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Context: Streaming Apps & SoCs
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▶ Large streams of independent data & efficiency constraints

▶ Stable computation pattern (almost the same for each stream)

▶ Well-spread: Digital communications, video processing, DNN, ...
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▶ Heterogeneous systems: Powerful and power efficient CPU cores

▶ Specialized process units: GPU, NPU, DSP, ...

▶ Unified global memory: Great opportunities for programming!

Targeted System: Apple M1 Ultra
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Apple M1 Ultra CPU

▶ 20 CPU cores
▷ 4 clusters of 4 p-cores
@ 3.230 GHz

▷ 2 clusters of 2 e-cores
@ 2.064 GHz

▷ ARMv8.5-A ISA with
128-bit NEON SIMD

▶ 5 nm TSMC chiplet design
▷ Fusion of two M1 Max

▶ RAM bandwidth: 800 GB/s

▶ Fedora Asahi Linux OS
▷ Kernel 6.6
▷ Thread pinning*

*: Running Linux is required as macOS does not provide a working thread pinning mechanism

Memory Bound Micro-benchmark

A chain of sixteen t
i∈[0. .15]
i tasks is considered. Each task performs stream-

ing increments: B ← B + 1 where B is a buffer of size N . Each task
is run on a single thread and mapped onto a pipeline stage. The com-
munication between two consecutive stages is achieved through a 1→ 1
producer-consumer algorithm (from the StreamPU runtime [2]).
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Per task latency depending on thread scheduling policy and buffer size N .

▶ Linux scheduler is always outperformed by manual thread pinning
▷ Balanced workload on all the cores & useless thread migrations

▶ Manual thread pinning according to cores physical locality
▷ Tasks are mapped to p-cores only: pi ← ti (e-cores are left idle)

GPU Memory Allocation & Transfer Policies

Scenario of a first exec of a simple kernel on GPU (that may or may
not require a memory copy depending on the selected memory policy)
followed by a second exec of the same kernel (no memory copy) [3].

First execution
(GeForce RTX 4050)

Second execution
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First execution
(Jetson Orin NX)

Second execution
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Effect of SYCL memory policies [4] on traditional discrete GPU architecture (GeForce
RTX 4050 ) and on integrated GPU with unified memory (Jetson Orin NX).

Results on a Real-world Application
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Task graph of the DVB-S2 Rx. Plain tasks cannot be replicated.

▶ Digital Video Broadcasting – Satellite – 2nd Gen. (DVB-S2)

▷ Focus on the most compute intensive part: The receiver (Rx)

▷ Efficient SIMD implem, 13-stage pipeline with replication [1]
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S0: OS scheduling
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S1: Pinning for throughput
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S2: Pinning for energy

Occupancy of the M1 Ultra CPU clusters depending on three different thread mapping
strategies. S0: Linux 6.6 scheduler. S1: Manual thread pinning to maximize the app
throughput. S2: Manual thread pinning to minimize the app energy consumption.

Throughput Power Energy/fra
Strategy (Mb/s) (W) (mJ)

S0 54.5 32 8.0
S1 56.0 30 7.3
S2 53.6 26 6.6

Compared to S0 strategy
▶ S1: Throughput gain: +3%

& Energy efficiency: +10%
▶ S2: Throughput gain: −1.5%

& Energy efficiency: +20%
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