1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [restrRestructure.c] |
---|
4 | |
---|
5 | PackageName [restr] |
---|
6 | |
---|
7 | Synopsis [This file contains a main procedure that restructures an STG and |
---|
8 | transforms it into a new multilevel circuit.] |
---|
9 | |
---|
10 | Description [This file contains a main procedure that restructures an STG and |
---|
11 | transforms it into a new multilevel circuit. |
---|
12 | |
---|
13 | Please refer to "A symbolic algorithm for low power sequential synthesis," |
---|
14 | ISLPED 97, for more details.] |
---|
15 | |
---|
16 | SeeAlso [restrHammingD.c restrFaninout.c restrCProj.c] |
---|
17 | |
---|
18 | Author [Balakrishna Kumthekar <kumtheka@colorado.edu>] |
---|
19 | |
---|
20 | Copyright [This file was created at the University of Colorado at |
---|
21 | Boulder. The University of Colorado at Boulder makes no warranty |
---|
22 | about the suitability of this software for any purpose. It is |
---|
23 | presented on an AS IS basis.] |
---|
24 | |
---|
25 | ******************************************************************************/ |
---|
26 | |
---|
27 | #include "restrInt.h" |
---|
28 | |
---|
29 | /*---------------------------------------------------------------------------*/ |
---|
30 | /* Constant declarations */ |
---|
31 | /*---------------------------------------------------------------------------*/ |
---|
32 | |
---|
33 | |
---|
34 | /*---------------------------------------------------------------------------*/ |
---|
35 | /* Type declarations */ |
---|
36 | /*---------------------------------------------------------------------------*/ |
---|
37 | |
---|
38 | |
---|
39 | /*---------------------------------------------------------------------------*/ |
---|
40 | /* Structure declarations */ |
---|
41 | /*---------------------------------------------------------------------------*/ |
---|
42 | |
---|
43 | /*---------------------------------------------------------------------------*/ |
---|
44 | /* Variable declarations */ |
---|
45 | /*---------------------------------------------------------------------------*/ |
---|
46 | extern int restrCreatedPart; |
---|
47 | extern int restrCreatedFsm; |
---|
48 | extern boolean restrVerbose; |
---|
49 | |
---|
50 | /*---------------------------------------------------------------------------*/ |
---|
51 | /* Macro declarations */ |
---|
52 | /*---------------------------------------------------------------------------*/ |
---|
53 | |
---|
54 | |
---|
55 | /**AutomaticStart*************************************************************/ |
---|
56 | |
---|
57 | /*---------------------------------------------------------------------------*/ |
---|
58 | /* Static function prototypes */ |
---|
59 | /*---------------------------------------------------------------------------*/ |
---|
60 | |
---|
61 | static array_t * BuildFunctions(graph_t *partition, array_t *rootNames); |
---|
62 | static bdd_node ** AddPowerSolve(bdd_manager *mgr, bdd_node *bddTr, bdd_node *init, bdd_node **x, bdd_node **y, bdd_node **pi, st_table *inputProb, int nVars, int nPi); |
---|
63 | static bdd_node * PerformRestructure(bdd_manager *ddManager, bdd_node *prunedTR, bdd_node *equivRel, bdd_node *reachable, bdd_node *initBdd, bdd_node **piVars, bdd_node **xVars, bdd_node **yVars, bdd_node **uVars, bdd_node **vVars, st_table *inputProb, int nVars, int nPi, RestructureHeuristic heuristic, boolean equivClasses, array_t **outBdds, bdd_node **newInit, bdd_node **stateProbs); |
---|
64 | static st_table * CreateNameToMvfTable(bdd_manager *ddManager, array_t *outBdds, array_t *nextBdds, array_t *outputArray, array_t *tranFunArray); |
---|
65 | static st_table * CreateCareTable(Ntk_Network_t *network, mdd_t *reachMdd); |
---|
66 | static enum st_retval StMvfFree(char *key, char *value, char *arg); |
---|
67 | static void CountEquivalentClasses(bdd_manager *ddManager, bdd_node *equivRel, bdd_node *initBdd, bdd_node **xVars, bdd_node **uVars, int nVars); |
---|
68 | static array_t * GetBddArrayFromMvfArray(array_t *mvfArray); |
---|
69 | static bdd_node * DoMarkovPowerAnalysis(bdd_manager *ddManager, bdd_node *prunedTR, bdd_node *initBdd, bdd_node **piVars, bdd_node **xVars, bdd_node **yVars, st_table *inputProb, int nVars, int nPi); |
---|
70 | static array_t * ExtractTransitionFuns(bdd_manager *ddManager, bdd_node *finalTR, bdd_node **yVars, int nVars); |
---|
71 | static array_t * GetBddArrayFromNameArray(Fsm_Fsm_t *fsm, array_t *nameArray); |
---|
72 | static void ExpandReachableSet(bdd_manager *ddManager, bdd_node **reachable, bdd_node *equivRel, bdd_node **xVars, bdd_node **uVars, int nVars); |
---|
73 | static graph_t * CreateNewPartition(Ntk_Network_t *network, bdd_manager *ddManager, array_t *outBdds, array_t *nextBdds, array_t *outputArray, array_t *tranFunArray); |
---|
74 | static Fsm_Fsm_t * CreateNewFsm(Ntk_Network_t *network, graph_t *partition, bdd_manager *ddManager, bdd_node *finalTR, bdd_node *initBdd, bdd_node *reachable, bdd_node *stateProbs, bdd_node **xVars, bdd_node **yVars, bdd_node **piVars, st_table *inputProb, int nVars, int nPi); |
---|
75 | |
---|
76 | /**AutomaticEnd***************************************************************/ |
---|
77 | |
---|
78 | |
---|
79 | /*---------------------------------------------------------------------------*/ |
---|
80 | /* Definition of exported functions */ |
---|
81 | /*---------------------------------------------------------------------------*/ |
---|
82 | |
---|
83 | /*---------------------------------------------------------------------------*/ |
---|
84 | /* Definition of internal functions */ |
---|
85 | /*---------------------------------------------------------------------------*/ |
---|
86 | |
---|
87 | /**Function******************************************************************** |
---|
88 | |
---|
89 | Synopsis [This function performs the complete task of STG restructuring and |
---|
90 | logic implementation.] |
---|
91 | |
---|
92 | Description [The STG restructuring process proceeds as follows: First a state |
---|
93 | equivalence relation E(x,y) is derived from the current STG of the finite |
---|
94 | state machine. If the parameter <tt>nonReachEquiv</tt> is set E(x,y) is used |
---|
95 | to extend the set of reachable states R(x) to include those states equivalent |
---|
96 | to R(x) but unreachable. This sometimes provides extra flexibility when |
---|
97 | choosing an edge. To perform the restructuring transformation, edges are |
---|
98 | first added (clearly driven by E(x,y)) to the original STG and then |
---|
99 | undesirable edges are removed, in such a way that the functional behavior of |
---|
100 | the machine is not affected. We say that the original STG is transformed into |
---|
101 | an <tt>augmented</tt> STG. |
---|
102 | |
---|
103 | The steady state probabilities of the STG are computed using Markovian |
---|
104 | analysis. The edges of the augmented STG are then labeled by a cost function |
---|
105 | which depends on the absolute transition probability and hamming distance |
---|
106 | between the ends of the edge. After the appropriate <tt>heuristic</tt> is |
---|
107 | applied, the new (restructured) STG is then translated in to a multi-level |
---|
108 | boolean network. |
---|
109 | |
---|
110 | <tt>heuristic</tt> takes on four options: ham: Hamming distance based |
---|
111 | heuristic is used, fanin: Fanin oriented heuristic, faninout: Fanin-Fanout |
---|
112 | oriented heuristic, cproj: C-Projection. For more information please refer to |
---|
113 | "A symbolic algorithm for low power sequential synthesis," ISLPED 97. |
---|
114 | |
---|
115 | <tt>equivClasses</tt> prints the number of equivalent classes in the STG. |
---|
116 | |
---|
117 | <tt>inputProb</tt> is optional. If not specified, equiprobabale primary |
---|
118 | inputs are assumed. Else, the table contains the pair, (PI_name,prob), where |
---|
119 | <tt>prob</tt> is the probability of the PI signal being 1. |
---|
120 | |
---|
121 | <tt>synthInfo</tt> specifies synthesis specific options. For more information |
---|
122 | look at synth.h] |
---|
123 | |
---|
124 | The BDD variable order at the end of the algorithm is dumped into |
---|
125 | <tt>orderFileName</tt>. |
---|
126 | |
---|
127 | SideEffects [Network partition and FSM data structure are hooked to the |
---|
128 | network if necessary. They are however, cleared at the end of this |
---|
129 | procedure.] |
---|
130 | |
---|
131 | SeeAlso [Synth_InitializeInfo] |
---|
132 | |
---|
133 | ******************************************************************************/ |
---|
134 | int |
---|
135 | RestrCommandRestructureFsm( |
---|
136 | Fsm_Fsm_t *fsm, |
---|
137 | RestructureHeuristic heuristic, |
---|
138 | char *orderFileName, |
---|
139 | boolean equivClasses, |
---|
140 | boolean nonReachEquiv, |
---|
141 | boolean eqvMethod, |
---|
142 | st_table *inputProb, |
---|
143 | Synth_InfoData_t *synthInfo) |
---|
144 | { |
---|
145 | |
---|
146 | graph_t *partition; |
---|
147 | Ntk_Network_t *network1; |
---|
148 | bdd_manager *ddManager; |
---|
149 | |
---|
150 | array_t *outputArray, *tranFunArray; |
---|
151 | array_t *outBdds, *nextBdds; |
---|
152 | array_t *tranRelationPair; |
---|
153 | array_t *newStateVars; |
---|
154 | |
---|
155 | st_table *careTable; |
---|
156 | |
---|
157 | int i; |
---|
158 | int nVars, nPi; |
---|
159 | int noRestruct = 0; |
---|
160 | boolean status; |
---|
161 | |
---|
162 | bdd_node *Lambda, *productTranRel, *prunedTR, *initialTR; |
---|
163 | bdd_node *equivRel; |
---|
164 | bdd_node *stateProbs; |
---|
165 | bdd_node *finalTR = NIL(bdd_node); |
---|
166 | bdd_node **xVars,**yVars,**uVars,**vVars; |
---|
167 | bdd_node **piVars; |
---|
168 | bdd_node *ddTemp, *reachable, *initBdd; |
---|
169 | bdd_node *newInit; |
---|
170 | |
---|
171 | mdd_t *reachStates, *mddTemp; |
---|
172 | mdd_t *careMdd; |
---|
173 | |
---|
174 | FILE *outFile; |
---|
175 | |
---|
176 | network1 = Fsm_FsmReadNetwork(fsm); |
---|
177 | ddManager = (bdd_manager *)Ntk_NetworkReadMddManager(network1); |
---|
178 | |
---|
179 | /* Get the bdd_node for primary, present and next state variables.*/ |
---|
180 | piVars = RestrBddNodeArrayFromIdArray(ddManager, |
---|
181 | Fsm_FsmReadInputVars(fsm)); |
---|
182 | xVars = RestrBddNodeArrayFromIdArray(ddManager, |
---|
183 | Fsm_FsmReadPresentStateVars(fsm)); |
---|
184 | yVars = RestrBddNodeArrayFromIdArray(ddManager, |
---|
185 | Fsm_FsmReadNextStateVars(fsm)); |
---|
186 | /* Create new state variables for duplicate machine. */ |
---|
187 | newStateVars = RestrCreateNewStateVars(network1, ddManager,xVars,yVars); |
---|
188 | uVars = RestrBddNodeArrayFromIdArray(ddManager, |
---|
189 | array_fetch(array_t *, |
---|
190 | newStateVars, 0)); |
---|
191 | vVars = RestrBddNodeArrayFromIdArray(ddManager, |
---|
192 | array_fetch(array_t *, |
---|
193 | newStateVars, 1)); |
---|
194 | |
---|
195 | /* Free memory: Delete the id array for new state variables.*/ |
---|
196 | array_free(array_fetch(array_t *,newStateVars,0)); |
---|
197 | array_free(array_fetch(array_t *,newStateVars,1)); |
---|
198 | array_free(newStateVars); |
---|
199 | |
---|
200 | /* outputArray is the list of primary outputs. It is my responsibility to |
---|
201 | free it later. Both outputArray and tranFunArray are char * arrays. Get the |
---|
202 | BDDs for output functions and transition functions. Duplicate functions are |
---|
203 | returned.*/ |
---|
204 | |
---|
205 | /* tranFunArray should not be freed */ |
---|
206 | outputArray = RestrGetOutputArray(network1); |
---|
207 | tranFunArray = Fsm_FsmReadNextStateFunctionNames(fsm); |
---|
208 | outBdds = GetBddArrayFromNameArray(fsm,outputArray); |
---|
209 | nextBdds = GetBddArrayFromNameArray(fsm,tranFunArray); |
---|
210 | |
---|
211 | nVars = array_n(Fsm_FsmReadNextStateVars(fsm)); |
---|
212 | nPi = array_n(Fsm_FsmReadInputVars(fsm)); |
---|
213 | |
---|
214 | /* Compute Lambda = AND (out1 xnor out1$NTK2) and Transition relation. |
---|
215 | out1$NTK2 is the corresponding primary output (of output1) in the duplicate |
---|
216 | machine.*/ |
---|
217 | if (restrVerbose) { |
---|
218 | fprintf(vis_stdout,"** restr info: Computing product output ... "); |
---|
219 | } |
---|
220 | Lambda = RestrCreateProductOutput(ddManager,outBdds,xVars, uVars, nVars); |
---|
221 | if (restrVerbose) { |
---|
222 | fprintf(vis_stdout,"Done.\n"); |
---|
223 | } |
---|
224 | |
---|
225 | if (restrVerbose) { |
---|
226 | fprintf(vis_stdout,"** restr info: Computing TR of product machine ... "); |
---|
227 | } |
---|
228 | /* Compute the transition relation for both the single FSM and the product |
---|
229 | machine. tranRelationPair[0] is the TR of single FSM and |
---|
230 | tranRelationPair[1] is the TR of product machine. |
---|
231 | TR(x,w,y) = \prod_{i=0}^{i=n-1} (y_i \equiv f_i(w,x)) |
---|
232 | productTR(x,u,w,y,v) = TR(x,w,y) * TR(u,w,v) */ |
---|
233 | tranRelationPair = RestrComputeTRWithIds(ddManager,nextBdds,xVars, yVars, |
---|
234 | uVars,vVars,nVars); |
---|
235 | if (restrVerbose) { |
---|
236 | fprintf(vis_stdout,"Done.\n"); |
---|
237 | } |
---|
238 | |
---|
239 | productTranRel = array_fetch(bdd_node *,tranRelationPair,1); |
---|
240 | |
---|
241 | /* Compute the state equivalence relation for the FSM */ |
---|
242 | /* The support of equivRel is xVars and uVars. */ |
---|
243 | if (restrVerbose) { |
---|
244 | fprintf(vis_stdout,"** restr info: Computing the equivalence relation ... "); |
---|
245 | } |
---|
246 | |
---|
247 | if (eqvMethod) { |
---|
248 | equivRel = RestrComputeEquivRelationUsingCofactors(ddManager,Lambda, |
---|
249 | productTranRel, |
---|
250 | xVars, yVars, uVars, |
---|
251 | vVars, piVars, |
---|
252 | nVars, nPi, |
---|
253 | restrVerbose); |
---|
254 | bdd_recursive_deref(ddManager,Lambda); |
---|
255 | } else { |
---|
256 | equivRel = RestrGetEquivRelation(ddManager,Lambda,productTranRel, |
---|
257 | xVars,yVars,uVars,vVars, |
---|
258 | piVars,nVars,nPi,restrVerbose); |
---|
259 | bdd_recursive_deref(ddManager,Lambda); |
---|
260 | } |
---|
261 | if (restrVerbose) { |
---|
262 | fprintf(vis_stdout,"Done.\n"); |
---|
263 | } |
---|
264 | /* Delete the product transition relation, as we no longer need it. */ |
---|
265 | bdd_recursive_deref(ddManager,productTranRel); |
---|
266 | |
---|
267 | /* Compute the initial states */ |
---|
268 | mddTemp = Fsm_FsmComputeInitialStates(fsm); |
---|
269 | initBdd = bdd_extract_node_as_is(mddTemp); |
---|
270 | bdd_ref(initBdd); |
---|
271 | mdd_free(mddTemp); |
---|
272 | |
---|
273 | /* Compute the reachable states. */ |
---|
274 | reachStates = Fsm_FsmComputeReachableStates(fsm,0,0,0,0,0,0,1000, |
---|
275 | Fsm_Rch_Default_c,0,0, |
---|
276 | NIL(array_t),FALSE, NIL(array_t)); |
---|
277 | |
---|
278 | reachable = bdd_extract_node_as_is(reachStates); |
---|
279 | bdd_ref(reachable); |
---|
280 | mdd_free(reachStates); |
---|
281 | |
---|
282 | /* Check to see if there are any usable equivalence classes */ |
---|
283 | if (bdd_count_minterm(ddManager,equivRel,2*nVars) == pow(2.0,nVars)) { |
---|
284 | fprintf(vis_stdout,"** restr info: Number of equivalence classes equals "); |
---|
285 | fprintf(vis_stdout,"number of possible states. \n"); |
---|
286 | fprintf(vis_stdout,"** restr info: Restructuring will not help.\n"); |
---|
287 | fprintf(vis_stdout,"** restr info: Proceeding with synthesis.\n"); |
---|
288 | bdd_recursive_deref(ddManager,equivRel); |
---|
289 | /* Do not perform restructuring */ |
---|
290 | noRestruct = 1; |
---|
291 | } |
---|
292 | |
---|
293 | /* Expand the reachable set R(x) to include those states which are equivalent |
---|
294 | to R(x) but unreachable. */ |
---|
295 | if(nonReachEquiv && !noRestruct) { |
---|
296 | ExpandReachableSet(ddManager,&reachable,equivRel,xVars,uVars,nVars); |
---|
297 | } |
---|
298 | |
---|
299 | if (noRestruct) { |
---|
300 | /* Only synthesize the network */ |
---|
301 | bdd_recursive_deref(ddManager,equivRel); |
---|
302 | bdd_recursive_deref(ddManager, |
---|
303 | array_fetch(bdd_node *,tranRelationPair,0)); |
---|
304 | array_free(tranRelationPair); |
---|
305 | } else { |
---|
306 | /* Constrain the original TR */ |
---|
307 | initialTR = array_fetch(bdd_node *, tranRelationPair, 0); |
---|
308 | /* bdd_ref(prunedTR = bdd_bdd_and(ddManager,initialTR,reachable)); */ |
---|
309 | bdd_ref(prunedTR = initialTR); |
---|
310 | bdd_recursive_deref(ddManager,initialTR); |
---|
311 | array_free(tranRelationPair); |
---|
312 | |
---|
313 | finalTR = PerformRestructure(ddManager,prunedTR,equivRel,reachable, |
---|
314 | initBdd,piVars,xVars,yVars,uVars, |
---|
315 | vVars,inputProb,nVars,nPi,heuristic, |
---|
316 | equivClasses,&outBdds,&newInit, |
---|
317 | &stateProbs); |
---|
318 | /* equivRel is dereferenced in the above procedure */ |
---|
319 | if (prunedTR == finalTR) { |
---|
320 | fprintf(vis_stdout,"** restr info: Restructuring produces no changes. \n"); |
---|
321 | fprintf(vis_stdout,"** restr info: Proceeding with synthesis. \n"); |
---|
322 | bdd_recursive_deref(ddManager,stateProbs); |
---|
323 | noRestruct = 1; |
---|
324 | } |
---|
325 | |
---|
326 | bdd_recursive_deref(ddManager,prunedTR); |
---|
327 | bdd_recursive_deref(ddManager,initBdd); |
---|
328 | |
---|
329 | /* reachable can be deleted after computing the new reachable states. Also |
---|
330 | need to perform markov analysis to find final bit change. */ |
---|
331 | initBdd = newInit; |
---|
332 | if (!noRestruct) { |
---|
333 | arrayForEachItem(bdd_node *, nextBdds, i, ddTemp) { |
---|
334 | bdd_recursive_deref(ddManager,ddTemp); |
---|
335 | } |
---|
336 | array_free(nextBdds); |
---|
337 | nextBdds = ExtractTransitionFuns(ddManager,finalTR,yVars,nVars); |
---|
338 | } |
---|
339 | } |
---|
340 | |
---|
341 | /* Create a partition for the new view of the fsm/network */ |
---|
342 | if (!noRestruct) { |
---|
343 | partition = CreateNewPartition(network1,ddManager,outBdds,nextBdds, |
---|
344 | outputArray,tranFunArray); |
---|
345 | array_free(outBdds); |
---|
346 | array_free(nextBdds); |
---|
347 | /* Create the FSM and perform markov ananlysis */ |
---|
348 | /* finalTR, stateProbs and reachabale are deleted in CreateNewFsm */ |
---|
349 | fsm = CreateNewFsm(network1,partition,ddManager,finalTR,initBdd, |
---|
350 | reachable,stateProbs,xVars,yVars,piVars, |
---|
351 | inputProb,nVars,nPi); |
---|
352 | } else { |
---|
353 | /* Remove the outBdds, nextBdds */ |
---|
354 | arrayForEachItem(bdd_node *, outBdds, i, ddTemp) { |
---|
355 | bdd_recursive_deref(ddManager,ddTemp); |
---|
356 | } |
---|
357 | arrayForEachItem(bdd_node *, nextBdds, i, ddTemp) { |
---|
358 | bdd_recursive_deref(ddManager,ddTemp); |
---|
359 | } |
---|
360 | array_free(outBdds); |
---|
361 | array_free(nextBdds); |
---|
362 | } |
---|
363 | |
---|
364 | /* First create the care table for next state and primary output |
---|
365 | functions. */ |
---|
366 | careMdd = Fsm_FsmComputeReachableStates(fsm,0,0,0,0,0,0,1000, |
---|
367 | Fsm_Rch_Default_c,0,0, |
---|
368 | NIL(array_t),FALSE, NIL(array_t)); |
---|
369 | |
---|
370 | careTable = CreateCareTable(network1,careMdd); |
---|
371 | |
---|
372 | /* Synthesize the restructured FSM */ |
---|
373 | status = Synth_SynthesizeFsm(fsm,careTable,synthInfo,0); |
---|
374 | |
---|
375 | /* Clean up */ |
---|
376 | if (!noRestruct) { |
---|
377 | Ntk_NetworkFreeApplInfo(network1,RESTR_PART_NETWORK_APPL_KEY); |
---|
378 | Ntk_NetworkFreeApplInfo(network1,RESTR_FSM_NETWORK_APPL_KEY); |
---|
379 | } |
---|
380 | mdd_free(careMdd); |
---|
381 | st_free_table(careTable); |
---|
382 | |
---|
383 | /* Dump the current BDD variable order, for future use. */ |
---|
384 | if(orderFileName) { |
---|
385 | outFile = fopen(orderFileName,"w"); |
---|
386 | if(outFile) { |
---|
387 | int size = array_n(mdd_ret_mvar_list(ddManager)); |
---|
388 | int index; |
---|
389 | mvar_type var; |
---|
390 | for(i = 0; i < size;i++) { |
---|
391 | index = bdd_get_id_from_level(ddManager,i); |
---|
392 | var = mdd_get_var_by_id(ddManager,index); |
---|
393 | fprintf(outFile,"%s\n",var.name); |
---|
394 | } |
---|
395 | fclose(outFile); |
---|
396 | } else { |
---|
397 | fprintf(vis_stderr,"** restr error: Cannot open %s .\n",orderFileName); |
---|
398 | } |
---|
399 | } |
---|
400 | |
---|
401 | /* Clean up */ |
---|
402 | for(i = 0; i < nVars; i++) { |
---|
403 | bdd_recursive_deref(ddManager,xVars[i]); |
---|
404 | bdd_recursive_deref(ddManager,yVars[i]); |
---|
405 | bdd_recursive_deref(ddManager,uVars[i]); |
---|
406 | bdd_recursive_deref(ddManager,vVars[i]); |
---|
407 | } |
---|
408 | for(i = 0 ; i < nPi; i++) { |
---|
409 | bdd_recursive_deref(ddManager,piVars[i]); |
---|
410 | } |
---|
411 | FREE(xVars); |
---|
412 | FREE(yVars); |
---|
413 | FREE(uVars); |
---|
414 | FREE(vVars); |
---|
415 | FREE(piVars); |
---|
416 | |
---|
417 | array_free(outputArray); |
---|
418 | |
---|
419 | return (status); |
---|
420 | } |
---|
421 | |
---|
422 | |
---|
423 | /*---------------------------------------------------------------------------*/ |
---|
424 | /* Definition of static functions */ |
---|
425 | /*---------------------------------------------------------------------------*/ |
---|
426 | |
---|
427 | /**Function******************************************************************** |
---|
428 | |
---|
429 | Synopsis [Returns an array of Mvfs given node names.] |
---|
430 | |
---|
431 | SideEffects [None] |
---|
432 | |
---|
433 | SeeAlso [] |
---|
434 | |
---|
435 | ******************************************************************************/ |
---|
436 | static array_t * |
---|
437 | BuildFunctions( |
---|
438 | graph_t *partition, |
---|
439 | array_t *rootNames) |
---|
440 | { |
---|
441 | char *name; |
---|
442 | vertex_t *vertexPtr; |
---|
443 | Mvf_Function_t *mvf1; |
---|
444 | int i; |
---|
445 | array_t *result; |
---|
446 | |
---|
447 | result = array_alloc(Mvf_Function_t *,0); |
---|
448 | arrayForEachItem(char *,rootNames,i,name) { |
---|
449 | vertexPtr = Part_PartitionFindVertexByName(partition,name); |
---|
450 | mvf1 = Mvf_FunctionDuplicate(Part_VertexReadFunction(vertexPtr)); |
---|
451 | array_insert(Mvf_Function_t *,result,i,mvf1); |
---|
452 | } |
---|
453 | |
---|
454 | return result; |
---|
455 | } |
---|
456 | |
---|
457 | /**Function******************************************************************** |
---|
458 | |
---|
459 | Synopsis [Performs markovian analysis.] |
---|
460 | |
---|
461 | Description [Returns a pair of ADDs. The ADD for steady state |
---|
462 | probabilities is at index 0 and the one-step transition probability |
---|
463 | is returned in index 1. bddTr is the BDD of the transition relation |
---|
464 | representing the STG. init is an ADD of initial probability vector.] |
---|
465 | |
---|
466 | SideEffects [None] |
---|
467 | |
---|
468 | SeeAlso [] |
---|
469 | |
---|
470 | ******************************************************************************/ |
---|
471 | static bdd_node ** |
---|
472 | AddPowerSolve( |
---|
473 | bdd_manager *mgr, |
---|
474 | bdd_node *bddTr, |
---|
475 | bdd_node *init, |
---|
476 | bdd_node **x, |
---|
477 | bdd_node **y, |
---|
478 | bdd_node **pi, |
---|
479 | st_table *inputProb, |
---|
480 | int nVars, |
---|
481 | int nPi) |
---|
482 | { |
---|
483 | bdd_node *temp1, *temp, *q, *Correction; |
---|
484 | bdd_node **result, *tr; |
---|
485 | bdd_node **xAddVars, **yAddVars; |
---|
486 | bdd_node *initG, *NewG; |
---|
487 | bdd_node *inputCube,*xCube; |
---|
488 | bdd_node *newTr, *probMatrix; |
---|
489 | int iter = 0; |
---|
490 | int i; |
---|
491 | double max,relTol = 0.0001; |
---|
492 | |
---|
493 | /* Initialize variables */ |
---|
494 | result = ALLOC(bdd_node *, 2); |
---|
495 | xAddVars = ALLOC(bdd_node *, nVars); |
---|
496 | yAddVars = ALLOC(bdd_node *, nVars); |
---|
497 | for (i = 0; i < nVars; i++) { |
---|
498 | bdd_ref(xAddVars[i] = bdd_add_ith_var(mgr, bdd_node_read_index(x[i]))); |
---|
499 | bdd_ref(yAddVars[i] = bdd_add_ith_var(mgr, bdd_node_read_index(y[i]))); |
---|
500 | } |
---|
501 | bdd_ref(tr = bdd_bdd_to_add(mgr, bddTr)); |
---|
502 | |
---|
503 | /* Create the input cube for abstraction */ |
---|
504 | bdd_ref(temp1 = bdd_bdd_compute_cube(mgr, pi, NIL(int), nPi)); |
---|
505 | bdd_ref(inputCube = bdd_bdd_to_add(mgr, temp1)); |
---|
506 | bdd_recursive_deref(mgr, temp1); |
---|
507 | |
---|
508 | /* Compute the one-step transition probability matrix. */ |
---|
509 | if (inputProb) { |
---|
510 | bdd_ref(probMatrix = Mark_addInProb(mgr,tr,inputCube,inputProb)); |
---|
511 | bdd_recursive_deref(mgr,inputCube); |
---|
512 | bdd_recursive_deref(mgr,tr); |
---|
513 | } |
---|
514 | else { |
---|
515 | bdd_ref(Correction = bdd_add_const(mgr,(1.0/(double)(1 << nPi)))); |
---|
516 | bdd_ref(q = bdd_add_exist_abstract(mgr,tr,inputCube)); |
---|
517 | bdd_recursive_deref(mgr,inputCube); |
---|
518 | bdd_recursive_deref(mgr,tr); |
---|
519 | /* apply correction to the transition relation matrix and print it */ |
---|
520 | bdd_ref(probMatrix = bdd_add_apply(mgr, bdd_add_times, q, Correction)); |
---|
521 | bdd_recursive_deref(mgr,Correction); |
---|
522 | bdd_recursive_deref(mgr,q); |
---|
523 | } |
---|
524 | result[1] = probMatrix; |
---|
525 | |
---|
526 | /* Prepare the initial prob. vector. and the transition prob. matrix. */ |
---|
527 | initG = bdd_add_swap_variables(mgr,init,xAddVars,yAddVars,nVars); |
---|
528 | bdd_ref(initG); |
---|
529 | /* Put transition prob. matrix in appropriate form (transpose). */ |
---|
530 | newTr = bdd_add_swap_variables(mgr,probMatrix,xAddVars,yAddVars,nVars); |
---|
531 | bdd_ref(newTr); |
---|
532 | |
---|
533 | /* Calculate the x-cube for abstraction */ |
---|
534 | bdd_ref(xCube = bdd_add_compute_cube(mgr,xAddVars,NIL(int),nVars)); |
---|
535 | |
---|
536 | /* Loop until convergence */ |
---|
537 | do { |
---|
538 | iter++; |
---|
539 | bdd_ref(temp = bdd_add_matrix_multiply(mgr,newTr,initG,yAddVars,nVars)); |
---|
540 | bdd_ref(temp1 = bdd_add_exist_abstract(mgr,temp,xCube)); |
---|
541 | bdd_ref(NewG = bdd_add_apply(mgr,bdd_add_divide,temp,temp1)); |
---|
542 | bdd_recursive_deref(mgr,temp); |
---|
543 | bdd_recursive_deref(mgr,temp1); |
---|
544 | temp = NewG; |
---|
545 | bdd_ref(q = bdd_add_swap_variables(mgr,temp,xAddVars,yAddVars,nVars)); |
---|
546 | max = bdd_add_value(bdd_add_find_max(mgr,initG)); |
---|
547 | |
---|
548 | if(bdd_equal_sup_norm(mgr,q,initG,relTol*max,0)) { |
---|
549 | bdd_recursive_deref(mgr,initG); |
---|
550 | bdd_recursive_deref(mgr,q); |
---|
551 | bdd_recursive_deref(mgr,xCube); |
---|
552 | bdd_recursive_deref(mgr,newTr); |
---|
553 | |
---|
554 | bdd_ref(temp1 = bdd_add_apply(mgr,bdd_add_times,probMatrix,temp)); |
---|
555 | if (restrVerbose) { |
---|
556 | fprintf(vis_stdout,"** restr info: Average state bit change = %f\n", |
---|
557 | RestrAverageBitChange(mgr,temp1,x,y,nVars)); |
---|
558 | } |
---|
559 | |
---|
560 | bdd_recursive_deref(mgr,temp1); |
---|
561 | for(i = 0;i < nVars; i++) { |
---|
562 | bdd_recursive_deref(mgr,xAddVars[i]); |
---|
563 | bdd_recursive_deref(mgr,yAddVars[i]); |
---|
564 | } |
---|
565 | FREE(xAddVars); |
---|
566 | FREE(yAddVars); |
---|
567 | result[0] = temp; |
---|
568 | return result; |
---|
569 | } |
---|
570 | bdd_recursive_deref(mgr,initG); |
---|
571 | bdd_recursive_deref(mgr,temp); |
---|
572 | initG = q; |
---|
573 | |
---|
574 | } while (1); |
---|
575 | |
---|
576 | } /* end of AddPowerSolve */ |
---|
577 | |
---|
578 | /**Function******************************************************************** |
---|
579 | |
---|
580 | Synopsis [This routine performs the preprocessing steps of markovian analysis |
---|
581 | and the augmented STG computation. After the preprocessing steps the core |
---|
582 | restructuring steps are performed. Returns the BDD of the restructured STG.] |
---|
583 | |
---|
584 | SideEffects [<tt>outBdds</tt>, <tt>newInit</tt> are changed to |
---|
585 | reflect the restructured finite state machine. Steady state |
---|
586 | probabilities are returned in <tt>stateProbs</tt>] |
---|
587 | |
---|
588 | SeeAlso [] |
---|
589 | |
---|
590 | ******************************************************************************/ |
---|
591 | static bdd_node * |
---|
592 | PerformRestructure( |
---|
593 | bdd_manager *ddManager, |
---|
594 | bdd_node *prunedTR, |
---|
595 | bdd_node *equivRel, |
---|
596 | bdd_node *reachable, |
---|
597 | bdd_node *initBdd, |
---|
598 | bdd_node **piVars, |
---|
599 | bdd_node **xVars, |
---|
600 | bdd_node **yVars, |
---|
601 | bdd_node **uVars, |
---|
602 | bdd_node **vVars, |
---|
603 | st_table *inputProb, |
---|
604 | int nVars, |
---|
605 | int nPi, |
---|
606 | RestructureHeuristic heuristic, |
---|
607 | boolean equivClasses, |
---|
608 | array_t **outBdds, |
---|
609 | bdd_node **newInit, |
---|
610 | bdd_node **stateProbs) |
---|
611 | { |
---|
612 | /* equivRel is a function of uVars and xVars */ |
---|
613 | /* prunedTR is a funciton of xVars, piVars and yVars */ |
---|
614 | |
---|
615 | bdd_node *possessedProbMatrix; |
---|
616 | bdd_node *possessedTR = NIL(bdd_node); |
---|
617 | bdd_node *addPTR; |
---|
618 | bdd_node *finalTR; |
---|
619 | bdd_node *ddTemp; |
---|
620 | bdd_node *localStateProbs = NIL(bdd_node); |
---|
621 | |
---|
622 | if(equivClasses) { |
---|
623 | CountEquivalentClasses(ddManager,equivRel,initBdd,xVars,uVars,nVars); |
---|
624 | } |
---|
625 | |
---|
626 | /* Change the support of equivRel */ |
---|
627 | bdd_ref(ddTemp = bdd_bdd_swap_variables(ddManager,equivRel,xVars,yVars, |
---|
628 | nVars)); |
---|
629 | bdd_recursive_deref(ddManager,equivRel); |
---|
630 | bdd_ref(equivRel = bdd_bdd_swap_variables(ddManager,ddTemp,uVars,vVars, |
---|
631 | nVars)); |
---|
632 | bdd_recursive_deref(ddManager, ddTemp); |
---|
633 | |
---|
634 | /* The support of possessedTR is xVars and yVars and inputs. |
---|
635 | * If there exists an edge between x and y, and y == v, then |
---|
636 | * the following function adds an edge between x and v. These new |
---|
637 | * edges are referred to as ghost edges. |
---|
638 | */ |
---|
639 | |
---|
640 | if (heuristic != RestrCProjection_c) { |
---|
641 | possessedTR = RestrComputeTrWithGhostEdges(ddManager, yVars, vVars, |
---|
642 | prunedTR, equivRel, nVars); |
---|
643 | } |
---|
644 | |
---|
645 | /* stateProbs will not be used in the case of CProj and hammingD methods. We |
---|
646 | can still compute the stateProbs to find the initial average bit change on |
---|
647 | the state lines. */ |
---|
648 | *stateProbs = DoMarkovPowerAnalysis(ddManager,prunedTR, |
---|
649 | initBdd,piVars,xVars, |
---|
650 | yVars,inputProb,nVars,nPi); |
---|
651 | |
---|
652 | if (!(heuristic == RestrCProjection_c || heuristic == RestrHammingD_c)) { |
---|
653 | bdd_node *temp, *cube; |
---|
654 | |
---|
655 | bdd_ref(cube = bdd_bdd_compute_cube(ddManager,piVars,NIL(int),nPi)); |
---|
656 | bdd_ref(temp = bdd_bdd_exist_abstract(ddManager,possessedTR,cube)); |
---|
657 | bdd_ref(addPTR = bdd_bdd_to_add(ddManager,temp)); |
---|
658 | bdd_recursive_deref(ddManager,temp); |
---|
659 | |
---|
660 | bdd_ref(temp = bdd_bdd_to_add(ddManager, possessedTR)); |
---|
661 | bdd_recursive_deref(ddManager, possessedTR); |
---|
662 | |
---|
663 | /* possessedProbMatrix is a weighted augmented STG where the weights are |
---|
664 | the transition probabilities */ |
---|
665 | if (inputProb) { |
---|
666 | bdd_ref(possessedProbMatrix = Mark_addInProb(ddManager,temp,cube, |
---|
667 | inputProb)); |
---|
668 | } else { |
---|
669 | /* Assume equi probable primary inputs */ |
---|
670 | bdd_node *q, *Correction; |
---|
671 | bdd_node *inputCube; |
---|
672 | |
---|
673 | bdd_ref(inputCube = bdd_bdd_to_add(ddManager,cube)); |
---|
674 | bdd_ref(Correction = bdd_add_const(ddManager, |
---|
675 | (1.0/(double)(1 << nPi)))); |
---|
676 | bdd_ref(q = bdd_add_exist_abstract(ddManager,temp,inputCube)); |
---|
677 | bdd_ref(possessedProbMatrix = bdd_add_apply(ddManager, |
---|
678 | bdd_add_times, |
---|
679 | q, Correction)); |
---|
680 | bdd_recursive_deref(ddManager,Correction); |
---|
681 | bdd_recursive_deref(ddManager,q); |
---|
682 | bdd_recursive_deref(ddManager,inputCube); |
---|
683 | } |
---|
684 | bdd_recursive_deref(ddManager,cube); |
---|
685 | bdd_recursive_deref(ddManager,temp); |
---|
686 | localStateProbs = *stateProbs; |
---|
687 | } |
---|
688 | |
---|
689 | switch(heuristic) { |
---|
690 | case RestrCProjection_c: |
---|
691 | finalTR = RestrMinimizeFsmByCProj(ddManager,equivRel, |
---|
692 | prunedTR,initBdd, |
---|
693 | xVars,yVars,uVars,vVars,piVars, |
---|
694 | nVars,nPi,outBdds,newInit); |
---|
695 | break; |
---|
696 | case RestrFanin_c: |
---|
697 | case RestrFaninFanout_c: |
---|
698 | ddTemp = bdd_read_background(ddManager); |
---|
699 | bdd_set_background(ddManager, |
---|
700 | bdd_read_plus_infinity(ddManager)); |
---|
701 | |
---|
702 | /* addPTR and possessedProbMatrix are deleted in the following |
---|
703 | * procedure. */ |
---|
704 | finalTR = RestrMinimizeFsmByFaninFanout(ddManager,equivRel, prunedTR, |
---|
705 | &addPTR,&possessedProbMatrix,initBdd, |
---|
706 | reachable,localStateProbs,piVars,xVars, |
---|
707 | yVars, uVars,vVars, |
---|
708 | nVars, nPi,heuristic,outBdds,newInit); |
---|
709 | |
---|
710 | /* Replace the original background value */ |
---|
711 | bdd_set_background(ddManager,ddTemp); |
---|
712 | break; |
---|
713 | case RestrHammingD_c: |
---|
714 | default : |
---|
715 | |
---|
716 | /* BALA, testing ... */ |
---|
717 | /* Remove the edges out of the initial state. */ |
---|
718 | { |
---|
719 | /* bdd_node *outEdges; */ |
---|
720 | |
---|
721 | /* bdd_ref(outEdges = bdd_bdd_and(ddManager,prunedTR,initBdd)); */ |
---|
722 | /* bdd_ref(adjustedTR = bdd_bdd_and(ddManager,prunedTR, */ |
---|
723 | /* bdd_not_bdd_node(outEdges))); */ |
---|
724 | /* finalTR = RestrSelectLeastHammingDStates(ddManager,adjustedTR, */ |
---|
725 | /* possessedTR,xVars, */ |
---|
726 | /* yVars,vVars,nVars,nPi); */ |
---|
727 | |
---|
728 | finalTR = RestrSelectLeastHammingDStates(ddManager,prunedTR, |
---|
729 | possessedTR,xVars, |
---|
730 | yVars,vVars,nVars,nPi); |
---|
731 | bdd_recursive_deref(ddManager,possessedTR); |
---|
732 | bdd_ref(*newInit = initBdd); |
---|
733 | break; |
---|
734 | } |
---|
735 | } |
---|
736 | |
---|
737 | bdd_recursive_deref(ddManager,equivRel); |
---|
738 | return finalTR; |
---|
739 | } |
---|
740 | |
---|
741 | /**Function******************************************************************** |
---|
742 | |
---|
743 | Synopsis [Returns a table of (rootNames,rootMvfs). The parameters |
---|
744 | <tt>outBdds</tt> and <tt>nextBdds</tt> aare arrays of bdd_node *. |
---|
745 | <tt>outputArray</tt> and <tt>tranFunArray</tt> are arrays of strings and are |
---|
746 | in one-to-one correspondence with <tt>outBdds</tt> and <tt>nextBdds</tt>.] |
---|
747 | |
---|
748 | SideEffects [None] |
---|
749 | |
---|
750 | SeeAlso [] |
---|
751 | |
---|
752 | ******************************************************************************/ |
---|
753 | static st_table * |
---|
754 | CreateNameToMvfTable( |
---|
755 | bdd_manager *ddManager, |
---|
756 | array_t *outBdds, |
---|
757 | array_t *nextBdds, |
---|
758 | array_t *outputArray, |
---|
759 | array_t *tranFunArray) |
---|
760 | { |
---|
761 | st_table *nameToMvf; |
---|
762 | bdd_node *ddTemp; |
---|
763 | int i; |
---|
764 | |
---|
765 | /* Initialize variables */ |
---|
766 | nameToMvf = st_init_table(strcmp, st_strhash); |
---|
767 | |
---|
768 | arrayForEachItem(bdd_node *, outBdds, i, ddTemp) { |
---|
769 | bdd_node *temp; |
---|
770 | mdd_t *regular, *complement; |
---|
771 | Mvf_Function_t *mvf; |
---|
772 | char *name; |
---|
773 | |
---|
774 | bdd_ref(temp = bdd_not_bdd_node(ddTemp)); |
---|
775 | |
---|
776 | regular = bdd_construct_bdd_t(ddManager,ddTemp); |
---|
777 | complement = bdd_construct_bdd_t(ddManager,temp); |
---|
778 | |
---|
779 | mvf = (Mvf_Function_t *)array_alloc(mdd_t *, 0); |
---|
780 | array_insert(mdd_t *, mvf, 0, complement); |
---|
781 | array_insert(mdd_t *, mvf, 1, regular); |
---|
782 | |
---|
783 | name = array_fetch(char *, outputArray, i); |
---|
784 | st_insert(nameToMvf,name,(char *)mvf); |
---|
785 | } |
---|
786 | |
---|
787 | arrayForEachItem(bdd_node *, nextBdds, i, ddTemp) { |
---|
788 | bdd_node *temp; |
---|
789 | mdd_t *regular, *complement; |
---|
790 | Mvf_Function_t *mvf; |
---|
791 | char *name; |
---|
792 | |
---|
793 | bdd_ref(temp = bdd_not_bdd_node(ddTemp)); |
---|
794 | |
---|
795 | regular = bdd_construct_bdd_t(ddManager,ddTemp); |
---|
796 | complement = bdd_construct_bdd_t(ddManager,temp); |
---|
797 | |
---|
798 | mvf = (Mvf_Function_t *)array_alloc(mdd_t *, 0); |
---|
799 | array_insert(mdd_t *, mvf, 0, complement); |
---|
800 | array_insert(mdd_t *, mvf, 1, regular); |
---|
801 | |
---|
802 | name = array_fetch(char *, tranFunArray, i); |
---|
803 | st_insert(nameToMvf,name,(char *)mvf); |
---|
804 | } |
---|
805 | |
---|
806 | return nameToMvf; |
---|
807 | } |
---|
808 | |
---|
809 | |
---|
810 | /**Function******************************************************************** |
---|
811 | |
---|
812 | Synopsis [Create a (name,mdd_t*) table.] |
---|
813 | |
---|
814 | SideEffects [None] |
---|
815 | |
---|
816 | SeeAlso [] |
---|
817 | |
---|
818 | ******************************************************************************/ |
---|
819 | static st_table * |
---|
820 | CreateCareTable( |
---|
821 | Ntk_Network_t *network, |
---|
822 | mdd_t *reachMdd) |
---|
823 | { |
---|
824 | lsGen gen; |
---|
825 | Ntk_Node_t *node; |
---|
826 | st_table *careTable; |
---|
827 | |
---|
828 | careTable = st_init_table(strcmp, st_strhash); |
---|
829 | Ntk_NetworkForEachPrimaryOutput(network, gen, node) { |
---|
830 | char *name; |
---|
831 | name = Ntk_NodeReadName(node); |
---|
832 | st_insert(careTable,name,(char *)reachMdd); |
---|
833 | } |
---|
834 | Ntk_NetworkForEachLatch(network,gen,node){ |
---|
835 | char *name; |
---|
836 | name = Ntk_NodeReadName(Ntk_LatchReadDataInput(node)); |
---|
837 | st_insert(careTable,name,(char *)reachMdd); |
---|
838 | } |
---|
839 | |
---|
840 | return careTable; |
---|
841 | } |
---|
842 | |
---|
843 | /**Function******************************************************************** |
---|
844 | |
---|
845 | Synopsis [Routine to free members of an st_table.] |
---|
846 | |
---|
847 | SideEffects [None] |
---|
848 | |
---|
849 | SeeAlso [] |
---|
850 | ******************************************************************************/ |
---|
851 | static enum st_retval |
---|
852 | StMvfFree( |
---|
853 | char *key, |
---|
854 | char *value, |
---|
855 | char *arg) |
---|
856 | { |
---|
857 | /* This will free the memory associated with the array also */ |
---|
858 | Mvf_FunctionFree((Mvf_Function_t *)value); |
---|
859 | |
---|
860 | return(ST_CONTINUE); |
---|
861 | |
---|
862 | } /* end of StMvfFree */ |
---|
863 | |
---|
864 | |
---|
865 | /**Function******************************************************************** |
---|
866 | |
---|
867 | Synopsis [Routine to count number of equivalence classes in a relation.] |
---|
868 | |
---|
869 | SideEffects [None] |
---|
870 | |
---|
871 | SeeAlso [] |
---|
872 | |
---|
873 | ******************************************************************************/ |
---|
874 | static void |
---|
875 | CountEquivalentClasses( |
---|
876 | bdd_manager *ddManager, |
---|
877 | bdd_node *equivRel, |
---|
878 | bdd_node *initBdd, |
---|
879 | bdd_node **xVars, |
---|
880 | bdd_node **uVars, |
---|
881 | int nVars) |
---|
882 | { |
---|
883 | bdd_node *resultXU,*uCube; |
---|
884 | bdd_node *oneInitState,*classes; |
---|
885 | |
---|
886 | oneInitState = bdd_bdd_pick_one_minterm(ddManager,initBdd,xVars,nVars); |
---|
887 | bdd_ref(oneInitState); |
---|
888 | |
---|
889 | bdd_ref(resultXU = bdd_bdd_cprojection(ddManager,equivRel,oneInitState)); |
---|
890 | bdd_recursive_deref(ddManager,oneInitState); |
---|
891 | |
---|
892 | #ifdef RESTR_DIAG |
---|
893 | { |
---|
894 | /* The following is valid only when equivRel is the equivalence relation on |
---|
895 | the complete set of states.*/ |
---|
896 | bdd_node *xCube,*tautology; |
---|
897 | bdd_node *one; |
---|
898 | one = bdd_read_one(ddManager); |
---|
899 | bdd_ref(xCube = bdd_bdd_compute_cube(ddManager,xVars,NIL(int),nVars)); |
---|
900 | bdd_ref(tautology = bdd_bdd_exist_abstract(ddManager,resultXU,xCube)); |
---|
901 | assert(tautology == one); |
---|
902 | bdd_recursive_deref(ddManager,tautology); |
---|
903 | bdd_recursive_deref(ddManager,xCube); |
---|
904 | } |
---|
905 | #endif |
---|
906 | |
---|
907 | #ifdef RESTR_DIAG |
---|
908 | { |
---|
909 | bdd_node *uCube,*zero,*classes; |
---|
910 | bdd_node *oneClass,*temp,*rep; |
---|
911 | int i; |
---|
912 | |
---|
913 | zero = bdd_not_bdd_node(bdd_read_one(ddManager)); |
---|
914 | /* Extract the classes */ |
---|
915 | bdd_ref(uCube = bdd_bdd_compute_cube(ddManager,uVars,NIL(int),nVars)); |
---|
916 | bdd_ref(classes = bdd_bdd_exist_abstract(ddManager,resultXU,uCube)); |
---|
917 | bdd_recursive_deref(ddManager,uCube); |
---|
918 | |
---|
919 | i = 0; |
---|
920 | (void) fprintf(vis_stdout,"\n** restr diag: EQUIVALENT CLASSES:\n"); |
---|
921 | while (classes != zero) { |
---|
922 | i++; |
---|
923 | bdd_ref(rep = bdd_bdd_pick_one_minterm(ddManager,classes, |
---|
924 | xVars,nVars)); |
---|
925 | (void) fprintf(vis_stdout,"** restr diag: Class %d\n",i); |
---|
926 | (void) fprintf(vis_stdout,"** restr diag: Class representative:\n"); |
---|
927 | RestrPrintBddNode(ddManager,rep); |
---|
928 | |
---|
929 | /* Extract the complete class now */ |
---|
930 | bdd_ref(temp = bdd_bdd_cofactor(ddManager,resultXU,rep)); |
---|
931 | bdd_ref(oneClass = bdd_bdd_swap_variables(ddManager,temp,uVars, |
---|
932 | xVars,nVars)); |
---|
933 | bdd_recursive_deref(ddManager,temp); |
---|
934 | (void) fprintf(vis_stdout,"** restr diag: Class members:\n"); |
---|
935 | RestrPrintBddNode(ddManager,oneClass); |
---|
936 | bdd_recursive_deref(ddManager,oneClass); |
---|
937 | |
---|
938 | /* Remove rep from classes */ |
---|
939 | bdd_ref(temp = bdd_bdd_and(ddManager,classes,bdd_not_bdd_node(rep))); |
---|
940 | bdd_recursive_deref(ddManager,rep); |
---|
941 | bdd_recursive_deref(ddManager,classes); |
---|
942 | classes = temp; |
---|
943 | } |
---|
944 | (void) fprintf(vis_stdout,"** restr diag: Number of classes = %d\n",i); |
---|
945 | } |
---|
946 | #endif |
---|
947 | |
---|
948 | /* Compute uCube and extract the u variables from resultXU */ |
---|
949 | bdd_ref(uCube = bdd_bdd_compute_cube(ddManager,uVars,NIL(int),nVars)); |
---|
950 | bdd_ref(classes = bdd_bdd_exist_abstract(ddManager,resultXU,uCube)); |
---|
951 | bdd_recursive_deref(ddManager,uCube); |
---|
952 | bdd_recursive_deref(ddManager,resultXU); |
---|
953 | |
---|
954 | fprintf(vis_stdout, "** restr info: Number of Equivalence Classes = %g\n", |
---|
955 | bdd_count_minterm(ddManager,classes,nVars)); |
---|
956 | |
---|
957 | bdd_recursive_deref(ddManager,classes); |
---|
958 | } |
---|
959 | |
---|
960 | |
---|
961 | /**Function******************************************************************** |
---|
962 | |
---|
963 | Synopsis [Convert an array of Mvf_Function_t * to an array of bdd_node *] |
---|
964 | |
---|
965 | SideEffects [None] |
---|
966 | |
---|
967 | SeeAlso [] |
---|
968 | |
---|
969 | ******************************************************************************/ |
---|
970 | static array_t * |
---|
971 | GetBddArrayFromMvfArray(array_t *mvfArray) |
---|
972 | { |
---|
973 | int i; |
---|
974 | array_t *bddArray; |
---|
975 | Mvf_Function_t *mvf; |
---|
976 | |
---|
977 | bddArray = array_alloc(bdd_node *,0); |
---|
978 | |
---|
979 | arrayForEachItem(Mvf_Function_t *, mvfArray,i,mvf) { |
---|
980 | mdd_t *mddTemp; |
---|
981 | bdd_node *ddNode; |
---|
982 | |
---|
983 | mddTemp = array_fetch(mdd_t *, mvf, 1); |
---|
984 | ddNode = bdd_extract_node_as_is(mddTemp); |
---|
985 | bdd_ref(ddNode); |
---|
986 | |
---|
987 | array_insert_last(bdd_node *, bddArray, ddNode); |
---|
988 | } |
---|
989 | return bddArray; |
---|
990 | } |
---|
991 | |
---|
992 | /**Function******************************************************************** |
---|
993 | |
---|
994 | Synopsis [Perform markovian analysis. The ADD for steady state probabilities |
---|
995 | of the STG is returned.] |
---|
996 | |
---|
997 | SideEffects [None] |
---|
998 | |
---|
999 | SeeAlso [] |
---|
1000 | |
---|
1001 | ******************************************************************************/ |
---|
1002 | static bdd_node * |
---|
1003 | DoMarkovPowerAnalysis( |
---|
1004 | bdd_manager *ddManager, |
---|
1005 | bdd_node *prunedTR, |
---|
1006 | bdd_node *initBdd, |
---|
1007 | bdd_node **piVars, |
---|
1008 | bdd_node **xVars, |
---|
1009 | bdd_node **yVars, |
---|
1010 | st_table *inputProb, |
---|
1011 | int nVars, |
---|
1012 | int nPi) |
---|
1013 | { |
---|
1014 | bdd_node **result, *stateProbs; |
---|
1015 | bdd_node *init; |
---|
1016 | |
---|
1017 | bdd_ref(init = bdd_bdd_to_add(ddManager,initBdd)); |
---|
1018 | if (restrVerbose) |
---|
1019 | (void) fprintf(vis_stdout,"** restr info: Initial average state bit change:\n"); |
---|
1020 | |
---|
1021 | result = AddPowerSolve(ddManager,prunedTR,init,xVars,yVars, |
---|
1022 | piVars,inputProb,nVars,nPi); |
---|
1023 | |
---|
1024 | bdd_recursive_deref(ddManager,result[1]); |
---|
1025 | stateProbs = result[0]; |
---|
1026 | bdd_recursive_deref(ddManager,init); |
---|
1027 | FREE(result); |
---|
1028 | |
---|
1029 | return stateProbs; |
---|
1030 | } |
---|
1031 | |
---|
1032 | /**Function******************************************************************** |
---|
1033 | |
---|
1034 | Synopsis [Given a relation R(X,Y) returns the array of functions y_i=f(X).] |
---|
1035 | |
---|
1036 | SideEffects [None] |
---|
1037 | |
---|
1038 | SeeAlso [] |
---|
1039 | |
---|
1040 | ******************************************************************************/ |
---|
1041 | static array_t * |
---|
1042 | ExtractTransitionFuns( |
---|
1043 | bdd_manager *ddManager, |
---|
1044 | bdd_node *finalTR, |
---|
1045 | bdd_node **yVars, |
---|
1046 | int nVars) |
---|
1047 | { |
---|
1048 | bdd_node *completeCube, *extractCube; |
---|
1049 | bdd_node *fun, *tranFun; |
---|
1050 | array_t *allTranFuns; |
---|
1051 | int i; |
---|
1052 | |
---|
1053 | allTranFuns = array_alloc(bdd_node *,0); |
---|
1054 | |
---|
1055 | completeCube = bdd_bdd_compute_cube(ddManager,yVars,NIL(int),nVars); |
---|
1056 | bdd_ref(completeCube); |
---|
1057 | |
---|
1058 | for(i = 0;i < nVars; i++) { |
---|
1059 | extractCube = bdd_bdd_cofactor(ddManager,completeCube,yVars[i]); |
---|
1060 | bdd_ref(extractCube); |
---|
1061 | fun = bdd_bdd_exist_abstract(ddManager,finalTR,extractCube); |
---|
1062 | bdd_ref(fun); |
---|
1063 | bdd_recursive_deref(ddManager,extractCube); |
---|
1064 | tranFun = bdd_bdd_cofactor(ddManager,fun,yVars[i]); |
---|
1065 | bdd_ref(tranFun); |
---|
1066 | |
---|
1067 | #ifdef RESTR_DIAG |
---|
1068 | { |
---|
1069 | /* The following is to test if there are multiple edges out of a state |
---|
1070 | with the same input label: in short to check if the relation is |
---|
1071 | deterministic or not. */ |
---|
1072 | |
---|
1073 | bdd_node *yBar,*yNot,*inter; |
---|
1074 | bdd_ref(yNot = bdd_not_bdd_node(yVars[i])); |
---|
1075 | bdd_ref(yBar = bdd_bdd_cofactor(ddManager,fun,yNot)); |
---|
1076 | bdd_recursive_deref(ddManager,yNot); |
---|
1077 | bdd_ref(inter = bdd_bdd_and(ddManager,yBar,tranFun)); |
---|
1078 | yNot = bdd_not_bdd_node(bdd_read_one(ddManager)); |
---|
1079 | assert(inter == yNot); |
---|
1080 | bdd_recursive_deref(ddManager,inter); |
---|
1081 | bdd_recursive_deref(ddManager,yBar); |
---|
1082 | } |
---|
1083 | #endif |
---|
1084 | |
---|
1085 | bdd_recursive_deref(ddManager,fun); |
---|
1086 | array_insert_last(bdd_node *,allTranFuns,tranFun); |
---|
1087 | } |
---|
1088 | |
---|
1089 | bdd_recursive_deref(ddManager,completeCube); |
---|
1090 | return allTranFuns; |
---|
1091 | } |
---|
1092 | |
---|
1093 | /**Function******************************************************************** |
---|
1094 | |
---|
1095 | Synopsis [Returns an array of BDDs given the node names of a network.] |
---|
1096 | |
---|
1097 | SideEffects [None] |
---|
1098 | |
---|
1099 | SeeAlso [] |
---|
1100 | |
---|
1101 | ******************************************************************************/ |
---|
1102 | static array_t * |
---|
1103 | GetBddArrayFromNameArray( |
---|
1104 | Fsm_Fsm_t *fsm, |
---|
1105 | array_t *nameArray) |
---|
1106 | { |
---|
1107 | graph_t *partition; |
---|
1108 | array_t *bdds,*mvfs; |
---|
1109 | |
---|
1110 | partition = Fsm_FsmReadPartition(fsm); |
---|
1111 | mvfs = BuildFunctions(partition,nameArray); |
---|
1112 | bdds = GetBddArrayFromMvfArray(mvfs); |
---|
1113 | Mvf_FunctionArrayFree(mvfs); |
---|
1114 | |
---|
1115 | return bdds; |
---|
1116 | } |
---|
1117 | |
---|
1118 | /**Function******************************************************************** |
---|
1119 | |
---|
1120 | Synopsis [Expand the reachable set R(x) to include those states which are |
---|
1121 | equivalent to R(x) but potentially not reachable.] |
---|
1122 | |
---|
1123 | SideEffects [<tt>reachable</tt> is updated.] |
---|
1124 | |
---|
1125 | SeeAlso [] |
---|
1126 | |
---|
1127 | ******************************************************************************/ |
---|
1128 | static void |
---|
1129 | ExpandReachableSet( |
---|
1130 | bdd_manager *ddManager, |
---|
1131 | bdd_node **reachable, |
---|
1132 | bdd_node *equivRel, |
---|
1133 | bdd_node **xVars, |
---|
1134 | bdd_node **uVars, |
---|
1135 | int nVars) |
---|
1136 | { |
---|
1137 | bdd_node *xcube,*potUnReach,*extReach; |
---|
1138 | bdd_node *temp1; |
---|
1139 | |
---|
1140 | bdd_ref(xcube = bdd_bdd_compute_cube(ddManager,xVars,NIL(int),nVars)); |
---|
1141 | /* potUnReach = \exists_x (E(x,u) * R(x)) */ |
---|
1142 | bdd_ref(potUnReach = bdd_bdd_and_abstract(ddManager,*reachable, |
---|
1143 | equivRel,xcube)); |
---|
1144 | bdd_recursive_deref(ddManager,xcube); |
---|
1145 | /* temp1(x) = potUnReach(u) */ |
---|
1146 | bdd_ref(temp1 = bdd_bdd_swap_variables(ddManager,potUnReach,uVars, |
---|
1147 | xVars,nVars)); |
---|
1148 | bdd_recursive_deref(ddManager,potUnReach); |
---|
1149 | /* extReach(x) = R(x) + potUnReach(x) */ |
---|
1150 | bdd_ref(extReach = bdd_bdd_or(ddManager,*reachable,temp1)); |
---|
1151 | bdd_recursive_deref(ddManager,temp1); |
---|
1152 | bdd_recursive_deref(ddManager,*reachable); |
---|
1153 | *reachable = extReach; |
---|
1154 | } |
---|
1155 | |
---|
1156 | /**Function******************************************************************** |
---|
1157 | |
---|
1158 | Synopsis [Create a partition for the new view of the fsm/network] |
---|
1159 | |
---|
1160 | SideEffects [The new view is attached to the network.] |
---|
1161 | |
---|
1162 | SeeAlso [CreateNewFsm] |
---|
1163 | |
---|
1164 | ******************************************************************************/ |
---|
1165 | static graph_t * |
---|
1166 | CreateNewPartition( |
---|
1167 | Ntk_Network_t *network, |
---|
1168 | bdd_manager *ddManager, |
---|
1169 | array_t *outBdds, |
---|
1170 | array_t *nextBdds, |
---|
1171 | array_t *outputArray, |
---|
1172 | array_t *tranFunArray) |
---|
1173 | { |
---|
1174 | st_table *nameToMvf; |
---|
1175 | graph_t *partition; |
---|
1176 | |
---|
1177 | /* Create a table of next state and output Mvfs with their names as key to |
---|
1178 | the table. This table is used to create a partition for the network. */ |
---|
1179 | nameToMvf = CreateNameToMvfTable(ddManager,outBdds,nextBdds, |
---|
1180 | outputArray,tranFunArray); |
---|
1181 | /* Delete the old partition and old fsm as we dont need it any more */ |
---|
1182 | if (restrCreatedPart) { |
---|
1183 | Ntk_NetworkFreeApplInfo(network,RESTR_PART_NETWORK_APPL_KEY); |
---|
1184 | restrCreatedPart = 0; |
---|
1185 | } |
---|
1186 | if (restrCreatedFsm) { |
---|
1187 | Ntk_NetworkFreeApplInfo(network,RESTR_FSM_NETWORK_APPL_KEY); |
---|
1188 | restrCreatedFsm = 0; |
---|
1189 | } |
---|
1190 | |
---|
1191 | /* Create a new partition from the new root functions */ |
---|
1192 | partition = Part_NetworkCreatePartitionFromMvfs(network,nameToMvf); |
---|
1193 | Ntk_NetworkAddApplInfo(network, RESTR_PART_NETWORK_APPL_KEY, |
---|
1194 | (Ntk_ApplInfoFreeFn) Part_PartitionFreeCallback, |
---|
1195 | (void *) partition); |
---|
1196 | st_foreach(nameToMvf,StMvfFree,NIL(char)); |
---|
1197 | st_free_table(nameToMvf); |
---|
1198 | |
---|
1199 | return partition; |
---|
1200 | } |
---|
1201 | |
---|
1202 | /**Function******************************************************************** |
---|
1203 | |
---|
1204 | Synopsis [Create the FSM data structure for the restructured STG and perform |
---|
1205 | markov analysis to estimate the final state average bit change.] |
---|
1206 | |
---|
1207 | SideEffects [<tt>reachable,initBdd,stateProbs,finalTR</tt> are dereferenced in this |
---|
1208 | function.] |
---|
1209 | |
---|
1210 | SeeAlso [CreateNewPatition] |
---|
1211 | |
---|
1212 | ******************************************************************************/ |
---|
1213 | static Fsm_Fsm_t * |
---|
1214 | CreateNewFsm( |
---|
1215 | Ntk_Network_t *network, |
---|
1216 | graph_t *partition, |
---|
1217 | bdd_manager *ddManager, |
---|
1218 | bdd_node *finalTR, |
---|
1219 | bdd_node *initBdd, |
---|
1220 | bdd_node *reachable, |
---|
1221 | bdd_node *stateProbs, |
---|
1222 | bdd_node **xVars, |
---|
1223 | bdd_node **yVars, |
---|
1224 | bdd_node **piVars, |
---|
1225 | st_table *inputProb, |
---|
1226 | int nVars, |
---|
1227 | int nPi) |
---|
1228 | { |
---|
1229 | Fsm_Fsm_t *fsm; |
---|
1230 | mdd_t *reachStates; |
---|
1231 | mdd_t *mddTemp; |
---|
1232 | bdd_node *ddTemp; |
---|
1233 | bdd_node **markovResult; |
---|
1234 | |
---|
1235 | /* Create a new Fsm for the restructured network. */ |
---|
1236 | fsm = Fsm_FsmCreateFromNetworkWithPartition(network, |
---|
1237 | Part_PartitionDuplicate(partition)); |
---|
1238 | assert(fsm != NIL(Fsm_Fsm_t)); |
---|
1239 | Ntk_NetworkAddApplInfo(network, RESTR_FSM_NETWORK_APPL_KEY, |
---|
1240 | (Ntk_ApplInfoFreeFn) Fsm_FsmFreeCallback, |
---|
1241 | (void *) fsm); |
---|
1242 | /* We need to update the initial states as the |
---|
1243 | Fsm_FsmCreateFromNetworkWithPartition will pick up old initial state from |
---|
1244 | the network. Fsm_FsmSetInitialStates deletes old inital states. */ |
---|
1245 | mddTemp = bdd_construct_bdd_t(ddManager,initBdd); |
---|
1246 | Fsm_FsmSetInitialStates(fsm,mddTemp); |
---|
1247 | |
---|
1248 | /* Compute the new reachable states */ |
---|
1249 | reachStates = Fsm_FsmComputeReachableStates(fsm,0,0,0,0,0,0,1000, |
---|
1250 | Fsm_Rch_Default_c,0,0, |
---|
1251 | NIL(array_t),FALSE, NIL(array_t)); |
---|
1252 | |
---|
1253 | bdd_recursive_deref(ddManager,reachable); |
---|
1254 | reachable = bdd_extract_node_as_is(reachStates); |
---|
1255 | bdd_ref(reachable); |
---|
1256 | mdd_free(reachStates); |
---|
1257 | |
---|
1258 | /* Constrain the transition relation */ |
---|
1259 | bdd_ref(ddTemp = bdd_bdd_constrain(ddManager,finalTR,reachable)); |
---|
1260 | bdd_recursive_deref(ddManager,finalTR); |
---|
1261 | finalTR = ddTemp; |
---|
1262 | |
---|
1263 | /* Use the state probs. of the original STG as the initial guess to compute |
---|
1264 | the state probs. of the restructured STG. */ |
---|
1265 | if (restrVerbose) |
---|
1266 | (void) fprintf(vis_stdout,"** restr info: Final average state bit change:\n"); |
---|
1267 | |
---|
1268 | markovResult = AddPowerSolve(ddManager, finalTR, stateProbs, xVars, |
---|
1269 | yVars,piVars,inputProb,nVars,nPi); |
---|
1270 | bdd_recursive_deref(ddManager, markovResult[0]); |
---|
1271 | bdd_recursive_deref(ddManager, markovResult[1]); |
---|
1272 | FREE(markovResult); |
---|
1273 | |
---|
1274 | bdd_recursive_deref(ddManager,stateProbs); |
---|
1275 | bdd_recursive_deref(ddManager,finalTR); |
---|
1276 | bdd_recursive_deref(ddManager,reachable); |
---|
1277 | |
---|
1278 | return fsm; |
---|
1279 | } |
---|