1 | /**CFile*********************************************************************** |
---|
2 | |
---|
3 | FileName [restrUtil.c] |
---|
4 | |
---|
5 | PackageName [restr] |
---|
6 | |
---|
7 | Synopsis [Support functions used in the package.] |
---|
8 | |
---|
9 | Description [Support functions used in the package.] |
---|
10 | |
---|
11 | SeeAlso [restrDebug.c] |
---|
12 | |
---|
13 | Author [Balakrishna Kumthekar <kumtheka@colorado.edu>] |
---|
14 | |
---|
15 | Copyright [This file was created at the University of Colorado at |
---|
16 | Boulder. The University of Colorado at Boulder makes no warranty |
---|
17 | about the suitability of this software for any purpose. It is |
---|
18 | presented on an AS IS basis.] |
---|
19 | |
---|
20 | ******************************************************************************/ |
---|
21 | |
---|
22 | #include "restrInt.h" |
---|
23 | |
---|
24 | /*---------------------------------------------------------------------------*/ |
---|
25 | /* Constant declarations */ |
---|
26 | /*---------------------------------------------------------------------------*/ |
---|
27 | |
---|
28 | |
---|
29 | /*---------------------------------------------------------------------------*/ |
---|
30 | /* Type declarations */ |
---|
31 | /*---------------------------------------------------------------------------*/ |
---|
32 | |
---|
33 | |
---|
34 | /*---------------------------------------------------------------------------*/ |
---|
35 | /* Structure declarations */ |
---|
36 | /*---------------------------------------------------------------------------*/ |
---|
37 | |
---|
38 | |
---|
39 | /*---------------------------------------------------------------------------*/ |
---|
40 | /* Variable declarations */ |
---|
41 | /*---------------------------------------------------------------------------*/ |
---|
42 | |
---|
43 | |
---|
44 | /*---------------------------------------------------------------------------*/ |
---|
45 | /* Macro declarations */ |
---|
46 | /*---------------------------------------------------------------------------*/ |
---|
47 | |
---|
48 | /**AutomaticStart*************************************************************/ |
---|
49 | |
---|
50 | /*---------------------------------------------------------------------------*/ |
---|
51 | /* Static function prototypes */ |
---|
52 | /*---------------------------------------------------------------------------*/ |
---|
53 | |
---|
54 | |
---|
55 | /**AutomaticEnd***************************************************************/ |
---|
56 | |
---|
57 | |
---|
58 | /*---------------------------------------------------------------------------*/ |
---|
59 | /* Definition of exported functions */ |
---|
60 | /*---------------------------------------------------------------------------*/ |
---|
61 | |
---|
62 | |
---|
63 | /*---------------------------------------------------------------------------*/ |
---|
64 | /* Definition of internal functions */ |
---|
65 | /*---------------------------------------------------------------------------*/ |
---|
66 | |
---|
67 | /**Function******************************************************************** |
---|
68 | |
---|
69 | Synopsis [Returns the primary output node array for the given network.] |
---|
70 | |
---|
71 | Description [Returns the primary output node array for the given network.] |
---|
72 | |
---|
73 | SideEffects [None] |
---|
74 | |
---|
75 | SeeAlso [RestrGetNextStateArray] |
---|
76 | |
---|
77 | ******************************************************************************/ |
---|
78 | array_t * |
---|
79 | RestrGetOutputArray(Ntk_Network_t *network) |
---|
80 | { |
---|
81 | lsGen gen; |
---|
82 | Ntk_Node_t *node; |
---|
83 | array_t *outputArray; |
---|
84 | |
---|
85 | outputArray = array_alloc(char *, 0); |
---|
86 | Ntk_NetworkForEachPrimaryOutput(network, gen, node) { |
---|
87 | array_insert_last(char *, outputArray, Ntk_NodeReadName(node)); |
---|
88 | } |
---|
89 | |
---|
90 | return outputArray; |
---|
91 | } |
---|
92 | |
---|
93 | /**Function******************************************************************** |
---|
94 | |
---|
95 | Synopsis [Computes the product |
---|
96 | \prod_{i=0}^{i=n-1} funArray_{i}(x) \equiv funArray_{i}(y)] |
---|
97 | |
---|
98 | Description [Computes the product |
---|
99 | \prod_{i=0}^{i=n-1} funArray_{i}(x) \equiv funArray_{i}(y). |
---|
100 | |
---|
101 | funArray is an array of BDDs and each has xVars in its |
---|
102 | support. nVars is the number of xVars and yVars.] |
---|
103 | |
---|
104 | SideEffects [None] |
---|
105 | |
---|
106 | SeeAlso [RestrComputeTRWithIds] |
---|
107 | |
---|
108 | ******************************************************************************/ |
---|
109 | bdd_node * |
---|
110 | RestrCreateProductOutput( |
---|
111 | bdd_manager *ddManager, |
---|
112 | array_t *funArray, |
---|
113 | bdd_node **xVars, |
---|
114 | bdd_node **yVars, |
---|
115 | int nVars) |
---|
116 | { |
---|
117 | bdd_node *ddtemp, *ddtemp1; |
---|
118 | bdd_node *fn, *result; |
---|
119 | int i, num = array_n(funArray); |
---|
120 | |
---|
121 | bdd_ref(result = bdd_read_one(ddManager)); |
---|
122 | |
---|
123 | for(i = 0; i < num; i++) { |
---|
124 | |
---|
125 | ddtemp = array_fetch(bdd_node *, funArray, i);; |
---|
126 | |
---|
127 | ddtemp1 = bdd_bdd_swap_variables(ddManager,ddtemp,xVars,yVars,nVars); |
---|
128 | bdd_ref(ddtemp1); |
---|
129 | fn = bdd_bdd_xnor(ddManager,ddtemp1,ddtemp); |
---|
130 | bdd_ref(fn); |
---|
131 | bdd_recursive_deref(ddManager,ddtemp1); |
---|
132 | ddtemp1 = bdd_bdd_and(ddManager,result,fn); |
---|
133 | bdd_ref(ddtemp1); |
---|
134 | bdd_recursive_deref(ddManager,fn); |
---|
135 | bdd_recursive_deref(ddManager,result); |
---|
136 | result = ddtemp1; |
---|
137 | } |
---|
138 | |
---|
139 | return result; |
---|
140 | } |
---|
141 | |
---|
142 | /**Function******************************************************************** |
---|
143 | |
---|
144 | Synopsis [The function computes the following relations: |
---|
145 | \prod_{i=0}^{i=n-1} (y_i \equiv f_i(x)) and |
---|
146 | \prod_{i=0}^{i=n-1} (y_i \equiv f_i(x)) \wedge (v_i \equiv f_i(u)) and |
---|
147 | returns them in an array.] |
---|
148 | |
---|
149 | Description [The function computes the following relations: |
---|
150 | \prod_{i=0}^{i=n-1} (y_i \equiv f_i(x)) and |
---|
151 | \prod_{i=0}^{i=n-1} (y_i \equiv f_i(x)) \wedge (v_i \equiv f_i(u)) and |
---|
152 | returns them in an array. |
---|
153 | |
---|
154 | nextBdds is an array of nVar BDDs and has xVars in its |
---|
155 | support. xVars, yVars, uVars and vVars are arrays of BDD variables.] |
---|
156 | |
---|
157 | SideEffects [None] |
---|
158 | |
---|
159 | SeeAlso [RestrCreateProductOutput] |
---|
160 | |
---|
161 | ******************************************************************************/ |
---|
162 | array_t * |
---|
163 | RestrComputeTRWithIds( |
---|
164 | bdd_manager *ddManager, |
---|
165 | array_t *nextBdds, |
---|
166 | bdd_node **xVars, |
---|
167 | bdd_node **yVars, |
---|
168 | bdd_node **uVars, |
---|
169 | bdd_node **vVars, |
---|
170 | int nVars) |
---|
171 | { |
---|
172 | bdd_node *ddtemp1, *ddtemp2; |
---|
173 | bdd_node *oldTR, *fn; |
---|
174 | array_t *composite; |
---|
175 | int i; |
---|
176 | |
---|
177 | |
---|
178 | /* First compute oldTR(x,y) = \prod_{i=0}^{i=n-1} (y_i \equiv f_i(x)) */ |
---|
179 | bdd_ref(oldTR = bdd_read_one(ddManager)); |
---|
180 | |
---|
181 | for(i = 0; i < nVars; i++) { |
---|
182 | ddtemp2 = array_fetch(bdd_node *, nextBdds, i); |
---|
183 | |
---|
184 | fn = bdd_bdd_xnor(ddManager,ddtemp2,yVars[i]); |
---|
185 | bdd_ref(fn); |
---|
186 | ddtemp1 = bdd_bdd_and(ddManager,oldTR,fn); |
---|
187 | bdd_ref(ddtemp1); |
---|
188 | bdd_recursive_deref(ddManager,fn); |
---|
189 | bdd_recursive_deref(ddManager,oldTR); |
---|
190 | oldTR = ddtemp1; |
---|
191 | } |
---|
192 | |
---|
193 | /* fn(u,v) = oldTR(x-->u,y-->v) */ |
---|
194 | ddtemp2 = bdd_bdd_swap_variables(ddManager,oldTR,xVars,uVars,nVars); |
---|
195 | bdd_ref(ddtemp2); |
---|
196 | fn = bdd_bdd_swap_variables(ddManager,ddtemp2,yVars,vVars,nVars); |
---|
197 | bdd_ref(fn); |
---|
198 | bdd_recursive_deref(ddManager,ddtemp2); |
---|
199 | ddtemp1 = bdd_bdd_and(ddManager,fn,oldTR); |
---|
200 | bdd_ref(ddtemp1); |
---|
201 | bdd_recursive_deref(ddManager,fn); |
---|
202 | |
---|
203 | /* Return both the relations */ |
---|
204 | composite = array_alloc(bdd_node *,0); |
---|
205 | array_insert_last(bdd_node *,composite,oldTR); |
---|
206 | array_insert_last(bdd_node *,composite,ddtemp1); |
---|
207 | |
---|
208 | return composite; |
---|
209 | } |
---|
210 | |
---|
211 | /**Function******************************************************************** |
---|
212 | |
---|
213 | Synopsis [This function returns the state equivalence relation for an FSM.] |
---|
214 | |
---|
215 | Description [This function returns the state equivalence relation |
---|
216 | for an FSM. Lambda is the primary output relation and TR is the |
---|
217 | state transition relation of the product machine. Lambda has xVars, |
---|
218 | uVars and piVars in its support. TR has piVars, xVars,yVars,uVars |
---|
219 | and vVars in its support. nPi is the number of piVars and nVars is |
---|
220 | the number of xVars. xVars, yVars, uVars and vVars are all of the |
---|
221 | same size, i.e., nVars. The returned BDD is a function of xVars and |
---|
222 | uVars. |
---|
223 | |
---|
224 | For more information on the algorithm, please refer to "Dont care |
---|
225 | minimization of multi-level sequential logic networks", ICCAD 90.] |
---|
226 | |
---|
227 | SideEffects [None] |
---|
228 | |
---|
229 | SeeAlso [RestrComputeEquivRelationUsingCofactors] |
---|
230 | |
---|
231 | ******************************************************************************/ |
---|
232 | bdd_node * |
---|
233 | RestrGetEquivRelation( |
---|
234 | bdd_manager *mgr, |
---|
235 | bdd_node *Lambda, |
---|
236 | bdd_node *tranRelation, |
---|
237 | bdd_node **xVars, |
---|
238 | bdd_node **yVars, |
---|
239 | bdd_node **uVars, |
---|
240 | bdd_node **vVars, |
---|
241 | bdd_node **piVars, |
---|
242 | int nVars, |
---|
243 | int nPi, |
---|
244 | boolean restrVerbose) |
---|
245 | |
---|
246 | { |
---|
247 | bdd_node *initialEsp, *espK; |
---|
248 | bdd_node *espKPlusOne; |
---|
249 | bdd_node *inputCube, *nextCube; |
---|
250 | bdd_node **allPreVars, **allNexVars; |
---|
251 | bdd_node *temp; |
---|
252 | int i,depth; |
---|
253 | |
---|
254 | allPreVars = ALLOC(bdd_node *, 2*nVars); |
---|
255 | allNexVars = ALLOC(bdd_node *, 2*nVars); |
---|
256 | for(i = 0; i < nVars;i++) { |
---|
257 | allPreVars[i] = xVars[i]; |
---|
258 | allNexVars[i] = yVars[i]; |
---|
259 | } |
---|
260 | for(i = 0; i < nVars;i++) { |
---|
261 | allPreVars[i+nVars] = uVars[i]; |
---|
262 | allNexVars[i+nVars] = vVars[i]; |
---|
263 | } |
---|
264 | |
---|
265 | nextCube = bdd_bdd_compute_cube(mgr,allNexVars,NIL(int),2*nVars); |
---|
266 | bdd_ref(nextCube); |
---|
267 | |
---|
268 | inputCube = bdd_bdd_compute_cube(mgr,piVars,NIL(int),nPi); |
---|
269 | bdd_ref(inputCube); |
---|
270 | |
---|
271 | initialEsp = bdd_bdd_univ_abstract(mgr,Lambda,inputCube); |
---|
272 | bdd_ref(initialEsp); |
---|
273 | |
---|
274 | espK = bdd_bdd_swap_variables(mgr,initialEsp,allPreVars, |
---|
275 | allNexVars,2*nVars); |
---|
276 | bdd_ref(espK); |
---|
277 | |
---|
278 | depth = 0; |
---|
279 | do { |
---|
280 | bdd_node *image, *temp1; |
---|
281 | image = bdd_bdd_and_abstract(mgr,tranRelation, espK, nextCube); |
---|
282 | bdd_ref(image); |
---|
283 | |
---|
284 | temp1 = bdd_bdd_univ_abstract(mgr,image,inputCube); |
---|
285 | bdd_ref(temp1); |
---|
286 | bdd_recursive_deref(mgr,image); |
---|
287 | |
---|
288 | espKPlusOne = bdd_bdd_and(mgr,temp1,initialEsp); |
---|
289 | bdd_ref(espKPlusOne); |
---|
290 | bdd_recursive_deref(mgr,temp1); |
---|
291 | temp1 = bdd_bdd_swap_variables(mgr,espKPlusOne,allPreVars, |
---|
292 | allNexVars,2*nVars); |
---|
293 | bdd_ref(temp1); |
---|
294 | bdd_recursive_deref(mgr,espKPlusOne); |
---|
295 | espKPlusOne = temp1; |
---|
296 | |
---|
297 | if (espKPlusOne == espK) { |
---|
298 | break; |
---|
299 | } |
---|
300 | bdd_recursive_deref(mgr,espK); |
---|
301 | espK = espKPlusOne; |
---|
302 | depth++; |
---|
303 | } while (1); |
---|
304 | |
---|
305 | if (restrVerbose) |
---|
306 | (void) fprintf(vis_stdout,"** restr info: EQ. relation computation depth = %d\n", |
---|
307 | depth); |
---|
308 | |
---|
309 | bdd_recursive_deref(mgr,espKPlusOne); |
---|
310 | bdd_recursive_deref(mgr,initialEsp); |
---|
311 | bdd_recursive_deref(mgr,inputCube); |
---|
312 | bdd_recursive_deref(mgr,nextCube); |
---|
313 | |
---|
314 | bdd_ref(temp = bdd_bdd_swap_variables(mgr,espK,allNexVars, |
---|
315 | allPreVars,2*nVars)); |
---|
316 | bdd_recursive_deref(mgr,espK); |
---|
317 | espK = temp; |
---|
318 | |
---|
319 | FREE(allPreVars); |
---|
320 | FREE(allNexVars); |
---|
321 | |
---|
322 | return espK; |
---|
323 | } |
---|
324 | |
---|
325 | /**Function******************************************************************** |
---|
326 | |
---|
327 | Synopsis [This function returns the state equivalence relation for an FSM.] |
---|
328 | |
---|
329 | Description [This function returns the state equivalence relation |
---|
330 | for an FSM. Lambda is the primary output relation and TR is the |
---|
331 | state transition relation of the product machine. Lambda has xVars, |
---|
332 | uVars and piVars in its support. TR has piVars, xVars,yVars,uVars |
---|
333 | and vVars in its support. nPi is the number of piVars and nVars is |
---|
334 | the number of xVars. xVars, yVars, uVars and vVars are all of the |
---|
335 | same size, i.e., nVars. The returned BDD is a function of xVars and |
---|
336 | uVars. |
---|
337 | |
---|
338 | For more information on the algorithm, please refer to "Extending Equivalence |
---|
339 | Class Computation to Large FSMs", ICCD 96.] |
---|
340 | |
---|
341 | SideEffects [] |
---|
342 | |
---|
343 | SeeAlso [RestrGetEquivRelation] |
---|
344 | |
---|
345 | ******************************************************************************/ |
---|
346 | bdd_node * |
---|
347 | RestrComputeEquivRelationUsingCofactors( |
---|
348 | bdd_manager *mgr, |
---|
349 | bdd_node *Lambda, |
---|
350 | bdd_node *TR, |
---|
351 | bdd_node **xVars, |
---|
352 | bdd_node **yVars, |
---|
353 | bdd_node **uVars, |
---|
354 | bdd_node **vVars, |
---|
355 | bdd_node **piVars, |
---|
356 | int nVars, |
---|
357 | int nPi, |
---|
358 | boolean restrVerbose) |
---|
359 | |
---|
360 | { |
---|
361 | bdd_node *espKxu, *espKyv, *espKPlusOne, *espKMinusOne; |
---|
362 | bdd_node *espKCofKMinusOne; |
---|
363 | bdd_node *inputCube, *nextCube; |
---|
364 | bdd_node *tranRelation; |
---|
365 | bdd_node *newTran; |
---|
366 | bdd_node **allPreVars, **allNexVars; |
---|
367 | int i,depth; |
---|
368 | |
---|
369 | bdd_ref(tranRelation = TR); |
---|
370 | |
---|
371 | allPreVars = ALLOC(bdd_node *, 2*nVars); |
---|
372 | allNexVars = ALLOC(bdd_node *, 2*nVars); |
---|
373 | for(i = 0; i < nVars;i++) { |
---|
374 | allPreVars[i] = xVars[i]; |
---|
375 | allNexVars[i] = yVars[i]; |
---|
376 | } |
---|
377 | for(i = 0; i < nVars;i++) { |
---|
378 | allPreVars[i+nVars] = uVars[i]; |
---|
379 | allNexVars[i+nVars] = vVars[i]; |
---|
380 | } |
---|
381 | |
---|
382 | /* nextCube is a cube of yVars and vVars */ |
---|
383 | nextCube = bdd_bdd_compute_cube(mgr,allNexVars,NIL(int),2*nVars); |
---|
384 | bdd_ref(nextCube); |
---|
385 | |
---|
386 | /* inputCube is a cube of piVars */ |
---|
387 | inputCube = bdd_bdd_compute_cube(mgr,piVars,NIL(int),nPi); |
---|
388 | bdd_ref(inputCube); |
---|
389 | |
---|
390 | /* espKxu = \forall_{piVars} Lambda */ |
---|
391 | espKxu = bdd_bdd_univ_abstract(mgr,Lambda,inputCube); |
---|
392 | bdd_ref(espKxu); |
---|
393 | |
---|
394 | espKyv = bdd_bdd_swap_variables(mgr,espKxu,allPreVars, |
---|
395 | allNexVars,2*nVars); |
---|
396 | bdd_ref(espKyv); |
---|
397 | bdd_ref(espKMinusOne = bdd_read_one(mgr)); |
---|
398 | bdd_ref(espKPlusOne = bdd_read_one(mgr)); |
---|
399 | |
---|
400 | /* The following loop is essentially the following: |
---|
401 | * E_{k+1} = E_k \wedge (\forall_x(func)) where |
---|
402 | * func = \exists_{yv} ((TR \downarrow E_k) \wedge (E_k \downarrow E_{k-1})) |
---|
403 | */ |
---|
404 | depth = 0; |
---|
405 | while (1) { |
---|
406 | bdd_node *image, *temp1; |
---|
407 | |
---|
408 | bdd_recursive_deref(mgr, espKPlusOne); |
---|
409 | bdd_ref(espKCofKMinusOne = bdd_bdd_constrain(mgr, espKyv, |
---|
410 | espKMinusOne)); |
---|
411 | bdd_recursive_deref(mgr, espKMinusOne); |
---|
412 | bdd_ref(espKMinusOne = espKyv); |
---|
413 | |
---|
414 | bdd_ref(newTran = bdd_bdd_constrain(mgr, tranRelation, espKxu)); |
---|
415 | |
---|
416 | image = bdd_bdd_and_abstract(mgr,newTran, espKCofKMinusOne, nextCube); |
---|
417 | bdd_ref(image); |
---|
418 | bdd_recursive_deref(mgr, newTran); |
---|
419 | bdd_recursive_deref(mgr, espKCofKMinusOne); |
---|
420 | |
---|
421 | temp1 = bdd_bdd_univ_abstract(mgr,image,inputCube); |
---|
422 | bdd_ref(temp1); |
---|
423 | bdd_recursive_deref(mgr,image); |
---|
424 | espKPlusOne = bdd_bdd_and(mgr,temp1,espKxu); |
---|
425 | bdd_ref(espKPlusOne); |
---|
426 | bdd_recursive_deref(mgr,temp1); |
---|
427 | |
---|
428 | if (espKPlusOne == espKxu) { |
---|
429 | bdd_recursive_deref(mgr,espKMinusOne); |
---|
430 | bdd_recursive_deref(mgr,espKxu); |
---|
431 | bdd_recursive_deref(mgr,espKyv); |
---|
432 | bdd_recursive_deref(mgr,tranRelation); |
---|
433 | bdd_recursive_deref(mgr,inputCube); |
---|
434 | bdd_recursive_deref(mgr,nextCube); |
---|
435 | FREE(allPreVars); |
---|
436 | FREE(allNexVars); |
---|
437 | if (restrVerbose) { |
---|
438 | (void) fprintf(vis_stdout,"** restr info: EQ. relation computation depth = %d\n", |
---|
439 | depth); |
---|
440 | } |
---|
441 | return espKPlusOne; |
---|
442 | } |
---|
443 | |
---|
444 | bdd_recursive_deref(mgr, espKxu); |
---|
445 | bdd_ref(espKxu = espKPlusOne); |
---|
446 | bdd_recursive_deref(mgr, espKyv); |
---|
447 | espKyv = bdd_bdd_swap_variables(mgr,espKxu,allPreVars, |
---|
448 | allNexVars,2*nVars); |
---|
449 | bdd_ref(espKyv); |
---|
450 | |
---|
451 | depth++; |
---|
452 | } |
---|
453 | |
---|
454 | } |
---|
455 | |
---|
456 | /**Function******************************************************************** |
---|
457 | |
---|
458 | Synopsis [Returns the BDD for the augmented tr.] |
---|
459 | |
---|
460 | Description [Returns the BDD for the augmented tr. The procedure of |
---|
461 | augmentation is as follows: If there exists a pair (x,y) in tr and a |
---|
462 | pair (y,v) in equivRelation, then the augmented tr has an additional |
---|
463 | pair (x,v) added to it. The newly added edges are called 'ghost |
---|
464 | edges'. Moreover, tr is a function of xVars and yVars, while |
---|
465 | equivRelation is a function of yVars and vVars. nVars is the size of |
---|
466 | yVars and vVars each. The returned BDD has the same support |
---|
467 | variables as tr. |
---|
468 | |
---|
469 | The boolean formulation is: |
---|
470 | |
---|
471 | T^a(x,y) = \exists_z E(y,z) \wedge T(x,z)] |
---|
472 | |
---|
473 | SideEffects [None] |
---|
474 | |
---|
475 | SeeAlso [] |
---|
476 | |
---|
477 | ******************************************************************************/ |
---|
478 | bdd_node * |
---|
479 | RestrComputeTrWithGhostEdges( |
---|
480 | bdd_manager *mgr, |
---|
481 | bdd_node **yVars, |
---|
482 | bdd_node **vVars, |
---|
483 | bdd_node *tr, |
---|
484 | bdd_node *equivRelation, |
---|
485 | int nVars) |
---|
486 | { |
---|
487 | bdd_node *abstractCube; |
---|
488 | bdd_node *temp; |
---|
489 | bdd_node *ghostTR; |
---|
490 | |
---|
491 | abstractCube = bdd_bdd_compute_cube(mgr,yVars,NIL(int),nVars); |
---|
492 | bdd_ref(abstractCube); |
---|
493 | |
---|
494 | temp = bdd_bdd_and_abstract(mgr,tr,equivRelation,abstractCube); |
---|
495 | bdd_ref(temp); |
---|
496 | bdd_recursive_deref(mgr,abstractCube); |
---|
497 | |
---|
498 | ghostTR = bdd_bdd_swap_variables(mgr,temp,vVars,yVars,nVars); |
---|
499 | bdd_ref(ghostTR); |
---|
500 | bdd_recursive_deref(mgr,temp); |
---|
501 | |
---|
502 | return ghostTR; |
---|
503 | } |
---|
504 | |
---|
505 | /**Function******************************************************************** |
---|
506 | |
---|
507 | Synopsis [Returns a 0-1 ADD containing minterms such that the |
---|
508 | discriminant for those minterms in f is greater than that in g.] |
---|
509 | |
---|
510 | Description [Returns a 0-1 ADD containing minterms such that the |
---|
511 | discriminant for those minterms in f is greater than that in g.] |
---|
512 | |
---|
513 | SideEffects [None] |
---|
514 | |
---|
515 | SeeAlso [cuddAddApply.c] |
---|
516 | ******************************************************************************/ |
---|
517 | bdd_node * |
---|
518 | RestrAddMaximum( |
---|
519 | bdd_manager *ddManager, |
---|
520 | bdd_node **f, |
---|
521 | bdd_node **g) |
---|
522 | { |
---|
523 | bdd_node *plusInf; |
---|
524 | bdd_node *zero, *one; |
---|
525 | |
---|
526 | zero = bdd_read_zero(ddManager); |
---|
527 | one = bdd_read_one(ddManager); |
---|
528 | plusInf = bdd_read_plus_infinity(ddManager); |
---|
529 | |
---|
530 | if(*g == plusInf) { |
---|
531 | return zero; |
---|
532 | } |
---|
533 | |
---|
534 | if(bdd_is_constant(*f) && bdd_is_constant(*g)) { |
---|
535 | if(bdd_add_value(*f) > bdd_add_value(*g)) { |
---|
536 | return one; |
---|
537 | } else { |
---|
538 | return zero; |
---|
539 | } |
---|
540 | } |
---|
541 | return NULL; |
---|
542 | } |
---|
543 | |
---|
544 | |
---|
545 | /**Function******************************************************************** |
---|
546 | |
---|
547 | Synopsis [Returns a 0-1 ADD containing minterms such that the |
---|
548 | discriminant for those minterms in f is equal to that in g.] |
---|
549 | |
---|
550 | Description [Returns a 0-1 ADD containing minterms such that the |
---|
551 | discriminant for those minterms in f is equal to that in g.] |
---|
552 | |
---|
553 | SideEffects [None] |
---|
554 | |
---|
555 | SeeAlso [cuddAddApply.c] |
---|
556 | |
---|
557 | ******************************************************************************/ |
---|
558 | bdd_node * |
---|
559 | RestrAddEqual( |
---|
560 | bdd_manager *ddManager, |
---|
561 | bdd_node **f, |
---|
562 | bdd_node **g) |
---|
563 | { |
---|
564 | bdd_node *zero, *one; |
---|
565 | |
---|
566 | zero = bdd_read_zero(ddManager); |
---|
567 | one = bdd_read_one(ddManager); |
---|
568 | |
---|
569 | if(*f == *g) { |
---|
570 | return one; |
---|
571 | } |
---|
572 | |
---|
573 | if(bdd_is_constant(*f) && bdd_is_constant(*g)) { |
---|
574 | return zero; |
---|
575 | } |
---|
576 | return NULL; |
---|
577 | } |
---|
578 | |
---|
579 | /**Function******************************************************************** |
---|
580 | |
---|
581 | Synopsis [Given an array of BDD ids, return the array of |
---|
582 | corresponding BDDs.] |
---|
583 | |
---|
584 | Description [Given an array of BDD ids, return the array of |
---|
585 | corresponding BDDs.] |
---|
586 | |
---|
587 | SideEffects [None] |
---|
588 | |
---|
589 | SeeAlso [] |
---|
590 | |
---|
591 | ******************************************************************************/ |
---|
592 | bdd_node ** |
---|
593 | RestrBddNodeArrayFromIdArray( |
---|
594 | bdd_manager *ddManager, |
---|
595 | array_t *idArray) |
---|
596 | { |
---|
597 | bdd_node **xvars; |
---|
598 | int i,id; |
---|
599 | int nvars = array_n(idArray); |
---|
600 | |
---|
601 | xvars = ALLOC(bdd_node *, nvars); |
---|
602 | if (xvars == NULL) |
---|
603 | return NULL; |
---|
604 | |
---|
605 | for(i = 0; i < nvars; i++) { |
---|
606 | id = array_fetch(int,idArray,i); |
---|
607 | xvars[i] = bdd_bdd_ith_var(ddManager,id); |
---|
608 | bdd_ref(xvars[i]); |
---|
609 | } |
---|
610 | return xvars; |
---|
611 | } |
---|
612 | |
---|
613 | /**Function******************************************************************** |
---|
614 | |
---|
615 | Synopsis [Calculate the average bit change in the STG.] |
---|
616 | |
---|
617 | Description [Calculate the average bit change in the STG. probTR is an ADD |
---|
618 | representing the absolute transition probability matrix of the STG. |
---|
619 | xVars and yVars are the present and next state variables respectively. nVars |
---|
620 | is the number of state variables. |
---|
621 | |
---|
622 | average bit change = (\exists^+_x(probTr * HD(x,y))). ] |
---|
623 | |
---|
624 | SideEffects [None] |
---|
625 | |
---|
626 | SeeAlso [] |
---|
627 | ******************************************************************************/ |
---|
628 | double |
---|
629 | RestrAverageBitChange( |
---|
630 | bdd_manager *manager, |
---|
631 | bdd_node *probTR, |
---|
632 | bdd_node **xVars, |
---|
633 | bdd_node **yVars, |
---|
634 | int nVars) |
---|
635 | { |
---|
636 | bdd_node *diff, *cube, *PA, *QA; |
---|
637 | bdd_node **vars; |
---|
638 | double Mean; |
---|
639 | int i; |
---|
640 | |
---|
641 | vars = ALLOC(bdd_node *,2*nVars); |
---|
642 | for (i = 0; i < nVars; i++) { |
---|
643 | vars[i] = bdd_add_ith_var(manager,bdd_node_read_index(xVars[i])); |
---|
644 | bdd_ref(vars[i]); |
---|
645 | } |
---|
646 | for (i = nVars; i < 2*nVars; i++) { |
---|
647 | vars[i] = bdd_add_ith_var(manager,bdd_node_read_index(yVars[i-nVars])); |
---|
648 | bdd_ref(vars[i]); |
---|
649 | } |
---|
650 | |
---|
651 | cube = bdd_add_compute_cube(manager,vars,NIL(int),2*nVars); |
---|
652 | bdd_ref(cube); |
---|
653 | |
---|
654 | /* Calculate the Hamming distance ADD. This ADD represents the hamming |
---|
655 | * distance between two vectors represented by xVars and yVars. |
---|
656 | */ |
---|
657 | bdd_ref(diff = bdd_add_hamming(manager,xVars,yVars,nVars)); |
---|
658 | bdd_ref(PA = bdd_add_apply(manager,bdd_add_times,probTR,diff)); |
---|
659 | bdd_recursive_deref(manager,diff); |
---|
660 | |
---|
661 | /* And now add and abstract all the variables.*/ |
---|
662 | bdd_ref(QA = bdd_add_exist_abstract(manager,PA,cube)); |
---|
663 | bdd_recursive_deref(manager,PA); |
---|
664 | bdd_recursive_deref(manager,cube); |
---|
665 | Mean = (double)bdd_add_value(QA); |
---|
666 | bdd_recursive_deref(manager,QA); |
---|
667 | |
---|
668 | for (i = 0; i < 2*nVars; i++) { |
---|
669 | bdd_recursive_deref(manager,vars[i]); |
---|
670 | } |
---|
671 | FREE(vars); |
---|
672 | return Mean; |
---|
673 | } |
---|
674 | |
---|
675 | /**Function******************************************************************** |
---|
676 | |
---|
677 | Synopsis [Create an extra set of auxillary BDD variables--corresponding to |
---|
678 | present and next state variables of the network--required during |
---|
679 | restructuring.] |
---|
680 | |
---|
681 | SideEffects [None] |
---|
682 | |
---|
683 | SeeAlso [] |
---|
684 | |
---|
685 | ******************************************************************************/ |
---|
686 | array_t * |
---|
687 | RestrCreateNewStateVars( |
---|
688 | Ntk_Network_t *network, |
---|
689 | bdd_manager *ddManager, |
---|
690 | bdd_node **xVars, |
---|
691 | bdd_node **yVars) |
---|
692 | |
---|
693 | { |
---|
694 | Ntk_Node_t *node1; |
---|
695 | char *name, *name1; |
---|
696 | array_t *varValues; |
---|
697 | array_t *nameArray; |
---|
698 | int i,id,index; |
---|
699 | int nVars = Ntk_NetworkReadNumLatches(network); |
---|
700 | |
---|
701 | array_t *uVarIds, *vVarIds; |
---|
702 | array_t *result; |
---|
703 | |
---|
704 | varValues = array_alloc(int, 0); |
---|
705 | nameArray = array_alloc(char *,0); |
---|
706 | uVarIds = array_alloc(int, 0); |
---|
707 | vVarIds = array_alloc(int, 0); |
---|
708 | result = array_alloc(array_t *, 0); |
---|
709 | |
---|
710 | id = bdd_num_vars(ddManager); |
---|
711 | |
---|
712 | for (i = 0; i < nVars; i++) { |
---|
713 | index = bdd_node_read_index(yVars[i]); |
---|
714 | node1 = Ntk_NetworkFindNodeByMddId(network,index); |
---|
715 | name = Ntk_NodeReadName(node1); |
---|
716 | name1 = util_strcat3(name,"$NTK2",""); |
---|
717 | array_insert_last(int,varValues,2); |
---|
718 | array_insert_last(char *,nameArray,name1); |
---|
719 | array_insert_last(int, vVarIds, id); |
---|
720 | id++; |
---|
721 | |
---|
722 | index = bdd_node_read_index(xVars[i]); |
---|
723 | node1 = Ntk_NetworkFindNodeByMddId(network,index); |
---|
724 | name = Ntk_NodeReadName(node1); |
---|
725 | name1 = util_strcat3(name,"$NTK2",""); |
---|
726 | array_insert_last(int,varValues,2); |
---|
727 | array_insert_last(char *,nameArray,name1); |
---|
728 | array_insert_last(int, uVarIds, id); |
---|
729 | id++; |
---|
730 | |
---|
731 | } |
---|
732 | mdd_create_variables(ddManager,varValues,nameArray,NIL(array_t)); |
---|
733 | |
---|
734 | arrayForEachItem(char *,nameArray,i,name) { |
---|
735 | FREE(name); |
---|
736 | } |
---|
737 | array_free(nameArray); |
---|
738 | array_free(varValues); |
---|
739 | |
---|
740 | array_insert_last(array_t *, result, uVarIds); |
---|
741 | array_insert_last(array_t *, result, vVarIds); |
---|
742 | |
---|
743 | return result; |
---|
744 | } |
---|
745 | |
---|
746 | |
---|
747 | /**Function******************************************************************** |
---|
748 | |
---|
749 | Synopsis [In the absence of initial order of the variables, this |
---|
750 | function assings MDD Ids to the input, present state and next state |
---|
751 | variables.] |
---|
752 | |
---|
753 | Description [In the absence of initial order of the variables, this |
---|
754 | function assigns MDD Ids to the input, present state and next state |
---|
755 | variables. |
---|
756 | |
---|
757 | This procedure is NOT currently used and is here for future purposes.] |
---|
758 | |
---|
759 | SideEffects [The BDD manager is changed accordingly.] |
---|
760 | |
---|
761 | SeeAlso [] |
---|
762 | ******************************************************************************/ |
---|
763 | void |
---|
764 | RestrSetInitialOrder( |
---|
765 | Ntk_Network_t *network, |
---|
766 | bdd_manager *ddManager) |
---|
767 | |
---|
768 | { |
---|
769 | Ntk_Node_t *node, *node1; |
---|
770 | lsGen gen; |
---|
771 | char *name; |
---|
772 | array_t *varValues; |
---|
773 | array_t *nameArray; |
---|
774 | int id; |
---|
775 | |
---|
776 | varValues = array_alloc(int,0); |
---|
777 | nameArray = array_alloc(char *,0); |
---|
778 | |
---|
779 | id = 0; |
---|
780 | Ntk_NetworkForEachLatch(network,gen,node) { |
---|
781 | node1 = Ntk_NodeReadShadow(node); |
---|
782 | name = util_strsav(Ntk_NodeReadName(node1)); |
---|
783 | Ntk_NodeSetMddId(node1,id); |
---|
784 | array_insert_last(int,varValues,2); |
---|
785 | array_insert_last(char *,nameArray,name); |
---|
786 | id++; |
---|
787 | |
---|
788 | name = util_strsav(Ntk_NodeReadName(node)); |
---|
789 | Ntk_NodeSetMddId(node,id); |
---|
790 | array_insert_last(int,varValues,2); |
---|
791 | array_insert_last(char *,nameArray,name); |
---|
792 | id++; |
---|
793 | } |
---|
794 | |
---|
795 | Ntk_NetworkForEachPrimaryInput(network,gen,node) { |
---|
796 | name = util_strsav(Ntk_NodeReadName(node)); |
---|
797 | Ntk_NodeSetMddId(node,id); |
---|
798 | array_insert_last(int,varValues,2); |
---|
799 | array_insert_last(char *,nameArray,name); |
---|
800 | id++; |
---|
801 | } |
---|
802 | |
---|
803 | mdd_create_variables(ddManager,varValues,nameArray,NIL(array_t)); |
---|
804 | |
---|
805 | id = 0; |
---|
806 | arrayForEachItem(char *, nameArray, id, name) { |
---|
807 | FREE(name); |
---|
808 | } |
---|
809 | array_free(nameArray); |
---|
810 | array_free(varValues); |
---|
811 | |
---|
812 | } |
---|
813 | |
---|