ntk_NetworkReadNumPrimaryInputs(network1) == count) && (Ntk_NetworkReadNumPrimaryInputs(network2) == count))) { |
---|
949 | error_append("All primary inputs not specified in the input file\n"); |
---|
950 | valid = FALSE; |
---|
951 | } |
---|
952 | } |
---|
953 | return valid; |
---|
954 | } |
---|
955 | |
---|
956 | /**Function******************************************************************** |
---|
957 | |
---|
958 | Synopsis [The function checks whether the names present in rootsTable |
---|
959 | have nodes corresponding to them present in network1 and network2.] |
---|
960 | |
---|
961 | Description [rootsTable contains names of corresponding roots in network1 |
---|
962 | and network2. The function returns TRUE if the roots present in rootsTable |
---|
963 | have nodes corresponding to them in the network1 and network2. Otherwise, |
---|
964 | FALSE is returned.] |
---|
965 | |
---|
966 | SideEffects [] |
---|
967 | |
---|
968 | SeeAlso [] |
---|
969 | |
---|
970 | ******************************************************************************/ |
---|
971 | boolean |
---|
972 | TestRootsAreValid( |
---|
973 | Ntk_Network_t *network1, |
---|
974 | Ntk_Network_t *network2, |
---|
975 | st_table *rootsTable) |
---|
976 | |
---|
977 | { |
---|
978 | st_generator *gen; |
---|
979 | char *name1, *name2; |
---|
980 | boolean valid = TRUE; |
---|
981 | |
---|
982 | st_foreach_item(rootsTable, gen, &name1, &name2) { |
---|
983 | if(Ntk_NetworkFindNodeByName(network1, name1) == NIL(Ntk_Node_t)) { |
---|
984 | valid = FALSE; |
---|
985 | error_append(name1); |
---|
986 | error_append(" not present in network1.\n"); |
---|
987 | } |
---|
988 | |
---|
989 | if(Ntk_NetworkFindNodeByName(network2, name2) == NIL(Ntk_Node_t)) { |
---|
990 | valid = FALSE; |
---|
991 | error_append(name2); |
---|
992 | error_append(" not present in network2.\n"); |
---|
993 | } |
---|
994 | } |
---|
995 | return valid; |
---|
996 | } |
---|
997 | |
---|
998 | /**Function******************************************************************** |
---|
999 | |
---|
1000 | Synopsis [The function checks whether the partition registered |
---|
1001 | with network has vertices corresponding to nodes stored as keys in roots and |
---|
1002 | leaves.] |
---|
1003 | |
---|
1004 | Description [The function returns TRUE if all the nodes stored as |
---|
1005 | keys in roots and leaves have corresponding vertices in |
---|
1006 | the partition of network. It returns FALSE otherwise. It |
---|
1007 | is assumed that network has a partition associated with |
---|
1008 | it.] |
---|
1009 | |
---|
1010 | SideEffects [] |
---|
1011 | |
---|
1012 | SeeAlso [] |
---|
1013 | |
---|
1014 | ******************************************************************************/ |
---|
1015 | boolean |
---|
1016 | TestPartitionIsValid( |
---|
1017 | Ntk_Network_t *network, |
---|
1018 | st_table *roots, |
---|
1019 | st_table *leaves) |
---|
1020 | { |
---|
1021 | graph_t *partition = Part_NetworkReadPartition(network); |
---|
1022 | st_generator *gen; |
---|
1023 | char *name; |
---|
1024 | Ntk_Node_t *node1, *node2; |
---|
1025 | boolean flag = TRUE; |
---|
1026 | |
---|
1027 | st_foreach_item(roots, gen, &node1, &node2) { |
---|
1028 | name = Ntk_NodeReadName(node1); |
---|
1029 | if(Part_PartitionFindVertexByName(partition, name) == NIL(vertex_t)) { |
---|
1030 | flag = FALSE; |
---|
1031 | } |
---|
1032 | } |
---|
1033 | st_foreach_item(leaves, gen, &node1, &node2) { |
---|
1034 | name = Ntk_NodeReadName(node1); |
---|
1035 | if(Part_PartitionFindVertexByName(partition, name) == NIL(vertex_t)) { |
---|
1036 | flag = FALSE; |
---|
1037 | } |
---|
1038 | } |
---|
1039 | return flag; |
---|
1040 | } |
---|
1041 | |
---|
1042 | /*---------------------------------------------------------------------------*/ |
---|
1043 | /* Definition of static functions */ |
---|
1044 | /*---------------------------------------------------------------------------*/ |
---|
1045 | |
---|
1046 | /**Function******************************************************************** |
---|
1047 | |
---|
1048 | Synopsis [Check whether two nodes may be matched by name.] |
---|
1049 | |
---|
1050 | Description [Check whether two nodes from different networks may be |
---|
1051 | matched by name in equivalence verification. If the two nodes have |
---|
1052 | the same names, then they match. Moreover, if the two nodes are |
---|
1053 | latch inputs and the corresponding latches match by name, they also |
---|
1054 | match. This last clause makes comb_verify a lot more useful because |
---|
1055 | small changes in Verilog source or in its translation to blif-mv |
---|
1056 | usually leave the latch names unchanged, but alter the names of |
---|
1057 | the next state variables.] |
---|
1058 | |
---|
1059 | SideEffects [none] |
---|
1060 | |
---|
1061 | SeeAlso [MapCombOutputsByName] |
---|
1062 | |
---|
1063 | ******************************************************************************/ |
---|
1064 | static boolean |
---|
1065 | NodesMatchUp( |
---|
1066 | Ntk_Node_t *node1 /* node from network1 */, |
---|
1067 | Ntk_Node_t *node2 /* node from network2 */ |
---|
1068 | ) |
---|
1069 | { |
---|
1070 | char *name1, *name2; |
---|
1071 | |
---|
1072 | name1 = Ntk_NodeReadName(node1); |
---|
1073 | name2 = Ntk_NodeReadName(node2); |
---|
1074 | |
---|
1075 | if (strcmp(name1, name2) == 0) |
---|
1076 | return TRUE; |
---|
1077 | |
---|
1078 | /* Try to match through the state variables. */ |
---|
1079 | if ((Ntk_NodeTestIsLatchDataInput(node1) && |
---|
1080 | Ntk_NodeTestIsLatchDataInput(node2)) || |
---|
1081 | (Ntk_NodeTestIsLatchInitialInput(node1) && |
---|
1082 | Ntk_NodeTestIsLatchInitialInput(node2))) { |
---|
1083 | Ntk_Node_t *latch1, *latch2; |
---|
1084 | char *nameLatch1, *nameLatch2; |
---|
1085 | array_t *fanout1, *fanout2; |
---|
1086 | |
---|
1087 | fanout1 = Ntk_NodeReadFanouts(node1); |
---|
1088 | if (array_n(fanout1) != 1) return FALSE; |
---|
1089 | fanout2 = Ntk_NodeReadFanouts(node2); |
---|
1090 | if (array_n(fanout2) != 1) return FALSE; |
---|
1091 | |
---|
1092 | latch1 = array_fetch(Ntk_Node_t *, fanout1, 0); |
---|
1093 | assert(Ntk_NodeTestIsLatch(latch1)); |
---|
1094 | latch2 = array_fetch(Ntk_Node_t *, fanout2, 0); |
---|
1095 | assert(Ntk_NodeTestIsLatch(latch2)); |
---|
1096 | |
---|
1097 | nameLatch1 = Ntk_NodeReadName(latch1); |
---|
1098 | nameLatch2 = Ntk_NodeReadName(latch2); |
---|
1099 | |
---|
1100 | return (strcmp(nameLatch1, nameLatch2) == 0); |
---|
1101 | } |
---|
1102 | |
---|
1103 | return FALSE; |
---|
1104 | |
---|
1105 | } /* NodesMatchUp */ |
---|