[14] | 1 | /**CFile*********************************************************************** |
---|
| 2 | |
---|
| 3 | FileName [restrRestructure.c] |
---|
| 4 | |
---|
| 5 | PackageName [restr] |
---|
| 6 | |
---|
| 7 | Synopsis [This file contains a main procedure that restructures an STG and |
---|
| 8 | transforms it into a new multilevel circuit.] |
---|
| 9 | |
---|
| 10 | Description [This file contains a main procedure that restructures an STG and |
---|
| 11 | transforms it into a new multilevel circuit. |
---|
| 12 | |
---|
| 13 | Please refer to "A symbolic algorithm for low power sequential synthesis," |
---|
| 14 | ISLPED 97, for more details.] |
---|
| 15 | |
---|
| 16 | SeeAlso [restrHammingD.c restrFaninout.c restrCProj.c] |
---|
| 17 | |
---|
| 18 | Author [Balakrishna Kumthekar <kumtheka@colorado.edu>] |
---|
| 19 | |
---|
| 20 | Copyright [This file was created at the University of Colorado at |
---|
| 21 | Boulder. The University of Colorado at Boulder makes no warranty |
---|
| 22 | about the suitability of this software for any purpose. It is |
---|
| 23 | presented on an AS IS basis.] |
---|
| 24 | |
---|
| 25 | ******************************************************************************/ |
---|
| 26 | |
---|
| 27 | #include "restrInt.h" |
---|
| 28 | |
---|
| 29 | /*---------------------------------------------------------------------------*/ |
---|
| 30 | /* Constant declarations */ |
---|
| 31 | /*---------------------------------------------------------------------------*/ |
---|
| 32 | |
---|
| 33 | |
---|
| 34 | /*---------------------------------------------------------------------------*/ |
---|
| 35 | /* Type declarations */ |
---|
| 36 | /*---------------------------------------------------------------------------*/ |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | /*---------------------------------------------------------------------------*/ |
---|
| 40 | /* Structure declarations */ |
---|
| 41 | /*---------------------------------------------------------------------------*/ |
---|
| 42 | |
---|
| 43 | /*---------------------------------------------------------------------------*/ |
---|
| 44 | /* Variable declarations */ |
---|
| 45 | /*---------------------------------------------------------------------------*/ |
---|
| 46 | extern int restrCreatedPart; |
---|
| 47 | extern int restrCreatedFsm; |
---|
| 48 | extern boolean restrVerbose; |
---|
| 49 | |
---|
| 50 | /*---------------------------------------------------------------------------*/ |
---|
| 51 | /* Macro declarations */ |
---|
| 52 | /*---------------------------------------------------------------------------*/ |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | /**AutomaticStart*************************************************************/ |
---|
| 56 | |
---|
| 57 | /*---------------------------------------------------------------------------*/ |
---|
| 58 | /* Static function prototypes */ |
---|
| 59 | /*---------------------------------------------------------------------------*/ |
---|
| 60 | |
---|
| 61 | static array_t * BuildFunctions(graph_t *partition, array_t *rootNames); |
---|
| 62 | static bdd_node ** AddPowerSolve(bdd_manager *mgr, bdd_node *bddTr, bdd_node *init, bdd_node **x, bdd_node **y, bdd_node **pi, st_table *inputProb, int nVars, int nPi); |
---|
| 63 | static bdd_node * PerformRestructure(bdd_manager *ddManager, bdd_node *prunedTR, bdd_node *equivRel, bdd_node *reachable, bdd_node *initBdd, bdd_node **piVars, bdd_node **xVars, bdd_node **yVars, bdd_node **uVars, bdd_node **vVars, st_table *inputProb, int nVars, int nPi, RestructureHeuristic heuristic, boolean equivClasses, array_t **outBdds, bdd_node **newInit, bdd_node **stateProbs); |
---|
| 64 | static st_table * CreateNameToMvfTable(bdd_manager *ddManager, array_t *outBdds, array_t *nextBdds, array_t *outputArray, array_t *tranFunArray); |
---|
| 65 | static st_table * CreateCareTable(Ntk_Network_t *network, mdd_t *reachMdd); |
---|
| 66 | static enum st_retval StMvfFree(char *key, char *value, char *arg); |
---|
| 67 | static void CountEquivalentClasses(bdd_manager *ddManager, bdd_node *equivRel, bdd_node *initBdd, bdd_node **xVars, bdd_node **uVars, int nVars); |
---|
| 68 | static array_t * GetBddArrayFromMvfArray(array_t *mvfArray); |
---|
| 69 | static bdd_node * DoMarkovPowerAnalysis(bdd_manager *ddManager, bdd_node *prunedTR, bdd_node *initBdd, bdd_node **piVars, bdd_node **xVars, bdd_node **yVars, st_table *inputProb, int nVars, int nPi); |
---|
| 70 | static array_t * ExtractTransitionFuns(bdd_manager *ddManager, bdd_node *finalTR, bdd_node **yVars, int nVars); |
---|
| 71 | static array_t * GetBddArrayFromNameArray(Fsm_Fsm_t *fsm, array_t *nameArray); |
---|
| 72 | static void ExpandReachableSet(bdd_manager *ddManager, bdd_node **reachable, bdd_node *equivRel, bdd_node **xVars, bdd_node **uVars, int nVars); |
---|
| 73 | static graph_t * CreateNewPartition(Ntk_Network_t *network, bdd_manager *ddManager, array_t *outBdds, array_t *nextBdds, array_t *outputArray, array_t *tranFunArray); |
---|
| 74 | static Fsm_Fsm_t * CreateNewFsm(Ntk_Network_t *network, graph_t *partition, bdd_manager *ddManager, bdd_node *finalTR, bdd_node *initBdd, bdd_node *reachable, bdd_node *stateProbs, bdd_node **xVars, bdd_node **yVars, bdd_node **piVars, st_table *inputProb, int nVars, int nPi); |
---|
| 75 | |
---|
| 76 | /**AutomaticEnd***************************************************************/ |
---|
| 77 | |
---|
| 78 | |
---|
| 79 | /*---------------------------------------------------------------------------*/ |
---|
| 80 | /* Definition of exported functions */ |
---|
| 81 | /*---------------------------------------------------------------------------*/ |
---|
| 82 | |
---|
| 83 | /*---------------------------------------------------------------------------*/ |
---|
| 84 | /* Definition of internal functions */ |
---|
| 85 | /*---------------------------------------------------------------------------*/ |
---|
| 86 | |
---|
| 87 | /**Function******************************************************************** |
---|
| 88 | |
---|
| 89 | Synopsis [This function performs the complete task of STG restructuring and |
---|
| 90 | logic implementation.] |
---|
| 91 | |
---|
| 92 | Description [The STG restructuring process proceeds as follows: First a state |
---|
| 93 | equivalence relation E(x,y) is derived from the current STG of the finite |
---|
| 94 | state machine. If the parameter <tt>nonReachEquiv</tt> is set E(x,y) is used |
---|
| 95 | to extend the set of reachable states R(x) to include those states equivalent |
---|
| 96 | to R(x) but unreachable. This sometimes provides extra flexibility when |
---|
| 97 | choosing an edge. To perform the restructuring transformation, edges are |
---|
| 98 | first added (clearly driven by E(x,y)) to the original STG and then |
---|
| 99 | undesirable edges are removed, in such a way that the functional behavior of |
---|
| 100 | the machine is not affected. We say that the original STG is transformed into |
---|
| 101 | an <tt>augmented</tt> STG. |
---|
| 102 | |
---|
| 103 | The steady state probabilities of the STG are computed using Markovian |
---|
| 104 | analysis. The edges of the augmented STG are then labeled by a cost function |
---|
| 105 | which depends on the absolute transition probability and hamming distance |
---|
| 106 | between the ends of the edge. After the appropriate <tt>heuristic</tt> is |
---|
| 107 | applied, the new (restructured) STG is then translated in to a multi-level |
---|
| 108 | boolean network. |
---|
| 109 | |
---|
| 110 | <tt>heuristic</tt> takes on four options: ham: Hamming distance based |
---|
| 111 | heuristic is used, fanin: Fanin oriented heuristic, faninout: Fanin-Fanout |
---|
| 112 | oriented heuristic, cproj: C-Projection. For more information please refer to |
---|
| 113 | "A symbolic algorithm for low power sequential synthesis," ISLPED 97. |
---|
| 114 | |
---|
| 115 | <tt>equivClasses</tt> prints the number of equivalent classes in the STG. |
---|
| 116 | |
---|
| 117 | <tt>inputProb</tt> is optional. If not specified, equiprobabale primary |
---|
| 118 | inputs are assumed. Else, the table contains the pair, (PI_name,prob), where |
---|
| 119 | <tt>prob</tt> is the probability of the PI signal being 1. |
---|
| 120 | |
---|
| 121 | <tt>synthInfo</tt> specifies synthesis specific options. For more information |
---|
| 122 | look at synth.h] |
---|
| 123 | |
---|
| 124 | The BDD variable order at the end of the algorithm is dumped into |
---|
| 125 | <tt>orderFileName</tt>. |
---|
| 126 | |
---|
| 127 | SideEffects [Network partition and FSM data structure are hooked to the |
---|
| 128 | network if necessary. They are however, cleared at the end of this |
---|
| 129 | procedure.] |
---|
| 130 | |
---|
| 131 | SeeAlso [Synth_InitializeInfo] |
---|
| 132 | |
---|
| 133 | ******************************************************************************/ |
---|
| 134 | int |
---|
| 135 | RestrCommandRestructureFsm( |
---|
| 136 | Fsm_Fsm_t *fsm, |
---|
| 137 | RestructureHeuristic heuristic, |
---|
| 138 | char *orderFileName, |
---|
| 139 | boolean equivClasses, |
---|
| 140 | boolean nonReachEquiv, |
---|
| 141 | boolean eqvMethod, |
---|
| 142 | st_table *inputProb, |
---|
| 143 | Synth_InfoData_t *synthInfo) |
---|
| 144 | { |
---|
| 145 | |
---|
| 146 | graph_t *partition; |
---|
| 147 | Ntk_Network_t *network1; |
---|
| 148 | bdd_manager *ddManager; |
---|
| 149 | |
---|
| 150 | array_t *outputArray, *tranFunArray; |
---|
| 151 | array_t *outBdds, *nextBdds; |
---|
| 152 | array_t *tranRelationPair; |
---|
| 153 | array_t *newStateVars; |
---|
| 154 | |
---|
| 155 | st_table *careTable; |
---|
| 156 | |
---|
| 157 | int i; |
---|
| 158 | int nVars, nPi; |
---|
| 159 | int noRestruct = 0; |
---|
| 160 | boolean status; |
---|
| 161 | |
---|
| 162 | bdd_node *Lambda, *productTranRel, *prunedTR, *initialTR; |
---|
| 163 | bdd_node *equivRel; |
---|
| 164 | bdd_node *stateProbs; |
---|
| 165 | bdd_node *finalTR = NIL(bdd_node); |
---|
| 166 | bdd_node **xVars,**yVars,**uVars,**vVars; |
---|
| 167 | bdd_node **piVars; |
---|
| 168 | bdd_node *ddTemp, *reachable, *initBdd; |
---|
| 169 | bdd_node *newInit; |
---|
| 170 | |
---|
| 171 | mdd_t *reachStates, *mddTemp; |
---|
| 172 | mdd_t *careMdd; |
---|
| 173 | |
---|
| 174 | FILE *outFile; |
---|
| 175 | |
---|
| 176 | network1 = Fsm_FsmReadNetwork(fsm); |
---|
| 177 | ddManager = (bdd_manager *)Ntk_NetworkReadMddManager(network1); |
---|
| 178 | |
---|
| 179 | /* Get the bdd_node for primary, present and next state variables.*/ |
---|
| 180 | piVars = RestrBddNodeArrayFromIdArray(ddManager, |
---|
| 181 | Fsm_FsmReadInputVars(fsm)); |
---|
| 182 | xVars = RestrBddNodeArrayFromIdArray(ddManager, |
---|
| 183 | Fsm_FsmReadPresentStateVars(fsm)); |
---|
| 184 | yVars = RestrBddNodeArrayFromIdArray(ddManager, |
---|
| 185 | Fsm_FsmReadNextStateVars(fsm)); |
---|
| 186 | /* Create new state variables for duplicate machine. */ |
---|
| 187 | newStateVars = RestrCreateNewStateVars(network1, ddManager,xVars,yVars); |
---|
| 188 | uVars = RestrBddNodeArrayFromIdArray(ddManager, |
---|
| 189 | array_fetch(array_t *, |
---|
| 190 | newStateVars, 0)); |
---|
| 191 | vVars = RestrBddNodeArrayFromIdArray(ddManager, |
---|
| 192 | array_fetch(array_t *, |
---|
| 193 | newStateVars, 1)); |
---|
| 194 | |
---|
| 195 | /* Free memory: Delete the id array for new state variables.*/ |
---|
| 196 | array_free(array_fetch(array_t *,newStateVars,0)); |
---|
| 197 | array_free(array_fetch(array_t *,newStateVars,1)); |
---|
| 198 | array_free(newStateVars); |
---|
| 199 | |
---|
| 200 | /* outputArray is the list of primary outputs. It is my responsibility to |
---|
| 201 | free it later. Both outputArray and tranFunArray are char * arrays. Get the |
---|
| 202 | BDDs for output functions and transition functions. Duplicate functions are |
---|
| 203 | returned.*/ |
---|
| 204 | |
---|
| 205 | /* tranFunArray should not be freed */ |
---|
| 206 | outputArray = RestrGetOutputArray(network1); |
---|
| 207 | tranFunArray = Fsm_FsmReadNextStateFunctionNames(fsm); |
---|
| 208 | outBdds = GetBddArrayFromNameArray(fsm,outputArray); |
---|
| 209 | nextBdds = GetBddArrayFromNameArray(fsm,tranFunArray); |
---|
| 210 | |
---|
| 211 | nVars = array_n(Fsm_FsmReadNextStateVars(fsm)); |
---|
| 212 | nPi = array_n(Fsm_FsmReadInputVars(fsm)); |
---|
| 213 | |
---|
| 214 | /* Compute Lambda = AND (out1 xnor out1$NTK2) and Transition relation. |
---|
| 215 | out1$NTK2 is the corresponding primary output (of output1) in the duplicate |
---|
| 216 | machine.*/ |
---|
| 217 | if (restrVerbose) { |
---|
| 218 | fprintf(vis_stdout,"** restr info: Computing product output ... "); |
---|
| 219 | } |
---|
| 220 | Lambda = RestrCreateProductOutput(ddManager,outBdds,xVars, uVars, nVars); |
---|
| 221 | if (restrVerbose) { |
---|
| 222 | fprintf(vis_stdout,"Done.\n"); |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | if (restrVerbose) { |
---|
| 226 | fprintf(vis_stdout,"** restr info: Computing TR of product machine ... "); |
---|
| 227 | } |
---|
| 228 | /* Compute the transition relation for both the single FSM and the product |
---|
| 229 | machine. tranRelationPair[0] is the TR of single FSM and |
---|
| 230 | tranRelationPair[1] is the TR of product machine. |
---|
| 231 | TR(x,w,y) = \prod_{i=0}^{i=n-1} (y_i \equiv f_i(w,x)) |
---|
| 232 | productTR(x,u,w,y,v) = TR(x,w,y) * TR(u,w,v) */ |
---|
| 233 | tranRelationPair = RestrComputeTRWithIds(ddManager,nextBdds,xVars, yVars, |
---|
| 234 | uVars,vVars,nVars); |
---|
| 235 | if (restrVerbose) { |
---|
| 236 | fprintf(vis_stdout,"Done.\n"); |
---|
| 237 | } |
---|
| 238 | |
---|
| 239 | productTranRel = array_fetch(bdd_node *,tranRelationPair,1); |
---|
| 240 | |
---|
| 241 | /* Compute the state equivalence relation for the FSM */ |
---|
| 242 | /* The support of equivRel is xVars and uVars. */ |
---|
| 243 | if (restrVerbose) { |
---|
| 244 | fprintf(vis_stdout,"** restr info: Computing the equivalence relation ... "); |
---|
| 245 | } |
---|
| 246 | |
---|
| 247 | if (eqvMethod) { |
---|
| 248 | equivRel = RestrComputeEquivRelationUsingCofactors(ddManager,Lambda, |
---|
| 249 | productTranRel, |
---|
| 250 | xVars, yVars, uVars, |
---|
| 251 | vVars, piVars, |
---|
| 252 | nVars, nPi, |
---|
| 253 | restrVerbose); |
---|
| 254 | bdd_recursive_deref(ddManager,Lambda); |
---|
| 255 | } else { |
---|
| 256 | equivRel = RestrGetEquivRelation(ddManager,Lambda,productTranRel, |
---|
| 257 | xVars,yVars,uVars,vVars, |
---|
| 258 | piVars,nVars,nPi,restrVerbose); |
---|
| 259 | bdd_recursive_deref(ddManager,Lambda); |
---|
| 260 | } |
---|
| 261 | if (restrVerbose) { |
---|
| 262 | fprintf(vis_stdout,"Done.\n"); |
---|
| 263 | } |
---|
| 264 | /* Delete the product transition relation, as we no longer need it. */ |
---|
| 265 | bdd_recursive_deref(ddManager,productTranRel); |
---|
| 266 | |
---|
| 267 | /* Compute the initial states */ |
---|
| 268 | mddTemp = Fsm_FsmComputeInitialStates(fsm); |
---|
| 269 | initBdd = bdd_extract_node_as_is(mddTemp); |
---|
| 270 | bdd_ref(initBdd); |
---|
| 271 | mdd_free(mddTemp); |
---|
| 272 | |
---|
| 273 | /* Compute the reachable states. */ |
---|
| 274 | reachStates = Fsm_FsmComputeReachableStates(fsm,0,0,0,0,0,0,1000, |
---|
| 275 | Fsm_Rch_Default_c,0,0, |
---|
| 276 | NIL(array_t),FALSE, NIL(array_t)); |
---|
| 277 | |
---|
| 278 | reachable = bdd_extract_node_as_is(reachStates); |
---|
| 279 | bdd_ref(reachable); |
---|
| 280 | mdd_free(reachStates); |
---|
| 281 | |
---|
| 282 | /* Check to see if there are any usable equivalence classes */ |
---|
| 283 | if (bdd_count_minterm(ddManager,equivRel,2*nVars) == pow(2.0,nVars)) { |
---|
| 284 | fprintf(vis_stdout,"** restr info: Number of equivalence classes equals "); |
---|
| 285 | fprintf(vis_stdout,"number of possible states. \n"); |
---|
| 286 | fprintf(vis_stdout,"** restr info: Restructuring will not help.\n"); |
---|
| 287 | fprintf(vis_stdout,"** restr info: Proceeding with synthesis.\n"); |
---|
| 288 | bdd_recursive_deref(ddManager,equivRel); |
---|
| 289 | /* Do not perform restructuring */ |
---|
| 290 | noRestruct = 1; |
---|
| 291 | } |
---|
| 292 | |
---|
| 293 | /* Expand the reachable set R(x) to include those states which are equivalent |
---|
| 294 | to R(x) but unreachable. */ |
---|
| 295 | if(nonReachEquiv && !noRestruct) { |
---|
| 296 | ExpandReachableSet(ddManager,&reachable,equivRel,xVars,uVars,nVars); |
---|
| 297 | } |
---|
| 298 | |
---|
| 299 | if (noRestruct) { |
---|
| 300 | /* Only synthesize the network */ |
---|
| 301 | bdd_recursive_deref(ddManager,equivRel); |
---|
| 302 | bdd_recursive_deref(ddManager, |
---|
| 303 | array_fetch(bdd_node *,tranRelationPair,0)); |
---|
| 304 | array_free(tranRelationPair); |
---|
| 305 | } else { |
---|
| 306 | /* Constrain the original TR */ |
---|
| 307 | initialTR = array_fetch(bdd_node *, tranRelationPair, 0); |
---|
| 308 | /* bdd_ref(prunedTR = bdd_bdd_and(ddManager,initialTR,reachable)); */ |
---|
| 309 | bdd_ref(prunedTR = initialTR); |
---|
| 310 | bdd_recursive_deref(ddManager,initialTR); |
---|
| 311 | array_free(tranRelationPair); |
---|
| 312 | |
---|
| 313 | finalTR = PerformRestructure(ddManager,prunedTR,equivRel,reachable, |
---|
| 314 | initBdd,piVars,xVars,yVars,uVars, |
---|
| 315 | vVars,inputProb,nVars,nPi,heuristic, |
---|
| 316 | equivClasses,&outBdds,&newInit, |
---|
| 317 | &stateProbs); |
---|
| 318 | /* equivRel is dereferenced in the above procedure */ |
---|
| 319 | if (prunedTR == finalTR) { |
---|
| 320 | fprintf(vis_stdout,"** restr info: Restructuring produces no changes. \n"); |
---|
| 321 | fprintf(vis_stdout,"** restr info: Proceeding with synthesis. \n"); |
---|
| 322 | bdd_recursive_deref(ddManager,stateProbs); |
---|
| 323 | noRestruct = 1; |
---|
| 324 | } |
---|
| 325 | |
---|
| 326 | bdd_recursive_deref(ddManager,prunedTR); |
---|
| 327 | bdd_recursive_deref(ddManager,initBdd); |
---|
| 328 | |
---|
| 329 | /* reachable can be deleted after computing the new reachable states. Also |
---|
| 330 | need to perform markov analysis to find final bit change. */ |
---|
| 331 | initBdd = newInit; |
---|
| 332 | if (!noRestruct) { |
---|
| 333 | arrayForEachItem(bdd_node *, nextBdds, i, ddTemp) { |
---|
| 334 | bdd_recursive_deref(ddManager,ddTemp); |
---|
| 335 | } |
---|
| 336 | array_free(nextBdds); |
---|
| 337 | nextBdds = ExtractTransitionFuns(ddManager,finalTR,yVars,nVars); |
---|
| 338 | } |
---|
| 339 | } |
---|
| 340 | |
---|
| 341 | /* Create a partition for the new view of the fsm/network */ |
---|
| 342 | if (!noRestruct) { |
---|
| 343 | partition = CreateNewPartition(network1,ddManager,outBdds,nextBdds, |
---|
| 344 | outputArray,tranFunArray); |
---|
| 345 | array_free(outBdds); |
---|
| 346 | array_free(nextBdds); |
---|
| 347 | /* Create the FSM and perform markov ananlysis */ |
---|
| 348 | /* finalTR, stateProbs and reachabale are deleted in CreateNewFsm */ |
---|
| 349 | fsm = CreateNewFsm(network1,partition,ddManager,finalTR,initBdd, |
---|
| 350 | reachable,stateProbs,xVars,yVars,piVars, |
---|
| 351 | inputProb,nVars,nPi); |
---|
| 352 | } else { |
---|
| 353 | /* Remove the outBdds, nextBdds */ |
---|
| 354 | arrayForEachItem(bdd_node *, outBdds, i, ddTemp) { |
---|
| 355 | bdd_recursive_deref(ddManager,ddTemp); |
---|
| 356 | } |
---|
| 357 | arrayForEachItem(bdd_node *, nextBdds, i, ddTemp) { |
---|
| 358 | bdd_recursive_deref(ddManager,ddTemp); |
---|
| 359 | } |
---|
| 360 | array_free(outBdds); |
---|
| 361 | array_free(nextBdds); |
---|
| 362 | } |
---|
| 363 | |
---|
| 364 | /* First create the care table for next state and primary output |
---|
| 365 | functions. */ |
---|
| 366 | careMdd = Fsm_FsmComputeReachableStates(fsm,0,0,0,0,0,0,1000, |
---|
| 367 | Fsm_Rch_Default_c,0,0, |
---|
| 368 | NIL(array_t),FALSE, NIL(array_t)); |
---|
| 369 | |
---|
| 370 | careTable = CreateCareTable(network1,careMdd); |
---|
| 371 | |
---|
| 372 | /* Synthesize the restructured FSM */ |
---|
| 373 | status = Synth_SynthesizeFsm(fsm,careTable,synthInfo,0); |
---|
| 374 | |
---|
| 375 | /* Clean up */ |
---|
| 376 | if (!noRestruct) { |
---|
| 377 | Ntk_NetworkFreeApplInfo(network1,RESTR_PART_NETWORK_APPL_KEY); |
---|
| 378 | Ntk_NetworkFreeApplInfo(network1,RESTR_FSM_NETWORK_APPL_KEY); |
---|
| 379 | } |
---|
| 380 | mdd_free(careMdd); |
---|
| 381 | st_free_table(careTable); |
---|
| 382 | |
---|
| 383 | /* Dump the current BDD variable order, for future use. */ |
---|
| 384 | if(orderFileName) { |
---|
| 385 | outFile = fopen(orderFileName,"w"); |
---|
| 386 | if(outFile) { |
---|
| 387 | int size = array_n(mdd_ret_mvar_list(ddManager)); |
---|
| 388 | int index; |
---|
| 389 | mvar_type var; |
---|
| 390 | for(i = 0; i < size;i++) { |
---|
| 391 | index = bdd_get_id_from_level(ddManager,i); |
---|
| 392 | var = mdd_get_var_by_id(ddManager,index); |
---|
| 393 | fprintf(outFile,"%s\n",var.name); |
---|
| 394 | } |
---|
| 395 | fclose(outFile); |
---|
| 396 | } else { |
---|
| 397 | fprintf(vis_stderr,"** restr error: Cannot open %s .\n",orderFileName); |
---|
| 398 | } |
---|
| 399 | } |
---|
| 400 | |
---|
| 401 | /* Clean up */ |
---|
| 402 | for(i = 0; i < nVars; i++) { |
---|
| 403 | bdd_recursive_deref(ddManager,xVars[i]); |
---|
| 404 | bdd_recursive_deref(ddManager,yVars[i]); |
---|
| 405 | bdd_recursive_deref(ddManager,uVars[i]); |
---|
| 406 | bdd_recursive_deref(ddManager,vVars[i]); |
---|
| 407 | } |
---|
| 408 | for(i = 0 ; i < nPi; i++) { |
---|
| 409 | bdd_recursive_deref(ddManager,piVars[i]); |
---|
| 410 | } |
---|
| 411 | FREE(xVars); |
---|
| 412 | FREE(yVars); |
---|
| 413 | FREE(uVars); |
---|
| 414 | FREE(vVars); |
---|
| 415 | FREE(piVars); |
---|
| 416 | |
---|
| 417 | array_free(outputArray); |
---|
| 418 | |
---|
| 419 | return (status); |
---|
| 420 | } |
---|
| 421 | |
---|
| 422 | |
---|
| 423 | /*---------------------------------------------------------------------------*/ |
---|
| 424 | /* Definition of static functions */ |
---|
| 425 | /*---------------------------------------------------------------------------*/ |
---|
| 426 | |
---|
| 427 | /**Function******************************************************************** |
---|
| 428 | |
---|
| 429 | Synopsis [Returns an array of Mvfs given node names.] |
---|
| 430 | |
---|
| 431 | SideEffects [None] |
---|
| 432 | |
---|
| 433 | SeeAlso [] |
---|
| 434 | |
---|
| 435 | ******************************************************************************/ |
---|
| 436 | static array_t * |
---|
| 437 | BuildFunctions( |
---|
| 438 | graph_t *partition, |
---|
| 439 | array_t *rootNames) |
---|
| 440 | { |
---|
| 441 | char *name; |
---|
| 442 | vertex_t *vertexPtr; |
---|
| 443 | Mvf_Function_t *mvf1; |
---|
| 444 | int i; |
---|
| 445 | array_t *result; |
---|
| 446 | |
---|
| 447 | result = array_alloc(Mvf_Function_t *,0); |
---|
| 448 | arrayForEachItem(char *,rootNames,i,name) { |
---|
| 449 | vertexPtr = Part_PartitionFindVertexByName(partition,name); |
---|
| 450 | mvf1 = Mvf_FunctionDuplicate(Part_VertexReadFunction(vertexPtr)); |
---|
| 451 | array_insert(Mvf_Function_t *,result,i,mvf1); |
---|
| 452 | } |
---|
| 453 | |
---|
| 454 | return result; |
---|
| 455 | } |
---|
| 456 | |
---|
| 457 | /**Function******************************************************************** |
---|
| 458 | |
---|
| 459 | Synopsis [Performs markovian analysis.] |
---|
| 460 | |
---|
| 461 | Description [Returns a pair of ADDs. The ADD for steady state |
---|
| 462 | probabilities is at index 0 and the one-step transition probability |
---|
| 463 | is returned in index 1. bddTr is the BDD of the transition relation |
---|
| 464 | representing the STG. init is an ADD of initial probability vector.] |
---|
| 465 | |
---|
| 466 | SideEffects [None] |
---|
| 467 | |
---|
| 468 | SeeAlso [] |
---|
| 469 | |
---|
| 470 | ******************************************************************************/ |
---|
| 471 | static bdd_node ** |
---|
| 472 | AddPowerSolve( |
---|
| 473 | bdd_manager *mgr, |
---|
| 474 | bdd_node *bddTr, |
---|
| 475 | bdd_node *init, |
---|
| 476 | bdd_node **x, |
---|
| 477 | bdd_node **y, |
---|
| 478 | bdd_node **pi, |
---|
| 479 | st_table *inputProb, |
---|
| 480 | int nVars, |
---|
| 481 | int nPi) |
---|
| 482 | { |
---|
| 483 | bdd_node *temp1, *temp, *q, *Correction; |
---|
| 484 | bdd_node **result, *tr; |
---|
| 485 | bdd_node **xAddVars, **yAddVars; |
---|
| 486 | bdd_node *initG, *NewG; |
---|
| 487 | bdd_node *inputCube,*xCube; |
---|
| 488 | bdd_node *newTr, *probMatrix; |
---|
| 489 | int iter = 0; |
---|
| 490 | int i; |
---|
| 491 | double max,relTol = 0.0001; |
---|
| 492 | |
---|
| 493 | /* Initialize variables */ |
---|
| 494 | result = ALLOC(bdd_node *, 2); |
---|
| 495 | xAddVars = ALLOC(bdd_node *, nVars); |
---|
| 496 | yAddVars = ALLOC(bdd_node *, nVars); |
---|
| 497 | for (i = 0; i < nVars; i++) { |
---|
| 498 | bdd_ref(xAddVars[i] = bdd_add_ith_var(mgr, bdd_node_read_index(x[i]))); |
---|
| 499 | bdd_ref(yAddVars[i] = bdd_add_ith_var(mgr, bdd_node_read_index(y[i]))); |
---|
| 500 | } |
---|
| 501 | bdd_ref(tr = bdd_bdd_to_add(mgr, bddTr)); |
---|
| 502 | |
---|
| 503 | /* Create the input cube for abstraction */ |
---|
| 504 | bdd_ref(temp1 = bdd_bdd_compute_cube(mgr, pi, NIL(int), nPi)); |
---|
| 505 | bdd_ref(inputCube = bdd_bdd_to_add(mgr, temp1)); |
---|
| 506 | bdd_recursive_deref(mgr, temp1); |
---|
| 507 | |
---|
| 508 | /* Compute the one-step transition probability matrix. */ |
---|
| 509 | if (inputProb) { |
---|
| 510 | bdd_ref(probMatrix = Mark_addInProb(mgr,tr,inputCube,inputProb)); |
---|
| 511 | bdd_recursive_deref(mgr,inputCube); |
---|
| 512 | bdd_recursive_deref(mgr,tr); |
---|
| 513 | } |
---|
| 514 | else { |
---|
| 515 | bdd_ref(Correction = bdd_add_const(mgr,(1.0/(double)(1 << nPi)))); |
---|
| 516 | bdd_ref(q = bdd_add_exist_abstract(mgr,tr,inputCube)); |
---|
| 517 | bdd_recursive_deref(mgr,inputCube); |
---|
| 518 | bdd_recursive_deref(mgr,tr); |
---|
| 519 | /* apply correction to the transition relation matrix and print it */ |
---|
| 520 | bdd_ref(probMatrix = bdd_add_apply(mgr, bdd_add_times, q, Correction)); |
---|
| 521 | bdd_recursive_deref(mgr,Correction); |
---|
| 522 | bdd_recursive_deref(mgr,q); |
---|
| 523 | } |
---|
| 524 | result[1] = probMatrix; |
---|
| 525 | |
---|
| 526 | /* Prepare the initial prob. vector. and the transition prob. matrix. */ |
---|
| 527 | initG = bdd_add_swap_variables(mgr,init,xAddVars,yAddVars,nVars); |
---|
| 528 | bdd_ref(initG); |
---|
| 529 | /* Put transition prob. matrix in appropriate form (transpose). */ |
---|
| 530 | newTr = bdd_add_swap_variables(mgr,probMatrix,xAddVars,yAddVars,nVars); |
---|
| 531 | bdd_ref(newTr); |
---|
| 532 | |
---|
| 533 | /* Calculate the x-cube for abstraction */ |
---|
| 534 | bdd_ref(xCube = bdd_add_compute_cube(mgr,xAddVars,NIL(int),nVars)); |
---|
| 535 | |
---|
| 536 | /* Loop until convergence */ |
---|
| 537 | do { |
---|
| 538 | iter++; |
---|
| 539 | bdd_ref(temp = bdd_add_matrix_multiply(mgr,newTr,initG,yAddVars,nVars)); |
---|
| 540 | bdd_ref(temp1 = bdd_add_exist_abstract(mgr,temp,xCube)); |
---|
| 541 | bdd_ref(NewG = bdd_add_apply(mgr,bdd_add_divide,temp,temp1)); |
---|
| 542 | bdd_recursive_deref(mgr,temp); |
---|
| 543 | bdd_recursive_deref(mgr,temp1); |
---|
| 544 | temp = NewG; |
---|
| 545 | bdd_ref(q = bdd_add_swap_variables(mgr,temp,xAddVars,yAddVars,nVars)); |
---|
| 546 | max = bdd_add_value(bdd_add_find_max(mgr,initG)); |
---|
| 547 | |
---|
| 548 | if(bdd_equal_sup_norm(mgr,q,initG,relTol*max,0)) { |
---|
| 549 | bdd_recursive_deref(mgr,initG); |
---|
| 550 | bdd_recursive_deref(mgr,q); |
---|
| 551 | bdd_recursive_deref(mgr,xCube); |
---|
| 552 | bdd_recursive_deref(mgr,newTr); |
---|
| 553 | |
---|
| 554 | bdd_ref(temp1 = bdd_add_apply(mgr,bdd_add_times,probMatrix,temp)); |
---|
| 555 | if (restrVerbose) { |
---|
| 556 | fprintf(vis_stdout,"** restr info: Average state bit change = %f\n", |
---|
| 557 | RestrAverageBitChange(mgr,temp1,x,y,nVars)); |
---|
| 558 | } |
---|
| 559 | |
---|
| 560 | bdd_recursive_deref(mgr,temp1); |
---|
| 561 | for(i = 0;i < nVars; i++) { |
---|
| 562 | bdd_recursive_deref(mgr,xAddVars[i]); |
---|
| 563 | bdd_recursive_deref(mgr,yAddVars[i]); |
---|
| 564 | } |
---|
| 565 | FREE(xAddVars); |
---|
| 566 | FREE(yAddVars); |
---|
| 567 | result[0] = temp; |
---|
| 568 | return result; |
---|
| 569 | } |
---|
| 570 | bdd_recursive_deref(mgr,initG); |
---|
| 571 | bdd_recursive_deref(mgr,temp); |
---|
| 572 | initG = q; |
---|
| 573 | |
---|
| 574 | } while (1); |
---|
| 575 | |
---|
| 576 | } /* end of AddPowerSolve */ |
---|
| 577 | |
---|
| 578 | /**Function******************************************************************** |
---|
| 579 | |
---|
| 580 | Synopsis [This routine performs the preprocessing steps of markovian analysis |
---|
| 581 | and the augmented STG computation. After the preprocessing steps the core |
---|
| 582 | restructuring steps are performed. Returns the BDD of the restructured STG.] |
---|
| 583 | |
---|
| 584 | SideEffects [<tt>outBdds</tt>, <tt>newInit</tt> are changed to |
---|
| 585 | reflect the restructured finite state machine. Steady state |
---|
| 586 | probabilities are returned in <tt>stateProbs</tt>] |
---|
| 587 | |
---|
| 588 | SeeAlso [] |
---|
| 589 | |
---|
| 590 | ******************************************************************************/ |
---|
| 591 | static bdd_node * |
---|
| 592 | PerformRestructure( |
---|
| 593 | bdd_manager *ddManager, |
---|
| 594 | bdd_node *prunedTR, |
---|
| 595 | bdd_node *equivRel, |
---|
| 596 | bdd_node *reachable, |
---|
| 597 | bdd_node *initBdd, |
---|
| 598 | bdd_node **piVars, |
---|
| 599 | bdd_node **xVars, |
---|
| 600 | bdd_node **yVars, |
---|
| 601 | bdd_node **uVars, |
---|
| 602 | bdd_node **vVars, |
---|
| 603 | st_table *inputProb, |
---|
| 604 | int nVars, |
---|
| 605 | int nPi, |
---|
| 606 | RestructureHeuristic heuristic, |
---|
| 607 | boolean equivClasses, |
---|
| 608 | array_t **outBdds, |
---|
| 609 | bdd_node **newInit, |
---|
| 610 | bdd_node **stateProbs) |
---|
| 611 | { |
---|
| 612 | /* equivRel is a function of uVars and xVars */ |
---|
| 613 | /* prunedTR is a funciton of xVars, piVars and yVars */ |
---|
| 614 | |
---|
| 615 | bdd_node *possessedProbMatrix; |
---|
| 616 | bdd_node *possessedTR = NIL(bdd_node); |
---|
| 617 | bdd_node *addPTR; |
---|
| 618 | bdd_node *finalTR; |
---|
| 619 | bdd_node *ddTemp; |
---|
| 620 | bdd_node *localStateProbs = NIL(bdd_node); |
---|
| 621 | |
---|
| 622 | if(equivClasses) { |
---|
| 623 | CountEquivalentClasses(ddManager,equivRel,initBdd,xVars,uVars,nVars); |
---|
| 624 | } |
---|
| 625 | |
---|
| 626 | /* Change the support of equivRel */ |
---|
| 627 | bdd_ref(ddTemp = bdd_bdd_swap_variables(ddManager,equivRel,xVars,yVars, |
---|
| 628 | nVars)); |
---|
| 629 | bdd_recursive_deref(ddManager,equivRel); |
---|
| 630 | bdd_ref(equivRel = bdd_bdd_swap_variables(ddManager,ddTemp,uVars,vVars, |
---|
| 631 | nVars)); |
---|
| 632 | bdd_recursive_deref(ddManager, ddTemp); |
---|
| 633 | |
---|
| 634 | /* The support of possessedTR is xVars and yVars and inputs. |
---|
| 635 | * If there exists an edge between x and y, and y == v, then |
---|
| 636 | * the following function adds an edge between x and v. These new |
---|
| 637 | * edges are referred to as ghost edges. |
---|
| 638 | */ |
---|
| 639 | |
---|
| 640 | if (heuristic != RestrCProjection_c) { |
---|
| 641 | possessedTR = RestrComputeTrWithGhostEdges(ddManager, yVars, vVars, |
---|
| 642 | prunedTR, equivRel, nVars); |
---|
| 643 | } |
---|
| 644 | |
---|
| 645 | /* stateProbs will not be used in the case of CProj and hammingD methods. We |
---|
| 646 | can still compute the stateProbs to find the initial average bit change on |
---|
| 647 | the state lines. */ |
---|
| 648 | *stateProbs = DoMarkovPowerAnalysis(ddManager,prunedTR, |
---|
| 649 | initBdd,piVars,xVars, |
---|
| 650 | yVars,inputProb,nVars,nPi); |
---|
| 651 | |
---|
| 652 | if (!(heuristic == RestrCProjection_c || heuristic == RestrHammingD_c)) { |
---|
| 653 | bdd_node *temp, *cube; |
---|
| 654 | |
---|
| 655 | bdd_ref(cube = bdd_bdd_compute_cube(ddManager,piVars,NIL(int),nPi)); |
---|
| 656 | bdd_ref(temp = bdd_bdd_exist_abstract(ddManager,possessedTR,cube)); |
---|
| 657 | bdd_ref(addPTR = bdd_bdd_to_add(ddManager,temp)); |
---|
| 658 | bdd_recursive_deref(ddManager,temp); |
---|
| 659 | |
---|
| 660 | bdd_ref(temp = bdd_bdd_to_add(ddManager, possessedTR)); |
---|
| 661 | bdd_recursive_deref(ddManager, possessedTR); |
---|
| 662 | |
---|
| 663 | /* possessedProbMatrix is a weighted augmented STG where the weights are |
---|
| 664 | the transition probabilities */ |
---|
| 665 | if (inputProb) { |
---|
| 666 | bdd_ref(possessedProbMatrix = Mark_addInProb(ddManager,temp,cube, |
---|
| 667 | inputProb)); |
---|
| 668 | } else { |
---|
| 669 | /* Assume equi probable primary inputs */ |
---|
| 670 | bdd_node *q, *Correction; |
---|
| 671 | bdd_node *inputCube; |
---|
| 672 | |
---|
| 673 | bdd_ref(inputCube = bdd_bdd_to_add(ddManager,cube)); |
---|
| 674 | bdd_ref(Correction = bdd_add_const(ddManager, |
---|
| 675 | (1.0/(double)(1 << nPi)))); |
---|
| 676 | bdd_ref(q = bdd_add_exist_abstract(ddManager,temp,inputCube)); |
---|
| 677 | bdd_ref(possessedProbMatrix = bdd_add_apply(ddManager, |
---|
| 678 | bdd_add_times, |
---|
| 679 | q, Correction)); |
---|
| 680 | bdd_recursive_deref(ddManager,Correction); |
---|
| 681 | bdd_recursive_deref(ddManager,q); |
---|
| 682 | bdd_recursive_deref(ddManager,inputCube); |
---|
| 683 | } |
---|
| 684 | bdd_recursive_deref(ddManager,cube); |
---|
| 685 | bdd_recursive_deref(ddManager,temp); |
---|
| 686 | localStateProbs = *stateProbs; |
---|
| 687 | } |
---|
| 688 | |
---|
| 689 | switch(heuristic) { |
---|
| 690 | case RestrCProjection_c: |
---|
| 691 | finalTR = RestrMinimizeFsmByCProj(ddManager,equivRel, |
---|
| 692 | prunedTR,initBdd, |
---|
| 693 | xVars,yVars,uVars,vVars,piVars, |
---|
| 694 | nVars,nPi,outBdds,newInit); |
---|
| 695 | break; |
---|
| 696 | case RestrFanin_c: |
---|
| 697 | case RestrFaninFanout_c: |
---|
| 698 | ddTemp = bdd_read_background(ddManager); |
---|
| 699 | bdd_set_background(ddManager, |
---|
| 700 | bdd_read_plus_infinity(ddManager)); |
---|
| 701 | |
---|
| 702 | /* addPTR and possessedProbMatrix are deleted in the following |
---|
| 703 | * procedure. */ |
---|
| 704 | finalTR = RestrMinimizeFsmByFaninFanout(ddManager,equivRel, prunedTR, |
---|
| 705 | &addPTR,&possessedProbMatrix,initBdd, |
---|
| 706 | reachable,localStateProbs,piVars,xVars, |
---|
| 707 | yVars, uVars,vVars, |
---|
| 708 | nVars, nPi,heuristic,outBdds,newInit); |
---|
| 709 | |
---|
| 710 | /* Replace the original background value */ |
---|
| 711 | bdd_set_background(ddManager,ddTemp); |
---|
| 712 | break; |
---|
| 713 | case RestrHammingD_c: |
---|
| 714 | default : |
---|
| 715 | |
---|
| 716 | /* BALA, testing ... */ |
---|
| 717 | /* Remove the edges out of the initial state. */ |
---|
| 718 | { |
---|
| 719 | /* bdd_node *outEdges; */ |
---|
| 720 | |
---|
| 721 | /* bdd_ref(outEdges = bdd_bdd_and(ddManager,prunedTR,initBdd)); */ |
---|
| 722 | /* bdd_ref(adjustedTR = bdd_bdd_and(ddManager,prunedTR, */ |
---|
| 723 | /* bdd_not_bdd_node(outEdges))); */ |
---|
| 724 | /* finalTR = RestrSelectLeastHammingDStates(ddManager,adjustedTR, */ |
---|
| 725 | /* possessedTR,xVars, */ |
---|
| 726 | /* yVars,vVars,nVars,nPi); */ |
---|
| 727 | |
---|
| 728 | finalTR = RestrSelectLeastHammingDStates(ddManager,prunedTR, |
---|
| 729 | possessedTR,xVars, |
---|
| 730 | yVars,vVars,nVars,nPi); |
---|
| 731 | bdd_recursive_deref(ddManager,possessedTR); |
---|
| 732 | bdd_ref(*newInit = initBdd); |
---|
| 733 | break; |
---|
| 734 | } |
---|
| 735 | } |
---|
| 736 | |
---|
| 737 | bdd_recursive_deref(ddManager,equivRel); |
---|
| 738 | return finalTR; |
---|
| 739 | } |
---|
| 740 | |
---|
| 741 | /**Function******************************************************************** |
---|
| 742 | |
---|
| 743 | Synopsis [Returns a table of (rootNames,rootMvfs). The parameters |
---|
| 744 | <tt>outBdds</tt> and <tt>nextBdds</tt> aare arrays of bdd_node *. |
---|
| 745 | <tt>outputArray</tt> and <tt>tranFunArray</tt> are arrays of strings and are |
---|
| 746 | in one-to-one correspondence with <tt>outBdds</tt> and <tt>nextBdds</tt>.] |
---|
| 747 | |
---|
| 748 | SideEffects [None] |
---|
| 749 | |
---|
| 750 | SeeAlso [] |
---|
| 751 | |
---|
| 752 | ******************************************************************************/ |
---|
| 753 | static st_table * |
---|
| 754 | CreateNameToMvfTable( |
---|
| 755 | bdd_manager *ddManager, |
---|
| 756 | array_t *outBdds, |
---|
| 757 | array_t *nextBdds, |
---|
| 758 | array_t *outputArray, |
---|
| 759 | array_t *tranFunArray) |
---|
| 760 | { |
---|
| 761 | st_table *nameToMvf; |
---|
| 762 | bdd_node *ddTemp; |
---|
| 763 | int i; |
---|
| 764 | |
---|
| 765 | /* Initialize variables */ |
---|
| 766 | nameToMvf = st_init_table(strcmp, st_strhash); |
---|
| 767 | |
---|
| 768 | arrayForEachItem(bdd_node *, outBdds, i, ddTemp) { |
---|
| 769 | bdd_node *temp; |
---|
| 770 | mdd_t *regular, *complement; |
---|
| 771 | Mvf_Function_t *mvf; |
---|
| 772 | char *name; |
---|
| 773 | |
---|
| 774 | bdd_ref(temp = bdd_not_bdd_node(ddTemp)); |
---|
| 775 | |
---|
| 776 | regular = bdd_construct_bdd_t(ddManager,ddTemp); |
---|
| 777 | complement = bdd_construct_bdd_t(ddManager,temp); |
---|
| 778 | |
---|
| 779 | mvf = (Mvf_Function_t *)array_alloc(mdd_t *, 0); |
---|
| 780 | array_insert(mdd_t *, mvf, 0, complement); |
---|
| 781 | array_insert(mdd_t *, mvf, 1, regular); |
---|
| 782 | |
---|
| 783 | name = array_fetch(char *, outputArray, i); |
---|
| 784 | st_insert(nameToMvf,name,(char *)mvf); |
---|
| 785 | } |
---|
| 786 | |
---|
| 787 | arrayForEachItem(bdd_node *, nextBdds, i, ddTemp) { |
---|
| 788 | bdd_node *temp; |
---|
| 789 | mdd_t *regular, *complement; |
---|
| 790 | Mvf_Function_t *mvf; |
---|
| 791 | char *name; |
---|
| 792 | |
---|
| 793 | bdd_ref(temp = bdd_not_bdd_node(ddTemp)); |
---|
| 794 | |
---|
| 795 | regular = bdd_construct_bdd_t(ddManager,ddTemp); |
---|
| 796 | complement = bdd_construct_bdd_t(ddManager,temp); |
---|
| 797 | |
---|
| 798 | mvf = (Mvf_Function_t *)array_alloc(mdd_t *, 0); |
---|
| 799 | array_insert(mdd_t *, mvf, 0, complement); |
---|
| 800 | array_insert(mdd_t *, mvf, 1, regular); |
---|
| 801 | |
---|
| 802 | name = array_fetch(char *, tranFunArray, i); |
---|
| 803 | st_insert(nameToMvf,name,(char *)mvf); |
---|
| 804 | } |
---|
| 805 | |
---|
| 806 | return nameToMvf; |
---|
| 807 | } |
---|
| 808 | |
---|
| 809 | |
---|
| 810 | /**Function******************************************************************** |
---|
| 811 | |
---|
| 812 | Synopsis [Create a (name,mdd_t*) table.] |
---|
| 813 | |
---|
| 814 | SideEffects [None] |
---|
| 815 | |
---|
| 816 | SeeAlso [] |
---|
| 817 | |
---|
| 818 | ******************************************************************************/ |
---|
| 819 | static st_table * |
---|
| 820 | CreateCareTable( |
---|
| 821 | Ntk_Network_t *network, |
---|
| 822 | mdd_t *reachMdd) |
---|
| 823 | { |
---|
| 824 | lsGen gen; |
---|
| 825 | Ntk_Node_t *node; |
---|
| 826 | st_table *careTable; |
---|
| 827 | |
---|
| 828 | careTable = st_init_table(strcmp, st_strhash); |
---|
| 829 | Ntk_NetworkForEachPrimaryOutput(network, gen, node) { |
---|
| 830 | char *name; |
---|
| 831 | name = Ntk_NodeReadName(node); |
---|
| 832 | st_insert(careTable,name,(char *)reachMdd); |
---|
| 833 | } |
---|
| 834 | Ntk_NetworkForEachLatch(network,gen,node){ |
---|
| 835 | char *name; |
---|
| 836 | name = Ntk_NodeReadName(Ntk_LatchReadDataInput(node)); |
---|
| 837 | st_insert(careTable,name,(char *)reachMdd); |
---|
| 838 | } |
---|
| 839 | |
---|
| 840 | return careTable; |
---|
| 841 | } |
---|
| 842 | |
---|
| 843 | /**Function******************************************************************** |
---|
| 844 | |
---|
| 845 | Synopsis [Routine to free members of an st_table.] |
---|
| 846 | |
---|
| 847 | SideEffects [None] |
---|
| 848 | |
---|
| 849 | SeeAlso [] |
---|
| 850 | ******************************************************************************/ |
---|
| 851 | static enum st_retval |
---|
| 852 | StMvfFree( |
---|
| 853 | char *key, |
---|
| 854 | char *value, |
---|
| 855 | char *arg) |
---|
| 856 | { |
---|
| 857 | /* This will free the memory associated with the array also */ |
---|
| 858 | Mvf_FunctionFree((Mvf_Function_t *)value); |
---|
| 859 | |
---|
| 860 | return(ST_CONTINUE); |
---|
| 861 | |
---|
| 862 | } /* end of StMvfFree */ |
---|
| 863 | |
---|
| 864 | |
---|
| 865 | /**Function******************************************************************** |
---|
| 866 | |
---|
| 867 | Synopsis [Routine to count number of equivalence classes in a relation.] |
---|
| 868 | |
---|
| 869 | SideEffects [None] |
---|
| 870 | |
---|
| 871 | SeeAlso [] |
---|
| 872 | |
---|
| 873 | ******************************************************************************/ |
---|
| 874 | static void |
---|
| 875 | CountEquivalentClasses( |
---|
| 876 | bdd_manager *ddManager, |
---|
| 877 | bdd_node *equivRel, |
---|
| 878 | bdd_node *initBdd, |
---|
| 879 | bdd_node **xVars, |
---|
| 880 | bdd_node **uVars, |
---|
| 881 | int nVars) |
---|
| 882 | { |
---|
| 883 | bdd_node *resultXU,*uCube; |
---|
| 884 | bdd_node *oneInitState,*classes; |
---|
| 885 | |
---|
| 886 | oneInitState = bdd_bdd_pick_one_minterm(ddManager,initBdd,xVars,nVars); |
---|
| 887 | bdd_ref(oneInitState); |
---|
| 888 | |
---|
| 889 | bdd_ref(resultXU = bdd_bdd_cprojection(ddManager,equivRel,oneInitState)); |
---|
| 890 | bdd_recursive_deref(ddManager,oneInitState); |
---|
| 891 | |
---|
| 892 | #ifdef RESTR_DIAG |
---|
| 893 | { |
---|
| 894 | /* The following is valid only when equivRel is the equivalence relation on |
---|
| 895 | the complete set of states.*/ |
---|
| 896 | bdd_node *xCube,*tautology; |
---|
| 897 | bdd_node *one; |
---|
| 898 | one = bdd_read_one(ddManager); |
---|
| 899 | bdd_ref(xCube = bdd_bdd_compute_cube(ddManager,xVars,NIL(int),nVars)); |
---|
| 900 | bdd_ref(tautology = bdd_bdd_exist_abstract(ddManager,resultXU,xCube)); |
---|
| 901 | assert(tautology == one); |
---|
| 902 | bdd_recursive_deref(ddManager,tautology); |
---|
| 903 | bdd_recursive_deref(ddManager,xCube); |
---|
| 904 | } |
---|
| 905 | #endif |
---|
| 906 | |
---|
| 907 | #ifdef RESTR_DIAG |
---|
| 908 | { |
---|
| 909 | bdd_node *uCube,*zero,*classes; |
---|
| 910 | bdd_node *oneClass,*temp,*rep; |
---|
| 911 | int i; |
---|
| 912 | |
---|
| 913 | zero = bdd_not_bdd_node(bdd_read_one(ddManager)); |
---|
| 914 | /* Extract the classes */ |
---|
| 915 | bdd_ref(uCube = bdd_bdd_compute_cube(ddManager,uVars,NIL(int),nVars)); |
---|
| 916 | bdd_ref(classes = bdd_bdd_exist_abstract(ddManager,resultXU,uCube)); |
---|
| 917 | bdd_recursive_deref(ddManager,uCube); |
---|
| 918 | |
---|
| 919 | i = 0; |
---|
| 920 | (void) fprintf(vis_stdout,"\n** restr diag: EQUIVALENT CLASSES:\n"); |
---|
| 921 | while (classes != zero) { |
---|
| 922 | i++; |
---|
| 923 | bdd_ref(rep = bdd_bdd_pick_one_minterm(ddManager,classes, |
---|
| 924 | xVars,nVars)); |
---|
| 925 | (void) fprintf(vis_stdout,"** restr diag: Class %d\n",i); |
---|
| 926 | (void) fprintf(vis_stdout,"** restr diag: Class representative:\n"); |
---|
| 927 | RestrPrintBddNode(ddManager,rep); |
---|
| 928 | |
---|
| 929 | /* Extract the complete class now */ |
---|
| 930 | bdd_ref(temp = bdd_bdd_cofactor(ddManager,resultXU,rep)); |
---|
| 931 | bdd_ref(oneClass = bdd_bdd_swap_variables(ddManager,temp,uVars, |
---|
| 932 | xVars,nVars)); |
---|
| 933 | bdd_recursive_deref(ddManager,temp); |
---|
| 934 | (void) fprintf(vis_stdout,"** restr diag: Class members:\n"); |
---|
| 935 | RestrPrintBddNode(ddManager,oneClass); |
---|
| 936 | bdd_recursive_deref(ddManager,oneClass); |
---|
| 937 | |
---|
| 938 | /* Remove rep from classes */ |
---|
| 939 | bdd_ref(temp = bdd_bdd_and(ddManager,classes,bdd_not_bdd_node(rep))); |
---|
| 940 | bdd_recursive_deref(ddManager,rep); |
---|
| 941 | bdd_recursive_deref(ddManager,classes); |
---|
| 942 | classes = temp; |
---|
| 943 | } |
---|
| 944 | (void) fprintf(vis_stdout,"** restr diag: Number of classes = %d\n",i); |
---|
| 945 | } |
---|
| 946 | #endif |
---|
| 947 | |
---|
| 948 | /* Compute uCube and extract the u variables from resultXU */ |
---|
| 949 | bdd_ref(uCube = bdd_bdd_compute_cube(ddManager,uVars,NIL(int),nVars)); |
---|
| 950 | bdd_ref(classes = bdd_bdd_exist_abstract(ddManager,resultXU,uCube)); |
---|
| 951 | bdd_recursive_deref(ddManager,uCube); |
---|
| 952 | bdd_recursive_deref(ddManager,resultXU); |
---|
| 953 | |
---|
| 954 | fprintf(vis_stdout, "** restr info: Number of Equivalence Classes = %g\n", |
---|
| 955 | bdd_count_minterm(ddManager,classes,nVars)); |
---|
| 956 | |
---|
| 957 | bdd_recursive_deref(ddManager,classes); |
---|
| 958 | } |
---|
| 959 | |
---|
| 960 | |
---|
| 961 | /**Function******************************************************************** |
---|
| 962 | |
---|
| 963 | Synopsis [Convert an array of Mvf_Function_t * to an array of bdd_node *] |
---|
| 964 | |
---|
| 965 | SideEffects [None] |
---|
| 966 | |
---|
| 967 | SeeAlso [] |
---|
| 968 | |
---|
| 969 | ******************************************************************************/ |
---|
| 970 | static array_t * |
---|
| 971 | GetBddArrayFromMvfArray(array_t *mvfArray) |
---|
| 972 | { |
---|
| 973 | int i; |
---|
| 974 | array_t *bddArray; |
---|
| 975 | Mvf_Function_t *mvf; |
---|
| 976 | |
---|
| 977 | bddArray = array_alloc(bdd_node *,0); |
---|
| 978 | |
---|
| 979 | arrayForEachItem(Mvf_Function_t *, mvfArray,i,mvf) { |
---|
| 980 | mdd_t *mddTemp; |
---|
| 981 | bdd_node *ddNode; |
---|
| 982 | |
---|
| 983 | mddTemp = array_fetch(mdd_t *, mvf, 1); |
---|
| 984 | ddNode = bdd_extract_node_as_is(mddTemp); |
---|
| 985 | bdd_ref(ddNode); |
---|
| 986 | |
---|
| 987 | array_insert_last(bdd_node *, bddArray, ddNode); |
---|
| 988 | } |
---|
| 989 | return bddArray; |
---|
| 990 | } |
---|
| 991 | |
---|
| 992 | /**Function******************************************************************** |
---|
| 993 | |
---|
| 994 | Synopsis [Perform markovian analysis. The ADD for steady state probabilities |
---|
| 995 | of the STG is returned.] |
---|
| 996 | |
---|
| 997 | SideEffects [None] |
---|
| 998 | |
---|
| 999 | SeeAlso [] |
---|
| 1000 | |
---|
| 1001 | ******************************************************************************/ |
---|
| 1002 | static bdd_node * |
---|
| 1003 | DoMarkovPowerAnalysis( |
---|
| 1004 | bdd_manager *ddManager, |
---|
| 1005 | bdd_node *prunedTR, |
---|
| 1006 | bdd_node *initBdd, |
---|
| 1007 | bdd_node **piVars, |
---|
| 1008 | bdd_node **xVars, |
---|
| 1009 | bdd_node **yVars, |
---|
| 1010 | st_table *inputProb, |
---|
| 1011 | int nVars, |
---|
| 1012 | int nPi) |
---|
| 1013 | { |
---|
| 1014 | bdd_node **result, *stateProbs; |
---|
| 1015 | bdd_node *init; |
---|
| 1016 | |
---|
| 1017 | bdd_ref(init = bdd_bdd_to_add(ddManager,initBdd)); |
---|
| 1018 | if (restrVerbose) |
---|
| 1019 | (void) fprintf(vis_stdout,"** restr info: Initial average state bit change:\n"); |
---|
| 1020 | |
---|
| 1021 | result = AddPowerSolve(ddManager,prunedTR,init,xVars,yVars, |
---|
| 1022 | piVars,inputProb,nVars,nPi); |
---|
| 1023 | |
---|
| 1024 | bdd_recursive_deref(ddManager,result[1]); |
---|
| 1025 | stateProbs = result[0]; |
---|
| 1026 | bdd_recursive_deref(ddManager,init); |
---|
| 1027 | FREE(result); |
---|
| 1028 | |
---|
| 1029 | return stateProbs; |
---|
| 1030 | } |
---|
| 1031 | |
---|
| 1032 | /**Function******************************************************************** |
---|
| 1033 | |
---|
| 1034 | Synopsis [Given a relation R(X,Y) returns the array of functions y_i=f(X).] |
---|
| 1035 | |
---|
| 1036 | SideEffects [None] |
---|
| 1037 | |
---|
| 1038 | SeeAlso [] |
---|
| 1039 | |
---|
| 1040 | ******************************************************************************/ |
---|
| 1041 | static array_t * |
---|
| 1042 | ExtractTransitionFuns( |
---|
| 1043 | bdd_manager *ddManager, |
---|
| 1044 | bdd_node *finalTR, |
---|
| 1045 | bdd_node **yVars, |
---|
| 1046 | int nVars) |
---|
| 1047 | { |
---|
| 1048 | bdd_node *completeCube, *extractCube; |
---|
| 1049 | bdd_node *fun, *tranFun; |
---|
| 1050 | array_t *allTranFuns; |
---|
| 1051 | int i; |
---|
| 1052 | |
---|
| 1053 | allTranFuns = array_alloc(bdd_node *,0); |
---|
| 1054 | |
---|
| 1055 | completeCube = bdd_bdd_compute_cube(ddManager,yVars,NIL(int),nVars); |
---|
| 1056 | bdd_ref(completeCube); |
---|
| 1057 | |
---|
| 1058 | for(i = 0;i < nVars; i++) { |
---|
| 1059 | extractCube = bdd_bdd_cofactor(ddManager,completeCube,yVars[i]); |
---|
| 1060 | bdd_ref(extractCube); |
---|
| 1061 | fun = bdd_bdd_exist_abstract(ddManager,finalTR,extractCube); |
---|
| 1062 | bdd_ref(fun); |
---|
| 1063 | bdd_recursive_deref(ddManager,extractCube); |
---|
| 1064 | tranFun = bdd_bdd_cofactor(ddManager,fun,yVars[i]); |
---|
| 1065 | bdd_ref(tranFun); |
---|
| 1066 | |
---|
| 1067 | #ifdef RESTR_DIAG |
---|
| 1068 | { |
---|
| 1069 | /* The following is to test if there are multiple edges out of a state |
---|
| 1070 | with the same input label: in short to check if the relation is |
---|
| 1071 | deterministic or not. */ |
---|
| 1072 | |
---|
| 1073 | bdd_node *yBar,*yNot,*inter; |
---|
| 1074 | bdd_ref(yNot = bdd_not_bdd_node(yVars[i])); |
---|
| 1075 | bdd_ref(yBar = bdd_bdd_cofactor(ddManager,fun,yNot)); |
---|
| 1076 | bdd_recursive_deref(ddManager,yNot); |
---|
| 1077 | bdd_ref(inter = bdd_bdd_and(ddManager,yBar,tranFun)); |
---|
| 1078 | yNot = bdd_not_bdd_node(bdd_read_one(ddManager)); |
---|
| 1079 | assert(inter == yNot); |
---|
| 1080 | bdd_recursive_deref(ddManager,inter); |
---|
| 1081 | bdd_recursive_deref(ddManager,yBar); |
---|
| 1082 | } |
---|
| 1083 | #endif |
---|
| 1084 | |
---|
| 1085 | bdd_recursive_deref(ddManager,fun); |
---|
| 1086 | array_insert_last(bdd_node *,allTranFuns,tranFun); |
---|
| 1087 | } |
---|
| 1088 | |
---|
| 1089 | bdd_recursive_deref(ddManager,completeCube); |
---|
| 1090 | return allTranFuns; |
---|
| 1091 | } |
---|
| 1092 | |
---|
| 1093 | /**Function******************************************************************** |
---|
| 1094 | |
---|
| 1095 | Synopsis [Returns an array of BDDs given the node names of a network.] |
---|
| 1096 | |
---|
| 1097 | SideEffects [None] |
---|
| 1098 | |
---|
| 1099 | SeeAlso [] |
---|
| 1100 | |
---|
| 1101 | ******************************************************************************/ |
---|
| 1102 | static array_t * |
---|
| 1103 | GetBddArrayFromNameArray( |
---|
| 1104 | Fsm_Fsm_t *fsm, |
---|
| 1105 | array_t *nameArray) |
---|
| 1106 | { |
---|
| 1107 | graph_t *partition; |
---|
| 1108 | array_t *bdds,*mvfs; |
---|
| 1109 | |
---|
| 1110 | partition = Fsm_FsmReadPartition(fsm); |
---|
| 1111 | mvfs = BuildFunctions(partition,nameArray); |
---|
| 1112 | bdds = GetBddArrayFromMvfArray(mvfs); |
---|
| 1113 | Mvf_FunctionArrayFree(mvfs); |
---|
| 1114 | |
---|
| 1115 | return bdds; |
---|
| 1116 | } |
---|
| 1117 | |
---|
| 1118 | /**Function******************************************************************** |
---|
| 1119 | |
---|
| 1120 | Synopsis [Expand the reachable set R(x) to include those states which are |
---|
| 1121 | equivalent to R(x) but potentially not reachable.] |
---|
| 1122 | |
---|
| 1123 | SideEffects [<tt>reachable</tt> is updated.] |
---|
| 1124 | |
---|
| 1125 | SeeAlso [] |
---|
| 1126 | |
---|
| 1127 | ******************************************************************************/ |
---|
| 1128 | static void |
---|
| 1129 | ExpandReachableSet( |
---|
| 1130 | bdd_manager *ddManager, |
---|
| 1131 | bdd_node **reachable, |
---|
| 1132 | bdd_node *equivRel, |
---|
| 1133 | bdd_node **xVars, |
---|
| 1134 | bdd_node **uVars, |
---|
| 1135 | int nVars) |
---|
| 1136 | { |
---|
| 1137 | bdd_node *xcube,*potUnReach,*extReach; |
---|
| 1138 | bdd_node *temp1; |
---|
| 1139 | |
---|
| 1140 | bdd_ref(xcube = bdd_bdd_compute_cube(ddManager,xVars,NIL(int),nVars)); |
---|
| 1141 | /* potUnReach = \exists_x (E(x,u) * R(x)) */ |
---|
| 1142 | bdd_ref(potUnReach = bdd_bdd_and_abstract(ddManager,*reachable, |
---|
| 1143 | equivRel,xcube)); |
---|
| 1144 | bdd_recursive_deref(ddManager,xcube); |
---|
| 1145 | /* temp1(x) = potUnReach(u) */ |
---|
| 1146 | bdd_ref(temp1 = bdd_bdd_swap_variables(ddManager,potUnReach,uVars, |
---|
| 1147 | xVars,nVars)); |
---|
| 1148 | bdd_recursive_deref(ddManager,potUnReach); |
---|
| 1149 | /* extReach(x) = R(x) + potUnReach(x) */ |
---|
| 1150 | bdd_ref(extReach = bdd_bdd_or(ddManager,*reachable,temp1)); |
---|
| 1151 | bdd_recursive_deref(ddManager,temp1); |
---|
| 1152 | bdd_recursive_deref(ddManager,*reachable); |
---|
| 1153 | *reachable = extReach; |
---|
| 1154 | } |
---|
| 1155 | |
---|
| 1156 | /**Function******************************************************************** |
---|
| 1157 | |
---|
| 1158 | Synopsis [Create a partition for the new view of the fsm/network] |
---|
| 1159 | |
---|
| 1160 | SideEffects [The new view is attached to the network.] |
---|
| 1161 | |
---|
| 1162 | SeeAlso [CreateNewFsm] |
---|
| 1163 | |
---|
| 1164 | ******************************************************************************/ |
---|
| 1165 | static graph_t * |
---|
| 1166 | CreateNewPartition( |
---|
| 1167 | Ntk_Network_t *network, |
---|
| 1168 | bdd_manager *ddManager, |
---|
| 1169 | array_t *outBdds, |
---|
| 1170 | array_t *nextBdds, |
---|
| 1171 | array_t *outputArray, |
---|
| 1172 | array_t *tranFunArray) |
---|
| 1173 | { |
---|
| 1174 | st_table *nameToMvf; |
---|
| 1175 | graph_t *partition; |
---|
| 1176 | |
---|
| 1177 | /* Create a table of next state and output Mvfs with their names as key to |
---|
| 1178 | the table. This table is used to create a partition for the network. */ |
---|
| 1179 | nameToMvf = CreateNameToMvfTable(ddManager,outBdds,nextBdds, |
---|
| 1180 | outputArray,tranFunArray); |
---|
| 1181 | /* Delete the old partition and old fsm as we dont need it any more */ |
---|
| 1182 | if (restrCreatedPart) { |
---|
| 1183 | Ntk_NetworkFreeApplInfo(network,RESTR_PART_NETWORK_APPL_KEY); |
---|
| 1184 | restrCreatedPart = 0; |
---|
| 1185 | } |
---|
| 1186 | if (restrCreatedFsm) { |
---|
| 1187 | Ntk_NetworkFreeApplInfo(network,RESTR_FSM_NETWORK_APPL_KEY); |
---|
| 1188 | restrCreatedFsm = 0; |
---|
| 1189 | } |
---|
| 1190 | |
---|
| 1191 | /* Create a new partition from the new root functions */ |
---|
| 1192 | partition = Part_NetworkCreatePartitionFromMvfs(network,nameToMvf); |
---|
| 1193 | Ntk_NetworkAddApplInfo(network, RESTR_PART_NETWORK_APPL_KEY, |
---|
| 1194 | (Ntk_ApplInfoFreeFn) Part_PartitionFreeCallback, |
---|
| 1195 | (void *) partition); |
---|
| 1196 | st_foreach(nameToMvf,StMvfFree,NIL(char)); |
---|
| 1197 | st_free_table(nameToMvf); |
---|
| 1198 | |
---|
| 1199 | return partition; |
---|
| 1200 | } |
---|
| 1201 | |
---|
| 1202 | /**Function******************************************************************** |
---|
| 1203 | |
---|
| 1204 | Synopsis [Create the FSM data structure for the restructured STG and perform |
---|
| 1205 | markov analysis to estimate the final state average bit change.] |
---|
| 1206 | |
---|
| 1207 | SideEffects [<tt>reachable,initBdd,stateProbs,finalTR</tt> are dereferenced in this |
---|
| 1208 | function.] |
---|
| 1209 | |
---|
| 1210 | SeeAlso [CreateNewPatition] |
---|
| 1211 | |
---|
| 1212 | ******************************************************************************/ |
---|
| 1213 | static Fsm_Fsm_t * |
---|
| 1214 | CreateNewFsm( |
---|
| 1215 | Ntk_Network_t *network, |
---|
| 1216 | graph_t *partition, |
---|
| 1217 | bdd_manager *ddManager, |
---|
| 1218 | bdd_node *finalTR, |
---|
| 1219 | bdd_node *initBdd, |
---|
| 1220 | bdd_node *reachable, |
---|
| 1221 | bdd_node *stateProbs, |
---|
| 1222 | bdd_node **xVars, |
---|
| 1223 | bdd_node **yVars, |
---|
| 1224 | bdd_node **piVars, |
---|
| 1225 | st_table *inputProb, |
---|
| 1226 | int nVars, |
---|
| 1227 | int nPi) |
---|
| 1228 | { |
---|
| 1229 | Fsm_Fsm_t *fsm; |
---|
| 1230 | mdd_t *reachStates; |
---|
| 1231 | mdd_t *mddTemp; |
---|
| 1232 | bdd_node *ddTemp; |
---|
| 1233 | bdd_node **markovResult; |
---|
| 1234 | |
---|
| 1235 | /* Create a new Fsm for the restructured network. */ |
---|
| 1236 | fsm = Fsm_FsmCreateFromNetworkWithPartition(network, |
---|
| 1237 | Part_PartitionDuplicate(partition)); |
---|
| 1238 | assert(fsm != NIL(Fsm_Fsm_t)); |
---|
| 1239 | Ntk_NetworkAddApplInfo(network, RESTR_FSM_NETWORK_APPL_KEY, |
---|
| 1240 | (Ntk_ApplInfoFreeFn) Fsm_FsmFreeCallback, |
---|
| 1241 | (void *) fsm); |
---|
| 1242 | /* We need to update the initial states as the |
---|
| 1243 | Fsm_FsmCreateFromNetworkWithPartition will pick up old initial state from |
---|
| 1244 | the network. Fsm_FsmSetInitialStates deletes old inital states. */ |
---|
| 1245 | mddTemp = bdd_construct_bdd_t(ddManager,initBdd); |
---|
| 1246 | Fsm_FsmSetInitialStates(fsm,mddTemp); |
---|
| 1247 | |
---|
| 1248 | /* Compute the new reachable states */ |
---|
| 1249 | reachStates = Fsm_FsmComputeReachableStates(fsm,0,0,0,0,0,0,1000, |
---|
| 1250 | Fsm_Rch_Default_c,0,0, |
---|
| 1251 | NIL(array_t),FALSE, NIL(array_t)); |
---|
| 1252 | |
---|
| 1253 | bdd_recursive_deref(ddManager,reachable); |
---|
| 1254 | reachable = bdd_extract_node_as_is(reachStates); |
---|
| 1255 | bdd_ref(reachable); |
---|
| 1256 | mdd_free(reachStates); |
---|
| 1257 | |
---|
| 1258 | /* Constrain the transition relation */ |
---|
| 1259 | bdd_ref(ddTemp = bdd_bdd_constrain(ddManager,finalTR,reachable)); |
---|
| 1260 | bdd_recursive_deref(ddManager,finalTR); |
---|
| 1261 | finalTR = ddTemp; |
---|
| 1262 | |
---|
| 1263 | /* Use the state probs. of the original STG as the initial guess to compute |
---|
| 1264 | the state probs. of the restructured STG. */ |
---|
| 1265 | if (restrVerbose) |
---|
| 1266 | (void) fprintf(vis_stdout,"** restr info: Final average state bit change:\n"); |
---|
| 1267 | |
---|
| 1268 | markovResult = AddPowerSolve(ddManager, finalTR, stateProbs, xVars, |
---|
| 1269 | yVars,piVars,inputProb,nVars,nPi); |
---|
| 1270 | bdd_recursive_deref(ddManager, markovResult[0]); |
---|
| 1271 | bdd_recursive_deref(ddManager, markovResult[1]); |
---|
| 1272 | FREE(markovResult); |
---|
| 1273 | |
---|
| 1274 | bdd_recursive_deref(ddManager,stateProbs); |
---|
| 1275 | bdd_recursive_deref(ddManager,finalTR); |
---|
| 1276 | bdd_recursive_deref(ddManager,reachable); |
---|
| 1277 | |
---|
| 1278 | return fsm; |
---|
| 1279 | } |
---|