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Introduction

Deep learning algorithms, and more particularly deep neural networks (DNNs) are ubiquitous in modern
image processing tasks. For instance, convolutional neural networks (CNNs) have brought a real breakthrough
in the fields of algorithmic image classification and object detection [1]. In order to setup a DNN for solving
a given task, three main steps have to be considered. Firstly, one should choose or construct the structure of
its network. Secondly, the network should be trained to solve a specific task. Lastly, the network makes its
predictions and eventually solve the problem asked, this is the inference phase.

The ALSOC team of the LIP6 laboratory, has a strong expertise on Systems-on-Chip (SoCs) architecture.
These systems can be characterized by a lower energy consumption compared to high-end servers found in
computing centers that are generally used for the training phase of a DNN. As a result, SoCs are a great
target for performing deep learning inference. In addition, the ALSOC team is involved in a project aiming
to embed a meteor detection software in a satellite [2]. A critical point of this kind of software is to detect
moving objects, a task that CNNs can achieve with up to 98.5% detection rate [3]. However, to date, the
achieved throughput does not match the real time constraint. The ALSOC team therefore has interests in
proposing efficient implementations of CNN inference on SoCs.

This internship is motivated by the perspective of implementing fast and energy efficient CNN inference
over several SoCs. The main purpose of this internship is to implement and evaluate several State-of-the-art
methods to compute efficient convolutions. Indeed, this study of the convolution layer as an independent
operator is the first step to an overall optimization of CNN inference. In the first sections of this report,
we will see that the critical operation of the forward pass through a CNN is the convolution layer. The
three principal algorithms that we describe in this report are direct, im2row and winograd. We will then
characterize this layer and propose several high-level algorithmic designs for efficient convolutions. In a last
part of this report, we will evaluate our implementations of the convolution layer in several SoCs.

1 Context about popular CNNs in State-of-the-art

Amongst different types of deep neural networks, convolutional neural networks are certainly the most stud-
ied. Inspired by the anatomy of animal visual cortex, CNNs have proven their efficiency in solving image
classification and object detection tasks. While the modern structure of a CNN was first described by Yann
Le Cun et al. in 1989 [4], CNNs became very popular in 2012, after that Krizhevsky et al. won ILSVRC
image classification contest with their CNN design called AlexNet [5]. AlexNet is one of the most famous
CNN architecture, which is similar to LeNet-5 proposed by Yann Le Cun, but with a deeper structure. Right
after AlexNet’s breakthrough, many CNN designs were created with a similar structure. In this context,
ZFNet [6] and VGG networks [7] have been proposed in 2013 and 2014, respectively.

More recently, new mechanisms have been added to CNNs in order to face issues encountered at that
time. A good example is the creation of residual networks (ResNet) [8] in 2015, which is the first network to
implement residual layers in order to simplify the network and make the learning phase faster. Following the
principle of ResNet, DenseNet [9] maximizes the number of connections between separate layers, allowing
improvement of accuracy with fewer weights but at the cost of a more complex training. Another notable
improvement is the creation of inception layers, featured in GoogLeNet [10] networks, which consists in
applying several filters to a same input in order to allow the network to process several filtered version of an
image in one layer. Recently, MobileNets [11] have been created to optimize the use of CNNs on embedded
systems. In these networks, convolution layers are split in two specific convolution layers: a depthwise
convolution and a pointwise convolution.

Despite featuring slight changes with the first network designs, the overall structure of modern CNNs
is very similar. The general structure of a CNN always starts by applying learnable features on the input
tensor. This first step generally includes dimension reduction which can be achieved with pooling, alternating
with convolution layers which apply (and eventually learn) the filters of the model. A second step consists in
flattening the output of this feature processing, eventually including numerical transformations. Lastly, the
flattened tensor passes through a fully-connected layer which achieves the final prediction.

It is well-known that the convolution layers are critical components of modern CNNs, so a lot of work
focuses on optimizing their execution [12]. The goal of this internship is to state guidelines for implementing
efficient convolution operators corresponding to the layers of modern CNNs. In this context, the study of
network-level optimizations are left as future work.
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2 The convolution layer

2.1 Notations and preliminaries

A convolution is a parameterized operation: kernels with a given size and dilation are applied with a given
stride to a tensor with a given size and padding [13]. The notations used in the following of this report to
describe convolutions are summarized in Table 1.

For simplicity, this report only considers 2-dimensional convolutions over 4-dimensional tensors. Tensors
are multidimensional structures used to represent batches of images. The 4 dimensions of the tensors can
be understood as: batch × image channels × image height × image width. For the first convolution layer
of the CNN, the two inner-most dimensions represents the image while the channels represents the color in
RGB format. The batch dimension allows the convolution to operate on several images at once.

MB batch size KH, KW kernel height, width PH, PW padding height, width
IC input channels OC output channels SH, SW stride height, width

IH, IW input height, width OH, OW output height, width DH, DW dilation height, width

Table 1: Notations for the main convolution parameters.

Using the appropriate notations, the convolution operator takes an input tensor of sizeMB×IC×IH×IW
and a weights tensor of size OC×IC×KH×KW to compute an output tensor of size MB×OC×OH×OW .

2.2 The convolution operation

As we saw it previously, CNNs can be decomposed in layers, each of them applying a specific treatment to
the input tensor. Among those, the convolution layer computes linear combinations between the elements of
the input tensor within a sliding kernel and its corresponding input channels.

This operation can be described mathematically as it follows:

dst[mb, oc, oh, ow] = bias[oc] +

IC−1∑
ic=0

KH−1∑
kh=0

KW−1∑
kw=0

src(mb, ic, ih, iw) · weights[oc, ic, kh, kw], (1)

where ih and iw are locally defined as:{
ih := oh · SH + kh · (DH + 1)− PH,

iw := ow · SW + kw · (DW + 1)− PW.
(2)

In order to visualize this operation, Figures 1 and 2 shows two kind of forward convolutions, both repre-
sented in two dimensions. The first one represents a strided kernel where SH = SW = 2 and the second one
represents a dilated kernel where DH = DW = 2.

IW

IH

PW

PH

OH

OW

SW

Figure 1: 2-strided 3× 3 convolution.

IW

IH

PW

PH

SW DW

OH

OW

Figure 2: dilated 3× 3 convolution: DW = DH = 1.

Convolutions in Figures 1 and 2 are represented in two dimensions but in general, they also perform a
reduction through the channels, as described by the formula (1). It is worth mentioning that most of the
common convolution layers used in CNNs have 3×3 kernels without dilation and are 1-strided. Tensors have
a fourth dimension which is the batch: this dimension allows a convolution layer to process several images in
only one call to the convolution primitive. In the case of inference, the batch size is considered small: always
lower than 8, usually 1 or 2. Other applications, such as training or inferring on a stream of images may
require larger batch sizes, but those cases will not be considered in this report.

3



2.3 Context and motivations for fast convolutions

The essence of any CNN is the succession of layers. A forward pass through a CNN consists in applying
several operators to an input tensor. Among those operators, convolution layers generally consume a large
fraction of the compute time of an inference.

To illustrate that, we measured the impact of convolution layers compared to other computations during
CPU inference using pytorch [14]. Figures 3 and 4 show the impact of convolution layers when running
CPU inference of several pytorch models on two modern CPUs. The first CPU is the ARM Cortex-A78AE,
embedded in NVIDIA Jetson AGX Orin boards. The second one is a AMD Ryzen 5 5600H CPU, widely
used in recent laptops.

Figure 3: Cost of convolutions on ARM Cortex-
A78AE.

Figure 4: Cost of convolutions on AMD Ryzen 5
5600H.

We can see in the previous graphs that convolutions represent more than half of the entire computational
time for a CNN. This important cost of the convolution layer motivates an important amount of work aiming
at developing efficient convolutions. However, due to the complexity of the operation, the literature cannot
state a proper and unique way to implement it to support any scenario.

During this internship, I implemented forward convolutions in several ways defined by State-of-the-art,
with high-level optimizations that I found appropriate. The aim of this work is to provide a fair comparison
between three well-known State-of-the-art high performance implementations of forward convolutions: direct
method, GEMM-based methods with im2row/im2col transformation and Winograd’s method.
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3 Optimization framework and programming model

3.1 Accessing memory in RAM or caches

Before explaining the optimization of a complex operator such as convolution layers, we must define some
concepts of high performance computing. Indeed, the convolution operator requires a lot of accesses to
computer’s memory, which has a limited throughput called memory bandwidth. Modern CPUs have access
to several levels of memory with increasing size but decreasing bandwidth.

We consider an architecture model in which data is loaded in cache lines each time the program loads
data from RAM. When the program tries to access data already loaded in cache, it can use this data directly
instead of loading it from RAM, taking profit of the higher bandwidth offered by the cache.

RAM: 32GB

PU

L1: 64kB

L2: 256kB

L3: 2048kB

PU

L1: 64kB

L2: 256kB

PU

L1: 64kB

L2: 256kB

PU

L1: 64kB

L2: 256kB

L3: 2048kB

Figure 5: Different levels of memory in modern CPUs Figure 6: Bandwidth among memory levels

Figure 5 illustrates an example of architecture for a multicore processor in which each process unit (PU)
has access to 3 cache levels. The L1 and L2 caches are specific to one PU while the L3 cache is common to 2
PUs. The RAM is usually the higher level of memory with the lowest bandwidth and is common to all the
PUs. This kind of architecture is common and very similar to the architecture of the SoCs studied in the
performance evaluation section.

Figure 6 illustrates that memory bandwidth is higher on lower levels of memory and decreases on the
higher levels. In order to build an efficient and memory aware algorithm, we thus need to maximize the reuse
of cached data.

3.2 Working with tensors in memory

According to its definition, the convolution operation works on multidimensional memory objects called
tensors. In particular, these objects represents the inputs and outputs of the convolution operator. An
interesting point to consider when working with tensors is how they are stored in memory. Indeed, memory
is an unidimensional structure so tensors need to be unfolded in order to be stored in memory.

A memory format describes how tensors are unfolded in memory. We refer to a memory format using a
multiplication between its dimensions, in the same order as the dimensions are stored in memory.

AxBxCxD: ...D0 D1 D2 D0 D1 D2 D0 D1 D2 D0 D1 D2

C0 C0C1 C1

A0

B0

Figure 7: Tensor with format A×B × C ×D in memory

Figure 7 illustrates how tensors are stored in memory according to A×B×C ×D format. An important
thing to note is that with this format, for fixed A, B and C, the elements among the D dimension are
contiguous in memory. This remark is important because an appropriate data layout can help the program
reusing data stored in the same cache line, benefiting from a higher memory bandwidth. Moreover, if data
is loaded from contiguous locations in memory, modern compilers are able to automatically generate code
using single instruction multiple data (SIMD) parallelism [15].
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4 Direct convolutions

4.1 Naive implementation

The forward convolution operator can be naively implemented using nested for loops. We call direct the
implementation which computes convolutions as defined in the formula (1).

Algorithm 1: Naive direct convolution

1 Input tensor src: (MB × IC × IH × IW )
2 Weights tensor wei: (OC × IC ×KH ×KW )
3 for mb=0 to MB do
4 for oc=0 to OC do
5 for oh=0 to OH do
6 for ow=0 to OW do
7 d← 0
8 for ic=0 to IC do
9 for kh=0 to KH do

10 for kw=0 to KW do
11 ih← oh · SH + kh · (DH + 1)− PH
12 iw ← ow · SW + kw · (DW + 1)− PW
13 d← d+ src[mb, ic, ih, iw] ∗ wei[oc, ic, kh, kw]
14 dst[mb, oc, oh, ow]← d

15 Return dst: (MB ×OC ×OH ×OW )

The naive way of implementing direct convolutions is to loop over the output tensor and accumulate the
value of each output pixel independently through the convolution kernel and input channels. This naive
implementation is described in Algorithm 1: loops from lines 3 to 6 iterates through the elements of output
tensor and loops from lines 8 to 10 iterates through the kernel and the corresponding channels.

4.2 State-of-art optimizations

Despite being relatively straight-forward, the previous version suffers from poor performance. We can explain
this poor performance by a non optimal reuse of cached data. Different approaches to optimize direct
convolutions were described in State-of-the-art and their common point is to optimize memory accesses.

To the best of our knowledge, the first article to describe a high performance implementation of direct
convolution was written by Zhang et al. in 2018 [16]. This article states a proper way of defining direct
convolutions in order to maximize the reuse of cached memory.

A first change that can be made to Algorithm 1 is to reorder its loops. Zhang et al. propose to nest
the loops in the following order: MB,OH,KH,KW, IC,OW,OC. This order allow the program to reuse
src[mb, ic, ih, iw] among the last loop and partially computes output starting by the OW dimension. This
results in a better reuse of memory already loaded in caches.

Another optimization described by Zhang et al. is cache blocking. By dividing the loops IC, OW , and
OC into blocks, we allow our implementation to keep reusing cached data between several iterations of
previous loops even when IC, OW , or OC are big. These cache blocking techniques are very popular and
usually provide significant performance improvements when blocking parameters are designed to fit the target
architecture.

Lastly, memory layouts of the several tensors considered in this algorithm can help to optimize the reuse
of cached data. Indeed, in a program containing several nested loops, ensuring that data is loaded close
enough in memory can allow the compiler to perform automatic vectorization which can lead to significant
performance improvement.
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4.3 An optimized implementation

Following the principles stated in the previous section, we implemented an optimized version of direct con-
volutions. This implementation, described in Algorithm 2, implements cache blocking with blocks of size
OCb × OWb × ICb and loop reordering to reuse the local variable s among the OCb loop. According to
previous section, our implementation is inspired from the algorithm proposed by Zhang et al. [16].

Algorithm 2: Optimized direct convolution

1 Input tensor src: MB × IH × IW × IC
2 Weights tensor wei: ⌈OC/OCb⌉ × ⌈IC/ICb⌉ ×KH ×KW × ICb ×OCb

3 for mb=0 to MB do
4 for ocb = 0 to ⌈OC/OCb⌉ do
5 for owb=0 to ⌈OW/OWb⌉ do
6 for oh=0 to OH do
7 for icb=0 to ⌈IC/ICb⌉ do
8 for kh=0 to KH do
9 for kw=0 to KW do

10 ih← oh · SH + kh · (DH + 1)− PH
11 for ic=icb × ICb to (icb + 1)× ICb do
12 for ow=owb ×OWb to (owb + 1)×OWb do
13 iw ← ow · SW + kw · (DW + 1)− PW
14 s← src[mb, ih, iw, ic]
15 for oc=ocb ×OCb to (ocb + 1)×OCb do
16 w ← wei[oc, ic, kh, kw]
17 d← s ∗ w
18 dst[mb, oc, oh, ow]← dst[mb, oc, oh, ow] + d

19 Return dst: MB ×OH ×OW ×OC

In Algorithm 2, the 3 inner-most loops correspond to an iteration within a block of size OCb×OWb×ICb.
These cache blocking parameter are critical for the performance of direct. In order to exploit the full
potential of this algorithm, we should use appropriate cache blocking parameters, fitting the architecture we
target. These parameters will be statically defined for each target of the performance evaluation.

The implementation considered in the performance evaluation section implements OpenMP parallelism
across the loops from lines 3 to 6. Keeping the loop of line 7 inside a parallel task avoid concurrent writes
into dst tensor. Moreover, at least one of the dimensions MB, OC, OH and OW is in general big enough to
allow consistent parallelism across a loop of size MB × ⌈OC/OCb⌉ × ⌈OW/OWb⌉ ×OH.
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5 im2row/im2col methods

5.1 The im2row and im2col transformations

A well-known alternative to direct convolution algorithm uses a specific transformation on the input tensor in
order to compute the convolution as a multi-dimensional matrix-matrix multiplication (GEMM) [17]. These
GEMM-based methods are widely used in State-of-the-art because the GEMM operation is already very well
optimized in many high performance mathematics libraries [18]. Moreover, GEMM operations are very well
supported by hardwares such as CPUs and GPUs [19].

The transformation operations applied to a tensor to turn it into a matrix to compute a convolution as
a GEMM are called im2col or im2row depending on the memory format of the tensor.

IW

IH
OH

OW

im2row

src tensor im2row buffer weights tensor output tensor

GEMM

K
H

x
K
W

x
IC

KH x KW x IC

M
B

x
IH

x
IW

OC

OCIC=1

Figure 8: Computing a convolution using im2row.

Figure 8 represents how im2row moves the data from the source tensor to a buffer in order to allow the
convolution to be computed as a GEMM. im2row transformation gathers the elements of each convolution
kernel and store them in a row of the im2row buffer. As a result, im2row buffer has size MB×OH ×OW ×
IC ×KH ×KW .

Algorithm 3: im2row transformation.

1 Input tensor src: (MB × IH × IW × IC)
2 for mb=0 to MB do
3 for oh=0 to OH do
4 for ow=0 to OW do
5 for ic=0 to IC do
6 for kh=0 to KH do
7 for kw=0 to KW do
8 ih← oh · SH + kh · (DH + 1)− PH
9 iw ← ow · SW + kw · (DW + 1)− PW

10 buf [mb, oh, ow, ic, kh, kw]← src[mb, ih, iw, ic]

11 Return buf : (MB ×OH ×OW × IC ×KH ×KW )

The implementation of im2row can be derived from the implementation of direct convolutions. Indeed,
Algorithm 3 shows that im2row transformation only iterates through the dimensions of im2row buffer and
fill its rows with values of source tensor by iterating through the convolution kernels. The only difference
with direct convolution implementation is that im2row does not compute any product between source and
weights tensor but it only accesses elements of the source tensor to store them in a buffer. As a result, im2row
efficiency is only bounded by memory while direct efficiency is also bounded by computational power.

The main advantage of im2row and im2col based methods is that all the floating point computations
are performed in a GEMM operation with a high performance library such as BLAS. Moreover, the im2row
transformation can be parallelized by collapsing the loops MB, OH, OW, IC and the parallelism of the GEMM
is managed by the high performance framework used.
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5.2 Implementation details

By using the im2row transformation introduced in previous section, the whole convolution implementation
can be described by Algorithm 4.

Algorithm 4: im2row convolution.

1 Input tensor src: MB × IH × IW × IC
2 Weights tensor wei: (IC ×KH ×KW )×OC
3 im buf ← im2row(input) ; // im buf : MB ×OH ×OW × (IC ×KH ×KW )
4 dst← blas gemm(im buf , wei)
5 Return dst ; // dst: MB ×OH ×OW ×OC

In this implementation of im2row convolutions, we can notice that src and dst tensors are stored with
channels as inner-most dimension in memory. This format avoids having to reorder the output tensor after
the gemm. In addition, the format with channel inner-most is widely used for other layers of CNNs and has
shown state-of-art performance improvement [20].

If we suppose that the weights of the networks are stored in IC × KH × KW × OC format, then the
GEMM can interprate these tensors as two matrices of format (MB ×OH ×OW )× (IC ×KH ×KW ) and
(IC ×KH ×KW ) × OC. Finally, the result of the GEMM of these two matrices with common dimension
(IC ×KH ×KW ) has appropriate format MB ×OH ×OW ×OC.

However, this interpretation does not stand if tensors are stored with format MB × IC × IH × IW . If
we want to use such a memory format, we should consider an im2col transformation which transforms src
tensor to a buffer with format (IC×KH×KW )×OH×OW . A proper im2col convolution implementation
is introduced in Algorithm 5.

Algorithm 5: im2col convolution.

1 Input tensor src: MB × IC × IH × IW
2 Weights tensor wei: OC × (IC ×KH ×KW )
3 for i← 0 to MB do
4 im buf ← im2col(input) ; // im buf: (IC ×KH ×KW )×OH ×OW
5 dst[mb]← blas gemm(wei, im buf)

6 Return dst ; // dst: MB ×OC ×OH ×OW

The implementation described in Algorithm 5 can be useful when other layers of the CNN require tensors
with format MB × IC × IH × IW . However, the im2col convolution suffers from poor performance because
it calls the gemm routine on smaller tensors. As a result, we will only consider the im2row convolution in
the performance evaluation section.

A drawback of the im2row-based algorithms is that the im2row buffer contains a lot of data redundancy
between successive lines. These redundancies cause the buffer to be very large compared to the source tensor.
For example, the most common convolution layer has KH = KW = 3, SH = SW = 1, KH = KW = 1
and IC = OC, so the buffer has a size MB ×OH ×OW × IC ×KH ×KW which is KH ×KW = 9 times
bigger than the source tensor.
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5.3 Memory Efficient Convolution

A State-of-the-art work describes several ways to reduce the memory consumption of im2row or im2col based
convolutions. A good way to reduce the memory growth of the im2row buffer is to generate the buffer in
a compact way and compute GEMMs within slices of the buffer. Cho et al. described an algorithm using
such a method to reduce the size of the buffer by a factor KH. This algorithm is called MEC for Memory
Efficient Convolution [21].

The idea of MEC is to notice that the rows of the source tensor can be reused among IH for multidimen-
sional kernels (for example, when KH = KW = 3, MEC buffer is created without redundancies among IH
and GEMMs are computed on slices of size KH ×KW with a step of KH over the IH dimension. Figure 9
describes the creation of MEC buffer and how it is accessed to compute the appropriate GEMMs.

IW

IH

OH

OW

MEC

src tensor

MEC compact buffer
weights tensor

output tensor

GEMM

K
H

x
K
W

x
IC

IH x KW x IC

M
B

x
O
W

KH x KW x IC

MB

OC

MB

Figure 9: MEC algorithm using compact buffer.

In order to perform slicing on the IH dimension, IH should be the outer-most dimension of the multiplied
tensor. In order to achieve this, a solution is to compute MEC buffer with OH-last memory format and
perform a reshape on the result of the GEMMs. Algorithm 6 presents an implementation of MEC algorithm
with this solution.

Algorithm 6: MEC algorithm.

1 Input tensor src: MB × IC × IH × IW
2 Weights tensor wei: (KH ×KW × IC)×OC
3 mec buf ← mec im2row(src) ; // mec buf: (IH ×KW × IC)×MB ×OW
4 for oh← 0 to OH do
5 start← (SH ×KW × IC)× oh
6 end← buf start+KH ×KW × IC

7 dst[oh, :, :, :]← blas gemm(mec buf [start : end, :]T , wei) ; // dst: OH ×MB ×OW ×OC

8 reshape(dst, MB ×OC ×OH ×OW )
9 Return dst

In algorithm 6, we suppose that we have a function mec im2row which transforms the src tensor into a
compact version of the im2row buffer. This compact buffer should have (IH × KW × IC) ×MB × OW
format to allow slicing on its first dimension. The loop in line 4 performs OH call to BLAS’ GEMM between
appropriate slices of mec buf and weights. An important detail is that the slice of mec buf is transposed in
order to perform the GEMM with the weights tensor. Indeed, mec buf slice has (KH×KW×IC)×MB×OW
format so it needs to be transposed to MB × OW × (IH × KW × IC) format in order to perform the
GEMM with the weights tensor, which has (KH ×KW × IC)×OC format. The result of each GEMM has
MB ×OW ×OC format so at the end of the OH loop, destination tensor has OH ×MB ×OW ×OC size.
Finally, when MB > 1, a reshape is needed on dst to output it in MB ×OH ×OW ×OC format.

Despite reducing im2row memory overhead, slicing the buffer and using smaller GEMMs does not allow
MEC to fully benefit from the high performance GEMM implementation. As a result, our MEC implementa-
tion showed poor results compared to im2row and im2col. Moreover, the next section explains another way
of taking profit from data redundancy in convolution kernels which is always better than MEC because it
also reduces arithmetic complexity.
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6 Winograd’s method for convolutions

6.1 Winograd’s minimal filtering algorithm

Schmuel Winograd has described in 1980 a method to reduce the arithmetic complexity of any Finite Impulse
Response (FIR) filter [22]. However, a FIR filter behaves exactly as an unidimensional convolution, so recent
works have focused on adapting Winograd’s method to deep learning convolutions. A FIR filter is described
as F (m, r) where m is the number of outputs computed by the filter and r is the size of the kernel. Figure
10 represents the FIR filter F (2, 3) as a 1D convolution.

f0 f1 f2 f3 g0 g1 g2

1D conv

f0 × g0 + f1 × g1 + f2 × g2

inputs weights outputs

∗ f1 × g0 + f2 × g1 + f3 × g2

Figure 10: FIR filter F(2,3) seen as a 1D convolution

A very important result of Winograd’s work is a lower bound on the number of multiplications needed to
compute the output of an FIR filter. In his work, Winograd proves that computing the output of a F (m, r)
filter requires at least µ(F (m, r)) = m+ r − 1 multiplications. Winograd’s work also provides an algorithm
to achieve the minimal number of multiplications µ(F (m, r)) = m+ r − 1 when computing the output of an
F (m, r) filter. For the sake of comparison, the naive version requires m× r multiplications.

In his work, Winograd introduces an algorithm which computes F (2, 3) using 4 multiplications instead of
6. This algorithm is described in Figure 11.

Y =

(
f0 f1 f2
f1 f2 f3

)g0
g1
g2

 =

(
m1 +m2 +m3

m2 −m3 −m4

)
, with

m1 = (f0 − f2)g0, m2 = (f1 + f2)
g0 + g1 + g2

2
,

m4 = (f1 − f3)g2, m3 = (f2 − f1)
g0 − g1 + g2

2
.

Figure 11: Winograd’s algorithm for F (2, 3).

In the algorithm described in Figure 11, we only consider 1 multiplication by term mi because 1
2 (g0 +

g1 + g2) and
1
2 (g0 − g1 + g2) can be computed for each matrix

(
g0 g1 g2

)
.

The previous algorithm can be written in matrix form using an element-wise product written ⊙:

Y = AT
[
(Gg)⊙ (BT d)

]
, (3)

where:

BT =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 , G =


1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

 , AT =

(
1 1 1 0
0 1 −1 −1

)
,

and:

g =
(
g0 g1 g2

)T
, d =

(
f0 f1 f2 f3

)T
.

This matricial formalism has the advantage of presenting the multiplications required by Winograd’s
algorithm as the element-wise product ⊙. Indeed, the application of the transformation matrices AT , G and
BT can be considered as simple sums.
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6.2 Winograd’s method applied to deep learning convolutions

The idea in Winograd’s method is to take profit of the redundancy patterns of the convolution operation
to reduce the number of multiplications. In the previous section, we already tried to take profit of this
redundancy to reduce the storage overhead of the im2row buffer. In this section, we take this idea even
further by reducing the arithmetic complexity of the convolution, following the work of Andrew Lavin and
Scott Gray [23].

In their Work, A. Lavin and S. Gray explained that a minimal algorithm for a 2-dimensional filter
F (m×m, r × r) can be created by nesting two minimal algorithms for a 1-dimensional filter F (m, r). With
the previous matricial notation, we can write a minimal algorithm for the 2-dimensional filter as:

Y = AT
[
(GgGT )⊙ (BT dB)

]
A. (4)

This algorithm can compute a tile of m ×m outputs of a convolution with a kernel of size r × r among
1 channel with a minimal number of multiplications. It can be used to compute a convolution in a general
case by dividing the input tensor into P = MB ×

⌈
IH
m

⌉
×

⌈
IW
m

⌉
tiles of size α = m+ r − 1 with an overlap

of r− 1 between neighboring tiles. The idea is to apply F (m×m, r× r) on each tile of size α and to use the
channels dimension to compute GEMMs instead of element-wise products in the formula (4). The resulting
algorithm is described in Algorithm 7.

Algorithm 7: Winograd convolution using F (m×m, r × r)

1 P = MB ×
⌈
IH
m

⌉
×
⌈
IW
m

⌉
is the number of tiles

2 α = m+ r − 1 is tile size
3 dic,b: image tile b in channel ic ; // dic,b : α× α
4 goc,ic: weights of kernel (oc,ic) ; // goc,ic : r × r

5 G,BT , AT are static transformation matrices
6 Yoc,b: output tile b for kernel oc ; // Yoc,b : m×m

7 // transform weights: GgGT

8 for oc = 0 to OC do
9 for ic = 0 to IC do

10 u← Ggoc,icG
T ; // u: α× α

11 Scatter u to U : U [ξ, ν, oc, ic]← uξ,ν ; // U : α× α×OC × IC

12 // transform input tensor: BT dB
13 for b = 0 to P do
14 for ic = 0 to IC do
15 v ← BT dic,bB ; // v: α× α
16 Scatter v to V : V [ξ, ν, ic, b]← vξ,ν ; // V : α× α× IC × P

17 // compute GEMMs
18 for ξ = 0 to α do
19 for ν = 0 to α do
20 M [ξ, ν, :, :] = U [ξ, ν, :, :]V [ξ, ν, :, :] ; // M : α× α×OC × P

21 // transform output: AT yA
22 for oc = 0 to OC do
23 for b = 0 to P do
24 Gather y from M: yξ,ν = M [ξ, ν, oc, b] ; // y : α× α

25 Yoc,b ← AT yA ; // Yoc,b : m×m
26 (mb, oh, ow) are coordinates of tile b in dst
27 dst[mb, oh+mh, ow +mw, oc]← Yoc,b[mh,mw] ; // dst : MB ×OH ×OW ×OC

28 Return dst

Our implementation of the Winograd algorithm uses F (2× 2, 3× 3) in order to work on 3× 3 convolution
kernels. In Algorithm 7, we can consider that the transformations of the weights, inputs and outputs are only
performing sums. As a result, the major part of the computational cost comes from the GEMMs computed
at line 20. Moreover, we can avoid using a costly call to the GEMM primitive to compute the static
transformations GgGT ,BT dB and AT yA by using generated code implementing corresponding sums. For
this purpose, we used the python library sympy to perform the symbolic computations for each transformation
and we generated the appropriate C code.
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6.3 Arithmetic cost analysis

Winograd’s algorithm aims at reducing the number of multiplications in the convolution operator. direct

and im2row implementations require a number of multiplications equal to the number of elements in the
kernel multiplied by the number of elements in the output tensor. Winograd’s algorithm works for square
convolutions kernels of size r. However, when KH = KW = r direct and im2row performs the following
number of multiplications:

#mul(direct) = #mul(im2row) = MB ×OH ×OW ×OC × IC ×KH ×KW

= MB ×OH ×OW ×OC × IC × r2.

Winograd’s algorithm performs α × α GEMMs between matrices of sizes OC × IC and IC × P so the
total number of multiplications is α× α× OC × IC × P . By considering SH = SW = 1, and if we assume
that IH = OH and IW = OW , the number of multiplications of Winograd’s algorithm is:

#mul(wino) = α2 ×OC × IC × P

= (m+ r − 1)2 ×OC × IC ×MB ×
⌈
OH

m

⌉
×
⌈
OW

m

⌉
= MB ×OH ×OW ×OC × IC × (m+ r − 1)2

m2
.

At this point, a remark we can make is that Winograd’s algorithm does not reduce the number of

multiplications when KH = KW = r = 1: (m+r−1)2

m2 = r2 = 1. Indeed a 1× 1 convolution does not involve
any data redundancy between successive kernels so Winograd’s optimization is not relevant in this case.

Our implementation of the Winograd algorithm considers 3 × 3 kernels, so it requires a number of mul-

tiplications proportional to (m+2)2

m2 . This quantity is strictly decreasing on ]0;+∞[ and limm→∞
(m+2)2

m2 = 1
(see Figure 12). As a consequence, we can theoretically expect reducing by ∼ 9 the number of multiplications
of the convolutions. However, this would require m to be arbitrarily big, causing poor performance due to
poor locality and an eventual large overflow of the tiles over the dimensions IH and IW of the input tensor.

At this point, our best candidates are m = 2, m = 4 and m = 8. Corresponding algorithms require a
number of multiplications respectively proportional to 4, 2.25 and 1.5625.

Figure 12: Multiplications required depending on m. Figure 13: Profiling of our winograd implementation.

Figure 13 shows the profiling of our Winograd implementation for the 3×3 convolutions of Resnet50-v1.5,
evaluated on the CPU of a NVIDIA Jetson AGX Orin. According to this profiling, we consider that reducing
the number of multiplications is not the only factor to optimize our winograd implementation so we chose
to stay with F (2× 2, 3× 3). However, we believe that implementing Winograd algorithm with bigger values
of m could yield better performance in future work.
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7 Specific convolutions

7.1 Pointwise convolution

Previous algorithms were designed to optimize convolutions in the general case, supporting KH ≥ 1 and
KW ≥ 1. However, we observe that convolutions with KH = KW = SH = SW = 1 are very common
in most of the popular neural networks. Moreover, such a convolution becomes very simple and allows a
lot of optimizations. It is often worth it to develop a custom primitive to implement efficient pointwise
convolutions.

When KH = KW = SH = SW = 1, padding can be considered to 0 and the convolution formula can
be written as such:

dst(n,oc, oh, ow)

=

IC−1∑
ic=0

KH−1∑
kh=0

KW−1∑
kw=0

src(n, ic, oh · SH + kh− PHL, ow · SW + kw − PWL) · weights(oc, ic, kh, kw)

=

IC−1∑
ic=0

src(n, oh, ow, ic) · weights(ic, oc, 0, 0).

In this formula, we suppose that the source tensor is stored with format MB × IH × IW × IC and the
weights tensor is stored with format IC × OC ×KH ×KW . As a result, we can express the result of the
convolution as a simple matrix multiplication:

dst = src · weights. (5)

Finally, our implementation of pointwise convolutions is simply a call to the optimized GEMM featured
in OneDNN. Compared to im2row, pointwise does not use a buffer to store intermediate transformations.
Moreover, in contrast to direct, pointwise can benefit from the use of the optimized GEMM.

7.2 OneDNN implementation: implicit im2row

Besides having good performance in most cases, the im2row algorithm studied in section 5 is not adopted
in most of commercial deep learning libraries. Indeed an approach called implicit is often preferred to
the algorithm we presented, which can be qualified explicit. In our im2row implementation, we compute
explicitly the output tensor before giving it to the GEMM primitive. Implicit approaches perform the
im2row transformation on-the-fly on small tiles of the tensor and compute the output result for each tile
in parallel [24]. These methods are particularly efficient on highly parallel architectures such as GPUs or
TPUs [25].

A first advantage of implicit im2row methods is to allow a better adaptability for the parallelism of the
convolution. Designing an implicit im2row algorithm requires the design of a blocking strategy to determine
the tiles assigned to each processing unit. Moreover, performing the im2row transformations on small tiles
can reduce considerably the memory overhead of the implementation, because the transformed data can be
immediately reused in the GEMM. This improvement of data locality often grants performance improvement.

In this work, we consider the implementation gemm:ref of OneDNN [26] which implements convolutions
with an implicit im2row algorithm. However, this implementation is made for CPUs, an architecture usually
limited in terms of parallelism capacity compared to GPUs or TPUs. As a result, the tiles considered by
OneDNN implementation are relatively big, which is not optimal regarding the performance. Designing an
efficient implicit im2row implementation for CPU would be a good perspective for future work on optimizing
deep learning CPU inference.
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8 Performance evaluation of convolutions

8.1 Evaluation platform

The ALSOC team has designed an experiment platform called The Monolithe 1, in reference to Stanley
Kubrick’s movie “2001: A Space Odyssey”. This platform is composed of several single board computers
(SBCs), the objective being to test the suitability of embedded applications. In this context, energy consump-
tion is a crucial factor and require an appropriate measurement tool. For this purpose, each SBC is alimented
by a laboratory power supply, with a measurement board plugged in between. The energy measurements can
be observed from a front-end computer, communicating with the measurement boards via USB.

Before the beginning of my internship, each board only had an independent OpenSSH server, which was
not optimal to test applications over several targets. Inspired by my previous experience in high performance
computing, I set up a slurm [27] environment and a Network File System (NFS) to share the files among the
different targets. Slurm is a popular tool used in HPC for resource management. In concrete terms, users
can now connect to a slurm frontend, upload their code on the directory shared via NFS and submit slurm
jobs for compiling and testing on any SBC of the Monolithe.

In order to benchmark our implementations, we had to choose between several architectures available in
the Monolithe. A good candidate was the NVIDIA Jetson AGX Orin, which has a 12-core ARM processor
and 64GB of RAM. We position ourselves in the context of embedded systems so we will only run the
implementations on its ARM CPU.

8.2 Evaluation methodology

All the algorithms described in the previous sections were implemented into Intel’s OneDNN framework
[26]. This framework provides an abstraction level to implement deep learning primitives, and comes up
with a very strong benchmarking tool called BenchDNN, allowing us to evaluate the correctness and the
performance of our implementations. In addition, OneDNN is used as backend for several well-known deep
learning frameworks such as Pytorch or Tensorflow. Therefore, implementations could be easily reused for
further study of CNN inference.

A first metric we consider is the latency of a convolution. The latency is given by BenchDNN, each
time measured on several executions of the same convolution. OneDNN implementations are compiled with
the C++ optimization flags -fopenmp -O3, which means that our implementations will support OpenMP
parallelism and be compiled with optimization level 3. Moreover, the framework only measures the compu-
tational part of the convolution, without taking into account tensors allocation and primitive declaration in
the measure. This allow to focus only on algorithmic comparison of the different implementations.

A second metric we consider is energy consumption. Indeed, this metric is critical for system-on-chip
targets, which are often power-limited. The ALSOC team has designed high frequency boards to measure
electric power on the SBCs of the monolithe. These boards allow us to measure electric power with a sampling
frequency of 5000Hz, which is way more precise than the 10 Hz of NVIDIA power rails embedded in the Jetson
AGX Orin. Moreover, an important feature of the measure boards is the implementation of General Purpose
Inputs/Outputs (GPIOs) which allows us to isolate the measures corresponding to a specific part of the code.
It is important to note that we give our performance results in terms of energy, obtained by multiplying the
average power by the latency of an implementation.

In some cases, we want to evaluate the performance of a convolution layer depending on its parameters.
For this purpose, we introduce a quantity called pbsize defined as:

pb size = MB ×OC ×OH ×OW ×KH ×KW × IC

This quantity is proportional to the number of floating point operations performed by direct and im2row

implementations. It allows us to predict in most cases if a convolution is expected to be computed faster
than another one.

1A detailed description is available at https://monolithe.proj.lip6.fr/.
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8.3 Benchmarking pointwise convolutions

When we introduced CNNs, we described the inference phase as the successive application of different convo-
lution layers. These layers can be very different but the most common CNN models do not require convolution
kernels that have dimensions different from 1× 1 (called pointwise) and 3× 3.

Figure 14: Structure of studied networks. Figure 15: Temporal cost of 1× 1 convolutions.

Figure 14 shows the distribution of convolution layers in seven popular CNN models, according to
BenchDNN test files. We observe that a major part of the convolution layers are indeed 3× 3 and 1× 1 con-
volutions. Using Figure 15, we can compare the computational cost of these two kinds of convolution layers.
We then remark that despite consisting in a large fraction of convolution layers, pointwise convolutions are
not very costly in terms of performance.

Figure 16: Latency of 1× 1 implementations. Figure 17: Latency of 1× 1 convolution layers.

Figure 16 shows the average latency of convolution layers of height popular networks. We observe that
our specific implementation of pointwise convolutions is, as expected, faster than other implementations.
Figure 17 illustrates the behavior of the different implementations of pointwise convolutions depending on
problem size. More generally, we observe that in a multithread context, pointwise still provides this kind
of speedups compared to the other implementations.

8.4 Mono-thread latency of 3× 3 convolutions

As observed in Figure 15, 3×3 convolutions are the most critical layers in terms of latency. In this subsection,
we evaluate the implementations direct, im2row, wino and onednn described previously. Figure 18 and
Figure 19 presents the latency of 3 × 3 convolutions on height different CNNs. In both figures, we observe
that wino is often the most efficient implementation. However, the case of Densenet in Figure 18 shows that
for a network containing only very small convolutions (i.e. small values of pb size), the implementations
using additionnal memory computations such as im2row and wino are slower than onednn and direct.

In order to study this phenomenon, we described in Figure 20 the average latency of 3 × 3 convolutions
for small pb size. In this Figure, we observe that im2row latency is proportional to pb size due to the
memory accesses performed by im2row transformation. However, the other implementations can still benefit
from cached data access, accelerating the computations and reducing the cost of memory accesses. For
convolutions with small pb size, the latency is minimal for the implicit lowering approach onednn.
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Figure 18: Total latency of 3 × 3 convolutions on
smallest networks.

Figure 19: Total latency of 3 × 3 convolutions on
biggest networks.

Figure 20: Average latency of 3 × 3 convolutions for
small pb size.

Figure 21: Average latency of 3 × 3 convolutions for
big pb size.

Figure 21 shows that the approaches im2row and wino are often more efficient for the biggest convolution
layers. An explanation is that the relative cost of the transformations becomes low enough to get a lower
latency compared to direct and onednn. Moreover, we can observe in Figure 23 that despite having the
lowest latency on big convolutions, wino executes less floating-point operation per seconds (Flop/s). This
illustrates the reduction of arithmetic complexity achieved by Winograd’s algorithm. Figure 22 illustrates
the fact that on small cases, onednn implementation is the only one to perform a high number of Flop/s.
Indeed, wino and im2row are slowed down by their transformations and direct by the succession of memory
accesses and floating point multiplications.

Figure 22: Average GFlop/s of 3× 3 convolutions on
smallest networks.

Figure 23: Average GFlop/s of 3× 3 convolutions on
biggest networks.

To conclude, mono-thread performance results show that wino is the most efficient implementation on
big convolutions due to its low arithmetic complexity. However, for small convolution layers, an implicit
approach such as onednn is often more efficient.
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8.5 Mono-thread energy consumption

By using the measurement boards described in section 8.1, we measured the electric power consumption during
the execution of the convolutions. Figures 24 and 25 show the power consumption during the execution of
several convolution layers depending on the size of the problem. We observe that the instantaneous power
measures are relatively similar between the several implementations. Because the energy consumption is equal
to power× latency, the total energy consumed for computing several convolutions will be almost proportional
to the sum of their latencies. Figure 26 and 27 show the total energy required by 3×3 convolutions of several
popular CNNs. As expected, they look very similar to the latency measures (Figures 18 and 19).

Figure 24: Average power of 3 × 3 convolutions on
smallest networks.

Figure 25: Average power of 3 × 3 convolutions on
biggest networks.

Figure 26: Summed energy of 3 × 3 convolutions on
smallest networks.

Figure 27: Summed energy of 3 × 3 convolutions on
biggest networks.

8.6 Multi-threading scalability

In this section, we studied how our implementations behave while we increase the number of threads available.
Our implementations are parallelized using OpenMP on outter-most loops, which are collapsed. We change
the number of threads by modifying the environment variable OMP NUM THREADS.

Figure 28: Latency of 3 × 3 convolutions depending
on parallelism.

Figure 29: GFlop/s of 3 × 3 convolutions depending
on parallelism.
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Figure 28 shows the evolution of the latency depending on the number of threads. We observe that
wino is always the fastest implementation but it gets almost no speedup between 8 threads and 12 threads.
This phenomenon is also observed in Figure 29. Indeed, for 8 threads, wino seem to reach a limit in
terms of GFlop/s. This limit is way below CPU’s peak performance (dashed line), which indicates that our
implementations are memory bounded.

Lastly, Figure 30 indicates the evolution of electric power consumption regarding the number of threads.
Overall, we observe that when we increase the number of threads by a factor X, power consumption usually
increases by a factor Y < X. A consequence of that is the fact that energy consumption of a convolution
decreases when we increase the number of threads, as we can see it in Figure 31. Indeed, the energetic
cost of increasing the number of threads is lower than the benefits obtained by increasing computational
power. Moreover, we observe that wino consumes almost as much power for 8 threads than for 12 threads. A
consequence of this can be shown in Figure 31: even if wino does not scale as well as the other implementations
when the number of threads increases, wino is always the less energy-consuming implementation.

Figure 30: Instantaneous power consumption of 3×3
convolutions depending on parallelism.

Figure 31: Energy consumption of 3× 3 convolutions
depending on parallelism.

Conclusion

This work gives a general overview of the most used algorithms to compute a forward pass through a
convolution layer. Because of the complexity of the convolution operator, we could not determine one
implementation being better than the others in any case. However, we determine that Winograd’s method
should be used on biggest convolution layers while implicit lowering approaches are better on small convolution
layers. Moreover, optimizing the other convolution layers could be useful, especially the pointwise convolution
which can be computed in one call to the GEMM implementation of the high-performance library BLAS. Our
study also focuses on the energy consumption of the different implementations, which is a critical parameter
for Systems-on-Chips. The conclusion to our performance analysis study is that the energy consumption of
our implementations is almost proportional to their latency. As a consequence, we state the same guidelines
to minimize energy consumption than to minimize latency. The only trade-off that we observed concerns
multithreading: we do not observe any significant benefits in increasing the number of threads from 8 to 12
but it costs some energy and 4 process units that could be used for another job.

To summarize, this work states principles for implementing efficient forward convolution layers. However,
deep neural networks are a wider structure composed of different layers. As a result, an interesting perspective
for further work would be to add the dimension of the network, and to explore cross-layer optimizations.
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