1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [restrHammingD.c] |
---|
4 | |
---|
5 | PackageName [restr] |
---|
6 | |
---|
7 | Synopsis [The function in this file implements the Hamming distance heuristic |
---|
8 | to restructure the STG.] |
---|
9 | |
---|
10 | Description [The function in this file implements the Hamming distance |
---|
11 | heuristic to restructure the STG. Please refer to "A symbolic algorithm for |
---|
12 | low power sequential synthesis," ISLPED 97, for more details.] |
---|
13 | |
---|
14 | SeeAlso [restrFaninout.c restrCProj.c] |
---|
15 | |
---|
16 | Author [Balakrishna Kumthekar <kumtheka@colorado.edu>] |
---|
17 | |
---|
18 | Copyright [This file was created at the University of Colorado at |
---|
19 | Boulder. The University of Colorado at Boulder makes no warranty |
---|
20 | about the suitability of this software for any purpose. It is |
---|
21 | presented on an AS IS basis.] |
---|
22 | |
---|
23 | ******************************************************************************/ |
---|
24 | |
---|
25 | #include "restrInt.h" |
---|
26 | |
---|
27 | /*---------------------------------------------------------------------------*/ |
---|
28 | /* Constant declarations */ |
---|
29 | /*---------------------------------------------------------------------------*/ |
---|
30 | |
---|
31 | |
---|
32 | /*---------------------------------------------------------------------------*/ |
---|
33 | /* Type declarations */ |
---|
34 | /*---------------------------------------------------------------------------*/ |
---|
35 | |
---|
36 | |
---|
37 | /*---------------------------------------------------------------------------*/ |
---|
38 | /* Structure declarations */ |
---|
39 | /*---------------------------------------------------------------------------*/ |
---|
40 | |
---|
41 | /*---------------------------------------------------------------------------*/ |
---|
42 | /* Variable declarations */ |
---|
43 | /*---------------------------------------------------------------------------*/ |
---|
44 | |
---|
45 | |
---|
46 | /*---------------------------------------------------------------------------*/ |
---|
47 | /* Macro declarations */ |
---|
48 | /*---------------------------------------------------------------------------*/ |
---|
49 | |
---|
50 | |
---|
51 | /**AutomaticStart*************************************************************/ |
---|
52 | |
---|
53 | /*---------------------------------------------------------------------------*/ |
---|
54 | /* Static function prototypes */ |
---|
55 | /*---------------------------------------------------------------------------*/ |
---|
56 | |
---|
57 | static bdd_node * restrHxygthxz(bdd_manager *dd, int N, bdd_node **x, bdd_node **y, bdd_node **z); |
---|
58 | |
---|
59 | /**AutomaticEnd***************************************************************/ |
---|
60 | |
---|
61 | |
---|
62 | /*---------------------------------------------------------------------------*/ |
---|
63 | /* Definition of exported functions */ |
---|
64 | /*---------------------------------------------------------------------------*/ |
---|
65 | |
---|
66 | /*---------------------------------------------------------------------------*/ |
---|
67 | /* Definition of internal functions */ |
---|
68 | /*---------------------------------------------------------------------------*/ |
---|
69 | |
---|
70 | /**Function******************************************************************** |
---|
71 | |
---|
72 | Synopsis [This procedure implements the Hamming distance heuristic to |
---|
73 | restructure the STG. Returns the BDD of the restructured STG.] |
---|
74 | |
---|
75 | Description [This procedure implements the Hamming distance heuristic to |
---|
76 | restructure the STG. A priority function based on hamming distance is used to |
---|
77 | select destination state. oldTR is a BDD representing the transition relation |
---|
78 | of an FSM. pTR is the augmented transition relation. Both pTR and oldTR are |
---|
79 | functions of xVars and yVars. vVars are auxillary variables used inside this |
---|
80 | procedure. The three sets of variables, xVars, yVars and vVars are of length |
---|
81 | nVars. nPi are the number of primary input variables in the FSM. |
---|
82 | |
---|
83 | This heuristic selects a destination state such that the number of bit |
---|
84 | changes per state transition is minimized. In order to do that the following |
---|
85 | function is utilized. |
---|
86 | |
---|
87 | H(x,y,v) = 1 if HD(x,y) < HD(x,v) |
---|
88 | = 0 otherwise |
---|
89 | |
---|
90 | where HD(x,y) is the hamming distance between states encoded by x and |
---|
91 | y. However, H(x,y,v) is not a priority function. To break the tie, relative |
---|
92 | proximity function is used. H(x,y,v) and the relative proximity function are |
---|
93 | used to defined a composite priority functioin. |
---|
94 | |
---|
95 | Please refer to "A symbolic algorithm for low power sequential synthesis," |
---|
96 | ISLPED 97, for more details.] |
---|
97 | |
---|
98 | SideEffects [None] |
---|
99 | |
---|
100 | SeeAlso [RestrMinimizeFsmByCProj RestrMinimizeFsmByFaninFanout |
---|
101 | bdd_priority_select] |
---|
102 | |
---|
103 | ******************************************************************************/ |
---|
104 | bdd_node * |
---|
105 | RestrSelectLeastHammingDStates( |
---|
106 | bdd_manager *dd, |
---|
107 | bdd_node *oldTR, |
---|
108 | bdd_node *pTR, |
---|
109 | bdd_node **xVars, |
---|
110 | bdd_node **yVars, |
---|
111 | bdd_node **vVars, |
---|
112 | int nVars, |
---|
113 | int nPi) |
---|
114 | { |
---|
115 | bdd_node *result; |
---|
116 | bdd_node *temp1,*Pi; |
---|
117 | double oldSize,newSize; |
---|
118 | int twice = 0; |
---|
119 | |
---|
120 | /* restrHxygthxz is a function that returns 1 if HD(x,y) > HD(x,z) */ |
---|
121 | bdd_ref(Pi = restrHxygthxz(dd,nVars,xVars,yVars,vVars)); |
---|
122 | result = bdd_priority_select(dd,pTR,xVars,yVars,vVars, |
---|
123 | Pi,nVars,NULL); |
---|
124 | bdd_recursive_deref(dd,Pi); |
---|
125 | if(! result) { |
---|
126 | return NIL(bdd_node); |
---|
127 | } |
---|
128 | bdd_ref(result); |
---|
129 | |
---|
130 | oldSize = bdd_count_minterm(dd,oldTR,2*nVars+nPi); |
---|
131 | newSize = bdd_count_minterm(dd,result,2*nVars+nPi); |
---|
132 | |
---|
133 | /* As restrHxygthxz is not a priority function, result might still be |
---|
134 | non-deterministic. Hence use the tie breaker bdd_dxygtdxz to make the |
---|
135 | "result" deterministic */ |
---|
136 | |
---|
137 | if(newSize > oldSize) { |
---|
138 | temp1 = bdd_priority_select(dd,result,xVars,yVars,vVars, |
---|
139 | NIL(bdd_node),nVars,bdd_dxygtdxz); |
---|
140 | if(! temp1) { |
---|
141 | return NIL(bdd_node); |
---|
142 | } |
---|
143 | bdd_ref(temp1); |
---|
144 | bdd_recursive_deref(dd,result); |
---|
145 | result = temp1; |
---|
146 | twice = 1; |
---|
147 | } |
---|
148 | if (twice) { |
---|
149 | newSize = bdd_count_minterm(dd,result,2*nVars+nPi); |
---|
150 | assert(oldSize == newSize); |
---|
151 | } |
---|
152 | |
---|
153 | if(result == oldTR) { |
---|
154 | fprintf(vis_stdout,"** restr info: HammingD heuristic produces no restructuring.\n"); |
---|
155 | } |
---|
156 | |
---|
157 | return result; |
---|
158 | |
---|
159 | #if 0 |
---|
160 | /* Compute a priority function that looks like: |
---|
161 | * \Pi_H(x,y,z) = H(x,y,z) \vee (\neg H(x,z,y) \wedge \Pi_{RP}(x,y,z)) |
---|
162 | * |
---|
163 | * where H(x,y,z) = 1 if HD(x,y) < HD(x,z) and 0 otherwise; |
---|
164 | * Here z variables are vVars. |
---|
165 | */ |
---|
166 | |
---|
167 | /* Observe that below I am computing H(x,z,y) */ |
---|
168 | bdd_ref(Hxyz = restrHxygthxz(dd,nVars,xVars,vVars,yVars)); |
---|
169 | bdd_ref(Hxzy = bdd_bdd_swap_variables(dd,Hxyz,yVars,vVars,nVars)); |
---|
170 | bdd_ref(piRP = bdd_dxygtdxz(dd,nVars,xVars,yVars,vVars)); |
---|
171 | |
---|
172 | bdd_ref(Pi = bdd_bdd_ite(dd,Hxyz,bdd_not_bdd_node(Hxzy),piRP)); |
---|
173 | bdd_recursive_deref(dd,Hxzy); |
---|
174 | bdd_recursive_deref(dd,piRP); |
---|
175 | bdd_recursive_deref(dd,Hxyz); |
---|
176 | |
---|
177 | /* Compute \Pi_H(x,z,y) and use priority select formulation */ |
---|
178 | bdd_ref(temp = bdd_bdd_swap_variables(dd,Pi,yVars,vVars,nVars)); |
---|
179 | bdd_recursive_deref(dd,Pi); |
---|
180 | Pi = temp; |
---|
181 | result = bdd_priority_select(dd,pTR,xVars,yVars,vVars, |
---|
182 | Pi,nVars,NULL); |
---|
183 | if(! result) { |
---|
184 | return NIL(bdd_node); |
---|
185 | } |
---|
186 | bdd_ref(result); |
---|
187 | #endif |
---|
188 | } |
---|
189 | |
---|
190 | /*---------------------------------------------------------------------------*/ |
---|
191 | /* Definition of static functions */ |
---|
192 | /*---------------------------------------------------------------------------*/ |
---|
193 | |
---|
194 | /**Function******************************************************************** |
---|
195 | |
---|
196 | Synopsis [Returns a BDD F(x,y,z) such that F(x,y,z) equals 1 when HD(x,y) > |
---|
197 | HD(x,z), and 0 otherwise. Returns the BDD if successful else NULL.] |
---|
198 | |
---|
199 | Description [This function generates a BDD for the function HD(x,y) > |
---|
200 | HD(x,z). x,y, and z are N-bit numbers, x[0],x[1] ... x[N-1], y[0], y[1] |
---|
201 | ... y[N-1] and z[0], z[1] ... z[N-1]. Hamming distance is defined as the |
---|
202 | number of bits differing in a given pair of encodings (X,Y). The BDD is built |
---|
203 | bottom-up.] |
---|
204 | |
---|
205 | SideEffects [None] |
---|
206 | |
---|
207 | SeeAlso [bdd_priority_select bdd_add_hamming] |
---|
208 | |
---|
209 | ******************************************************************************/ |
---|
210 | static bdd_node * |
---|
211 | restrHxygthxz( |
---|
212 | bdd_manager *dd, |
---|
213 | int N, |
---|
214 | bdd_node **x, |
---|
215 | bdd_node **y, |
---|
216 | bdd_node **z) |
---|
217 | { |
---|
218 | bdd_node **dEqualToINodes, **tempDEqualToINodes; |
---|
219 | bdd_node *z1, *z2, *z3, *z4, *y1, *y2; |
---|
220 | bdd_node *one, *zero; |
---|
221 | bdd_node *temp; |
---|
222 | bdd_node *result; |
---|
223 | int i, j, m; |
---|
224 | int fromIndex, toIndex; |
---|
225 | |
---|
226 | dEqualToINodes = ALLOC(bdd_node *, 2*N+1); |
---|
227 | tempDEqualToINodes = ALLOC(bdd_node *, 2*N+1); |
---|
228 | |
---|
229 | one = bdd_read_one(dd); |
---|
230 | zero = bdd_not_bdd_node(one); |
---|
231 | |
---|
232 | for(i = 0; i <= N; i++) { |
---|
233 | dEqualToINodes[i] = zero; |
---|
234 | bdd_ref(dEqualToINodes[i]); |
---|
235 | tempDEqualToINodes[i] = zero; |
---|
236 | bdd_ref(tempDEqualToINodes[i]); |
---|
237 | } |
---|
238 | for(i = N+1; i < 2*N+1; i++) { |
---|
239 | dEqualToINodes[i] = one; |
---|
240 | bdd_ref(dEqualToINodes[i]); |
---|
241 | tempDEqualToINodes[i] = one; |
---|
242 | bdd_ref(tempDEqualToINodes[i]); |
---|
243 | } |
---|
244 | |
---|
245 | /* Loop to build the rest of the BDD */ |
---|
246 | for(i = N-1; i >= 0; i--) { |
---|
247 | fromIndex = N - restrMin(N-i-1,i); |
---|
248 | toIndex = restrMin(N-i,i) + N; |
---|
249 | |
---|
250 | for(j = fromIndex;j <= toIndex; j++) { |
---|
251 | z1 = bdd_bdd_ite(dd,z[i],tempDEqualToINodes[j], |
---|
252 | tempDEqualToINodes[j-1]); |
---|
253 | if(! z1){ |
---|
254 | goto endgame; |
---|
255 | } |
---|
256 | bdd_ref(z1); |
---|
257 | |
---|
258 | z2 = bdd_bdd_ite(dd,z[i],tempDEqualToINodes[j+1], |
---|
259 | tempDEqualToINodes[j]); |
---|
260 | if(! z2){ |
---|
261 | bdd_recursive_deref(dd,z1); |
---|
262 | goto endgame; |
---|
263 | } |
---|
264 | bdd_ref(z2); |
---|
265 | |
---|
266 | z3 = bdd_bdd_ite(dd,z[i],tempDEqualToINodes[j], |
---|
267 | tempDEqualToINodes[j+1]); |
---|
268 | if(! z3){ |
---|
269 | bdd_recursive_deref(dd,z1); |
---|
270 | bdd_recursive_deref(dd,z2); |
---|
271 | goto endgame; |
---|
272 | } |
---|
273 | bdd_ref(z3); |
---|
274 | |
---|
275 | z4 = bdd_bdd_ite(dd,z[i],tempDEqualToINodes[j-1], |
---|
276 | tempDEqualToINodes[j]); |
---|
277 | if(! z4){ |
---|
278 | bdd_recursive_deref(dd,z1); |
---|
279 | bdd_recursive_deref(dd,z2); |
---|
280 | bdd_recursive_deref(dd,z3); |
---|
281 | goto endgame; |
---|
282 | } |
---|
283 | bdd_ref(z4); |
---|
284 | |
---|
285 | y1 = bdd_bdd_ite(dd,y[i],z1,z2); |
---|
286 | if(! y1){ |
---|
287 | bdd_recursive_deref(dd,z1); |
---|
288 | bdd_recursive_deref(dd,z2); |
---|
289 | bdd_recursive_deref(dd,z3); |
---|
290 | bdd_recursive_deref(dd,z4); |
---|
291 | goto endgame; |
---|
292 | } |
---|
293 | bdd_ref(y1); |
---|
294 | |
---|
295 | y2 = bdd_bdd_ite(dd,y[i],z3,z4); |
---|
296 | if(! y2){ |
---|
297 | bdd_recursive_deref(dd,z1); |
---|
298 | bdd_recursive_deref(dd,z2); |
---|
299 | bdd_recursive_deref(dd,z3); |
---|
300 | bdd_recursive_deref(dd,z4); |
---|
301 | bdd_recursive_deref(dd,y1); |
---|
302 | goto endgame; |
---|
303 | } |
---|
304 | bdd_ref(y2); |
---|
305 | |
---|
306 | bdd_recursive_deref(dd,z1); |
---|
307 | bdd_recursive_deref(dd,z2); |
---|
308 | bdd_recursive_deref(dd,z3); |
---|
309 | bdd_recursive_deref(dd,z4); |
---|
310 | |
---|
311 | temp = bdd_bdd_ite(dd,x[i],y1,y2); |
---|
312 | if(! temp){ |
---|
313 | bdd_recursive_deref(dd,y1); |
---|
314 | bdd_recursive_deref(dd,y2); |
---|
315 | goto endgame; |
---|
316 | } |
---|
317 | bdd_ref(temp); |
---|
318 | dEqualToINodes[j] = temp; |
---|
319 | bdd_recursive_deref(dd,y1); |
---|
320 | bdd_recursive_deref(dd,y2); |
---|
321 | } |
---|
322 | |
---|
323 | for(j = 0; j < 2*N+1; j++) { |
---|
324 | if(tempDEqualToINodes[j]) { |
---|
325 | bdd_recursive_deref(dd,tempDEqualToINodes[j]); |
---|
326 | } |
---|
327 | tempDEqualToINodes[j] = dEqualToINodes[j]; |
---|
328 | if(tempDEqualToINodes[j]) { |
---|
329 | bdd_ref(tempDEqualToINodes[j]); |
---|
330 | } |
---|
331 | if(dEqualToINodes[j] && |
---|
332 | j >= fromIndex && j <= toIndex) { |
---|
333 | bdd_recursive_deref(dd,dEqualToINodes[j]); |
---|
334 | /* To be safe */ |
---|
335 | dEqualToINodes[j] = NIL(bdd_node); |
---|
336 | } |
---|
337 | } |
---|
338 | } |
---|
339 | /* Clean up */ |
---|
340 | for(j = 0; j < N; j++) { |
---|
341 | if(tempDEqualToINodes[j]) { |
---|
342 | bdd_recursive_deref(dd,tempDEqualToINodes[j]); |
---|
343 | } |
---|
344 | } |
---|
345 | for(j = N+1; j < 2*N+1; j++) { |
---|
346 | if(tempDEqualToINodes[j]) { |
---|
347 | bdd_recursive_deref(dd,tempDEqualToINodes[j]); |
---|
348 | } |
---|
349 | } |
---|
350 | |
---|
351 | result = tempDEqualToINodes[N]; |
---|
352 | bdd_deref(result); |
---|
353 | |
---|
354 | FREE(dEqualToINodes); |
---|
355 | FREE(tempDEqualToINodes); |
---|
356 | |
---|
357 | return result; |
---|
358 | |
---|
359 | endgame: |
---|
360 | for(m = 0; m < 2*N+1; m++) { |
---|
361 | if(tempDEqualToINodes[m]) { |
---|
362 | bdd_recursive_deref(dd,tempDEqualToINodes[m]); |
---|
363 | } |
---|
364 | } |
---|
365 | for(m = fromIndex; m < j; m++) { |
---|
366 | bdd_recursive_deref(dd,dEqualToINodes[m]); |
---|
367 | } |
---|
368 | FREE(dEqualToINodes); |
---|
369 | FREE(tempDEqualToINodes); |
---|
370 | |
---|
371 | return NULL; |
---|
372 | } |
---|
373 | |
---|