[14] | 1 | /**CFile*********************************************************************** |
---|
| 2 | |
---|
| 3 | FileName [synthDiv.c] |
---|
| 4 | |
---|
| 5 | PackageName [synth] |
---|
| 6 | |
---|
| 7 | Synopsis [Divisor functions.] |
---|
| 8 | |
---|
| 9 | Author [In-Ho Moon, Balakrishna Kumthekar] |
---|
| 10 | |
---|
| 11 | Copyright [This file was created at the University of Colorado at Boulder. |
---|
| 12 | The University of Colorado at Boulder makes no warranty about the suitability |
---|
| 13 | of this software for any purpose. It is presented on an AS IS basis.] |
---|
| 14 | |
---|
| 15 | ******************************************************************************/ |
---|
| 16 | |
---|
| 17 | #include "synthInt.h" |
---|
| 18 | |
---|
| 19 | static char rcsid[] UNUSED = "$Id: synthDiv.c,v 1.25 2002/09/10 05:50:52 fabio Exp $"; |
---|
| 20 | |
---|
| 21 | /*---------------------------------------------------------------------------*/ |
---|
| 22 | /* Constant declarations */ |
---|
| 23 | /*---------------------------------------------------------------------------*/ |
---|
| 24 | |
---|
| 25 | #define MAX_COUNT 100000000 /* just chosen for a very large number */ |
---|
| 26 | |
---|
| 27 | /*---------------------------------------------------------------------------*/ |
---|
| 28 | /* Type declarations */ |
---|
| 29 | /*---------------------------------------------------------------------------*/ |
---|
| 30 | |
---|
| 31 | |
---|
| 32 | /*---------------------------------------------------------------------------*/ |
---|
| 33 | /* Structure declarations */ |
---|
| 34 | /*---------------------------------------------------------------------------*/ |
---|
| 35 | |
---|
| 36 | /**Struct********************************************************************** |
---|
| 37 | |
---|
| 38 | Synopsis [Structure of one BFS item to count variable occurrences.] |
---|
| 39 | |
---|
| 40 | Description [Structure of one BFS item to count variable occurrences.] |
---|
| 41 | |
---|
| 42 | SeeAlso [] |
---|
| 43 | |
---|
| 44 | ******************************************************************************/ |
---|
| 45 | typedef struct bfs_item { |
---|
| 46 | int reach; /* number of path from top node */ |
---|
| 47 | int count; /* number of path to constant 1 */ |
---|
| 48 | bdd_node *node; /* ZDD node */ |
---|
| 49 | struct bfs_item *next; |
---|
| 50 | } BfsItem; |
---|
| 51 | |
---|
| 52 | /**Struct********************************************************************** |
---|
| 53 | |
---|
| 54 | Synopsis [Structure for BFS operation to count variable occurrences.] |
---|
| 55 | |
---|
| 56 | Description [Structure for BFS operation to count variable occurrences.] |
---|
| 57 | |
---|
| 58 | SeeAlso [] |
---|
| 59 | |
---|
| 60 | ******************************************************************************/ |
---|
| 61 | typedef struct bfs_list { |
---|
| 62 | struct bfs_item *item; |
---|
| 63 | int child; /* 1 : T, 0 : E */ |
---|
| 64 | struct bfs_list *next; |
---|
| 65 | } BfsList; |
---|
| 66 | |
---|
| 67 | |
---|
| 68 | /*---------------------------------------------------------------------------*/ |
---|
| 69 | /* Variable declarations */ |
---|
| 70 | /*---------------------------------------------------------------------------*/ |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | /**AutomaticStart*************************************************************/ |
---|
| 74 | |
---|
| 75 | /*---------------------------------------------------------------------------*/ |
---|
| 76 | /* Static function prototypes */ |
---|
| 77 | /*---------------------------------------------------------------------------*/ |
---|
| 78 | |
---|
| 79 | static int FindQuickDivisor(bdd_node *f, bdd_node *one, int *v); |
---|
| 80 | |
---|
| 81 | /**AutomaticEnd***************************************************************/ |
---|
| 82 | |
---|
| 83 | |
---|
| 84 | /*---------------------------------------------------------------------------*/ |
---|
| 85 | /* Definition of exported functions */ |
---|
| 86 | /*---------------------------------------------------------------------------*/ |
---|
| 87 | |
---|
| 88 | |
---|
| 89 | /**Function******************************************************************** |
---|
| 90 | |
---|
| 91 | Synopsis [Finds a divisor that occurs in more than one cube of the ZDD |
---|
| 92 | graph.] |
---|
| 93 | |
---|
| 94 | Description [Finds a divisor that occurs in more than one cube of the ZDD |
---|
| 95 | graph. This is done in a greedy manner. It returns a ZDD node.] |
---|
| 96 | |
---|
| 97 | SideEffects [] |
---|
| 98 | |
---|
| 99 | SeeAlso [Synth_ZddLeastDivisor Synth_ZddMostDivisor |
---|
| 100 | Synth_ZddLevelZeroDivisor Synth_ZddCommonDivisor Synth_ZddLpDivisor] |
---|
| 101 | |
---|
| 102 | ******************************************************************************/ |
---|
| 103 | bdd_node * |
---|
| 104 | Synth_ZddQuickDivisor(bdd_manager *dd, |
---|
| 105 | bdd_node *f) |
---|
| 106 | { |
---|
| 107 | bdd_node *res; |
---|
| 108 | |
---|
| 109 | if (bdd_get_package_name() != CUDD) { |
---|
| 110 | (void)fprintf(vis_stderr, |
---|
| 111 | "** synth error: Synthesis package can be used only with CUDD package\n"); |
---|
| 112 | (void)fprintf(vis_stderr,"** synth error: Please link with CUDD package\n"); |
---|
| 113 | return NIL(bdd_node); |
---|
| 114 | } |
---|
| 115 | |
---|
| 116 | do { |
---|
| 117 | bdd_set_reordered_field(dd, 0); |
---|
| 118 | res = SynthZddQuickDivisor(dd, f); |
---|
| 119 | } while (bdd_read_reordered_field(dd) == 1); |
---|
| 120 | return(res); |
---|
| 121 | } |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | /**Function******************************************************************** |
---|
| 125 | |
---|
| 126 | Synopsis [Finds a divisor that occurs the least frequently (but more |
---|
| 127 | than once) in the cubes of a cover.] |
---|
| 128 | |
---|
| 129 | Description [Finds a divisor that occurs the least frequently (but more |
---|
| 130 | than once) in the cubes of a cover. It returns a ZDD node.] |
---|
| 131 | |
---|
| 132 | SideEffects [] |
---|
| 133 | |
---|
| 134 | SeeAlso [Synth_ZddQuickDivisor Synth_ZddMostDivisor |
---|
| 135 | Synth_ZddLevelZeroDivisor Synth_ZddCommonDivisor Synth_ZddLpDivisor] |
---|
| 136 | |
---|
| 137 | ******************************************************************************/ |
---|
| 138 | bdd_node * |
---|
| 139 | Synth_ZddLeastDivisor(bdd_manager *dd, |
---|
| 140 | bdd_node *f) |
---|
| 141 | { |
---|
| 142 | bdd_node *res; |
---|
| 143 | |
---|
| 144 | if (bdd_get_package_name() != CUDD) { |
---|
| 145 | (void)fprintf(vis_stderr, |
---|
| 146 | "** synth error: Synthesis package can be used only with CUDD package\n"); |
---|
| 147 | (void)fprintf(vis_stderr,"** synth error: Please link with CUDD package\n"); |
---|
| 148 | return NIL(bdd_node); |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | do { |
---|
| 152 | bdd_set_reordered_field(dd, 0); |
---|
| 153 | res = SynthZddLeastDivisor(dd, f); |
---|
| 154 | } while (bdd_read_reordered_field(dd) == 1); |
---|
| 155 | return(res); |
---|
| 156 | } |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | /**Function******************************************************************** |
---|
| 160 | |
---|
| 161 | Synopsis [Finds a divisor that occurs the most frequently in the cubes |
---|
| 162 | of a cover.] |
---|
| 163 | |
---|
| 164 | Description [Finds a divisor that occurs the most frequently in the cubes |
---|
| 165 | of a cover. It returns a ZDD node.] |
---|
| 166 | |
---|
| 167 | SideEffects [] |
---|
| 168 | |
---|
| 169 | SeeAlso [Synth_ZddQuickDivisor Synth_ZddLeastDivisor |
---|
| 170 | Synth_ZddLevelZeroDivisor Synth_ZddCommonDivisor Synth_ZddLpDivisor] |
---|
| 171 | |
---|
| 172 | ******************************************************************************/ |
---|
| 173 | bdd_node * |
---|
| 174 | Synth_ZddMostDivisor(bdd_manager *dd, |
---|
| 175 | bdd_node *f) |
---|
| 176 | { |
---|
| 177 | bdd_node *res; |
---|
| 178 | |
---|
| 179 | if (bdd_get_package_name() != CUDD) { |
---|
| 180 | (void)fprintf(vis_stderr, |
---|
| 181 | "** synth error: Synthesis package can be used only with CUDD package\n"); |
---|
| 182 | (void)fprintf(vis_stderr,"** synth error: Please link with CUDD package\n"); |
---|
| 183 | return NIL(bdd_node); |
---|
| 184 | } |
---|
| 185 | |
---|
| 186 | do { |
---|
| 187 | bdd_set_reordered_field(dd, 0); |
---|
| 188 | res = SynthZddMostDivisor(dd, f); |
---|
| 189 | } while (bdd_read_reordered_field(dd) == 1); |
---|
| 190 | return(res); |
---|
| 191 | } |
---|
| 192 | |
---|
| 193 | |
---|
| 194 | /**Function******************************************************************** |
---|
| 195 | |
---|
| 196 | Synopsis [Finds a divisor that is a level-0 cokernel.] |
---|
| 197 | |
---|
| 198 | Description [Finds a divisor that is a level-0 cokernel. It returns a |
---|
| 199 | ZDD node.] |
---|
| 200 | |
---|
| 201 | SideEffects [] |
---|
| 202 | |
---|
| 203 | SeeAlso [Synth_ZddQuickDivisor Synth_ZddLeastDivisor |
---|
| 204 | Synth_ZddMostDivisor Synth_ZddCommonDivisor Synth_ZddLpDivisor] |
---|
| 205 | |
---|
| 206 | ******************************************************************************/ |
---|
| 207 | bdd_node * |
---|
| 208 | Synth_ZddLevelZeroDivisor(bdd_manager *dd, |
---|
| 209 | bdd_node *f) |
---|
| 210 | { |
---|
| 211 | bdd_node *res; |
---|
| 212 | |
---|
| 213 | if (bdd_get_package_name() != CUDD) { |
---|
| 214 | (void)fprintf(vis_stderr, |
---|
| 215 | "** synth error: Synthesis package can be used only with CUDD package\n"); |
---|
| 216 | (void)fprintf(vis_stderr,"** synth error: Please link with CUDD package\n"); |
---|
| 217 | return NIL(bdd_node); |
---|
| 218 | } |
---|
| 219 | |
---|
| 220 | do { |
---|
| 221 | bdd_set_reordered_field(dd, 0); |
---|
| 222 | res = SynthZddLevelZeroDivisor(dd, f); |
---|
| 223 | } while (bdd_read_reordered_field(dd) == 1); |
---|
| 224 | return(res); |
---|
| 225 | } |
---|
| 226 | |
---|
| 227 | |
---|
| 228 | /**Function******************************************************************** |
---|
| 229 | |
---|
| 230 | Synopsis [Find a divisor whose literals occur in all cubes.] |
---|
| 231 | |
---|
| 232 | Description [Find a divisor whose literals occur in all cubes. It |
---|
| 233 | returns a ZDD node.] |
---|
| 234 | |
---|
| 235 | SideEffects [] |
---|
| 236 | |
---|
| 237 | SeeAlso [Synth_ZddQuickDivisor Synth_ZddMostDivisor |
---|
| 238 | Synth_ZddLeastDivisor Synth_ZddLevelZeroDivisor Synth_ZddLpDivisor] |
---|
| 239 | |
---|
| 240 | ******************************************************************************/ |
---|
| 241 | bdd_node * |
---|
| 242 | Synth_ZddCommonDivisor(bdd_manager *dd, |
---|
| 243 | bdd_node *f) |
---|
| 244 | { |
---|
| 245 | bdd_node *res; |
---|
| 246 | |
---|
| 247 | if (bdd_get_package_name() != CUDD) { |
---|
| 248 | (void)fprintf(vis_stderr, |
---|
| 249 | "** synth error: Synthesis package can be used only with CUDD package\n"); |
---|
| 250 | (void)fprintf(vis_stderr,"** synth error: Please link with CUDD package\n"); |
---|
| 251 | return NIL(bdd_node); |
---|
| 252 | } |
---|
| 253 | |
---|
| 254 | do { |
---|
| 255 | bdd_set_reordered_field(dd, 0); |
---|
| 256 | res = SynthZddCommonDivisor(dd, f); |
---|
| 257 | } while (bdd_read_reordered_field(dd) == 1); |
---|
| 258 | return(res); |
---|
| 259 | } |
---|
| 260 | |
---|
| 261 | |
---|
| 262 | /**Function******************************************************************** |
---|
| 263 | |
---|
| 264 | Synopsis [Find a good divisor for low power.] |
---|
| 265 | |
---|
| 266 | Description [Find a good divisor for low power. It returns a ZDD |
---|
| 267 | node.] |
---|
| 268 | |
---|
| 269 | SideEffects [] |
---|
| 270 | |
---|
| 271 | SeeAlso [Synth_ZddQuickDivisor Synth_ZddMostDivisor |
---|
| 272 | Synth_ZddLeastDivisor Synth_ZddLevelZeroDivisor Synth_ZddCommonDivisor] |
---|
| 273 | ******************************************************************************/ |
---|
| 274 | bdd_node * |
---|
| 275 | Synth_ZddLpDivisor(bdd_manager *dd, |
---|
| 276 | bdd_node *f) |
---|
| 277 | { |
---|
| 278 | bdd_node *res; |
---|
| 279 | |
---|
| 280 | if (bdd_get_package_name() != CUDD) { |
---|
| 281 | (void)fprintf(vis_stderr, |
---|
| 282 | "** synth error: Synthesis package can be used only with CUDD package\n"); |
---|
| 283 | (void)fprintf(vis_stderr,"** synth error: Please link with CUDD package\n"); |
---|
| 284 | return NIL(bdd_node); |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | do { |
---|
| 288 | bdd_set_reordered_field(dd, 0); |
---|
| 289 | res = SynthZddLpDivisor(dd, f); |
---|
| 290 | } while (bdd_read_reordered_field(dd) == 1); |
---|
| 291 | return(res); |
---|
| 292 | } |
---|
| 293 | |
---|
| 294 | |
---|
| 295 | /*---------------------------------------------------------------------------*/ |
---|
| 296 | /* Definition of internal functions */ |
---|
| 297 | /*---------------------------------------------------------------------------*/ |
---|
| 298 | |
---|
| 299 | |
---|
| 300 | /**Function******************************************************************** |
---|
| 301 | |
---|
| 302 | Synopsis [Performs the recursive steps of Synth_ZddQuickDivisor.] |
---|
| 303 | |
---|
| 304 | Description [Performs the recursive steps of Synth_ZddQuickDivisor. |
---|
| 305 | When FindQuickDivisor fails to find a literal, the function uses as |
---|
| 306 | backup strategy finding the literal that occurs the least. The reason |
---|
| 307 | is the following. If a node has more than one parent, then it is |
---|
| 308 | guaranteed to appear in more than one cube. However, the converse is not |
---|
| 309 | true.] |
---|
| 310 | |
---|
| 311 | SideEffects [] |
---|
| 312 | |
---|
| 313 | SeeAlso [SynthZddLeastDivisor SynthZddMostDivisor |
---|
| 314 | SynthZddLevelZeroDivisor SynthZddCommonDivisor SynthZddLpDivisor] |
---|
| 315 | |
---|
| 316 | ******************************************************************************/ |
---|
| 317 | bdd_node * |
---|
| 318 | SynthZddQuickDivisor(bdd_manager *dd, |
---|
| 319 | bdd_node *f) |
---|
| 320 | { |
---|
| 321 | int i, v; |
---|
| 322 | int nvars; |
---|
| 323 | int *count; |
---|
| 324 | bdd_node *one = bdd_read_one(dd); |
---|
| 325 | bdd_node *zero = bdd_read_zero(dd); |
---|
| 326 | bdd_node *divisor, *node; |
---|
| 327 | bdd_node *tmp; |
---|
| 328 | int min_count; |
---|
| 329 | |
---|
| 330 | if (f == one || f == zero) |
---|
| 331 | return(f); |
---|
| 332 | |
---|
| 333 | /* Search for a literal appearing in at least two cubes. */ |
---|
| 334 | v = -1; |
---|
| 335 | FindQuickDivisor(f, one, &v); |
---|
| 336 | SynthZddClearFlag(f); |
---|
| 337 | |
---|
| 338 | if (v == -1) { |
---|
| 339 | /* Quick divisor not found by looking at the ZDD graph. |
---|
| 340 | * Find the literal that occurs the least among those occuring |
---|
| 341 | * at least twice. |
---|
| 342 | */ |
---|
| 343 | min_count = MAX_COUNT; |
---|
| 344 | nvars = bdd_num_zdd_vars(dd); |
---|
| 345 | count = ALLOC(int, nvars); |
---|
| 346 | (void)memset((void *)count, 0, sizeof(int) * nvars); |
---|
| 347 | SynthCountLiteralOccurrence(dd, f, count); |
---|
| 348 | for (i = 0; i < nvars; i++) { |
---|
| 349 | if (count[i] > 1 && count[i] < min_count) { |
---|
| 350 | v = i; |
---|
| 351 | min_count = count[i]; |
---|
| 352 | } |
---|
| 353 | } |
---|
| 354 | FREE(count); |
---|
| 355 | if (v == -1) { |
---|
| 356 | /* All literal appear exactly once. We are done. */ |
---|
| 357 | return(f); |
---|
| 358 | } |
---|
| 359 | } |
---|
| 360 | |
---|
| 361 | /* Obtain the literal divisor from its index and divide f. */ |
---|
| 362 | node = bdd_zdd_get_node(dd, v, one, zero); |
---|
| 363 | if (!node) |
---|
| 364 | return(NULL); |
---|
| 365 | bdd_ref(node); |
---|
| 366 | |
---|
| 367 | tmp = (* SynthGetZddDivideRecurFunc())(dd, f, node); |
---|
| 368 | if (!tmp) { |
---|
| 369 | bdd_recursive_deref_zdd(dd,node); |
---|
| 370 | return(NULL); |
---|
| 371 | } |
---|
| 372 | bdd_ref(tmp); |
---|
| 373 | bdd_recursive_deref_zdd(dd, node); |
---|
| 374 | |
---|
| 375 | /* Recur on the quotient to make sure that all literals appear once. */ |
---|
| 376 | divisor = SynthZddQuickDivisor(dd, tmp); |
---|
| 377 | if (!divisor) { |
---|
| 378 | bdd_recursive_deref_zdd(dd,tmp); |
---|
| 379 | return(NULL); |
---|
| 380 | } |
---|
| 381 | bdd_ref(divisor); |
---|
| 382 | bdd_recursive_deref_zdd(dd, tmp); |
---|
| 383 | |
---|
| 384 | bdd_deref(divisor); |
---|
| 385 | return(divisor); |
---|
| 386 | } |
---|
| 387 | |
---|
| 388 | |
---|
| 389 | /**Function******************************************************************** |
---|
| 390 | |
---|
| 391 | Synopsis [Performs the recursive steps of Synth_ZddLeastDivisor.] |
---|
| 392 | |
---|
| 393 | Description [Performs the recursive steps of Synth_ZddLeastDivisor.] |
---|
| 394 | |
---|
| 395 | SideEffects [] |
---|
| 396 | |
---|
| 397 | SeeAlso [SynthZddQuickDivisor SynthZddMostDivisor |
---|
| 398 | SynthZddLevelZeroDivisor SynthZddCommonDivisor SynthZddLpDivisor] |
---|
| 399 | |
---|
| 400 | ******************************************************************************/ |
---|
| 401 | bdd_node * |
---|
| 402 | SynthZddLeastDivisor(bdd_manager *dd, |
---|
| 403 | bdd_node *f) |
---|
| 404 | { |
---|
| 405 | int i, v; |
---|
| 406 | int nvars, min_count; |
---|
| 407 | int *count; |
---|
| 408 | bdd_node *one = bdd_read_one(dd); |
---|
| 409 | bdd_node *zero = bdd_read_zero(dd); |
---|
| 410 | bdd_node *divisor, *node; |
---|
| 411 | bdd_node *tmp1; |
---|
| 412 | |
---|
| 413 | if (f == one || f == zero) |
---|
| 414 | return(f); |
---|
| 415 | |
---|
| 416 | /* Find the literal that occurs the least among those occuring at |
---|
| 417 | * least twice. |
---|
| 418 | */ |
---|
| 419 | v = -1; |
---|
| 420 | min_count = MAX_COUNT; |
---|
| 421 | nvars = bdd_num_zdd_vars(dd); |
---|
| 422 | count = ALLOC(int, nvars); |
---|
| 423 | (void)memset((void *)count, 0, sizeof(int) * nvars); |
---|
| 424 | SynthCountLiteralOccurrence(dd, f, count); |
---|
| 425 | for (i = 0; i < nvars; i++) { |
---|
| 426 | if (count[i] > 1 && count[i] < min_count) { |
---|
| 427 | v = i; |
---|
| 428 | min_count = count[i]; |
---|
| 429 | } |
---|
| 430 | } |
---|
| 431 | FREE(count); |
---|
| 432 | |
---|
| 433 | if (v == -1) { |
---|
| 434 | /* All literal appear exactly once. We are done. */ |
---|
| 435 | return(f); |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | /* Obtain the literal divisor from its index and divide f. */ |
---|
| 439 | node = bdd_zdd_get_node(dd, v, one, zero); |
---|
| 440 | if (!node) { |
---|
| 441 | return(NULL); |
---|
| 442 | } |
---|
| 443 | bdd_ref(node); |
---|
| 444 | |
---|
| 445 | tmp1 = (* SynthGetZddDivideRecurFunc())(dd, f, node); |
---|
| 446 | if (!tmp1) { |
---|
| 447 | bdd_recursive_deref_zdd(dd, node); |
---|
| 448 | return(NULL); |
---|
| 449 | } |
---|
| 450 | bdd_ref(tmp1); |
---|
| 451 | bdd_recursive_deref_zdd(dd, node); |
---|
| 452 | |
---|
| 453 | /* Recur on the quotient to make sure that all literals appear once. */ |
---|
| 454 | divisor = SynthZddLeastDivisor(dd, tmp1); |
---|
| 455 | if (!divisor) { |
---|
| 456 | bdd_recursive_deref_zdd(dd, tmp1); |
---|
| 457 | return(NULL); |
---|
| 458 | } |
---|
| 459 | bdd_ref(divisor); |
---|
| 460 | bdd_recursive_deref_zdd(dd, tmp1); |
---|
| 461 | |
---|
| 462 | bdd_deref(divisor); |
---|
| 463 | return(divisor); |
---|
| 464 | } |
---|
| 465 | |
---|
| 466 | |
---|
| 467 | /**Function******************************************************************** |
---|
| 468 | |
---|
| 469 | Synopsis [Performs the recursive steps of Synth_ZddMostDivisor.] |
---|
| 470 | |
---|
| 471 | Description [Performs the recursive steps of Synth_ZddMostDivisor.] |
---|
| 472 | |
---|
| 473 | SideEffects [] |
---|
| 474 | |
---|
| 475 | SeeAlso [SynthZddQuickDivisor SynthZddLeastDivisor |
---|
| 476 | SynthZddLevelZeroDivisor SynthZddCommonDivisor SynthZddLpDivisor] |
---|
| 477 | |
---|
| 478 | ******************************************************************************/ |
---|
| 479 | bdd_node * |
---|
| 480 | SynthZddMostDivisor(bdd_manager *dd, |
---|
| 481 | bdd_node *f) |
---|
| 482 | { |
---|
| 483 | int i, v; |
---|
| 484 | int nvars, max_count; |
---|
| 485 | int *count; |
---|
| 486 | bdd_node *one = bdd_read_one(dd); |
---|
| 487 | bdd_node *zero = bdd_read_zero(dd); |
---|
| 488 | bdd_node *divisor, *node; |
---|
| 489 | bdd_node *tmp1; |
---|
| 490 | |
---|
| 491 | if (f == one || f == zero) |
---|
| 492 | return(f); |
---|
| 493 | |
---|
| 494 | /* Find the literal that occurs the most. */ |
---|
| 495 | v = -1; |
---|
| 496 | max_count = 1; |
---|
| 497 | nvars = bdd_num_zdd_vars(dd); |
---|
| 498 | count = ALLOC(int, nvars); |
---|
| 499 | (void)memset((void *)count, 0, sizeof(int) * nvars); |
---|
| 500 | SynthCountLiteralOccurrence(dd, f, count); |
---|
| 501 | for (i = 0; i < nvars; i++) { |
---|
| 502 | if (count[i] > max_count) { |
---|
| 503 | v = i; |
---|
| 504 | max_count = count[i]; |
---|
| 505 | } |
---|
| 506 | } |
---|
| 507 | |
---|
| 508 | FREE(count); |
---|
| 509 | |
---|
| 510 | if (v == -1) { |
---|
| 511 | /* All literal appear exactly once. We are done. */ |
---|
| 512 | return(f); |
---|
| 513 | } |
---|
| 514 | |
---|
| 515 | /* Obtain the literal divisor from its index and divide f. */ |
---|
| 516 | node = bdd_zdd_get_node(dd, v, one, zero); |
---|
| 517 | if (!node) |
---|
| 518 | return(NULL); |
---|
| 519 | bdd_ref(node); |
---|
| 520 | |
---|
| 521 | tmp1 = (* SynthGetZddDivideRecurFunc())(dd, f, node); |
---|
| 522 | if (!tmp1) { |
---|
| 523 | bdd_recursive_deref_zdd(dd, node); |
---|
| 524 | return(NULL); |
---|
| 525 | } |
---|
| 526 | bdd_ref(tmp1); |
---|
| 527 | bdd_recursive_deref_zdd(dd, node); |
---|
| 528 | |
---|
| 529 | /* Recur on the quotient to make sure that all literals appear once. */ |
---|
| 530 | divisor = SynthZddMostDivisor(dd, tmp1); |
---|
| 531 | if (!divisor) { |
---|
| 532 | bdd_recursive_deref_zdd(dd, tmp1); |
---|
| 533 | return(NULL); |
---|
| 534 | } |
---|
| 535 | bdd_ref(divisor); |
---|
| 536 | bdd_recursive_deref_zdd(dd, tmp1); |
---|
| 537 | |
---|
| 538 | bdd_deref(divisor); |
---|
| 539 | return(divisor); |
---|
| 540 | } |
---|
| 541 | |
---|
| 542 | |
---|
| 543 | /**Function******************************************************************** |
---|
| 544 | |
---|
| 545 | Synopsis [Performs the recursive steps of Synth_ZddLevelZeroDivisor.] |
---|
| 546 | |
---|
| 547 | Description [Performs the recursive steps of Synth_ZddLevelZeroDivisor.] |
---|
| 548 | |
---|
| 549 | SideEffects [] |
---|
| 550 | |
---|
| 551 | SeeAlso [SynthZddQuickDivisor SynthZddLeastDivisor |
---|
| 552 | SynthZddMostDivisor SynthZddCommonDivisor SynthZddLpDivisor] |
---|
| 553 | |
---|
| 554 | ******************************************************************************/ |
---|
| 555 | bdd_node * |
---|
| 556 | SynthZddLevelZeroDivisor(bdd_manager *dd, |
---|
| 557 | bdd_node *f) |
---|
| 558 | { |
---|
| 559 | int i, v; |
---|
| 560 | int nvars, max_count; |
---|
| 561 | int *count; |
---|
| 562 | bdd_node *one = bdd_read_one(dd); |
---|
| 563 | bdd_node *zero = bdd_read_zero(dd); |
---|
| 564 | bdd_node *divisor, *node; |
---|
| 565 | bdd_node *tmp1, *tmp2; |
---|
| 566 | |
---|
| 567 | if (f == one || f == zero) |
---|
| 568 | return(f); |
---|
| 569 | |
---|
| 570 | /* Find the literal that occurs the most. */ |
---|
| 571 | v = -1; |
---|
| 572 | max_count = 1; |
---|
| 573 | nvars = bdd_num_zdd_vars(dd); |
---|
| 574 | count = ALLOC(int, nvars); |
---|
| 575 | (void)memset((void *)count, 0, sizeof(int) * nvars); |
---|
| 576 | SynthCountLiteralOccurrence(dd, f, count); |
---|
| 577 | for (i = 0; i < nvars; i++) { |
---|
| 578 | if (count[i] > max_count) { |
---|
| 579 | v = i; |
---|
| 580 | max_count = count[i]; |
---|
| 581 | } |
---|
| 582 | } |
---|
| 583 | |
---|
| 584 | FREE(count); |
---|
| 585 | |
---|
| 586 | if (v == -1) { |
---|
| 587 | /* All literal appear exactly once. We are done. */ |
---|
| 588 | return(f); |
---|
| 589 | } |
---|
| 590 | |
---|
| 591 | /* Obtain the literal divisor from its index and divide f. */ |
---|
| 592 | node = bdd_zdd_get_node(dd, v, one, zero); |
---|
| 593 | if (!node) |
---|
| 594 | return(NULL); |
---|
| 595 | bdd_ref(node); |
---|
| 596 | |
---|
| 597 | tmp1 = (* SynthGetZddDivideRecurFunc())(dd, f, node); |
---|
| 598 | if (!tmp1) { |
---|
| 599 | bdd_recursive_deref_zdd(dd, node); |
---|
| 600 | return(NULL); |
---|
| 601 | } |
---|
| 602 | bdd_ref(tmp1); |
---|
| 603 | bdd_recursive_deref_zdd(dd, node); |
---|
| 604 | |
---|
| 605 | /* Factor out all literals appearing in all cubes. */ |
---|
| 606 | tmp2 = SynthMakeCubeFree(dd, tmp1); |
---|
| 607 | if (!tmp2) { |
---|
| 608 | bdd_recursive_deref_zdd(dd, tmp1); |
---|
| 609 | return(NULL); |
---|
| 610 | } |
---|
| 611 | bdd_ref(tmp2); |
---|
| 612 | bdd_recursive_deref_zdd(dd, tmp1); |
---|
| 613 | |
---|
| 614 | /* Recur on the quotient to make sure that all literals appear once. */ |
---|
| 615 | divisor = SynthZddLevelZeroDivisor(dd, tmp2); |
---|
| 616 | if (!divisor) { |
---|
| 617 | bdd_recursive_deref_zdd(dd, tmp2); |
---|
| 618 | return(NULL); |
---|
| 619 | } |
---|
| 620 | bdd_ref(divisor); |
---|
| 621 | bdd_recursive_deref_zdd(dd, tmp2); |
---|
| 622 | |
---|
| 623 | bdd_deref(divisor); |
---|
| 624 | return(divisor); |
---|
| 625 | } |
---|
| 626 | |
---|
| 627 | /**Function******************************************************************** |
---|
| 628 | |
---|
| 629 | Synopsis [The internal function of Synth_ZddCommonDivisor.] |
---|
| 630 | |
---|
| 631 | Description [The internal function of Synth_ZddCommonDivisor.] |
---|
| 632 | |
---|
| 633 | SideEffects [] |
---|
| 634 | |
---|
| 635 | SeeAlso [SynthZddQuickDivisor SynthZddLeastDivisor |
---|
| 636 | SynthZddMostDivisor SynthZddLevelZeroDivisor SynthZddLpDivisor] |
---|
| 637 | |
---|
| 638 | ******************************************************************************/ |
---|
| 639 | bdd_node * |
---|
| 640 | SynthZddCommonDivisor(bdd_manager *dd, |
---|
| 641 | bdd_node *f) |
---|
| 642 | { |
---|
| 643 | int i; |
---|
| 644 | int nvars; |
---|
| 645 | int *count; |
---|
| 646 | bdd_node *one = bdd_read_one(dd); |
---|
| 647 | bdd_node *zero = bdd_read_zero(dd); |
---|
| 648 | bdd_node *divisor, *node, *tmp; |
---|
| 649 | int nCubes; |
---|
| 650 | |
---|
| 651 | divisor = (bdd_node *)NULL; /* NULL means no such divisor exists */ |
---|
| 652 | if (f == one || f == zero) |
---|
| 653 | return(divisor); |
---|
| 654 | |
---|
| 655 | nCubes = bdd_zdd_count(dd, f); |
---|
| 656 | if (nCubes == 1) |
---|
| 657 | return(divisor); |
---|
| 658 | |
---|
| 659 | /* Find the literals that appear exactly as many times as there |
---|
| 660 | * are cubes. These literals appear in all cubes, hence in the |
---|
| 661 | * common divisor. Their product is accumulated in divisor. */ |
---|
| 662 | nvars = bdd_num_zdd_vars(dd); |
---|
| 663 | count = ALLOC(int, nvars); |
---|
| 664 | (void)memset((void *)count, 0, sizeof(int) * nvars); |
---|
| 665 | SynthCountLiteralOccurrence(dd, f, count); |
---|
| 666 | for (i = 0; i < nvars; i++) { |
---|
| 667 | if (count[i] == nCubes) { |
---|
| 668 | node = bdd_zdd_get_node(dd, i, one, zero); |
---|
| 669 | if (!node) { |
---|
| 670 | FREE(count); |
---|
| 671 | return(NULL); |
---|
| 672 | } |
---|
| 673 | bdd_ref(node); |
---|
| 674 | if (!divisor) { |
---|
| 675 | divisor = node; |
---|
| 676 | continue; |
---|
| 677 | } |
---|
| 678 | tmp = divisor; |
---|
| 679 | divisor = (* SynthGetZddProductRecurFunc())(dd, divisor, node); |
---|
| 680 | if (!divisor) { |
---|
| 681 | bdd_recursive_deref_zdd(dd, tmp); |
---|
| 682 | bdd_recursive_deref_zdd(dd, node); |
---|
| 683 | FREE(count); |
---|
| 684 | return(NULL); |
---|
| 685 | } |
---|
| 686 | bdd_ref(divisor); |
---|
| 687 | bdd_recursive_deref_zdd(dd, tmp); |
---|
| 688 | bdd_recursive_deref_zdd(dd, node); |
---|
| 689 | } |
---|
| 690 | } |
---|
| 691 | FREE(count); |
---|
| 692 | |
---|
| 693 | if (divisor) |
---|
| 694 | bdd_deref(divisor); |
---|
| 695 | return(divisor); |
---|
| 696 | } |
---|
| 697 | |
---|
| 698 | |
---|
| 699 | /**Function******************************************************************** |
---|
| 700 | |
---|
| 701 | Synopsis [Performs the recursive steps of Synth_ZddLpDivisor.] |
---|
| 702 | |
---|
| 703 | Description [Performs the recursive steps of Synth_ZddLpDivisor.] |
---|
| 704 | |
---|
| 705 | SideEffects [] |
---|
| 706 | |
---|
| 707 | SeeAlso [SynthZddQuickDivisor SynthZddLeastDivisor |
---|
| 708 | SynthZddMostDivisor SynthZddLevelZeroDivisor SynthZddCommonDivisor] |
---|
| 709 | |
---|
| 710 | ******************************************************************************/ |
---|
| 711 | bdd_node * |
---|
| 712 | SynthZddLpDivisor(bdd_manager *dd, |
---|
| 713 | bdd_node *f) |
---|
| 714 | { |
---|
| 715 | int i, v; |
---|
| 716 | int nvars, min_count, min_pos = 0; |
---|
| 717 | int *count; |
---|
| 718 | bdd_node *one = bdd_read_one(dd); |
---|
| 719 | bdd_node *zero = bdd_read_zero(dd); |
---|
| 720 | bdd_node *divisor, *node; |
---|
| 721 | bdd_node *tmp1; |
---|
| 722 | |
---|
| 723 | if (f == one || f == zero) |
---|
| 724 | return(f); |
---|
| 725 | |
---|
| 726 | /* Find the literal that occurs the least among those occuring at |
---|
| 727 | * least twice. |
---|
| 728 | */ |
---|
| 729 | v = -1; |
---|
| 730 | min_count = MAX_COUNT; |
---|
| 731 | nvars = bdd_num_zdd_vars(dd); |
---|
| 732 | count = ALLOC(int, nvars); |
---|
| 733 | (void)memset((void *)count, 0, sizeof(int) * nvars); |
---|
| 734 | |
---|
| 735 | SynthCountLiteralOccurrence(dd, f, count); |
---|
| 736 | for (i = 0; i < nvars; i++) { |
---|
| 737 | if (count[i] > 1 && count[i] < min_count) { |
---|
| 738 | v = i; |
---|
| 739 | min_count = count[i]; |
---|
| 740 | min_pos = i; |
---|
| 741 | } |
---|
| 742 | } |
---|
| 743 | if (v == -1) { |
---|
| 744 | /* All literal appear exactly once. We are done. */ |
---|
| 745 | FREE(count); |
---|
| 746 | return(f); |
---|
| 747 | } |
---|
| 748 | |
---|
| 749 | /* Among the literals with minimum count, find a good one. */ |
---|
| 750 | v = SynthFindDivisorForLowPower(count, nvars, min_count, min_pos); |
---|
| 751 | |
---|
| 752 | FREE(count); |
---|
| 753 | |
---|
| 754 | if (v == -1) { |
---|
| 755 | return(f); |
---|
| 756 | } |
---|
| 757 | |
---|
| 758 | /* Obtain the literal divisor from its index and divide f. */ |
---|
| 759 | node = bdd_zdd_get_node(dd, v, one, zero); |
---|
| 760 | if (!node) |
---|
| 761 | return(NULL); |
---|
| 762 | bdd_ref(node); |
---|
| 763 | |
---|
| 764 | tmp1 = (* SynthGetZddDivideRecurFunc())(dd, f, node); |
---|
| 765 | if (!tmp1) { |
---|
| 766 | bdd_recursive_deref_zdd(dd, node); |
---|
| 767 | return(NULL); |
---|
| 768 | } |
---|
| 769 | bdd_ref(tmp1); |
---|
| 770 | bdd_recursive_deref_zdd(dd, node); |
---|
| 771 | |
---|
| 772 | /* Recur on the quotient to make sure that all literals appear once. */ |
---|
| 773 | divisor = SynthZddLpDivisor(dd, tmp1); |
---|
| 774 | if (!divisor) { |
---|
| 775 | bdd_recursive_deref_zdd(dd, tmp1); |
---|
| 776 | return(NULL); |
---|
| 777 | } |
---|
| 778 | bdd_ref(divisor); |
---|
| 779 | bdd_recursive_deref_zdd(dd, tmp1); |
---|
| 780 | |
---|
| 781 | bdd_deref(divisor); |
---|
| 782 | return(divisor); |
---|
| 783 | } |
---|
| 784 | |
---|
| 785 | |
---|
| 786 | /**Function******************************************************************** |
---|
| 787 | |
---|
| 788 | Synopsis [Counts the number of occurrences of each variable.] |
---|
| 789 | |
---|
| 790 | Description [Counts the number of occurrences of each variable. |
---|
| 791 | First, we count the number of paths to the top node for each node from |
---|
| 792 | top to bottom. Let this number be C_t. Initially, C_t of the top node |
---|
| 793 | is 1, and C_t of a node is the sum of C_t's of all predecessors of the |
---|
| 794 | node. Second, we count the number of paths to the constant one node from |
---|
| 795 | bottom to top. Let this number be C_1. Initially, C_1 of the constant one |
---|
| 796 | node is 1 and C_1 of the constant zero node is 0, and C_1 of a node is the |
---|
| 797 | sum of C_1's of two successors of the node. Third, we count the number of |
---|
| 798 | occurrences of variables using the C_t's and C_1's of each node. Here, let |
---|
| 799 | C_m of a node be C_t of the node times C_1 of then child of the node. |
---|
| 800 | The number of occurrences of a variable is determined by summing C_m of all |
---|
| 801 | nodes that belongs to the variable in the ZDD. The argument count is |
---|
| 802 | passed by caller, and it is an array of integer to store the number of |
---|
| 803 | occurrence for each variable, and the size of the array is the number |
---|
| 804 | of ZDD variables.] |
---|
| 805 | |
---|
| 806 | SideEffects [] |
---|
| 807 | |
---|
| 808 | SeeAlso [] |
---|
| 809 | |
---|
| 810 | ******************************************************************************/ |
---|
| 811 | void |
---|
| 812 | SynthCountLiteralOccurrence(bdd_manager *dd, |
---|
| 813 | bdd_node *f, |
---|
| 814 | int *count) |
---|
| 815 | { |
---|
| 816 | BfsItem **level, *item, *cur_item, *next_item, *last_item; |
---|
| 817 | BfsList *list, *pre_list, *cur_list, *next_list, *last_list; |
---|
| 818 | BfsList *new_list, *save_last_list; |
---|
| 819 | int cur_level, next_level, start_level, last_level; |
---|
| 820 | int exist; |
---|
| 821 | bdd_node *zero = bdd_read_zero(dd); |
---|
| 822 | bdd_node *one = bdd_read_one(dd); |
---|
| 823 | int i, ct, ce; |
---|
| 824 | bdd_node *node; |
---|
| 825 | int lv, *index, id; |
---|
| 826 | int sizeZ = bdd_num_zdd_vars(dd); |
---|
| 827 | |
---|
| 828 | if (bdd_is_constant(f)) |
---|
| 829 | return; |
---|
| 830 | |
---|
| 831 | level = ALLOC(BfsItem *, sizeZ); |
---|
| 832 | (void)memset((void *)level, 0, sizeof(BfsItem *) * sizeZ); |
---|
| 833 | index = ALLOC(int, sizeZ); |
---|
| 834 | (void)memset((void *)index, 0, sizeof(int) * sizeZ); |
---|
| 835 | |
---|
| 836 | /* Initialize BFS by entering f in the queue. */ |
---|
| 837 | item = ALLOC(BfsItem, 1); |
---|
| 838 | (void)memset((void *)item, 0, sizeof(BfsItem)); |
---|
| 839 | item->node = f; |
---|
| 840 | item->reach = 1; |
---|
| 841 | lv = bdd_read_zdd_level(dd,bdd_node_read_index(f)); |
---|
| 842 | level[lv] = item; |
---|
| 843 | index[lv] = bdd_node_read_index(f); |
---|
| 844 | start_level = last_level = lv; |
---|
| 845 | |
---|
| 846 | if (!bdd_is_constant(bdd_bdd_T(f))) { |
---|
| 847 | list = ALLOC(BfsList, 1); |
---|
| 848 | (void)memset((void *)list, 0, sizeof(BfsList)); |
---|
| 849 | list->item = item; |
---|
| 850 | list->child = 1; |
---|
| 851 | last_list = list; |
---|
| 852 | } else |
---|
| 853 | list = last_list = (BfsList *)NULL; |
---|
| 854 | if (!bdd_is_constant(bdd_bdd_E(f))) { |
---|
| 855 | last_list = ALLOC(BfsList, 1); |
---|
| 856 | (void)memset((void *)last_list, 0, sizeof(BfsList)); |
---|
| 857 | last_list->item = item; |
---|
| 858 | last_list->child = 0; |
---|
| 859 | if (list) |
---|
| 860 | list->next = last_list; |
---|
| 861 | else |
---|
| 862 | list = last_list; |
---|
| 863 | } |
---|
| 864 | |
---|
| 865 | /* Perform the BFS. */ |
---|
| 866 | while (list) { |
---|
| 867 | cur_level = sizeZ; |
---|
| 868 | cur_list = list; |
---|
| 869 | while (cur_list) { |
---|
| 870 | if (cur_list->child) |
---|
| 871 | id = bdd_node_read_index(bdd_bdd_T(cur_list->item->node)); |
---|
| 872 | else |
---|
| 873 | id = bdd_node_read_index(bdd_bdd_E(cur_list->item->node)); |
---|
| 874 | next_level = bdd_read_zdd_level(dd,id); |
---|
| 875 | cur_level = (cur_level < next_level) ? cur_level : next_level; |
---|
| 876 | cur_list = cur_list->next; |
---|
| 877 | } |
---|
| 878 | last_level = cur_level; |
---|
| 879 | save_last_list = last_list; |
---|
| 880 | |
---|
| 881 | pre_list = (BfsList *)NULL; |
---|
| 882 | cur_list = list; |
---|
| 883 | while (cur_list) { |
---|
| 884 | if (cur_list->child) |
---|
| 885 | id = bdd_node_read_index(bdd_bdd_T(cur_list->item->node)); |
---|
| 886 | else |
---|
| 887 | id = bdd_node_read_index(bdd_bdd_E(cur_list->item->node)); |
---|
| 888 | next_level = bdd_read_zdd_level(dd,id); |
---|
| 889 | |
---|
| 890 | if (next_level != cur_level) { |
---|
| 891 | pre_list = cur_list; |
---|
| 892 | cur_list = cur_list->next; |
---|
| 893 | continue; |
---|
| 894 | } |
---|
| 895 | |
---|
| 896 | if (cur_list->child) |
---|
| 897 | node = bdd_bdd_T(cur_list->item->node); |
---|
| 898 | else |
---|
| 899 | node = bdd_bdd_E(cur_list->item->node); |
---|
| 900 | |
---|
| 901 | exist = 0; |
---|
| 902 | last_item = level[cur_level]; |
---|
| 903 | while (last_item) { |
---|
| 904 | if (node == last_item->node) { |
---|
| 905 | last_item->reach += cur_list->item->reach; |
---|
| 906 | exist = 1; |
---|
| 907 | break; |
---|
| 908 | } |
---|
| 909 | if (last_item->next) |
---|
| 910 | last_item = last_item->next; |
---|
| 911 | else |
---|
| 912 | break; |
---|
| 913 | } |
---|
| 914 | |
---|
| 915 | if (exist == 0) { |
---|
| 916 | item = ALLOC(BfsItem, 1); |
---|
| 917 | (void)memset((void *)item, 0, sizeof(BfsItem)); |
---|
| 918 | item->node = node; |
---|
| 919 | item->reach = cur_list->item->reach; |
---|
| 920 | if (last_item) |
---|
| 921 | last_item->next = item; |
---|
| 922 | else { |
---|
| 923 | level[cur_level] = item; |
---|
| 924 | index[cur_level] = id; |
---|
| 925 | } |
---|
| 926 | |
---|
| 927 | if (!bdd_is_constant(bdd_bdd_T(node))) { |
---|
| 928 | new_list = ALLOC(BfsList, 1); |
---|
| 929 | (void)memset((void *)new_list, 0, sizeof(BfsList)); |
---|
| 930 | new_list->item = item; |
---|
| 931 | new_list->child = 1; |
---|
| 932 | last_list->next = new_list; |
---|
| 933 | last_list = new_list; |
---|
| 934 | } |
---|
| 935 | if (!bdd_is_constant(bdd_bdd_E(node))) { |
---|
| 936 | new_list = ALLOC(BfsList, 1); |
---|
| 937 | (void)memset((void *)new_list, 0, sizeof(BfsList)); |
---|
| 938 | new_list->item = item; |
---|
| 939 | new_list->child = 0; |
---|
| 940 | last_list->next = new_list; |
---|
| 941 | last_list = new_list; |
---|
| 942 | } |
---|
| 943 | } |
---|
| 944 | |
---|
| 945 | next_list = cur_list->next; |
---|
| 946 | if (cur_list == list && cur_list == last_list) { |
---|
| 947 | FREE(cur_list); |
---|
| 948 | list = next_list; |
---|
| 949 | } else if (cur_list == list) { |
---|
| 950 | FREE(cur_list); |
---|
| 951 | pre_list = (BfsList *)NULL; |
---|
| 952 | if (list == save_last_list) { |
---|
| 953 | list = next_list; |
---|
| 954 | next_list = (BfsList *)NULL; |
---|
| 955 | } else |
---|
| 956 | list = next_list; |
---|
| 957 | } else if (cur_list == last_list) { |
---|
| 958 | if (pre_list) |
---|
| 959 | pre_list->next = cur_list->next; |
---|
| 960 | FREE(cur_list); |
---|
| 961 | last_list = pre_list; |
---|
| 962 | } else { |
---|
| 963 | if (pre_list) |
---|
| 964 | pre_list->next = cur_list->next; |
---|
| 965 | if (cur_list == save_last_list) { |
---|
| 966 | FREE(cur_list); |
---|
| 967 | next_list = (BfsList *)NULL; |
---|
| 968 | } else |
---|
| 969 | FREE(cur_list); |
---|
| 970 | } |
---|
| 971 | |
---|
| 972 | cur_list = next_list; |
---|
| 973 | } |
---|
| 974 | } |
---|
| 975 | |
---|
| 976 | /* Compute the number of paths to the constant 1 for each node in |
---|
| 977 | * bottom up fashion. Update the occurrence count of the variables. |
---|
| 978 | */ |
---|
| 979 | for (i = last_level; i >= start_level; i--) { |
---|
| 980 | item = level[i]; |
---|
| 981 | while (item) { |
---|
| 982 | ct = ce = 0; |
---|
| 983 | if (bdd_bdd_T(item->node) == one) |
---|
| 984 | ct = 1; |
---|
| 985 | else { |
---|
| 986 | node = bdd_bdd_T(item->node); |
---|
| 987 | next_level = bdd_read_zdd_level(dd, bdd_node_read_index(node)); |
---|
| 988 | cur_item = level[next_level]; |
---|
| 989 | while (cur_item) { |
---|
| 990 | if (cur_item->node == node) { |
---|
| 991 | ct = cur_item->count; |
---|
| 992 | break; |
---|
| 993 | } |
---|
| 994 | cur_item = cur_item->next; |
---|
| 995 | } |
---|
| 996 | } |
---|
| 997 | if (bdd_bdd_E(item->node) != zero) { |
---|
| 998 | node = bdd_bdd_E(item->node); |
---|
| 999 | next_level = bdd_read_zdd_level(dd, |
---|
| 1000 | bdd_node_read_index(node)); |
---|
| 1001 | cur_item = level[next_level]; |
---|
| 1002 | while (cur_item) { |
---|
| 1003 | if (cur_item->node == node) { |
---|
| 1004 | ce = cur_item->count; |
---|
| 1005 | break; |
---|
| 1006 | } |
---|
| 1007 | cur_item = cur_item->next; |
---|
| 1008 | } |
---|
| 1009 | } |
---|
| 1010 | item->count = ct + ce; |
---|
| 1011 | count[index[i]] += ct * item->reach; |
---|
| 1012 | item = item->next; |
---|
| 1013 | } |
---|
| 1014 | } |
---|
| 1015 | |
---|
| 1016 | /* Clean up. */ |
---|
| 1017 | for (i = last_level; i >= start_level; i--) { |
---|
| 1018 | item = level[i]; |
---|
| 1019 | while (item) { |
---|
| 1020 | next_item = item->next; |
---|
| 1021 | FREE(item); |
---|
| 1022 | item = next_item; |
---|
| 1023 | } |
---|
| 1024 | } |
---|
| 1025 | |
---|
| 1026 | FREE(level); |
---|
| 1027 | FREE(index); |
---|
| 1028 | } |
---|
| 1029 | |
---|
| 1030 | |
---|
| 1031 | /*---------------------------------------------------------------------------*/ |
---|
| 1032 | /* Definition of static functions */ |
---|
| 1033 | /*---------------------------------------------------------------------------*/ |
---|
| 1034 | |
---|
| 1035 | |
---|
| 1036 | /**Function******************************************************************** |
---|
| 1037 | |
---|
| 1038 | Synopsis [Finds a ZDD node that is referred by more than one parent |
---|
| 1039 | node in a function.] |
---|
| 1040 | |
---|
| 1041 | Description [Finds a ZDD node that is referred by more than one parent |
---|
| 1042 | node in a function. Performs a DFS from f. Whenever a node is visited, |
---|
| 1043 | the node is marked. When a node is visited, if the node is already marked, |
---|
| 1044 | it returns the index of the node. Uses the LSB of the next pointer as |
---|
| 1045 | visited flag. This function returns the number of path to constant 1 from |
---|
| 1046 | the node, and return value -1 means already found.] |
---|
| 1047 | |
---|
| 1048 | SideEffects [Once this function is called, SynthZddClearFlag() should |
---|
| 1049 | be called right after.]; |
---|
| 1050 | |
---|
| 1051 | SeeAlso [SynthZddClearFlag] |
---|
| 1052 | |
---|
| 1053 | ******************************************************************************/ |
---|
| 1054 | static int |
---|
| 1055 | FindQuickDivisor(bdd_node *f, |
---|
| 1056 | bdd_node *one, |
---|
| 1057 | int *v) |
---|
| 1058 | { |
---|
| 1059 | int c, ct, ce; |
---|
| 1060 | bdd_node *temp = bdd_read_next(f); |
---|
| 1061 | |
---|
| 1062 | if (bdd_is_constant(f)) { |
---|
| 1063 | if (f == one) |
---|
| 1064 | return(1); |
---|
| 1065 | else |
---|
| 1066 | return(0); |
---|
| 1067 | } |
---|
| 1068 | |
---|
| 1069 | if (bdd_is_complement(temp)) { /* already visited */ |
---|
| 1070 | *v = bdd_node_read_index(f); |
---|
| 1071 | return(-1); |
---|
| 1072 | } |
---|
| 1073 | /* mark as visited */ |
---|
| 1074 | bdd_set_next(f, bdd_not_bdd_node(temp)); |
---|
| 1075 | |
---|
| 1076 | ct = FindQuickDivisor(bdd_bdd_T(f), one, v); |
---|
| 1077 | if (ct == -1) /* already found */ |
---|
| 1078 | return(-1); |
---|
| 1079 | else if (ct > 1) { |
---|
| 1080 | *v = bdd_node_read_index(f); |
---|
| 1081 | return(-1); |
---|
| 1082 | } |
---|
| 1083 | |
---|
| 1084 | ce = FindQuickDivisor(bdd_bdd_E(f), one, v); |
---|
| 1085 | if (ce == -1) /* already found */ |
---|
| 1086 | return(-1); |
---|
| 1087 | |
---|
| 1088 | /* Add the number of path to constant 1 from two children nodes. */ |
---|
| 1089 | c = ct + ce; |
---|
| 1090 | return(c); |
---|
| 1091 | } |
---|