1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [ordCmd.c] |
---|
4 | |
---|
5 | PackageName [ord] |
---|
6 | |
---|
7 | Synopsis [Command interface to the ordering package.] |
---|
8 | |
---|
9 | Author [Adnan Aziz, Tom Shiple, Serdar Tasiran] |
---|
10 | |
---|
11 | Copyright [Copyright (c) 1994-1996 The Regents of the Univ. of California. |
---|
12 | All rights reserved. |
---|
13 | |
---|
14 | Permission is hereby granted, without written agreement and without license |
---|
15 | or royalty fees, to use, copy, modify, and distribute this software and its |
---|
16 | documentation for any purpose, provided that the above copyright notice and |
---|
17 | the following two paragraphs appear in all copies of this software. |
---|
18 | |
---|
19 | IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR |
---|
20 | DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT |
---|
21 | OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF |
---|
22 | CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
23 | |
---|
24 | THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, |
---|
25 | INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
---|
26 | FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN |
---|
27 | "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO PROVIDE |
---|
28 | MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.] |
---|
29 | |
---|
30 | ******************************************************************************/ |
---|
31 | |
---|
32 | #include "ordInt.h" |
---|
33 | |
---|
34 | static char rcsid[] UNUSED = "$Id: ordCmd.c,v 1.37 2005/05/19 03:22:55 awedh Exp $"; |
---|
35 | |
---|
36 | /*---------------------------------------------------------------------------*/ |
---|
37 | /* Variable declarations */ |
---|
38 | /*---------------------------------------------------------------------------*/ |
---|
39 | static jmp_buf timeOutEnv; |
---|
40 | |
---|
41 | |
---|
42 | /**AutomaticStart*************************************************************/ |
---|
43 | |
---|
44 | /*---------------------------------------------------------------------------*/ |
---|
45 | /* Static function prototypes */ |
---|
46 | /*---------------------------------------------------------------------------*/ |
---|
47 | |
---|
48 | static int CommandStaticOrder(Hrc_Manager_t ** hmgr, int argc, char ** argv); |
---|
49 | static int CommandReadOrder(Hrc_Manager_t ** hmgr, int argc, char ** argv); |
---|
50 | static int CommandWriteOrder(Hrc_Manager_t ** hmgr, int argc, char ** argv); |
---|
51 | static int CommandDynamicVarOrdering(Hrc_Manager_t ** hmgr, int argc, char ** argv); |
---|
52 | static int CommandPrintBddStats(Hrc_Manager_t ** hmgr, int argc, char ** argv); |
---|
53 | static Ord_OrderType StringConvertToOrderType(char *string); |
---|
54 | static bdd_reorder_type_t StringConvertToDynOrderType(char *string); |
---|
55 | static char * DynOrderTypeConvertToString(bdd_reorder_type_t method); |
---|
56 | static boolean NetworkCheckSuppliedNodeList(Ntk_Network_t * network, lsList suppliedNodeList, Ord_OrderType orderType); |
---|
57 | static void TimeOutHandle(void); |
---|
58 | |
---|
59 | /**AutomaticEnd***************************************************************/ |
---|
60 | |
---|
61 | |
---|
62 | /*---------------------------------------------------------------------------*/ |
---|
63 | /* Definition of exported functions */ |
---|
64 | /*---------------------------------------------------------------------------*/ |
---|
65 | |
---|
66 | /**Function******************************************************************** |
---|
67 | |
---|
68 | Synopsis [Initializes the order package.] |
---|
69 | |
---|
70 | SideEffects [] |
---|
71 | |
---|
72 | SeeAlso [Ord_End] |
---|
73 | |
---|
74 | ******************************************************************************/ |
---|
75 | void |
---|
76 | Ord_Init(void) |
---|
77 | { |
---|
78 | Cmd_CommandAdd("static_order", CommandStaticOrder, 0); |
---|
79 | Cmd_CommandAdd("read_order", CommandReadOrder, 0); |
---|
80 | Cmd_CommandAdd("write_order", CommandWriteOrder, 0); |
---|
81 | Cmd_CommandAdd("dynamic_var_ordering", CommandDynamicVarOrdering, 0); |
---|
82 | Cmd_CommandAdd("print_bdd_stats", CommandPrintBddStats, 0); |
---|
83 | } |
---|
84 | |
---|
85 | |
---|
86 | /**Function******************************************************************** |
---|
87 | |
---|
88 | Synopsis [Ends the order package.] |
---|
89 | |
---|
90 | SideEffects [] |
---|
91 | |
---|
92 | SeeAlso [Ord_Init] |
---|
93 | |
---|
94 | ******************************************************************************/ |
---|
95 | void |
---|
96 | Ord_End(void) |
---|
97 | { |
---|
98 | } |
---|
99 | |
---|
100 | |
---|
101 | /**Function******************************************************************** |
---|
102 | |
---|
103 | Synopsis [Checks that all nodes corresponding to orderType have MDD ids.] |
---|
104 | |
---|
105 | Description [For each node of network that falls in the class given by |
---|
106 | orderType, checks that the node has an MDD id. If all such nodes have MDD |
---|
107 | ids, return 1, else returns 0. orderType can have one of 3 values: |
---|
108 | Ord_All_c, checks all nodes of network; Ord_InputAndLatch_c, checks all |
---|
109 | combinational inputs and latch next states; Ord_NextStateNode_c, checks all |
---|
110 | next state nodes. Returns 0 on the first such node not having an MDD id, |
---|
111 | and writes an error message in error_string. Also returns 0 if the network |
---|
112 | doesn't have an MDD manager.] |
---|
113 | |
---|
114 | SideEffects [] |
---|
115 | |
---|
116 | ******************************************************************************/ |
---|
117 | boolean |
---|
118 | Ord_NetworkTestAreVariablesOrdered( |
---|
119 | Ntk_Network_t * network, |
---|
120 | Ord_OrderType orderType) |
---|
121 | { |
---|
122 | lsGen gen; |
---|
123 | Ntk_Node_t *node; |
---|
124 | mdd_manager *mddManager = Ntk_NetworkReadMddManager(network); |
---|
125 | |
---|
126 | assert((orderType == Ord_All_c) || (orderType == Ord_InputAndLatch_c) |
---|
127 | || (orderType == Ord_NextStateNode_c)); |
---|
128 | |
---|
129 | if (mddManager == NIL(mdd_manager)) { |
---|
130 | error_append("network doesn't have an MDD manager\n"); |
---|
131 | return 0; |
---|
132 | } |
---|
133 | |
---|
134 | /* |
---|
135 | * Next state nodes are included by all 3 order types. |
---|
136 | */ |
---|
137 | Ntk_NetworkForEachNode(network, gen, node) { |
---|
138 | if ((orderType == Ord_All_c) || Ntk_NodeTestIsNextStateNode(node)) { |
---|
139 | if (Ntk_NodeReadMddId(node) == NTK_UNASSIGNED_MDD_ID) { |
---|
140 | error_append("node "); |
---|
141 | error_append(Ntk_NodeReadName(node)); |
---|
142 | error_append(" not ordered\n"); |
---|
143 | (void) lsFinish(gen); |
---|
144 | return 0; |
---|
145 | } |
---|
146 | } |
---|
147 | else if ((orderType == Ord_InputAndLatch_c) |
---|
148 | && Ntk_NodeTestIsCombInput(node)) { |
---|
149 | if (Ntk_NodeReadMddId(node) == NTK_UNASSIGNED_MDD_ID) { |
---|
150 | error_append("node "); |
---|
151 | error_append(Ntk_NodeReadName(node)); |
---|
152 | error_append(" not ordered\n"); |
---|
153 | (void) lsFinish(gen); |
---|
154 | return 0; |
---|
155 | } |
---|
156 | } |
---|
157 | /* else, this node is not included by orderType */ |
---|
158 | } |
---|
159 | |
---|
160 | return 1; |
---|
161 | } |
---|
162 | |
---|
163 | |
---|
164 | /*---------------------------------------------------------------------------*/ |
---|
165 | /* Definition of internal functions */ |
---|
166 | /*---------------------------------------------------------------------------*/ |
---|
167 | |
---|
168 | |
---|
169 | /*---------------------------------------------------------------------------*/ |
---|
170 | /* Definition of static functions */ |
---|
171 | /*---------------------------------------------------------------------------*/ |
---|
172 | |
---|
173 | /**Function******************************************************************** |
---|
174 | |
---|
175 | Synopsis [Implements the static_order command.] |
---|
176 | |
---|
177 | SideEffects [] |
---|
178 | |
---|
179 | CommandName [static_order] |
---|
180 | |
---|
181 | CommandSynopsis [order the MDD variables of the flattened network] |
---|
182 | |
---|
183 | CommandArguments [\[-a\] \[-h\] \[-n <method>\] \[-o <type>\] |
---|
184 | \[-r <method>\] -s <type> \[-t <timeOut>\] \[-v #\] |
---|
185 | <file>] |
---|
186 | |
---|
187 | CommandDescription [Order the MDD variables of the flattened network. MDD |
---|
188 | variables must be created before MDDs can be built. Networks with |
---|
189 | combinational cycles cannot be ordered. If the MDD variables have already |
---|
190 | been ordered, then this command does nothing. To undo the current ordering, |
---|
191 | reinvoke the command <tt>flatten_hierarchy</tt>. |
---|
192 | <p> |
---|
193 | |
---|
194 | |
---|
195 | Command options:<p> |
---|
196 | |
---|
197 | <dl> |
---|
198 | |
---|
199 | <dt> -a |
---|
200 | <dd> Order each next state variable immediately following the variables in |
---|
201 | the support of the corresponding next state function. By default, each next |
---|
202 | state variable is placed immeadiately following the corresponding present |
---|
203 | state variable. It has been observed experimentally that ordering the NS |
---|
204 | variable after the PS variable is almost always better; however, as a last |
---|
205 | b resort, you might want to try this option.<p> |
---|
206 | |
---|
207 | Unless the -a flag is set, the PS and NS variables corresponding to latches |
---|
208 | are grouped together and cannot be separated by dynamic reordering. (This is |
---|
209 | done even when the ordering is read from a file - adjacent PS/NS vars in the |
---|
210 | file are grouped).<p> |
---|
211 | |
---|
212 | <dt> -h |
---|
213 | <dd> Print the command usage.<p> |
---|
214 | |
---|
215 | <dt> -n <method> |
---|
216 | |
---|
217 | <dd> Specify which node ordering method to use. Node ordering is the |
---|
218 | process of computing a total ordering on all the network nodes. This |
---|
219 | ordering is then projected onto the set of nodes specified by <tt>-o |
---|
220 | type</tt>. In the complexity measures below, n is the number of network |
---|
221 | nodes, E is the number of network edges, and k is the number of |
---|
222 | latches. "Method" must be one of the following:<p> |
---|
223 | |
---|
224 | <b>interleave:</b> (default) Uses Algorithm 2 of Fujii et al., |
---|
225 | "Interleaving Based Variable Ordering Methods for OBDDs", ICCAD 1993. |
---|
226 | The complexity is O(E+nlog(n)).<p> |
---|
227 | |
---|
228 | <b>append:</b> Uses the algorithm of Malik, et al. "Logic Verification using |
---|
229 | Binary Decision Diagrams in a Logic Synthesis Environment," ICCAD, |
---|
230 | 1988. Nodes are visited in DFS order, and appended to a global order list in |
---|
231 | the order they are visited. The fanins of a node are visited in order of |
---|
232 | decreasing depth. The roots of the DFS are visited in the order determined |
---|
233 | by the <tt>-r method</tt>. The complexity is O(E+nlog(n)).<p> |
---|
234 | |
---|
235 | <b>merge_left:</b> Uses an algorithm alluded to in Fujii et al., |
---|
236 | "Interleaving Based Variable Ordering Methods for OBDDs", ICCAD 1993. Nodes |
---|
237 | are visited in DFS order. At a given node g, its fanins are visited in |
---|
238 | order of decreasing depth. For each fanin fi, a total order is computed for |
---|
239 | all the nodes in the transitive fanin (TFI) of fi, including fi itself. |
---|
240 | This ordering is merged into the combined ordering from fanins of higher |
---|
241 | priority. After processing all of the fanins, the result is a total |
---|
242 | ordering on all TFI nodes of g. Finally, g is appended to the end of this |
---|
243 | ordering, yielding a topological ordering. For example if the ordering for |
---|
244 | f1 is list1 = (a,b,d,f1) and for f2 is list2=(c,d,e,f2), and f1 has greater |
---|
245 | depth than f2, then the ordering for g is (c,a,b,d,e,f2,f1,g). The merge is |
---|
246 | done by inserting into list1 those nodes in list2 not already in list1, in |
---|
247 | such a way that the inserted nodes remain as close as possible to their left |
---|
248 | neighbors in list2 ("insert as far left as possible"). The roots of the DFS |
---|
249 | are merged in the order determined by <tt>-r method</tt>. The complexity is |
---|
250 | O(n^2) (currently, there is a bug which causes more memory to be consumed |
---|
251 | than necessary).<p> |
---|
252 | |
---|
253 | <b>merge_right:</b> Same as <tt>merge_left</tt>, except that the merge is |
---|
254 | done in such a way that the inserted nodes remain as close as possible to |
---|
255 | their right neighbors in list2 ("insert as far right as possible"). For the |
---|
256 | example above, the ordering for g is (a,b,c,d,f1,e,f2,g). It has been |
---|
257 | observed experimentally that neither <tt>merge_left</tt> nor |
---|
258 | <tt>merge_right</tt> is superior to the other; there are cases where |
---|
259 | verification times out with <tt>merge_left</tt> but not |
---|
260 | <tt>merge_right</tt>, and vice versa.<p> |
---|
261 | |
---|
262 | |
---|
263 | <dt> -o <type> <dd> Specify the network nodes for which MDD variables |
---|
264 | should be created. Type can be one of the following:<p> |
---|
265 | |
---|
266 | <b>all:</b> Order all the nodes of the network. This is normally not used.<p> |
---|
267 | |
---|
268 | <b>input_and_latch:</b> (default) Order the primary inputs, pseudo |
---|
269 | inputs, latches, and next state variables. This is the minimum set of nodes |
---|
270 | that need to be ordered to perform operations on FSMs (e.g. model checking, |
---|
271 | reachability). For purely combinational circuits, just the primary and |
---|
272 | pseudo inputs are ordered.<p> |
---|
273 | |
---|
274 | |
---|
275 | <dt> -r <method> |
---|
276 | |
---|
277 | <dd> Specify which root ordering method to use. The "roots" of a network |
---|
278 | refer to the roots of the cones of logic driving the combinational outputs |
---|
279 | (data latch inputs, initial state latch inputs, and primary outputs) of a |
---|
280 | network. Root ordering is used to determine in which order to visit the |
---|
281 | roots of the network for the DFS carried out in node ordering (see |
---|
282 | <tt>-n</tt>). "Method" must be one of the following:<p> |
---|
283 | |
---|
284 | <b>depth:</b> (default for 30 or more latches) Roots are ordered based on |
---|
285 | logic depth (i.e. longest path to a combinational input). Greater depth |
---|
286 | roots appear earlier in the ordering. All data latch inputs appear before |
---|
287 | all other combinational outputs. The complexity is O(E+nlog(n)). It has been |
---|
288 | observed experimentally that <tt>mincomm</tt> produces superior orderings to |
---|
289 | <tt>depth</tt>. However, the complexity of the <tt>mincomm</tt> algorithm |
---|
290 | is such that it cannot produce orderings for designs with more than a |
---|
291 | hundred or so latches. Hence, for big designs, use <tt>depth</tt>, followed |
---|
292 | optionally by <tt>dynamic_var_ordering</tt>.<p> |
---|
293 | |
---|
294 | <b>mincomm:</b> (default for less than 30 latches) Uses the algorithm of |
---|
295 | Aziz, et al. "BDD Variable Ordering for Interacting Finite State Machines," |
---|
296 | DAC, 1994. First, the latches are ordered to decrease a communication |
---|
297 | complexity bound (where backward edges are more expensive than forward |
---|
298 | edges) on the latch communication graph. This directly gives an ordering for |
---|
299 | the data latch inputs. The remaining combinational outputs are ordered |
---|
300 | after the data latch inputs, in decreasing order of their depth. The total |
---|
301 | complexity is O(nlog(n)+E+k^3).<p> |
---|
302 | |
---|
303 | |
---|
304 | <dt> -s <type> |
---|
305 | |
---|
306 | <dd> Used in conjunction with <tt><file></tt> to specify which |
---|
307 | nodes are supplied in the ordering file. Type can be one of the following |
---|
308 | (there is no default):<p> |
---|
309 | |
---|
310 | <b>all:</b> The ordering file supplies all the nodes of the network. |
---|
311 | The ordering generated is the supplied order, projected onto the set of nodes |
---|
312 | specified by <tt>-o</tt>.<p> |
---|
313 | |
---|
314 | <b>input_and_latch:</b> The ordering file supplies the primary inputs, |
---|
315 | pseudo inputs, latches, and next state variables. The ordering generated is |
---|
316 | exactly what is supplied (in the case of <tt>-o input_and_latch</tt>). <tt>-o |
---|
317 | all</tt> is incompatible with <tt>-s input_and_latch</tt>.<p> |
---|
318 | |
---|
319 | <b>next_state_node:</b> The ordering file supplies next state |
---|
320 | variables. During the ordering algorithm, the next state functions are |
---|
321 | visited in the order in which their corresponding next state variables |
---|
322 | appear in the file. The order of the next state variables in the ordering |
---|
323 | generated is not necessarily maintained.<p> |
---|
324 | |
---|
325 | <b>partial:</b> The ordering file supplies an arbitrary subset of nodes |
---|
326 | of the network. The ordering algorithm works by finding a total ordering on |
---|
327 | all the nodes (independent of the ordering supplied), then merging the |
---|
328 | computed order into the supplied order (maintaining the relative order of |
---|
329 | the supplied order), and then projecting the resulting ordering onto the set |
---|
330 | of nodes specified by <tt>-o</tt>.<p> |
---|
331 | |
---|
332 | |
---|
333 | <dt> -t <timeOut> |
---|
334 | <dd> Time in seconds allowed to perform static ordering. If the flattened |
---|
335 | network has more than a couple hundred latches and you are using option |
---|
336 | <tt>-r mincomm</tt>, then you might want to set a timeOut to limit the |
---|
337 | allowed time. The default is no limit.<p> |
---|
338 | |
---|
339 | <dt> -v # |
---|
340 | <dd> Print debug information. |
---|
341 | <dd> |
---|
342 | |
---|
343 | 0 Nothing is printed out. This is the default.<p> |
---|
344 | |
---|
345 | >= 1 Prints the nodes read from the input file (satisfying the supplied |
---|
346 | order type); prints the root order used for exploring the network.<p> |
---|
347 | |
---|
348 | >= 2 Prints the depth of nodes.<p> |
---|
349 | |
---|
350 | >= 3 Prints the ordering computed at each node.<p> |
---|
351 | |
---|
352 | |
---|
353 | <dt> <file> |
---|
354 | |
---|
355 | <dd> A file containing names of network nodes, used to specify a variable |
---|
356 | ordering. The name of a node is the full hierarchical path name, starting |
---|
357 | from the current hierarchical node. A node should appear at most once in |
---|
358 | the file. Each node name should appear at the beginning of a new line, with |
---|
359 | no white space preceeding it. The end of a node name is marked by white |
---|
360 | space, and any other text on the rest of the line is ignored. Any line |
---|
361 | starting with "#" or white space is ignored. See <tt>write_order</tt> |
---|
362 | for a sample file. Note that the variable ordering cannot be specified at |
---|
363 | the bit-level; it can only be specified at the multi-valued variable level. |
---|
364 | |
---|
365 | </dl> |
---|
366 | ] |
---|
367 | |
---|
368 | |
---|
369 | SeeAlso [CommandWriteOrder] |
---|
370 | |
---|
371 | ******************************************************************************/ |
---|
372 | static int |
---|
373 | CommandStaticOrder( |
---|
374 | Hrc_Manager_t ** hmgr, |
---|
375 | int argc, |
---|
376 | char ** argv) |
---|
377 | { |
---|
378 | int c; |
---|
379 | FILE *fp; |
---|
380 | static int timeOutPeriod; |
---|
381 | static int verbose; |
---|
382 | static Ord_NodeMethod nodeMethod; |
---|
383 | static Ord_RootMethod rootMethod; |
---|
384 | static Ord_OrderType suppliedOrderType; |
---|
385 | static Ord_OrderType generatedOrderType; |
---|
386 | static boolean nsAfterSupport; |
---|
387 | lsList suppliedNodeList = (lsList) NULL; |
---|
388 | /* list of Ntk_Node_t * */ |
---|
389 | Ntk_Network_t *network; |
---|
390 | |
---|
391 | /* |
---|
392 | * These are the default values. These variables must be declared static |
---|
393 | * to avoid lint warnings. Since they are static, we must reinitialize |
---|
394 | * them outside of the variable declarations. |
---|
395 | */ |
---|
396 | timeOutPeriod = 0; |
---|
397 | verbose = 0; |
---|
398 | nodeMethod = Ord_NodesByDefault_c; |
---|
399 | rootMethod = Ord_RootsByDefault_c; |
---|
400 | suppliedOrderType = Ord_Unassigned_c; /* default */ |
---|
401 | generatedOrderType = Ord_InputAndLatch_c;/* default */ |
---|
402 | nsAfterSupport = FALSE; /* default */ |
---|
403 | |
---|
404 | /* |
---|
405 | * Parse the command line. |
---|
406 | */ |
---|
407 | util_getopt_reset(); |
---|
408 | while ((c = util_getopt(argc, argv, "av:o:s:t:n:r:h")) != EOF) { |
---|
409 | switch (c) { |
---|
410 | case 'a': |
---|
411 | nsAfterSupport = TRUE; |
---|
412 | break; |
---|
413 | case 'h': |
---|
414 | goto usage; |
---|
415 | case 'v': |
---|
416 | verbose = atoi(util_optarg); |
---|
417 | break; |
---|
418 | case 't': |
---|
419 | timeOutPeriod = atoi(util_optarg); |
---|
420 | break; |
---|
421 | case 'o': |
---|
422 | generatedOrderType = StringConvertToOrderType(util_optarg); |
---|
423 | if ((generatedOrderType == Ord_NextStateNode_c) |
---|
424 | || (generatedOrderType == Ord_Partial_c)) { |
---|
425 | (void) fprintf(vis_stderr, "disallowed output order type: %s\n", util_optarg); |
---|
426 | goto usage; |
---|
427 | } |
---|
428 | else if (generatedOrderType == Ord_Unassigned_c) { |
---|
429 | (void) fprintf(vis_stderr, "unknown output order type: %s\n", util_optarg); |
---|
430 | goto usage; |
---|
431 | } |
---|
432 | break; |
---|
433 | case 's': |
---|
434 | suppliedOrderType = StringConvertToOrderType(util_optarg); |
---|
435 | if (suppliedOrderType == Ord_Unassigned_c) { |
---|
436 | (void) fprintf(vis_stderr, "unknown input order type: %s\n", util_optarg); |
---|
437 | goto usage; |
---|
438 | } |
---|
439 | break; |
---|
440 | case 'n': |
---|
441 | if (strcmp("interleave", util_optarg) == 0) { |
---|
442 | nodeMethod = Ord_NodesByInterleaving_c; |
---|
443 | } |
---|
444 | else if (strcmp("merge_left", util_optarg) == 0) { |
---|
445 | nodeMethod = Ord_NodesByMergingLeft_c; |
---|
446 | } |
---|
447 | else if (strcmp("merge_right", util_optarg) == 0) { |
---|
448 | nodeMethod = Ord_NodesByMergingRight_c; |
---|
449 | } |
---|
450 | else if (strcmp("append", util_optarg) == 0) { |
---|
451 | nodeMethod = Ord_NodesByAppending_c; |
---|
452 | } |
---|
453 | else { |
---|
454 | (void) fprintf(vis_stderr, "unknown node order method: %s\n", util_optarg); |
---|
455 | goto usage; |
---|
456 | } |
---|
457 | break; |
---|
458 | case 'r': |
---|
459 | if (strcmp("depth", util_optarg) == 0) { |
---|
460 | rootMethod = Ord_RootsByDepth_c; |
---|
461 | } |
---|
462 | else if (strcmp("mincomm", util_optarg) == 0) { |
---|
463 | rootMethod = Ord_RootsByPerm_c; |
---|
464 | } |
---|
465 | else { |
---|
466 | (void) fprintf(vis_stderr, "unknown root order method: %s\n", util_optarg); |
---|
467 | goto usage; |
---|
468 | } |
---|
469 | break; |
---|
470 | default: |
---|
471 | goto usage; |
---|
472 | } |
---|
473 | } |
---|
474 | |
---|
475 | network = Ntk_HrcManagerReadCurrentNetwork(*hmgr); |
---|
476 | if (network == NIL(Ntk_Network_t)) { |
---|
477 | return 1; |
---|
478 | } |
---|
479 | |
---|
480 | if ((suppliedOrderType == Ord_InputAndLatch_c) && (generatedOrderType == Ord_All_c)) { |
---|
481 | (void) fprintf(vis_stderr, "-o all -s input_and_latch not currently supported\n"); |
---|
482 | return 1; |
---|
483 | } |
---|
484 | |
---|
485 | /* |
---|
486 | * The minimum set of variables that can be ordered are those specified by |
---|
487 | * Ord_InputAndLatch_c. If these have already been ordered, then just return. |
---|
488 | */ |
---|
489 | if (Ord_NetworkTestAreVariablesOrdered(network, Ord_InputAndLatch_c)) { |
---|
490 | (void) fprintf(vis_stderr, "Variables already ordered. "); |
---|
491 | (void) fprintf(vis_stderr, "Reinvoke flatten_hierarchy to undo variable ordering.\n"); |
---|
492 | return 1; |
---|
493 | } |
---|
494 | |
---|
495 | |
---|
496 | /* |
---|
497 | * Process the input ordering file. |
---|
498 | */ |
---|
499 | if (suppliedOrderType == Ord_Unassigned_c) { |
---|
500 | if (argc - util_optind > 0) { |
---|
501 | (void) fprintf(vis_stderr, "must specify -s if supplying order file\n"); |
---|
502 | goto usage; |
---|
503 | } |
---|
504 | } |
---|
505 | else { |
---|
506 | if (argc - util_optind == 0) { |
---|
507 | (void) fprintf(vis_stderr, "order file not provided\n"); |
---|
508 | goto usage; |
---|
509 | } |
---|
510 | else if (argc - util_optind > 1) { |
---|
511 | (void) fprintf(vis_stderr, "too many arguments\n"); |
---|
512 | goto usage; |
---|
513 | } |
---|
514 | |
---|
515 | fp = Cmd_FileOpen(argv[util_optind], "r", NIL(char *), 0); |
---|
516 | if (fp == NIL(FILE)) { |
---|
517 | (void) fprintf(vis_stderr, "File %s is not readable, please check if it exists\n", argv[util_optind]); |
---|
518 | return 1; |
---|
519 | } |
---|
520 | else { |
---|
521 | boolean status; |
---|
522 | |
---|
523 | error_init(); |
---|
524 | status = Ord_FileReadNodeList(fp, network, &suppliedNodeList, verbose); |
---|
525 | if (status == FALSE) { |
---|
526 | (void) fprintf(vis_stderr, "Error reading ordering file:\n"); |
---|
527 | (void) fprintf(vis_stderr, "%s", error_string()); |
---|
528 | (void) fprintf(vis_stderr, "Cannot perform static ordering.\n"); |
---|
529 | (void) fclose(fp); |
---|
530 | return 1; |
---|
531 | } |
---|
532 | else if (NetworkCheckSuppliedNodeList(network, suppliedNodeList, |
---|
533 | suppliedOrderType) == FALSE) { |
---|
534 | (void) fprintf(vis_stderr, "Incorrect nodes supplied:\n"); |
---|
535 | (void) fprintf(vis_stderr, "%s", error_string()); |
---|
536 | (void) fprintf(vis_stderr, "Cannot perform static ordering.\n"); |
---|
537 | (void) fclose(fp); |
---|
538 | (void) lsDestroy(suppliedNodeList, (void (*) (lsGeneric)) NULL); |
---|
539 | return 1; |
---|
540 | } |
---|
541 | else { |
---|
542 | (void) fclose(fp); |
---|
543 | if (verbose > 0) { |
---|
544 | (void) fprintf(vis_stdout, "\nNodes supplied in ordering file, "); |
---|
545 | (void) fprintf(vis_stdout, "according to -s option: \n"); |
---|
546 | OrdNodeListWrite(vis_stdout, suppliedNodeList); |
---|
547 | } |
---|
548 | } |
---|
549 | } |
---|
550 | } |
---|
551 | |
---|
552 | |
---|
553 | /* |
---|
554 | * In order for static ordering to proceed, network must not have any |
---|
555 | * combinational cycles. |
---|
556 | */ |
---|
557 | error_init(); |
---|
558 | if(Ntk_NetworkTestIsAcyclic(network) == 0) { |
---|
559 | (void) fprintf(vis_stderr, "Combinational cycle found: "); |
---|
560 | (void) fprintf(vis_stderr, "%s\n", error_string()); |
---|
561 | (void) fprintf(vis_stderr, "cannot perform static ordering\n"); |
---|
562 | if (suppliedOrderType != Ord_Unassigned_c) { |
---|
563 | (void) lsDestroy(suppliedNodeList, (void (*) (lsGeneric)) NULL); |
---|
564 | } |
---|
565 | return 1; |
---|
566 | } |
---|
567 | |
---|
568 | /* Start the timer before calling the variable ordering routine. */ |
---|
569 | if (timeOutPeriod > 0){ |
---|
570 | (void) signal(SIGALRM, (void(*)(int))TimeOutHandle); |
---|
571 | (void) alarm(timeOutPeriod); |
---|
572 | if (setjmp(timeOutEnv) > 0) { |
---|
573 | (void) fprintf(vis_stderr, "Timeout occurred after %d seconds.\n", timeOutPeriod); |
---|
574 | alarm(0); |
---|
575 | return 1; |
---|
576 | } |
---|
577 | } |
---|
578 | |
---|
579 | /* |
---|
580 | * Order the variables. |
---|
581 | */ |
---|
582 | Ord_NetworkOrderVariables(network, rootMethod, nodeMethod, nsAfterSupport, |
---|
583 | generatedOrderType, suppliedOrderType, |
---|
584 | suppliedNodeList, verbose); |
---|
585 | |
---|
586 | if (suppliedOrderType != Ord_Unassigned_c) { |
---|
587 | (void) lsDestroy(suppliedNodeList, (void (*) (lsGeneric)) NULL); |
---|
588 | } |
---|
589 | |
---|
590 | /* |
---|
591 | * As a sanity check, make sure that all the variables in generatedOrderType |
---|
592 | * have an MDD id. |
---|
593 | */ |
---|
594 | assert(Ord_NetworkTestAreVariablesOrdered(network, generatedOrderType)); |
---|
595 | |
---|
596 | alarm(0); |
---|
597 | return 0; /* Everything okay */ |
---|
598 | |
---|
599 | usage: |
---|
600 | (void) fprintf(vis_stderr, "usage: static_order [-a] [-h] [-n method] [-o type] [-r method] -s type [-t time] [-v #] file\n"); |
---|
601 | (void) fprintf(vis_stderr, " -a order NS variables after support\n"); |
---|
602 | (void) fprintf(vis_stderr, " -h print the command usage\n"); |
---|
603 | (void) fprintf(vis_stderr, " -n method node ordering method\n"); |
---|
604 | (void) fprintf(vis_stderr, " (interleave (default), append, merge_left, merge_right)\n"); |
---|
605 | (void) fprintf(vis_stderr, " -o type nodes to order (all, input_and_latch (default))\n"); |
---|
606 | (void) fprintf(vis_stderr, " -r method root ordering method (depth, mincomm (default for < 30 latches))\n"); |
---|
607 | (void) fprintf(vis_stderr, " -s type nodes in file (all, input_and_latch, next_state_node, partial)\n"); |
---|
608 | (void) fprintf(vis_stderr, " -t time time out period (in seconds)\n"); |
---|
609 | (void) fprintf(vis_stderr, " -v # verbosity level\n"); |
---|
610 | (void) fprintf(vis_stderr, " file supplied ordering of nodes\n"); |
---|
611 | |
---|
612 | return 1; |
---|
613 | } |
---|
614 | |
---|
615 | |
---|
616 | /**Function******************************************************************** |
---|
617 | |
---|
618 | Synopsis [Implements the read_order command.] |
---|
619 | |
---|
620 | SideEffects [] |
---|
621 | |
---|
622 | CommandName [read_order] |
---|
623 | |
---|
624 | CommandSynopsis [Read and reorder variable order from a file.] |
---|
625 | |
---|
626 | CommandArguments [\[-h\] \[-v\] \[<file>\]] |
---|
627 | |
---|
628 | CommandDescription [This command reads variable order from a file and |
---|
629 | reorder variable order according to the order. This command can be used |
---|
630 | any time after static_order command. However, the users should notice that |
---|
631 | there is a possibility to get BDD blowups during this command. |
---|
632 | <p> |
---|
633 | |
---|
634 | |
---|
635 | Command options:<p> |
---|
636 | |
---|
637 | <dl> |
---|
638 | |
---|
639 | <dt> -h |
---|
640 | <dd> Print the command usage.<p> |
---|
641 | |
---|
642 | <dt> -g <group> |
---|
643 | |
---|
644 | <dd> Specify whether to group present and next state variables or not.<p> |
---|
645 | |
---|
646 | <b>0:</b> Do not group.<p> |
---|
647 | |
---|
648 | <b>1:</b> Do group (default).<p> |
---|
649 | |
---|
650 | <dt> -v |
---|
651 | <dd> Print debug information. |
---|
652 | <dd> |
---|
653 | |
---|
654 | <dt> <file> |
---|
655 | |
---|
656 | <dd> A file containing names of network nodes, used to specify a variable |
---|
657 | ordering. The name of a node is the full hierarchical path name, starting |
---|
658 | from the current hierarchical node. A node should appear at most once in |
---|
659 | the file. Each node name should appear at the beginning of a new line, with |
---|
660 | no white space preceeding it. The end of a node name is marked by white |
---|
661 | space, and any other text on the rest of the line is ignored. Any line |
---|
662 | starting with "#" or white space is ignored. See <tt>write_order</tt> |
---|
663 | for a sample file. Note that the variable ordering cannot be specified at |
---|
664 | the bit-level; it can only be specified at the multi-valued variable level. |
---|
665 | |
---|
666 | </dl> |
---|
667 | ] |
---|
668 | |
---|
669 | |
---|
670 | SeeAlso [CommandStaticOrder CommandWriteOrder] |
---|
671 | |
---|
672 | ******************************************************************************/ |
---|
673 | static int |
---|
674 | CommandReadOrder( |
---|
675 | Hrc_Manager_t ** hmgr, |
---|
676 | int argc, |
---|
677 | char ** argv) |
---|
678 | { |
---|
679 | int c, status; |
---|
680 | FILE *fp; |
---|
681 | int verbose = 0; |
---|
682 | int group = 0; |
---|
683 | lsList suppliedNodeList = (lsList)NULL; /* list of Ntk_Node_t * */ |
---|
684 | Ntk_Network_t *network; |
---|
685 | mdd_manager *mddMgr; |
---|
686 | |
---|
687 | if (bdd_get_package_name() != CUDD) { |
---|
688 | fprintf(vis_stderr, |
---|
689 | "** ord error: read_order can be used only with the CUDD package\n"); |
---|
690 | } |
---|
691 | |
---|
692 | /* |
---|
693 | * Parse the command line. |
---|
694 | */ |
---|
695 | util_getopt_reset(); |
---|
696 | while ((c = util_getopt(argc, argv, "hg:v")) != EOF) { |
---|
697 | switch (c) { |
---|
698 | case 'h': |
---|
699 | goto usage; |
---|
700 | case 'g': |
---|
701 | group = atoi(util_optarg); |
---|
702 | break; |
---|
703 | case 'v': |
---|
704 | verbose = 1; |
---|
705 | break; |
---|
706 | default: |
---|
707 | goto usage; |
---|
708 | } |
---|
709 | } |
---|
710 | |
---|
711 | network = Ntk_HrcManagerReadCurrentNetwork(*hmgr); |
---|
712 | if (network == NIL(Ntk_Network_t)) { |
---|
713 | return 1; |
---|
714 | } |
---|
715 | |
---|
716 | if (!Ord_NetworkTestAreVariablesOrdered(network, Ord_InputAndLatch_c)) { |
---|
717 | (void) fprintf(vis_stderr, |
---|
718 | "** ord error: static_order was not called yet.\n"); |
---|
719 | return 1; |
---|
720 | } |
---|
721 | |
---|
722 | /* |
---|
723 | * Process the input ordering file. |
---|
724 | */ |
---|
725 | if (argc - util_optind == 0) { |
---|
726 | (void) fprintf(vis_stderr, "order file not provided\n"); |
---|
727 | goto usage; |
---|
728 | } |
---|
729 | else if (argc - util_optind > 1) { |
---|
730 | (void) fprintf(vis_stderr, "too many arguments\n"); |
---|
731 | goto usage; |
---|
732 | } |
---|
733 | |
---|
734 | fp = Cmd_FileOpen(argv[util_optind], "r", NIL(char *), 0); |
---|
735 | if (fp == NIL(FILE)) { |
---|
736 | return 1; |
---|
737 | } else { |
---|
738 | boolean status; |
---|
739 | |
---|
740 | error_init(); |
---|
741 | status = Ord_FileReadNodeList(fp, network, &suppliedNodeList, verbose); |
---|
742 | if (status == FALSE) { |
---|
743 | (void) fprintf(vis_stderr, "Error reading ordering file:\n"); |
---|
744 | (void) fprintf(vis_stderr, "%s", error_string()); |
---|
745 | (void) fprintf(vis_stderr, "Cannot perform static ordering.\n"); |
---|
746 | (void) fclose(fp); |
---|
747 | return 1; |
---|
748 | } else if (NetworkCheckSuppliedNodeList(network, suppliedNodeList, |
---|
749 | Ord_InputAndLatch_c) == FALSE) { |
---|
750 | (void) fprintf(vis_stderr, "Incorrect nodes supplied:\n"); |
---|
751 | (void) fprintf(vis_stderr, "%s", error_string()); |
---|
752 | (void) fprintf(vis_stderr, "Cannot perform read_order.\n"); |
---|
753 | (void) fclose(fp); |
---|
754 | (void) lsDestroy(suppliedNodeList, (void (*) (lsGeneric)) NULL); |
---|
755 | return 1; |
---|
756 | } else { |
---|
757 | (void) fclose(fp); |
---|
758 | if (verbose > 0) { |
---|
759 | (void) fprintf(vis_stdout, "\nNew variable order from file %s:\n", |
---|
760 | argv[util_optind]); |
---|
761 | OrdNodeListWrite(vis_stdout, suppliedNodeList); |
---|
762 | } |
---|
763 | } |
---|
764 | } |
---|
765 | |
---|
766 | /* |
---|
767 | * Reorder the variables. |
---|
768 | */ |
---|
769 | mddMgr = Ntk_NetworkReadMddManager(network); |
---|
770 | status = OrdMakeNewVariableOrder(mddMgr, suppliedNodeList, group, verbose); |
---|
771 | |
---|
772 | (void) lsDestroy(suppliedNodeList, (void (*) (lsGeneric)) NULL); |
---|
773 | if (status) |
---|
774 | return 1; |
---|
775 | |
---|
776 | alarm(0); |
---|
777 | return 0; /* Everything okay */ |
---|
778 | |
---|
779 | usage: |
---|
780 | (void) fprintf(vis_stderr, "usage: read_order [-g #] [-h] [-v] file\n"); |
---|
781 | (void) fprintf(vis_stderr, " -h print the command usage\n"); |
---|
782 | (void) fprintf(vis_stderr, " -g # ps/ns variables grouping\n"); |
---|
783 | (void) fprintf(vis_stderr, " 0 : do not group ps/ns\n"); |
---|
784 | (void) fprintf(vis_stderr, " 1 : group ps/ns (default)\n"); |
---|
785 | (void) fprintf(vis_stderr, " -v verbosity on\n"); |
---|
786 | (void) fprintf(vis_stderr, " file variable order file\n"); |
---|
787 | |
---|
788 | return 1; |
---|
789 | } |
---|
790 | |
---|
791 | |
---|
792 | /**Function******************************************************************** |
---|
793 | |
---|
794 | Synopsis [Implements the write_order command.] |
---|
795 | |
---|
796 | SideEffects [none] |
---|
797 | |
---|
798 | CommandName [write_order] |
---|
799 | |
---|
800 | CommandSynopsis [write the current order of the MDD variables of the |
---|
801 | flattened network] |
---|
802 | |
---|
803 | CommandArguments [\[-h\] \[-o <type>\] \[<file>\]] |
---|
804 | |
---|
805 | CommandDescription [Write the current order of the MDD variables of the |
---|
806 | flattened network. If no file name is specified, the output is written to |
---|
807 | stdout. A sample output is shown here. |
---|
808 | |
---|
809 | <pre> |
---|
810 | # name type mddId vals levs |
---|
811 | system.choosing0 primary-input 31 2 (61) |
---|
812 | system.p0.pc latch 32 11 (62, 63, 64, 65) |
---|
813 | </pre> |
---|
814 | |
---|
815 | The first column gives the full hierarchical path name of the node, starting |
---|
816 | from the current hierarchical node. The second column gives the type of the |
---|
817 | node in the flattened network (see the command <tt>print_network</tt>). The third |
---|
818 | column gives the MDD id of the node; this can be thought of as just another |
---|
819 | name for the node. The fourth column gives the number of values that the |
---|
820 | multi-valued variable at the output of the node can assume. The last column |
---|
821 | gives the levels of the BDD variables that encode the multi-valued variable |
---|
822 | (0 is the topmost level of the BDD). <p> |
---|
823 | |
---|
824 | The bits of a multi-valued variable need not appear consecutively (due to |
---|
825 | dynamic variable ordering). Each node appears at most once in the output |
---|
826 | file. The nodes in the file appear in ascending order of the lowest level |
---|
827 | bit in the encoding of the node's multi-valued variable (e.g. a node with |
---|
828 | levels (12, 73) will appear before a node with levels (17, 21, 25)).<p> |
---|
829 | |
---|
830 | To specify a variable ordering for static_order, a convenient tactic is to |
---|
831 | write out the current ordering, edit the file to rearrange the ordering (or |
---|
832 | comment out some nodes, using "#"), and then read the file back in using |
---|
833 | <tt>static_order</tt>. Note that everything after the first column is |
---|
834 | ignored when the file is read in.<p> |
---|
835 | |
---|
836 | Command options:<p> |
---|
837 | |
---|
838 | <dl> |
---|
839 | |
---|
840 | <dt> -h |
---|
841 | <dd> Print the command usage.<p> |
---|
842 | |
---|
843 | <dt> -o <type> |
---|
844 | <dd> Specify the network nodes to write out. Type can be one of the following:<p> |
---|
845 | |
---|
846 | <b>all:</b> Write out all the nodes of the network. This option is |
---|
847 | allowed only if all variables have been ordered.<p> |
---|
848 | |
---|
849 | <b>input_and_latch:</b> (default) Write out the primary inputs, pseudo |
---|
850 | inputs, latches, and next state variables. <p> |
---|
851 | |
---|
852 | <b>next_state_node:</b> Write out the next state variables (node type is |
---|
853 | "shadow"). This file can be modified and read back in using the |
---|
854 | <tt>static_order -s next_state_node</tt> command.<p> |
---|
855 | |
---|
856 | <dt> <file> |
---|
857 | |
---|
858 | <dd> File to which to write the ordering. By default, the ordering is |
---|
859 | written to stdout.<p> |
---|
860 | |
---|
861 | </dl>] |
---|
862 | |
---|
863 | ******************************************************************************/ |
---|
864 | static int |
---|
865 | CommandWriteOrder( |
---|
866 | Hrc_Manager_t ** hmgr, |
---|
867 | int argc, |
---|
868 | char ** argv) |
---|
869 | { |
---|
870 | int c; |
---|
871 | FILE *fp; |
---|
872 | int status; |
---|
873 | Ord_OrderType orderType = Ord_InputAndLatch_c; /* default */ |
---|
874 | Ntk_Network_t *network; |
---|
875 | |
---|
876 | /* |
---|
877 | * Parse the command line. |
---|
878 | */ |
---|
879 | util_getopt_reset(); |
---|
880 | while ((c = util_getopt(argc, argv, "ho:")) != EOF) { |
---|
881 | switch (c) { |
---|
882 | case 'h': |
---|
883 | goto usage; |
---|
884 | case 'o': |
---|
885 | orderType = StringConvertToOrderType(util_optarg); |
---|
886 | if (orderType == Ord_Partial_c) { |
---|
887 | (void) fprintf(vis_stderr, "disallowed output order type: %s\n", util_optarg); |
---|
888 | goto usage; |
---|
889 | } |
---|
890 | else if (orderType == Ord_Unassigned_c) { |
---|
891 | (void) fprintf(vis_stderr, "unknown output order type: %s\n", util_optarg); |
---|
892 | goto usage; |
---|
893 | } |
---|
894 | break; |
---|
895 | default: |
---|
896 | goto usage; |
---|
897 | } |
---|
898 | } |
---|
899 | |
---|
900 | network = Ntk_HrcManagerReadCurrentNetwork(*hmgr); |
---|
901 | if (network == NIL(Ntk_Network_t)) { |
---|
902 | return 1; |
---|
903 | } |
---|
904 | |
---|
905 | /* |
---|
906 | * Open the destination file. |
---|
907 | */ |
---|
908 | if (argc - util_optind == 0) { |
---|
909 | fp = Cmd_FileOpen("-", "w", NIL(char *), /* silent */0); |
---|
910 | } |
---|
911 | else if (argc - util_optind == 1) { |
---|
912 | fp = Cmd_FileOpen(argv[util_optind], "w", NIL(char *), /* silent */0); |
---|
913 | } |
---|
914 | else { |
---|
915 | goto usage; |
---|
916 | } |
---|
917 | if (fp == NIL(FILE)) { |
---|
918 | return 1; |
---|
919 | } |
---|
920 | |
---|
921 | error_init(); |
---|
922 | if (Ord_NetworkPrintVariableOrder(fp, network, orderType) == 0) { |
---|
923 | (void) fprintf(vis_stderr, "Not all nodes are ordered: "); |
---|
924 | (void) fprintf(vis_stderr, "%s", error_string()); |
---|
925 | status = 1; |
---|
926 | } |
---|
927 | else { |
---|
928 | status = 0; /* success */ |
---|
929 | } |
---|
930 | |
---|
931 | if (fp != stdout) { |
---|
932 | (void) fclose(fp); |
---|
933 | } |
---|
934 | return (status); |
---|
935 | |
---|
936 | usage: |
---|
937 | (void) fprintf(vis_stderr, "usage: write_order [-h] [-o type] [file]\n"); |
---|
938 | (void) fprintf(vis_stderr, " -h print the command usage\n"); |
---|
939 | (void) fprintf(vis_stderr, " -o type nodes to write (all, input_and_latch (default), next_state_node)\n"); |
---|
940 | (void) fprintf(vis_stderr, " file output file name\n"); |
---|
941 | |
---|
942 | return 1; |
---|
943 | } |
---|
944 | |
---|
945 | |
---|
946 | /**Function******************************************************************** |
---|
947 | |
---|
948 | Synopsis [Implements the dynamic_var_ordering command.] |
---|
949 | |
---|
950 | SideEffects [] |
---|
951 | |
---|
952 | CommandName [dynamic_var_ordering] |
---|
953 | |
---|
954 | CommandSynopsis [control the application of dynamic variable ordering] |
---|
955 | |
---|
956 | CommandArguments [ \[-d\] \[-e <method>\] \[-f <method>\] |
---|
957 | \[-h\]] |
---|
958 | |
---|
959 | CommandDescription [Control the application of dynamic variable ordering to the |
---|
960 | flattened network. Dynamic ordering is a technique to reorder the MDD |
---|
961 | variables to reduce the size of the existing MDDs. When no options are |
---|
962 | specified, the current status of dynamic ordering is displayed. At most one |
---|
963 | of the options -e, -f, and -d should be specified. The commands |
---|
964 | <tt>flatten_hierarchy</tt> and <tt>static_order</tt> must be invoked before |
---|
965 | this command.<p> |
---|
966 | |
---|
967 | Dynamic ordering may be time consuming, but can often reduce the size of the |
---|
968 | MDDs dramatically. The good points to invoke dynamic ordering explicitly |
---|
969 | (using the -f option) are after the commands <tt>build_partition_mdds</tt> |
---|
970 | and <tt>print_img_info</tt>. If dynamic ordering finds a good ordering, |
---|
971 | then you may wish to save this ordering (using <tt>write_order</tt>) and |
---|
972 | reuse it (using <tt>static_order -s</tt>) in the future. A common sequence |
---|
973 | used to get a good ordering is the following:<p> |
---|
974 | |
---|
975 | <pre> |
---|
976 | init_verify |
---|
977 | print_img_info |
---|
978 | dynamic_var_ordering -f sift |
---|
979 | write_order <file> |
---|
980 | flatten_hierarchy |
---|
981 | static_order -s input_and_latch -f <file> |
---|
982 | build_partition_mdds |
---|
983 | print_img_info |
---|
984 | dynamic_var_ordering -f sift |
---|
985 | </pre> |
---|
986 | |
---|
987 | <p>For many large examples, there is no single best variable order, |
---|
988 | or that order is hard to find. For example, the best ordering |
---|
989 | during partitioning of the network may be different from the best |
---|
990 | ordering during a model check. In that case you can use automatic |
---|
991 | reordering, using the <tt>-e</tt> option. This will trigger |
---|
992 | reordering whenever the total size of the MDD increases by a certain |
---|
993 | factor. Often, the <tt>init</tt> command is replaced by the |
---|
994 | following sequence: |
---|
995 | |
---|
996 | <pre> |
---|
997 | flatten_hierarchy |
---|
998 | static_order |
---|
999 | dynamic_var_ordering -e sift |
---|
1000 | build_partition_mdds |
---|
1001 | </pre> |
---|
1002 | |
---|
1003 | Command options:<p> |
---|
1004 | |
---|
1005 | <dl> |
---|
1006 | |
---|
1007 | <dt> -d |
---|
1008 | <dd> Disable dynamic ordering from triggering automatically.<p> |
---|
1009 | |
---|
1010 | <dt> -e <method> |
---|
1011 | <dd> Enable dynamic ordering to trigger automatically whenever a certain |
---|
1012 | threshold on the overall MDD size is reached. "Method" must be one of the following:<p> |
---|
1013 | |
---|
1014 | <b>window:</b> Permutes the variables within windows of three adjacent |
---|
1015 | variables so as to minimize the overall MDD size. This process is repeated |
---|
1016 | until no more reduction in size occurs.<p> |
---|
1017 | |
---|
1018 | <b>sift:</b> Moves each variable throughout the order to find an optimal |
---|
1019 | position for that variable (assuming all other variables are fixed). This |
---|
1020 | generally achieves greater size reductions than the window method, but is |
---|
1021 | slower.<p> |
---|
1022 | |
---|
1023 | The following methods are only available if VIS has been linked with the Bdd |
---|
1024 | package from the University of Colorado (cuBdd).</b><p> |
---|
1025 | |
---|
1026 | <b>random:</b> Pairs of variables are randomly chosen, and swapped in the |
---|
1027 | order. The swap is performed by a series of swaps of adjacent variables. The |
---|
1028 | best order among those obtained by the series of swaps is retained. The |
---|
1029 | number of pairs chosen for swapping equals the number of variables in the |
---|
1030 | diagram.<p> |
---|
1031 | |
---|
1032 | <b>random_pivot:</b> Same as <b>random</b>, but the two variables are chosen |
---|
1033 | so that the first is above the variable with the largest number of nodes, and |
---|
1034 | the second is below that variable. In case there are several variables tied |
---|
1035 | for the maximum number of nodes, the one closest to the root is used.<p> |
---|
1036 | |
---|
1037 | <b>sift_converge:</b> The <b>sift</b> method is iterated until no further |
---|
1038 | improvement is obtained.<p> |
---|
1039 | |
---|
1040 | <b>symmetry_sift:</b> This method is an implementation of symmetric |
---|
1041 | sifting. It is similar to sifting, with one addition: Variables that become |
---|
1042 | adjacent during sifting are tested for symmetry. If they are symmetric, they |
---|
1043 | are linked in a group. Sifting then continues with a group being moved, |
---|
1044 | instead of a single variable.<p> |
---|
1045 | |
---|
1046 | <b>symmetry_sift_converge:</b> The <b>symmetry_sift</b> method is iterated |
---|
1047 | until no further improvement is obtained.<p> |
---|
1048 | |
---|
1049 | <b>window{2,3,4}:</b> Permutes the variables within windows of n adjacent |
---|
1050 | variables, where "n" can be either 2, 3 or 4, so as to minimize the overall |
---|
1051 | MDD size.<p> |
---|
1052 | |
---|
1053 | <b>window{2,3,4}_converge:</b> The <b>window{2,3,4}</b> method is iterated |
---|
1054 | until no further improvement is obtained.<p> |
---|
1055 | |
---|
1056 | <b>group_sift:</b> This method is similar to <b>symmetry_sift</b>, |
---|
1057 | but uses more general criteria to create groups.<p> |
---|
1058 | |
---|
1059 | <b>group_sift_converge:</b> The <b>group_sift</b> method is iterated until no |
---|
1060 | further improvement is obtained.<p> |
---|
1061 | |
---|
1062 | <b>lazy_sift:</b> This method is similar to <b>group_sift</b>, but the |
---|
1063 | creation of groups takes into account the pairing of present and next state |
---|
1064 | variables.<p> |
---|
1065 | |
---|
1066 | <b>annealing:</b> This method is an implementation of simulated annealing for |
---|
1067 | variable ordering. This method is potentially very slow.<p> |
---|
1068 | |
---|
1069 | <b>genetic:</b> This method is an implementation of a genetic algorithm for |
---|
1070 | variable ordering. This method is potentially very slow.<p> |
---|
1071 | |
---|
1072 | <dt> -f <method> |
---|
1073 | <dd> Force dynamic ordering to be invoked immediately. The values for |
---|
1074 | method are the same as in option -e.<p> |
---|
1075 | |
---|
1076 | <dt> -h |
---|
1077 | <dd> Print the command usage. |
---|
1078 | |
---|
1079 | <dt> -v <#> |
---|
1080 | <dd> Verbosity level. Default is 0. For values greater than 0, |
---|
1081 | statistics pertaining to reordering will be printed whenever |
---|
1082 | reordering occurs. |
---|
1083 | |
---|
1084 | </dl> |
---|
1085 | ] |
---|
1086 | |
---|
1087 | ******************************************************************************/ |
---|
1088 | static int |
---|
1089 | CommandDynamicVarOrdering( |
---|
1090 | Hrc_Manager_t ** hmgr, |
---|
1091 | int argc, |
---|
1092 | char ** argv) |
---|
1093 | { |
---|
1094 | int c; |
---|
1095 | bdd_reorder_type_t currentMethod; |
---|
1096 | bdd_reorder_type_t dynOrderingMethod = BDD_REORDER_NONE; /* for lint */ |
---|
1097 | boolean disableFlag = FALSE; |
---|
1098 | boolean enableFlag = FALSE; |
---|
1099 | boolean forceFlag = FALSE; |
---|
1100 | Ntk_Network_t *network; |
---|
1101 | int verbosityFlag = -1; |
---|
1102 | bdd_reorder_verbosity_t reorderVerbosity = BDD_REORDER_VERBOSITY_DEFAULT; |
---|
1103 | |
---|
1104 | /* |
---|
1105 | * Parse the command line. |
---|
1106 | */ |
---|
1107 | util_getopt_reset(); |
---|
1108 | while ((c = util_getopt(argc, argv, "df:e:hv:")) != EOF) { |
---|
1109 | switch (c) { |
---|
1110 | case 'h': |
---|
1111 | goto usage; |
---|
1112 | case 'f': |
---|
1113 | forceFlag = TRUE; |
---|
1114 | dynOrderingMethod = StringConvertToDynOrderType(util_optarg); |
---|
1115 | if (dynOrderingMethod == BDD_REORDER_NONE) { |
---|
1116 | (void) fprintf(vis_stderr, "unknown method: %s\n", util_optarg); |
---|
1117 | goto usage; |
---|
1118 | } |
---|
1119 | break; |
---|
1120 | case 'e': |
---|
1121 | enableFlag = TRUE; |
---|
1122 | dynOrderingMethod = StringConvertToDynOrderType(util_optarg); |
---|
1123 | if (dynOrderingMethod == BDD_REORDER_NONE) { |
---|
1124 | (void) fprintf(vis_stderr, "unknown method: %s\n", util_optarg); |
---|
1125 | goto usage; |
---|
1126 | } |
---|
1127 | break; |
---|
1128 | case 'd': |
---|
1129 | disableFlag = TRUE; |
---|
1130 | break; |
---|
1131 | case 'v': |
---|
1132 | verbosityFlag = atoi(util_optarg); |
---|
1133 | break; |
---|
1134 | default: |
---|
1135 | goto usage; |
---|
1136 | } |
---|
1137 | } |
---|
1138 | if (c == EOF && argc != util_optind) |
---|
1139 | goto usage; |
---|
1140 | |
---|
1141 | switch (verbosityFlag) { |
---|
1142 | case 0: reorderVerbosity = BDD_REORDER_NO_VERBOSITY; break; |
---|
1143 | case 1: reorderVerbosity = BDD_REORDER_VERBOSITY; break; |
---|
1144 | default: reorderVerbosity = BDD_REORDER_VERBOSITY_DEFAULT; break; |
---|
1145 | } |
---|
1146 | |
---|
1147 | /* flatten_hierarchy and static_order must have been invoked already. */ |
---|
1148 | network = Ntk_HrcManagerReadCurrentNetwork(*hmgr); |
---|
1149 | if (network == NIL(Ntk_Network_t)) { |
---|
1150 | return 1; |
---|
1151 | } |
---|
1152 | if (Ord_NetworkTestAreVariablesOrdered(network, Ord_InputAndLatch_c) == FALSE) { |
---|
1153 | (void) fprintf(vis_stderr, "The MDD variables have not been ordered. "); |
---|
1154 | (void) fprintf(vis_stderr, "Use static_order.\n"); |
---|
1155 | return 1; |
---|
1156 | } |
---|
1157 | |
---|
1158 | /* At most one option is allowed. */ |
---|
1159 | if ((disableFlag && enableFlag) || (disableFlag && forceFlag) |
---|
1160 | || (enableFlag && forceFlag)) { |
---|
1161 | (void) fprintf(vis_stderr, "Only one of -d, -f, -e is allowed.\n"); |
---|
1162 | return 1; |
---|
1163 | } |
---|
1164 | |
---|
1165 | /* |
---|
1166 | * Get the current method for reading and to save in case temporarily |
---|
1167 | * overwritten. |
---|
1168 | */ |
---|
1169 | currentMethod = Ntk_NetworkReadDynamicVarOrderingMethod(network); |
---|
1170 | |
---|
1171 | /* If no options are given, then just display current status. */ |
---|
1172 | if (!(disableFlag || enableFlag || forceFlag)) { |
---|
1173 | if (currentMethod == BDD_REORDER_NONE) { |
---|
1174 | (void) fprintf(vis_stdout, "Dynamic variable ordering is disabled.\n"); |
---|
1175 | } |
---|
1176 | else { |
---|
1177 | (void) fprintf(vis_stdout, "Dynamic variable ordering is enabled "); |
---|
1178 | (void) fprintf(vis_stdout, "with method %s.\n", |
---|
1179 | DynOrderTypeConvertToString(currentMethod)); |
---|
1180 | } |
---|
1181 | } |
---|
1182 | |
---|
1183 | if (disableFlag) { |
---|
1184 | if (currentMethod == BDD_REORDER_NONE) { |
---|
1185 | (void) fprintf(vis_stdout, "Dynamic variable ordering is already disabled.\n"); |
---|
1186 | } |
---|
1187 | else { |
---|
1188 | (void) fprintf(vis_stdout, "Dynamic variable ordering is disabled.\n"); |
---|
1189 | Ntk_NetworkSetDynamicVarOrderingMethod(network, BDD_REORDER_NONE, reorderVerbosity); |
---|
1190 | } |
---|
1191 | } |
---|
1192 | |
---|
1193 | /* |
---|
1194 | * Set the dynamic ordering method of the network. Note that |
---|
1195 | * Ntk_NetworkSetDynamicVarOrderingMethod makes the necessary call to |
---|
1196 | * bdd_dynamic_reordering. |
---|
1197 | */ |
---|
1198 | if (enableFlag) { |
---|
1199 | Ntk_NetworkSetDynamicVarOrderingMethod(network, dynOrderingMethod, |
---|
1200 | reorderVerbosity); |
---|
1201 | if (bdd_get_package_name() != CUDD) |
---|
1202 | dynOrderingMethod = Ntk_NetworkReadDynamicVarOrderingMethod(network); |
---|
1203 | (void) fprintf(vis_stdout, |
---|
1204 | "Dynamic variable ordering is enabled with method %s.\n", |
---|
1205 | DynOrderTypeConvertToString(dynOrderingMethod)); |
---|
1206 | } |
---|
1207 | |
---|
1208 | /* |
---|
1209 | * Force a reordering. Note that the mddManager has to have the method set |
---|
1210 | * before calling bdd_reorder. This is done via a call to |
---|
1211 | * Ntk_NetworkSetDynamicVarOrderingMethod with dynOrderingMethod. The value |
---|
1212 | * of the ordering method is restored afterwards. |
---|
1213 | */ |
---|
1214 | if (forceFlag) { |
---|
1215 | mdd_manager *mddManager = Ntk_NetworkReadMddManager(network); |
---|
1216 | bdd_reorder_verbosity_t prevReorderVerbosity; |
---|
1217 | prevReorderVerbosity = bdd_reordering_reporting(mddManager); |
---|
1218 | |
---|
1219 | (void) fprintf(vis_stdout, "Dynamic variable ordering forced "); |
---|
1220 | (void) fprintf(vis_stdout, "with method %s....\n", |
---|
1221 | DynOrderTypeConvertToString(dynOrderingMethod)); |
---|
1222 | Ntk_NetworkSetDynamicVarOrderingMethod(network, dynOrderingMethod, reorderVerbosity); |
---|
1223 | bdd_reorder(Ntk_NetworkReadMddManager(network)); |
---|
1224 | Ntk_NetworkSetDynamicVarOrderingMethod(network, currentMethod, prevReorderVerbosity); |
---|
1225 | } |
---|
1226 | |
---|
1227 | return 0; /* Everything okay */ |
---|
1228 | |
---|
1229 | usage: |
---|
1230 | (void) fprintf(vis_stderr, "usage: dynamic_var_ordering [-d] [-e method] [-f method] [-h]\n"); |
---|
1231 | (void) fprintf(vis_stderr, " -d disable dynamic ordering\n"); |
---|
1232 | (void) fprintf(vis_stderr, " -e method enable dynamic ordering with method (window, sift)\n"); |
---|
1233 | (void) fprintf(vis_stderr, " -f method force dynamic ordering with method (window, sift)\n"); |
---|
1234 | (void) fprintf(vis_stderr, " -h print the command usage\n"); |
---|
1235 | (void) fprintf(vis_stderr, " -v # verbosity level \n"); |
---|
1236 | |
---|
1237 | return 1; |
---|
1238 | } |
---|
1239 | |
---|
1240 | |
---|
1241 | /**Function******************************************************************** |
---|
1242 | |
---|
1243 | Synopsis [Implements the print_bdd_stats command.] |
---|
1244 | |
---|
1245 | SideEffects [] |
---|
1246 | |
---|
1247 | CommandName [print_bdd_stats] |
---|
1248 | |
---|
1249 | CommandSynopsis [print the BDD statistics for the flattened network] |
---|
1250 | |
---|
1251 | CommandArguments [\[-h\]] |
---|
1252 | |
---|
1253 | CommandDescription [Print the BDD statistics for the flattened network. The |
---|
1254 | MDDs representing the functions of the network are themselves represented by |
---|
1255 | BDDs via an encoding of the multi-valued variables into binary valued |
---|
1256 | variables. The statistics given by this command depend on the underlying |
---|
1257 | BDD package with which VIS was linked. To get more information about the |
---|
1258 | statistics, consult the documentation for the given BDD package. The |
---|
1259 | commands <tt>flatten_hierarchy</tt> and <tt>static_order</tt> must be |
---|
1260 | invoked before this command.<p> |
---|
1261 | |
---|
1262 | Command options:<p> |
---|
1263 | |
---|
1264 | <dl> |
---|
1265 | |
---|
1266 | <dt> -h |
---|
1267 | <dd> Print the command usage. |
---|
1268 | |
---|
1269 | </dl> |
---|
1270 | ] |
---|
1271 | |
---|
1272 | ******************************************************************************/ |
---|
1273 | static int |
---|
1274 | CommandPrintBddStats( |
---|
1275 | Hrc_Manager_t ** hmgr, |
---|
1276 | int argc, |
---|
1277 | char ** argv) |
---|
1278 | { |
---|
1279 | int c; |
---|
1280 | Ntk_Network_t *network; |
---|
1281 | |
---|
1282 | /* |
---|
1283 | * Parse the command line. |
---|
1284 | */ |
---|
1285 | util_getopt_reset(); |
---|
1286 | while ((c = util_getopt(argc, argv, "h")) != EOF) { |
---|
1287 | switch (c) { |
---|
1288 | case 'h': |
---|
1289 | goto usage; |
---|
1290 | default: |
---|
1291 | goto usage; |
---|
1292 | } |
---|
1293 | } |
---|
1294 | |
---|
1295 | /* flatten_hierarchy and static_order must have been invoked already. */ |
---|
1296 | network = Ntk_HrcManagerReadCurrentNetwork(*hmgr); |
---|
1297 | if (network == NIL(Ntk_Network_t)) { |
---|
1298 | return 1; |
---|
1299 | } |
---|
1300 | if (Ord_NetworkTestAreVariablesOrdered(network, Ord_InputAndLatch_c) == FALSE) { |
---|
1301 | (void) fprintf(vis_stderr, "The MDD variables have not been ordered. "); |
---|
1302 | (void) fprintf(vis_stderr, "Use static_order.\n"); |
---|
1303 | return 1; |
---|
1304 | } |
---|
1305 | |
---|
1306 | bdd_print_stats(Ntk_NetworkReadMddManager(network), vis_stdout); |
---|
1307 | |
---|
1308 | return 0; /* Everything okay */ |
---|
1309 | |
---|
1310 | usage: |
---|
1311 | (void) fprintf(vis_stderr, "usage: print_bdd_stats [-h]\n"); |
---|
1312 | (void) fprintf(vis_stderr, " -h print the command usage\n"); |
---|
1313 | |
---|
1314 | return 1; |
---|
1315 | } |
---|
1316 | |
---|
1317 | |
---|
1318 | /**Function******************************************************************** |
---|
1319 | |
---|
1320 | Synopsis [Converts a string to an order type.] |
---|
1321 | |
---|
1322 | Description [Converts a string to an order type. If string does not refer to |
---|
1323 | one of the allowed order types, then returns Ord_Unassigned_c.] |
---|
1324 | |
---|
1325 | SideEffects [] |
---|
1326 | |
---|
1327 | ******************************************************************************/ |
---|
1328 | static Ord_OrderType |
---|
1329 | StringConvertToOrderType( |
---|
1330 | char *string) |
---|
1331 | { |
---|
1332 | if (strcmp("all", string) == 0) { |
---|
1333 | return Ord_All_c; |
---|
1334 | } |
---|
1335 | else if (strcmp("input_and_latch", string) == 0) { |
---|
1336 | return Ord_InputAndLatch_c; |
---|
1337 | } |
---|
1338 | else if (strcmp("next_state_node", string) == 0) { |
---|
1339 | return Ord_NextStateNode_c; |
---|
1340 | } |
---|
1341 | else if (strcmp("partial", string) == 0) { |
---|
1342 | return Ord_Partial_c; |
---|
1343 | } |
---|
1344 | else { |
---|
1345 | return Ord_Unassigned_c; |
---|
1346 | } |
---|
1347 | } |
---|
1348 | |
---|
1349 | |
---|
1350 | /**Function******************************************************************** |
---|
1351 | |
---|
1352 | Synopsis [Converts a string to a dynamic ordering method type.] |
---|
1353 | |
---|
1354 | Description [Converts a string to a dynamic ordering method type. If string |
---|
1355 | is not "sift" or "window", then returns BDD_REORDER_NONE.] |
---|
1356 | |
---|
1357 | SideEffects [] |
---|
1358 | |
---|
1359 | ******************************************************************************/ |
---|
1360 | static bdd_reorder_type_t |
---|
1361 | StringConvertToDynOrderType( |
---|
1362 | char *string) |
---|
1363 | { |
---|
1364 | if (strcmp("sift", string) == 0) { |
---|
1365 | return BDD_REORDER_SIFT; |
---|
1366 | } |
---|
1367 | else if (strcmp("window", string) == 0) { |
---|
1368 | return BDD_REORDER_WINDOW; |
---|
1369 | } |
---|
1370 | else if (strcmp("random", string) == 0) { |
---|
1371 | return BDD_REORDER_RANDOM; |
---|
1372 | } |
---|
1373 | else if (strcmp("random_pivot", string) == 0) { |
---|
1374 | return BDD_REORDER_RANDOM_PIVOT; |
---|
1375 | } |
---|
1376 | else if (strcmp("sift_converge", string) == 0) { |
---|
1377 | return BDD_REORDER_SIFT_CONVERGE; |
---|
1378 | } |
---|
1379 | else if (strcmp("symmetry_sift", string) == 0) { |
---|
1380 | return BDD_REORDER_SYMM_SIFT; |
---|
1381 | } |
---|
1382 | else if (strcmp("symmetry_sift_converge", string) == 0) { |
---|
1383 | return BDD_REORDER_SYMM_SIFT_CONV; |
---|
1384 | } |
---|
1385 | else if (strcmp("window2", string) == 0) { |
---|
1386 | return BDD_REORDER_WINDOW2; |
---|
1387 | } |
---|
1388 | else if (strcmp("window3", string) == 0) { |
---|
1389 | return BDD_REORDER_WINDOW3; |
---|
1390 | } |
---|
1391 | else if (strcmp("window4", string) == 0) { |
---|
1392 | return BDD_REORDER_WINDOW4; |
---|
1393 | } |
---|
1394 | else if (strcmp("window2_converge", string) == 0) { |
---|
1395 | return BDD_REORDER_WINDOW2_CONV; |
---|
1396 | } |
---|
1397 | else if (strcmp("window3_converge", string) == 0) { |
---|
1398 | return BDD_REORDER_WINDOW3_CONV; |
---|
1399 | } |
---|
1400 | else if (strcmp("window4_converge", string) == 0) { |
---|
1401 | return BDD_REORDER_WINDOW4_CONV; |
---|
1402 | } |
---|
1403 | else if (strcmp("group_sift", string) == 0) { |
---|
1404 | return BDD_REORDER_GROUP_SIFT; |
---|
1405 | } |
---|
1406 | else if (strcmp("group_sift_converge", string) == 0) { |
---|
1407 | return BDD_REORDER_GROUP_SIFT_CONV; |
---|
1408 | } |
---|
1409 | else if (strcmp("annealing", string) == 0) { |
---|
1410 | return BDD_REORDER_ANNEALING; |
---|
1411 | } |
---|
1412 | else if (strcmp("genetic", string) == 0) { |
---|
1413 | return BDD_REORDER_GENETIC; |
---|
1414 | } |
---|
1415 | else if (strcmp("exact", string) == 0) { |
---|
1416 | return BDD_REORDER_EXACT; |
---|
1417 | } |
---|
1418 | else if (strcmp("lazy_sift", string) == 0) { |
---|
1419 | return BDD_REORDER_LAZY_SIFT; |
---|
1420 | } |
---|
1421 | else { |
---|
1422 | return BDD_REORDER_NONE; |
---|
1423 | } |
---|
1424 | } |
---|
1425 | |
---|
1426 | |
---|
1427 | /**Function******************************************************************** |
---|
1428 | |
---|
1429 | Synopsis [Converts a dynamic ordering method type to a string.] |
---|
1430 | |
---|
1431 | Description [Converts a dynamic ordering method type to a string. This |
---|
1432 | string must NOT be freed by the caller.] |
---|
1433 | |
---|
1434 | SideEffects [] |
---|
1435 | |
---|
1436 | ******************************************************************************/ |
---|
1437 | static char * |
---|
1438 | DynOrderTypeConvertToString( |
---|
1439 | bdd_reorder_type_t method) |
---|
1440 | { |
---|
1441 | if (method == BDD_REORDER_SIFT) { |
---|
1442 | return "sift"; |
---|
1443 | } |
---|
1444 | else if (method == BDD_REORDER_WINDOW) { |
---|
1445 | return "window"; |
---|
1446 | } |
---|
1447 | else if (method == BDD_REORDER_NONE) { |
---|
1448 | return "none"; |
---|
1449 | } |
---|
1450 | else if (method == BDD_REORDER_RANDOM) { |
---|
1451 | return "random"; |
---|
1452 | } |
---|
1453 | else if (method == BDD_REORDER_RANDOM_PIVOT) { |
---|
1454 | return "random_pivot"; |
---|
1455 | } |
---|
1456 | else if (method == BDD_REORDER_SIFT_CONVERGE) { |
---|
1457 | return "sift_converge"; |
---|
1458 | } |
---|
1459 | else if (method == BDD_REORDER_SYMM_SIFT) { |
---|
1460 | return "symmetry_sift"; |
---|
1461 | } |
---|
1462 | else if (method == BDD_REORDER_SYMM_SIFT_CONV) { |
---|
1463 | return "symmetry_sift_converge"; |
---|
1464 | } |
---|
1465 | else if (method == BDD_REORDER_WINDOW2) { |
---|
1466 | return "window2"; |
---|
1467 | } |
---|
1468 | else if (method == BDD_REORDER_WINDOW3) { |
---|
1469 | return "window3"; |
---|
1470 | } |
---|
1471 | else if (method == BDD_REORDER_WINDOW4) { |
---|
1472 | return "window4"; |
---|
1473 | } |
---|
1474 | else if (method == BDD_REORDER_WINDOW2_CONV) { |
---|
1475 | return "window2_converge"; |
---|
1476 | } |
---|
1477 | else if (method == BDD_REORDER_WINDOW3_CONV) { |
---|
1478 | return "window3_converge"; |
---|
1479 | } |
---|
1480 | else if (method == BDD_REORDER_WINDOW4_CONV) { |
---|
1481 | return "window4_converge"; |
---|
1482 | } |
---|
1483 | else if (method == BDD_REORDER_GROUP_SIFT) { |
---|
1484 | return "group_sift"; |
---|
1485 | } |
---|
1486 | else if (method == BDD_REORDER_GROUP_SIFT_CONV) { |
---|
1487 | return "group_sift_converge"; |
---|
1488 | } |
---|
1489 | else if (method == BDD_REORDER_ANNEALING) { |
---|
1490 | return "annealing"; |
---|
1491 | } |
---|
1492 | else if (method == BDD_REORDER_GENETIC) { |
---|
1493 | return "genetic"; |
---|
1494 | } |
---|
1495 | else if (method == BDD_REORDER_EXACT) { |
---|
1496 | return "exact"; |
---|
1497 | } |
---|
1498 | else if (method == BDD_REORDER_LAZY_SIFT) { |
---|
1499 | return "lazy_sift"; |
---|
1500 | } |
---|
1501 | else { |
---|
1502 | fail("unrecognized method"); |
---|
1503 | return NIL(char); /* not reached */ |
---|
1504 | } |
---|
1505 | } |
---|
1506 | |
---|
1507 | |
---|
1508 | /**Function******************************************************************** |
---|
1509 | |
---|
1510 | Synopsis [Verifies that suppliedNodeList has the correct nodes.] |
---|
1511 | |
---|
1512 | Description [Returns TRUE if the set of nodes in suppliedNodeList matches |
---|
1513 | the set of nodes in network specified by orderType; else returns FALSE and |
---|
1514 | writes a message to error_string. OrderType should be one of the following: |
---|
1515 | 1) Ord_All_c: should match the set of all nodes in network; 2) |
---|
1516 | Ord_InputAndLatch_c: should match the set of inputs (primary + pseudo), |
---|
1517 | latches, and next state nodes; 3) Ord_NextStateNode_c: should match the set |
---|
1518 | of next state nodes; number should be the number of latches; 4) |
---|
1519 | Ord_Partial_c: returns TRUE automatically.] |
---|
1520 | |
---|
1521 | SideEffects [] |
---|
1522 | |
---|
1523 | ******************************************************************************/ |
---|
1524 | static boolean |
---|
1525 | NetworkCheckSuppliedNodeList( |
---|
1526 | Ntk_Network_t * network, |
---|
1527 | lsList suppliedNodeList, |
---|
1528 | Ord_OrderType orderType) |
---|
1529 | { |
---|
1530 | lsGen gen; |
---|
1531 | st_generator *stGen; |
---|
1532 | Ntk_Node_t *node; |
---|
1533 | st_table *requiredNodes; |
---|
1534 | st_table *suppliedNodes; |
---|
1535 | char *dummy; |
---|
1536 | boolean returnFlag = TRUE; |
---|
1537 | |
---|
1538 | assert(orderType != Ord_Unassigned_c); |
---|
1539 | |
---|
1540 | if (orderType == Ord_Partial_c) { |
---|
1541 | return TRUE; |
---|
1542 | } |
---|
1543 | |
---|
1544 | /* At this point, orderType must be one of the these. */ |
---|
1545 | assert((orderType == Ord_All_c) || (orderType == Ord_InputAndLatch_c) |
---|
1546 | || (orderType == Ord_NextStateNode_c)); |
---|
1547 | |
---|
1548 | |
---|
1549 | /* |
---|
1550 | * Build up the table of required nodes. Next state nodes are included by |
---|
1551 | * all 3 order types. |
---|
1552 | */ |
---|
1553 | requiredNodes = st_init_table(st_ptrcmp, st_ptrhash); |
---|
1554 | Ntk_NetworkForEachNode(network, gen, node) { |
---|
1555 | if ((orderType == Ord_All_c) || Ntk_NodeTestIsNextStateNode(node)) { |
---|
1556 | st_insert(requiredNodes, (char *) node, NIL(char)); |
---|
1557 | } |
---|
1558 | else if ((orderType == Ord_InputAndLatch_c) |
---|
1559 | && Ntk_NodeTestIsCombInput(node)) { |
---|
1560 | st_insert(requiredNodes, (char *) node, NIL(char)); |
---|
1561 | } |
---|
1562 | /* else, this node is not included by orderType */ |
---|
1563 | } |
---|
1564 | |
---|
1565 | /* |
---|
1566 | * Convert suppliedNodeList to the table of supplied nodes. |
---|
1567 | */ |
---|
1568 | suppliedNodes = st_init_table(st_ptrcmp, st_ptrhash); |
---|
1569 | lsForEachItem(suppliedNodeList, gen, node) { |
---|
1570 | int status = st_insert(suppliedNodes, (char *) node, NIL(char)); |
---|
1571 | if (status) { |
---|
1572 | error_append("node "); |
---|
1573 | error_append(Ntk_NodeReadName(node)); |
---|
1574 | error_append(" appears more than once in ordering file\n"); |
---|
1575 | returnFlag = FALSE; |
---|
1576 | } |
---|
1577 | } |
---|
1578 | |
---|
1579 | /* |
---|
1580 | * Check that suppliedNodes is contained in requiredNodes. |
---|
1581 | */ |
---|
1582 | st_foreach_item(suppliedNodes, stGen, &node, &dummy) { |
---|
1583 | if (!st_is_member(requiredNodes, node)) { |
---|
1584 | error_append("node "); |
---|
1585 | error_append(Ntk_NodeReadName(node)); |
---|
1586 | error_append(" supplied but not required\n"); |
---|
1587 | returnFlag = FALSE; |
---|
1588 | } |
---|
1589 | } |
---|
1590 | |
---|
1591 | /* |
---|
1592 | * Check that suppliedNodes is contained in requiredNodes. |
---|
1593 | */ |
---|
1594 | st_foreach_item(requiredNodes, stGen, &node, &dummy) { |
---|
1595 | if (!st_is_member(suppliedNodes, node)) { |
---|
1596 | error_append("node "); |
---|
1597 | error_append(Ntk_NodeReadName(node)); |
---|
1598 | error_append(" required but not supplied\n"); |
---|
1599 | returnFlag = FALSE; |
---|
1600 | } |
---|
1601 | } |
---|
1602 | |
---|
1603 | st_free_table(requiredNodes); |
---|
1604 | st_free_table(suppliedNodes); |
---|
1605 | return returnFlag; |
---|
1606 | } |
---|
1607 | |
---|
1608 | |
---|
1609 | /**Function******************************************************************** |
---|
1610 | |
---|
1611 | Synopsis [Handle function for timeout.] |
---|
1612 | |
---|
1613 | Description [This function is called when the time out occurs.] |
---|
1614 | |
---|
1615 | SideEffects [] |
---|
1616 | |
---|
1617 | ******************************************************************************/ |
---|
1618 | static void |
---|
1619 | TimeOutHandle(void) |
---|
1620 | { |
---|
1621 | longjmp(timeOutEnv, 1); |
---|
1622 | } |
---|