
,

Efficient Task Scheduling for Streaming Apps on Heterogeneous SoCs
Yacine Idouar, Adrien Cassagne & Julien Sopena

— LIP6 Project 2023-2024 — Sorbonne Université & CNRS

,

Context: Streaming Apps & SoCs

in_data6

in_data5

in_data4

in_data3

in_data2

in_data1

out_data6

out_data5

out_data4

out_data3

out_data2

out_data1

t0 t1 t2 t3 t4

1

2

3

4

5
6

7

8

9

10

11
12

▶ Large streams of independent data & efficiency constraints

▶ Stable computation pattern (almost the same for each stream)

▶ Well-spread: Digital communications, video processing, DNN, ...

p0 p1

p2 p3

L2

p-
co

re
cl

us
te

r

e0

e1

e2

e3

L2

e-
co

re
cl

us
te

r

LLC

M
ul

tic
or

e
pr

oc
es

so
r

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

s16 s17 s18 s19

s20 s21 s22 s23

s24 s25 s26 s27

s28 s29 s30 s31

A
cc

el
er

at
or

(G
PU

,N
PU

,D
SP

)

Cache-coherence Interface (CCI)

System-on-a-Chip (SoC)

RAMbus

▶ Heterogeneous systems: Powerful and power efficient CPU cores

▶ Specialized process units: GPU, NPU, DSP, ...

▶ Unified global memory: Great opportunities for programming!

Targeted System: Apple M1 Ultra

p0 p1

p2 p3

L2 – 12 MB

p-core cluster 0

p4 p5

p6 p7

L2 – 12 MB

p-core cluster 1

e0 e1

L2 – 4 MB

e-core cluster 0

L3 – 48 MB

Chiplet 0

p8 p9

p10 p11

L2 – 12 MB

p-core cluster 2

p12 p13

p14 p15

L2 – 12 MB

p-core cluster 3

e2 e3

L2 – 4 MB

e-core cluster 1

L3 – 48 MB

Chiplet 1

Apple UltraFusion Interconnect @ 2.5 TB/s

Apple M1 Ultra CPU

▶ 20 CPU cores
▷ 4 clusters of 4 p-cores
@ 3.230 GHz

▷ 2 clusters of 2 e-cores
@ 2.064 GHz

▷ ARMv8.5-A ISA with
128-bit NEON SIMD

▶ 5 nm TSMC chiplet design
▷ Fusion of two M1 Max

▶ RAM bandwidth: 800 GB/s

▶ Fedora Asahi Linux OS
▷ Kernel 6.6
▷ Thread pinning*

*: Running Linux is required as macOS does not provide a working thread pinning mechanism

Memory Bound Micro-benchmark

A chain of sixteen t
i∈[0. .15]
i tasks is considered. Each task performs stream-

ing increments: B ← B + 1 where B is a buffer of size N . Each task
is run on a single thread and mapped onto a pipeline stage. The com-
munication between two consecutive stages is achieved through a 1→ 1
producer-consumer algorithm (from the StreamPU runtime [2]).

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

2

4

6

8

Buffer of 64 KB (L1 cache)

L
at

en
cy

(µ
s)

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

20

40

Buffer of 512 KB (L2 cache)

L
at

en
cy

(µ
s)

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

40

60

80

100

120

Buffer of 1 GB (RAM)

L
at

en
cy

(m
s) Linux 6.6 manual thread pinning

Per task latency depending on thread scheduling policy and buffer size N .

▶ Linux scheduler is always outperformed by manual thread pinning
▷ Balanced workload on all the cores & useless thread migrations

▶ Manual thread pinning according to cores physical locality
▷ Tasks are mapped to p-cores only: pi ← ti (e-cores are left idle)

GPU Memory Allocation & Transfer Policies

Scenario of a first exec of a simple kernel on GPU (that may or may
not require a memory copy depending on the selected memory policy)
followed by a second exec of the same kernel (no memory copy) [3].

First execution
(GeForce RTX 4050)

Second execution
(GeForce RTX 4050)

First execution
(Jetson Orin NX)

Second execution
(Jetson Orin NX)

0

100

200

300

400

17
5

18
0

65 55

22
0

20

34
0

40

57
0

20

85 80

30
0

20

89
0

50

L
at

en
cy

(m
s)

host
device
shared
buffer

Effect of SYCL memory policies [4] on traditional discrete GPU architecture (GeForce
RTX 4050 ) and on integrated GPU with unified memory (Jetson Orin NX).

Results on a Real-world Application

receive
(tRx

0 )
imultiply

(tRx
1 )

synchronize
(tRx

2 )
filter 1/2

(tRx
3 )

filter 2/2

(tRx
4 )

synchronize
(tRx

5 )
extract
(tRx

6 )
imultiply

(tRx
7 )

synchronize 1/2

(tRx
8 )

synchronize 2/2

(tRx
9 )

descramble
(tRx

10 )
synchronize

(tRx
11 )

synchronize
(tRx

12 )
remove
(tRx

13 )
estimate

(tRx
14 )

demodulate
(tRx

15 )
deinterleave

(tRx
16 )

decode SIHO
(tRx

17 )
decode HIHO

(tRx
18 )

descramble
(tRx

19 )
send
(tRx

20 )

USRP

Radio
Multiplier

AGC
Synchronizer
Freq. Coarse Filter Matching

Synchronizer
Timing (Gardner)

Multiplier
AGC

Synchronizer Frame
Scrambler
Symbol

Synchronizer
Freq. Fine L&R

Synchronizer
Freq. Fine P/F

Framer
PLH

Noise
Estimator

Modem
PSK Interleaver

Decoder
LDPC

Decoder
BCH

Scrambler
Binary

Sink
Binary File

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Stage 6 Stage 7 Stage 8 Stage 9 Stage 10

Stage 11 (replicated over 7 threads) Stage 12

Task graph of the DVB-S2 Rx. Plain tasks cannot be replicated.

▶ Digital Video Broadcasting – Satellite – 2nd Gen. (DVB-S2)

▷ Focus on the most compute intensive part: The receiver (Rx)

▷ Efficient SIMD implem, 13-stage pipeline with replication [1]

p-
cl

0

p-
cl

1

e-
cl

0

p-
cl

2

p-
cl

3

e-
cl

1

0

20

40

60

80

100

S0: OS scheduling

C
lu

st
er

oc
cu

pa
nc

y
(%

)

p-
cl

0

p-
cl

1

e-
cl

0

p-
cl

2

p-
cl

3

e-
cl

1

S1: Pinning for throughput

p-
cl

0

p-
cl

1

e-
cl

0

p-
cl

2

p-
cl

3

e-
cl

1

S2: Pinning for energy

Occupancy of the M1 Ultra CPU clusters depending on three different thread mapping
strategies. S0: Linux 6.6 scheduler. S1: Manual thread pinning to maximize the app
throughput. S2: Manual thread pinning to minimize the app energy consumption.

Throughput Power Energy/fra
Strategy (Mb/s) (W) (mJ)

S0 54.5 32 8.0
S1 56.0 30 7.3
S2 53.6 26 6.6

Compared to S0 strategy
▶ S1: Throughput gain: +3%

& Energy efficiency: +10%
▶ S2: Throughput gain: −1.5%

& Energy efficiency: +20%

References
[1] A. Cassagne, M. Léonardon, R. Tajan, C. Leroux, C. Jégo, O. Aumage, and D. Barthou.

A flexible and portable real-time DVB-S2 transceiver using multicore and SIMD CPUs.

In International Symposium on Topics in Coding (ISTC). IEEE, Sept. 2021.

[2] A. Cassagne, R. Tajan, O. Aumage, D. Barthou, C. Leroux, and C. Jégo.

A DSEL for high throughput and low latency software-defined radio on multicore CPUs.

Wiley Concurrency and Computation: Practice and Experience, 35(23):e7820, July 2023.

[3] S. Joube, H. Grasland, D. Chamont, and E. Brunet.

Comparing SYCL data transfer strategies for tracking use cases.

Journal of Physics: Conference Series, 2438(1):012018, Feb. 2023.

[4] R. Reyes, G. Brown, R. Burns, and M. Wong.

SYCL 2020: More than meets the eye.

In International Workshop on OpenCL. ACM, 2020.

lip6.fr communication@lip6.fr

https://lip6.fr
mailto:communication@lip6.fr

