
Experiments with the Huffman Decoder/Encoder

(VIS bench)

Cécile Braunstein

December 13, 2012

1 Original platform from VIS

1.1 Model architecture

5 1Encoder Decoder

shiftreg[9:0] state[9:0]

plain[7:0]cipher

character[7:0]

addr[4:0]

8

Figure 1: Architecture of Huffman original

shiftreg = code(character)

INIT

SHIFT
0>>shiftreg

shiftreg > 1

shiftreg <= 1

(a) Encoder automaton

INIT
state = 0

state<<0 + cipher

PROGRESS

0 + cipher

INIT TREE

leaf

not leaf

(b) Decoder automaton

The Huffman circuit describes the implementation of static (English) Huffman encoder/decoder.

• Encoder: Read a character and return the encoding form bit by bit

• Decoder: Explore the encoding tree and return the character when it reaches a leaf.

1.2 Robustness Analysis

The robustness analysis has been performed for usut and msmt faults only. The set of safe states for
robustness 4 is the reach set of states. The table 1 shows the robustness analysis of the original circuit in

1

Rob Fault |Err| νev νpot time

Rob4
SEU 61810 48% 99.5% 0
MEU 2.68e+08 7% 99.8% 0

Rob3
SEU 1.53e+06 44.7% 99.6% 1min
MEU 2.36e+11 0.6% 99.8% 1min

Rob1
SEU 1.43e+06 30.4% - 0
MEU 2.36e+11 0% - 0

Originaly reachable states : 878

Table 1: Robustness of the Huffman circuit from the VIS bench

VIS bench. There exists eds from where the circuits will never recover. After analyzing these path (by
producing counterexample), we were able to avoid them path by modifying the encoder automaton. The
case were shiftreg equals 0 is not taken into account on this automaton. This can be solved by replacing
the guard transition from SHIFT to INIT.

From this point, we will considered only this modified version of the Huffman circuit.

Rob Fault |Err| νev νpot time

Rob4
SEU 61654 48% 100% 0
MEU 2.68e+08 7% 100% 0

Rob3
SEU 1.43e+06 45% 100% 1min
MEU 2.36e+11 0.6% 100% 1min

Rob1
SEU 1.43e+06 30.5% - 0
MEU 2.36e+11 0% - 0

Originaly reachable states : 878

Table 2: Robustness of the corrected Huffman circuit from the VIS bench

This circuit is not completely robust due to the desynchronization between the encoder and the decoder
machine. The fault may have change the code of character in the encoder while the decoder where decoding
it. The original circuit does not have a mechanism to prevent such desynchronization such as handshake
protocol.

2 Huffman decoder/encoder synchronization

We synchronized the behavior of the decoder and the encoder device. The decoder starts only when the
encoder said so. The encoder may restarts the decoder even when the decoding part is not over.

This mechanism ensure the robustness level 4 with the set of reachable states considered as safe states.
Nevertheless this does not ensure the synchronization with the golden behavior. The non-robustness 3
comes from the fact that the environment does not have constraints. Moreover, it comes also from the lack
of synchronization between the environment and the model under test.

3 Huffman with a constraint environment

3.1 Environment: a given text

We build an environment synchronized with the encoder. The environment send the letter A and E alter-
natively when it received the acknowledgment from the encoder saying that the character code is sent.

2

Protected Fault Rob 4 Rob 3 Rob 1
registers type νev νpot νev νpot νev = νpot

character
SEU 25.34% 100% 22.78% 100 % 2.72%
MEU 7.07% 100% 0.59% 100% 0%

state
SEU 58.32% 100% 55.30% 100% 44.61%
MEU 24.78% 100% 2.22% 100% 0.10%

shiftreg
SEU 62.80% 100% 58.90% 100% 47.30%
MEU 10.92% 100% 13.86% 100% 0.62%

character/ SEU 25.87% 100% 19.54% 100% 0.30%
state MEU 24.78% 100% 2.12% 100% 0%

character/ SEU 24.62% 100% 26.02% 100% 5.14%
shiftreg MEU 7.47% 100% 13.79% 100% 0.623%

state/ SEU 100% 100% 100% 100% 100%
shiftreg MEU 100% 100% 100% 100% 100%

Table 3: Register grading of the corrected Huffman circuit from the VIS bench

shiftreg = code(character)

INIT

shiftreg > 1

shiftreg <= 1

INIT0
shiftreg = 0

start = 0

SHIFT
0>>shiftreg

start = 0

start = 1

(c) Encoder automaton

INIT
state = 0

state<<0 + cipher

PROGRESS

0 + cipher

INIT TREE

not leaf &&
not start

leaf ||
start

start
leaf ||

(d) Decoder automaton

Rob Fault |Err| νev νpot time

Rob4
SEU 25 633 100% 100% 0
MEU 5.37e+08 100% 100% 0

Rob3
SEU 334 248 83.5% 100% 0.5
MEU 4.72e+11 8.5% 100% 0.5

Rob1
SEU 334 248 32.7% - 0.7
MEU 4.72e+11 0% - 2

Originaly reachable states : 879

Table 4: Robustness Huffman circuit with internal synchronization

3

Protected Fault Rob 3 Rob 1
registers type νev νpot νev = νpot

character
SEU 77% 100 % 7%
MEU 8.5% 100% 0%

state
SEU 74.77 % 100% 46.64%
MEU 8.5% 100% 0%

shiftreg
SEU 100% 100% 49.73%
MEU 100% 100% 1.96%

start
SEU 82.88% 100% 30.89%
MEU 100% 100% 0%

character/ SEU 56.42% 100% 7.84%
state MEU 8.56% 100% 0%

character/ SEU 100% 100% 13.16%
shiftreg MEU 100% 100% 1.96%

state/ SEU 100% 100% 98.12%
shiftreg MEU 100% 100% 15%

state/ SEU 73.37% 100% 44.62%
start MEU 8.53% 100% 0%

character/ SEU 76% 100% 3.25%
start MEU 7.8% 100% 0%

shiftreg/ SEU 100% 100% 47.87%
start MEU 100% 100% 3.45%

shiftreg/ SEU 100% 100% 100%
state/start MEU 100% 100% 100%

Table 5: Register grading Huffman circuit with internal synchronization

A

addr = 0

val = 1

A

addr = 0

val = 0

B

addr = 4

val = 1

B

addr = 4

val = 0

not acknot ack

ack

(e) Environment

shiftreg = code(character)

INIT

INIT0
shiftreg = 0

start = 0

start = 1
ack = 0

val_addr

ack = 1

SHIFT
0>>shiftreg

start = 0

shiftreg <= 1

shiftreg <= 1

ack = last_ci

&& val

&& !val

! val

shiftreg > 1

(f) New Encoder

4

We perform a robustness analysis with a new rob3 :
The faulty and the golden have got the same inputs from the environment. The environment only reacts to
the outputs from the faulty circuits.

The set of safe states are the ones where the golden and the faulty states are observably equivalent.

Rob Fault |Err| νev νpot time

Rob4
SEU 270 100% 100% 0
MEU 4.29e+09 100% 100% 0

Rob3
SEU 270 100% 100% 0.5
MEU 8.27e+10 100% 100% 0.5

Rob1
SEU 270 47.7% - 0.7
MEU 8.27e+10 0% - 2

Originaly reachable states : 90

Self stabilized after 10 steps, there is not healthy states before. Just checking the AX:9 AG (golend-

Out == faultyOut) and AX:10 AG (golendOut == faultyOut)

3.2 Synchronized with the decoder

Our goal is to model the basis functionnalities that an environment should at least have. In this experiments
any character may be encode. The environment is waiting that the encoder is ready to take a letter (ack = 1)
and send a letter in a non deterministic time (free input i_val). This modeling implies that we need to add
fairness constraints to avoid the infinite path where the environment never asks for a new encoding.

val = ND

addr = ND

WAIT_RDY

val = 1

addr = ND

RDY

ack = 0 val = 0

addr = ND

WAIT_ACK

val = 0

addr = 0

INIT

ack = 0

ack = 1

i_val = 0

i_val = 1

Figure 2: Less constraint environment

3.3 Separate study for decoder and encoder

The encoder is completely robust (rob3 and rob4) under the fairness constraint that the environment should
ask for a new computation from time to time.

The decoder has got the same characteristic. It is robust iff his environment always need a new computa-
tion. The encoder verifies this property (AG(AF(start = 1))), hence the composition of the decoder and
encoder is 100% robust.

5

Rob Fault |Err| νev νpot time

Rob4
SEU 6.42e+05 100% 100% 0
MEU 1.03e+11 100% 100% 0

Rob3
SEU 6.42e+05 100% 100% 7
MEU 7.32e+13 100% 100% 7

Rob1
SEU 6.42e+05 0% - 0
MEU 7.32e+13 0% - 2

Originaly reachable states : 21 121

Table 6: Robustness with any text environment

6

