
Main Page Related Pages Modules Namespaces Classes Files

CVC3

The CVC3 User's Manual

Contents

What is CVC3?
Running CVC3 from a Command Line
Presentation Input Language

Type system
REAL Type
Bit Vector Types
User-defined Atomic Types
BOOLEAN Type
Function Types
Array Types
Tuple Types
Record Types
Inductive Data Types
Type Checking

Terms and Formulas
Logical Symbols
User-defined Functions and Types
Arithmetic
Bit vectors
Arrays
Datatypes
Tuples and Records

Commands
QUERY
CHECKSAT
RESTART

Instantiation Patterns
Subtypes

Subtype Checking
Type Correctness Conditions

SMT-LIB Input Language

What is CVC3?

CVC3 is an automated validity checker for a many-sorted (i.e., typed) first-order logic with built-in theories,
including some support for quantifiers, partial functions, and predicate subtypes. The current built-in theories are
the theories of:

equality over free (aka uninterpreted) function and predicate symbols,
real and integer linear arithmetic (with some support for non-linear arithmetic),
bit vectors,
arrays,
tuples,
records,
user-defined inductive datatypes.

CVC3 checks whether a given formula is valid in the built-in theories under a given set of assumptions.
More precisely, it checks whether

http://www.cs.nyu.edu/acsys/cvc3/doc/index.html
http://www.cs.nyu.edu/acsys/cvc3/doc/pages.html
http://www.cs.nyu.edu/acsys/cvc3/doc/modules.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaces.html
http://www.cs.nyu.edu/acsys/cvc3/doc/annotated.html
http://www.cs.nyu.edu/acsys/cvc3/doc/files.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

that is, whether is a logical consequence of the union of the built-in theories and the set of formulas .

Roughly speaking, when is universal and all the formulas in are existential (i.e., when and contain at
most universal, respectively existential, quantifiers), CVC3 is in fact a decision procedure: it is always
guaranteed (well, modulo bugs and memory limits) to return a correct "valid" or "invalid" answer. In all other
cases, CVC3 is sound but incomplete: it will never say that an invalid formula is valid but it may either never
return or give up and return "unknown" in some cases when .

When CVC3 returns "valid" it can return a formal proof of the validity of under the logical context ,
together with the subset of used in the proof, such that .

When CVC3 returns "invalid" it can return, in the current terminology, both a counter-example to 's validity
under and a counter-model. Both a counter-example and a counter-models are a set of additional formulas
consistent with in , but entailing the negation of . In formulas:

 and .

The difference is that a counter-model is given as a set of equations providing a concrete assignment of values
for the free symbols in and (see QUERY for more details).

CVC3 can be used in two modes: as a library or as a command-line executable (implemented as a command-
line interface to the library). Interfaces to the library are available in C/C++, Java and .NET. This manual mainly
describes the command-line interface on a unix-type platform.

Running CVC3 from a Command Line

Assuming you have properly installed CVC3 on your machine (check the INSTALL section for that), you will
have an executable file called cvc3. It reads the input (a sequence of commands) from the standard input and
prints the results on the standard output. Errors and some other messages (e.g. debugging traces) are printed
on the standard error.

Typically, the input to cvc3 is saved in a file and redirected to the executable, or given on a command line:

Reading from standard input:
 cvc3 < input-file.cvc
Reading directly from file:
 cvc3 input-file.cvc

Notice that, for efficiency, CVC3 uses input buffers, and the input is not always processed immediately after
each command. Therefore, if you want to type the commands interactively and receive immediate feedback, use
the +interactive option (can be shortened to +int):

 cvc3 +int

Run cvc3 -h for more information on the available options.

The command line front-end of CVC3 supports two input languages.

CVC3's own presentation language whose syntax was initially inspired by the PVS and SAL systems and is
almost identical to the input language of CVC and CVC Lite, the predecessors of CVC3;
the standard language promoted by the SMT-LIB initiative for SMT-LIB benchmarks.

We describe the input languages next, concentrating mostly on the first.

Presentation Input Language

The input language consists of a sequence of symbol declarations and commands, each followed by a semicolon
(;).

Any text after the first occurrence of a percent character and to the end of the current line is a comment:

%%% This is a CVC3 comment

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/INSTALL.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.smt-lib.org/

Type system

CVC3's type system includes a set of built-in types which can be expanded with additional user-defined types.

The type system consists of value types, non-value types and subtypes of value types, all of which are
interpreted as sets. For convenience, we will sometimes identify below the interpretation of a type with the type
itself.

Value types consist of atomic types and structured types. The atomic types are , for all
, as well as user-defined atomic types (also called uninterpreted types). The structured types are array,

tuple, and record types, as well as ML-style user-defined (inductive) datatypes.

Non-value types consist of the type and function types. Subtypes include the built-in subtype
of and are covered in the Subtypes section below.

REAL Type

The type is interpreted as the set of rational numbers. The name is justified by the fact that a
CVC3 formula is valid in the theory of rational numbers iff it is valid in the theory of real numbers.

Bit Vector Types

For every positive numeral n, the type is interpreted as the set of all bit vectors of size n.

User-defined Atomic Types

User-defined atomic types are each interpreted as a set of unspecified cardinality but disjoint from any other
type. They are created by declarations like the following:

% User declarations of atomic types:

MyBrandNewType: TYPE;

Apples, Oranges: TYPE;

BOOLEAN Type

The type is, perhaps confusingly, the type of CVC3 formulas, not the two-element set of Boolean
values. The fact that is not a value type in practice means that it is not possible for function symbols
in CVC3 to have a arguments of type . The reason is that CVC3 follows the two-tiered structure of
classical first-order logic that distinguishes between formulas and terms, and allows terms to occur in formulas
but not vice versa. (An exception is the IF-THEN-ELSE construct, see later.) The only difference is that,
syntactically, formulas in CVC3 are terms of type . A function symbol f then can have
as its return type. But that is just CVC3's way, inherited from the previous systems of the CVC family, to say
that f is a predicate symbol.

CVC3 does have a type that behaves like a Boolean Value type, that is, a value type with only two elements and
with the usual Boolean operations defined on it: it is BITVECTOR(1).

Function Types

All structured types are actually families of types. Function () types are created by the mixfix type
constructors

whose arguments can be instantiated by any value (sub)type, with the addition that the last argument can also

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

be .

% Function type declarations

UnaryFunType: TYPE = INT -> REAL;
BinaryFunType: TYPE = (REAL, REAL) -> ARRAY REAL OF REAL;
TernaryFunType: TYPE = (REAL, BITVECTOR(4), INT) -> BOOLEAN;

A function type of the form with is interpreted as the set of all total functions from the
Cartesian product to when is not . Otherwise, it is interpreted as the set of all
relations over

The example above also shows how to introduce type names. A name like UnaryFunType above is just an
abbreviation for the type and can be used interchangeably with it.

In general, any type defined by a type expression E can be given a name with the declaration:

name : TYPE = E;

Array Types

Array types are created by the mixfix type constructors whose arguments can be instantiated
by any value type.

T1 : TYPE;

% Array types:

ArrayType1: TYPE = ARRAY T1 OF REAL;
ArrayType2: TYPE = ARRAY INT OF (ARRAY INT OF REAL);
ArrayType3: TYPE = ARRAY [INT, INT] OF INT;

An array type of the form is interpreted as the set of all total maps from to . The main
conceptual difference with the type is that arrays, contrary to functions, are first-class objects of the
language: they can be arguments or results of functions. Moreover, array types come equipped with an update
operation.

Tuple Types

Tuple types are created by the mixfix type constructors

whose arguments can be instantiated by any value type.

% Tuple declaration

TupleType: TYPE = [REAL, ArrayType1, [INT, INT]];

A tuple type of the form is interpreted as the Cartesian product . Note that while the
types and are semantically equivalent, they are operationally different in
CVC3. The first is the type of functions that take n arguments, while the second is the type of functions of 1
argument of type n-tuple.

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

Record Types

Similar to, but more general than tuple types, record types are created by type constructors of the form

where , are field labels, and the arguments can be instantiated with any value types.

% Record declaration

RecordType: TYPE = [# number: INT, value: REAL, info: TupleType #];

The order of the fields in a record type is meaningful. In other words, permuting the field names gives a different
type. Note that records are

non-recursive. For instance, it is not possible to declare a record type called Person containing a field of type
Person. Recursive types are provided in CVC3 as ML-style datatypes.

Inductive Data Types

Inductive datatypes are created by declarations of the form

Each of the is either a constant symbol or an expression of the form

where are any value types or type names for value types, including any . Such
declarations introduce for the datatype:

constructor symbols of type ,
selector symbols of type , and
tester symbols of type .

Here are some examples of datatype declarations:

% simple enumeration type
% implicitly defined are the testers: is_red, is_yellow and is_blue
% (similarly for the other datatypes)

DATATYPE
 PrimaryColor = red | yellow | blue
END;

% infinite set of pairwise distinct values ...v(-1), v(0), v(1), ...

DATATYPE
 Id = v (id: INT)
END;

% ML-style integer lists

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

DATATYPE
 IntList = nil | cons (head: INT, tail: IntList)
END;

% ASTs

DATATYPE
 Term = var (index: INT)
 | apply (arg_1: Term, arg_2: Term)
 | lambda (arg: INT, body: Term)
END;

% Trees

DATATYPE
 Tree = tree (value: REAL, children: TreeList),
 TreeList = nil_tl
 | cons_tl (first_t1: Tree, rest_t1: TreeList)
END;

Constructor, selector and tester symbols defined for a datatype have global scope. So, for instance, it is not
possible for two different datatypes to use the same name for a constructor.

A datatype is interpreted as a term algebra constructed by the constructor symbols over some sets of
generators. For example, the datatype IntList is interpreted as the set of all terms constructed with nil and
cons over the integers.

Because of this semantics, CVC3 allows only inductive datatypes, that is, datatypes whose values are essentially
(labeled, ordered) finite trees. Infinite structures such as streams or even finite but cyclic ones such as circular
lists are then excluded. For instance, none of the following declarations define inductive datatypes, and are
rejected by CVC3:

DATATYPE
 IntStream = s (first:INT, rest: IntStream)
END;

DATATYPE
 RationalTree = node1 (first_child1: RationalTree)
 | node2 (first_child2: RationalTree, second_child2:RationalTree)
END;

DATATYPE
 T1 = c1 (s1: T2),
 T2 = c2 (s2: T1)
END;

In concrete, a declaration of datatypes will be rejected if for any one of the types , it
is impossible to build a finite term of that type using only the constructors of and free constants of
type other than .

Datatypes are the only types for which the user also chooses names for the built-in operations defined on the
type for:

constructing a value (with the constructors),
extracting components from a value (with the selectors), or
checking if a value was constructed with a certain constructor or not (with the testers).

For all the other types, CVC3 provides predefined names for the built-in operations on the type.

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

Type Checking

In essence, CVC3 terms are statically typed at the level of types--as opposed to subtypes--according to the
usual rules of first-order many-sorted logic (the typing rules for formulas are analogous):

each variable has one associated (non-function) type,
each constant symbol has one associated (non-function) type,
each function symbol has one or more associated function types,
the type of a term consisting just of a variable or a constant symbol is the type associated to that variable
or constant symbol,
the term obtained by applying a function symbol to the terms is if has type

 and each has type .

Attempting to enter an ill-typed term will result in an error.

The main difference with standard many-sorted logic is that some built-in symbols are parametrically
polymorphic. For instance the function symbol for extracting the element of any array has type

 for all types not containing function or predicate types.

Terms and Formulas

In addition to type expressions, CVC3 has expressions for terms and formulas (i.e., terms of type).
By and large, these are standard first-order terms built out of (typed) variables, predefined theory-specific
operators, free (i.e., user-defined) function symbols, and quantifiers. Extensions include an if-then-else operator,
lambda abstractions, and local symbol declarations, as illustrated below. Note that these extensions still keep
CVC3's language first-order. In particular, lambda abstractions are restricted to take and return only terms of a
value type. Similarly, quantifiers can only quantify variables of a value type.

Free function symbols include constant symbols and predicate symbols, respectively nullary function symbols
and function symbols with a return type. Free symbols are introduced with global declarations of the
form where , are the names of the symbols and is their type:

% integer constants

a, b, c: INT;

% real constants

x,y,z: REAL;

% unary function

f1: REAL -> REAL;

% binary function

f2: (REAL, INT) -> REAL;

% unary function with a tuple argument

f3: [INT, REAL] -> BOOLEAN;

% binary predicate

p: (INT, REAL) -> BOOLEAN;

% Propositional "variables"

P,Q; BOOLEAN;

Like type declarations, such free symbol declarations have global scope and must be unique. In other words, it is

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

not possible to globally declare a symbol more than once. This entails among other things that free symbols
cannot be overloaded with different types.

As with types, a new free symbol can be defined as the name of a term of the corresponding type. With constant
symbols this is done with a declaration of the form :

c: INT;

i: INT = 5 + 3*c;

j: REAL = 3/4;

t: [REAL, INT] = (2/3, -4);

r: [# key: INT, value: REAL #] = (# key := 4, value := (c + 1)/2 #);

f: BOOLEAN = FORALL (x:INT): x <= 0 OR x > c ;

A restriction on constants of type is that their value can only be a closed formula, that is, a formula
with no free variables.

A term and its name can be used interchangeably in later expressions. Named terms are often useful for shared
subterms (terms used several times in different places) since their use can make the input exponentially more
concise. Named terms are processed very efficiently by CVC3. It is much more efficient to associate a complex
term with a name directly rather than to declare a constant and later assert that it is equal to the same term.
This point will be explained in more detail later in section Commands.

More generally, in CVC3 one can associate a term to function symbols of any arity. For non-constant function
symbols this is done with a declaration of the form

where is any term of type with free variables in . The lambda binder has the usual semantics
and conforms to the usual lexical scoping rules: within the term the declaration of the symbols as
local variables of respective type hides any previous, global declaration of those symbols.

As a general shorthand, when consecutive types in the lambda expression
 are identical, the syntax

is also allowed.

% Global declaration of x as a unary function symbol

x: REAL -> REAL;

% Local declarations of x as a constant symbol

f: REAL -> REAL = LAMBDA (x: REAL): 2*x + 3;

p: (INT, INT) -> BOOLEAN = LAMBDA (x,i: INT): i*x - 1 > 0;

g: (REAL, INT) -> [REAL, INT] = LAMBDA (x: REAL, i:INT): (x + 1, i - 3);

Constant and function symbols can also be declared locally anywhere within a term by means of a let binder.
This is done with a declaration of the form

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

for constant symbols, and of the form

for non-constant symbols. Let binders can be nested arbitrarily and follow the usual lexical scoping rules.

t: REAL =
 LET g = LAMBDA(x:INT): x + 1,
 x1 = 42,
 x2 = 2*x1 + 7/2
 IN
 (LET x3 = g(x1) IN x3 + x2) / x1;

Note that the same symbol = is used, unambiguously, in the syntax of global declarations, let declarations, and
as a predicate symbol.

In addition to user-defined symbols, CVC3 terms can use a number of predefined symbols: the logical symbols
as well as theory symbols, function symbols belonging to one of the built-in theories. They are described next,
with the theory symbols grouped by theory.

Logical Symbols

The logical symbols in CVC3's language include the equality and disequality predicate symbols, respectively
written as = and /=, the multiarity disequality symbol DISTINCT, together with the logical constants TRUE, FALSE,
the connectives NOT, AND, OR, XOR, =>, <=>, and the first-order quantifiers EXISTS and FORALL, all with the
standard many-sorted logic semantics.

The binary connectives have infix syntax and type . The symbols = and
/=, which are also infix, are instead polymorphic, having type for every predefined or user-
defined value type . They are interpreted respectively as the identity relation and its complement.

The symbol is both overloaded and polymorphic. It has type for every tuple
 of length where is a predefined or user-defined value type. For each , it is interpreteted

as the relation that holds exactly for tuples of pairwise distinct elements.

The syntax for quantifiers is similar to that of the lambda binder.

Here is an example of a formula built just of these logical symbols and variables:

A, B: TYPE;

quant: BOOLEAN = FORALL (x,y: A, i,j,k: B): i = j AND i /= k
 => EXISTS (z: A): x /= z OR z /= y;

Binding and scoping of quantified variables follows the same rules as in let expressions. In particular, a quantifier
will shadow in its scope any constant and function symbols with the same name as one of the variables it
quantifies:

A: TYPE;
i,j: INT;

% The first occurrence of i and of j in f are constant symbols,
% the others are variables.

f: BOOLEAN = i = j AND FORALL (i,j: A): i = j OR i /= j;

Optionally, it is also possible to specify instantiation patterns for quantified variables. The general syntax for a

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

quantified formula with patterns is

where , is either or , is a term of type , and each of the 's, a
pattern for the quantifier , has the form

where and are arbitrary binder-free terms (no lets, no quantifiers). Those terms can contain
(free) variables, typically, but not exclusively, drawn from . (Additional variables can occur if occurs
in a bigger formula binding those variables.)

A: TYPE;
b, c: A;
p, q: A -> BOOLEAN;
r: (A, A) -> BOOLEAN;

ASSERT FORALL (x0, x1, x2: A):
 PATTERN (r(x0, x1), r(x1, x2)):
 (r(x0, x1) AND r(x1, x2)) => r(x0, x2) ;

ASSERT FORALL (x: A):
 PATTERN (r(x, b)):
 PATTERN (r(x, c)):
 p(x) => q(x) ;

ASSERT EXISTS (y: A):
 FORALL (x: A):
 PATTERN (r(x, y), p(y)):
 r(x, y) => q(x) ;

Patterns have no logical meaning: adding them to a formula does not change its semantics. Their purpose is
purely operational, as explained in Section Instantiation Patterns.

In addition to these constructs, CVC3 also has a general mixfix conditional operator of the form

with where are terms of type and are terms of the same value
type :

% Conditional term
x,y,z,w:REAL;
t: REAL =
 IF x > 0 THEN y
 ELSIF x >= 1 THEN z
 ELSIF x > 2 THEN w
 ELSE 2/3 ENDIF;

User-defined Functions and Types

The theory of user-defined functions is in effect a family of theories of equality parametrized by the atomic types
and the free symbols a user can define during a run of CVC3.

The theory's function symbols consist of all and only the user-defined free symbols.

Arithmetic

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

The real arithmetic theory has predefined symbols for the usual arithmetic constants and operators over the
type , each with the expected type: all numerals 0, 1, ..., as well as - (both unary and binary), +, *, /, <,
>, <=, >=. Rational values can be expressed in fractional form: e.g., 1/2, 3/4, etc.

The size of numerals used in the representation of natural and rational numbers is unbounded (or more
accurately, bounded only by the amount of available memory).

Bit vectors

The bit vector theory has a large number of predefined function symbols denoting various bit vector operators.
We describe the operators and their semantics informally below, often omitting a specification of their type,
which should be easy to infer.

The operators' names are overloaded in the obvious way. For instance, the same name is used for each
for the operator that takes a bit vector of size and one of size and returns their concatenation.

For each size , there are elements in the type . These elements can be named using
constant symbols or bit vector constants. Each element in the domain is named by two different constant
symbols: once in binary and once in hexadecimal format. Binary constant symbols start with the characters
0bin and continue with the representation of the vector in the usual binary format (as an -string over the
characters 0,1). Hexadecimal constant symbols start with the characters 0hex and continue with the
representation of the vector in usual hexadecimal format (as an -string over the characters 0,...,9,a,...,f).

Binary constant Corresponding hexadecimal constant

0bin0000111101010000 0hex0f50

In the binary representation, the rightmost bit is the least significant bit (LSB) of the vector and the leftmost bit
is the most significant bit (MSB). The index of the LSB in the bit vector is 0 and the index of the MSB is n-1 for
an n-bit constant. This convention extends to all bit vector expressions in the natural way.

Bit vector operators are categorized into word-level, bitwise, arithmetic, and comparison operators.

WORD-LEVEL OPERATORS:

Description Symbol Example
==
Concatenation _ @ _ 0bin01@0bin0 (= 0bin010)
Extraction _ [i:j] 0bin0011[3:1] (= 0bin001)
Left shift _ << k 0bin0011 << 3 (= 0bin0011000)
Right shift _ >> k 0bin1000 >> 3 (= 0bin0001)
Sign extension SX(_,k) SX(0bin100, 5) (= 0bin11100)
Zero extension BVZEROEXTEND(_,k) BVZEROEXTEND(0bin1,3) (= 0bin0001)
Repeat BVREPEAT(_,k) BVREPEAT(0bin10,3) (= 0bin101010)
Rotate left BVROTL(_,k) BVROTL(0bin101,1) (= 0bin011)
Rotate right BVROTR(_,k) BVROTR(0bin101,1) (= 0bin110)

For each there is

one infix concatenation operator, taking an -bit vector and an -bit vector and returning the
-bit concatenation of and ;

one postfix extraction operator for each with , taking an -bit vector and
returning the -bit subvector of at positions through (inclusive);
one postfix left shift operator for each , taking an -bit vector and returning the -
bit concatenation of with the -bit zero vector;
one postfix right shift operator for each , taking an -bit vector and returning the -bit
concatenation of the -bit zero bit vector with ;
one mixfix sign extension operator for each , taking an -bit vector and returning the

-bit concatenation of copies of the MSB of and .
one mixfix zero extension operator for each , taking an -bit vector

and returning the -bit concatenation of zeroes and .
one mixfix repeat operator for each , taking an -bit vector and returning
the -bit concatenation of copies of .
one mixfix rotate left operator for each , taking an -bit vector and returning
the -bit vector obtained by rotating the bits of left times, where a single rotation means removing
the MSB and concatenating it as the new LSB.
one mixfix rotate right operator for each , taking an -bit vector and returning
the -bit vector obtained by rotating the bits of right times, where a single rotation means
removing the LSB and concatenating it as the new MSB.

BITWISE OPERATORS:

Description Symbol
==============================
Bitwise AND _ & _
Bitwise OR _ | _
Bitwise NOT ~ _
Bitwise XOR BVXOR(_,_)
Bitwise NAND BVNAND(_,_)
Bitwise NOR BVNOR(_,_)
Bitwise XNOR BVXNOR(_,_)
Bitwise Compare BVCOMP(_,_)

For each there are operators with the names and syntax above, performing the usual bitwise Boolean
operations on -bit arguments. All produce -bit results except for which always produces a 1-bit
result: if its two arguments are equal and otherwise.

ARITHMETIC OPERATORS:

Description Symbol
==
Bit vector addition BVPLUS(k,_,_,...)
Bit vector multiplication BVMULT(k,_,_)
Bit vector negation BVUMINUS(_)
Bit vector subtraction BVSUB(k,_,_)
Bit vector left shift BVSHL(_,_)
Bit vector arith shift right BVASHR(_,_)
Bit vector logic shift right BVLSHR(_,_)
Bit vector unsigned divide BVUDIV(_,_)
Bit vector signed divide BVSDIV(_,_)
Bit vector unsigned remainder BVUREM(_,_)
Bit vector signed remainder BVSREM(_,_)
Bit vector signed modulus BVSMOD(_,_)

For each and there is

one addition operator , taking two or more bit vectors of arbitrary size, and returning
the least significant bits of their sum.
one multiplication operator , taking two bit vectors and , and returning the least
significant bits of their product.
one prefix negation operator , taking an -bit vector and returning the -bit vector

.
one subtraction operator , taking two bit vectors and , and returning the -bit vector

 where is if the size of is greater than or equal to , and
extended to size by concatenating zeroes in the most significant bits otherwise.
one left shift operator , taking two -bit vectors and , and returning the -bit vector
obtained by creating a vector of zeroes whose length is the value of , concatenating this vector onto
the least significant bits of , and then taking the least significant bits of the result.

one arithmetic shift right operator , taking two -bit vectors and , and returning the
-bit vector obtained by creating a vector whose length is the value of and each of whose bits has the

same value as the MSB of , concatenating this vector onto the most significant bits of , and then
taking the most significant bits of the result.
one logical shift right operator , taking two -bit vectors and , and returning the -bit
vector obtained by creating a vector of zeroes whose length is the value of , concatenating this vector
onto the most significant bits of , and then taking the most significant bits of the result.
one unsigned integer division operator , taking two -bit vectors and , and returning
the -bit vector that is the largest integer value that can be multiplied by the integer value of to
obtain an integer less than or equal to the integer value of .
one signed integer division operator .
one unsigned integer remainder operator .
one signed integer remainder operator (sign follows dividend).
one signed integer modulus operator (sign follows divisor).

For precise definitions of the last four operators, we refer the reader to the equivalent operators defined in the
SMT-LIB QF_BV logic (SMT-LIB Input Language).

CVC3 does not have dedicated operators for multiplexers. However, specific multiplexers can be easily defined
with the aid of conditional terms.

% Example of 2-to-1 multiplexer

mp: (BITVECTOR(1), BITVECTOR(1), BITVECTOR(1)) -> BITVECTOR(1) =
 LAMBDA (s,x,y : BITVECTOR(1)): IF s = 0bin0 THEN x ELSE y ENDIF;

In addition to equality and disequality, CVC3 provides the following comparison operators.

COMPARISON OPERATORS:

Description Symbol
===================================
Less than BVLT(_,_)
Less than or equal to BVLE(_,_)
Greater than BVGT(_,_)
Greater than equal to BVGE(_,_)
Signed less than BVSLT(_,_)
Signed less than or equal to BVSLE(_,_)
Signed greater than BVSGT(_,_)
Signed greater than equal to BVSGE(_,_)

For each there is

one prefix "less than" operator , taking an -bit vector and an -bit vector , and having
the value iff the zero-extension of to bits is less than the zero-extension of to bits,
where is the maximum of and .
one prefix "less than or equal to" operator , taking an -bit vector and an -bit vector ,
and having the value iff the zero-extension of to bits is less than or equal to the zero-
extension of to bits, where is the maximum of and .
one prefix "greater than" operator , taking an -bit vector and an -bit vector , and
having the same value as .
one prefix "greater than or equal to" operator , taking an -bit vector and an -bit vector

, and having the same value as .

The signed operators are similar except that the values being compared are considered to be signed bit vector
representations (in 2's complement) of integers.

Following are some example CVC3 input formulas involving bit vector expressions

Example 1 illustrates the use of arithmetic, word-level and bitwise NOT operations:

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

x : BITVECTOR(5);
y : BITVECTOR(4);
yy : BITVECTOR(3);

QUERY
 BVPLUS(9, x@0bin0000, (0bin000@(~y)@0bin11))[8:4] = BVPLUS(5, x, ~(y[3:2])) ;

Example 2 illustrates the use of arithmetic, word-level and multiplexer terms:

bv : BITVECTOR(10);
a : BOOLEAN;

QUERY
 0bin01100000[5:3]=(0bin1111001@bv[0:0])[4:2]
 AND
 0bin1@(IF a THEN 0bin0 ELSE 0bin1 ENDIF) = (IF a THEN 0bin110 ELSE 0bin011 ENDIF)[1:0] ;

Example 3 illustrates the use of bitwise operations:

x, y, z, t, q : BITVECTOR(1024);

ASSERT x = ~x;
ASSERT x&y&t&z&q = x;
ASSERT x|y = t;
ASSERT BVXOR(x,~x) = t;
QUERY FALSE;

Example 4 illustrates the use of predicates and all the arithmetic operations:

x, y : BITVECTOR(4);

ASSERT x = 0hex5;
ASSERT y = 0bin0101;

QUERY
 BVMULT(8,x,y)=BVMULT(8,y,x)
 AND
 NOT(BVLT(x,y))
 AND
 BVLE(BVSUB(8,x,y), BVPLUS(8, x, BVUMINUS(x)))
 AND
 x = BVSUB(4, BVUMINUS(x), BVPLUS(4, x,0hex1)) ;

Example 5 illustrates the use of shift functions

x, y : BITVECTOR(8);
z, t : BITVECTOR(12);

ASSERT x = 0hexff;
ASSERT z = 0hexff0;
QUERY z = x << 4;
QUERY (z >> 4)[7:0] = x;

Arrays

The theory of arrays is a parametric theory of (total) unary functions. It comes equipped with polymorphic
selection and update operators, respectively

 and

with the usual semantics. For each index type and element type , the first operator maps an array from
 to and an index into it (i.e., a value of type) to the element of type "stored" into the array at that

index. The second maps an array from to , an index , and a -element to the array that stores
at index and is otherwise identical to .

Since arrays are just maps, equality between them is extensional: for two arrays of the same type to be
different they have to store differ elements in at least one place.

Sequential updates can be chained with the syntax .

A: TYPE = ARRAY INT OF REAL;
a: A;
i: INT = 4;

% selection:

elem: REAL = a[i];

% update

a1: A = a WITH [10] := 1/2;

% sequential update
% (syntactic sugar for (a WITH [10] := 2/3) WITH [42] := 3/2)

a2: A = a WITH [10] := 2/3, [42] := 3/2;

Datatypes

The theory of datatypes is in fact a family of theories parametrized by a datatype declaration specifying
constructors and selectors for a particular datatype.

No built-in operators other than equality and disequality are provided for this family in the presentation
language. Each datatype declaration, however, generates constructor, selector and tester operators as described
in Section Inductive Data Types.

Tuples and Records

Although they are currently implemented separately in CVC3, semantically both records and tuples can be seen
as special instances of datatypes. In fact, a record of type could be equivalently modeled
as, say, the datatype

Tuples could be seen in turn as special cases of records where the field names are the numbers from 0 to the
length of the tuple minus 1. Currently, however, tuples and records have their own syntax for constructor and
selector operators.

Records of type have the associated built-in constructor whose
arguments must be terms of type , respectively.

Tuples of type have the associated built-in constructor whose arguments must be terms
of type , respectively.

The selector operators on records and tuples follows a dot notation syntax.

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

% Record construction and field selection

Item: TYPE = [# key: INT, weight: REAL #];

x: Item = (# key := 23, weight := 43/10 #);
k: INT = x.key;
v: REAL = x.weight;

% Tuple construction and projection

y: [REAL,INT,REAL] = (4/5, 9, 11/9);
first_elem: REAL = y.0;
third_elem: REAL = y.2;

Differently from datatypes, records and tuples are also provided with built-in update operators similar in syntax
and semantics to the update operator for arrays. More precisely, for each record type
and each , CVC3 provides the operator

The operator maps a record of that type and a value of type to the record that stores in field and is
otherwise identical to . Analogously, for each tuple type and each , CVC3 provides the
operator

% Record updates

Item: TYPE = [# key: INT, weight: REAL #];

x: Item = (# key := 23, weight := 43/10 #);

x1: Item = x WITH .weight := 48;

% Tuple updates

Tup: TYPE = [REAL,INT,REAL];
y: Tup = (4/5, 9, 11/9);
y1: Tup = y WITH .1 := 3;

Updates to a nested component can be combined in a single WITH operator:

Cache: TYPE = ARRAY [0..100] OF [# addr: INT, data: REAL #];
State: TYPE = [# pc: INT, cache: Cache #];

s0: State;
s1: State = s0 WITH .cache[10].data := 2/3;

Note that, differently from updates on arrays, tuple and record updates are just additional syntactic sugar. For
instance, the record x1 and tuple y1 defined above could have been equivalently defined as follows:

% Record updates

Item: TYPE = [# key: INT, weight: REAL #];

x: Item = (# key := 23, weight := 43/10 #);

x1: Item = (# key := x.key, weight := 48 #);

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

% Tuple updates

Tup: TYPE = [REAL,INT,REAL];
y: Tup = (4/5, 9, 11/9);
y1: Tup = (y.0, 3, y.1);

Commands

In addition to declarations of types and constants, the CVC3 input language contains the following commands:

ASSERT -- Add the formula to the current logical context .
QUERY -- Check if the formula is valid in the current logical context: .
CHECKSAT -- Check if the formula is satisfiable in the current logical context: .
WHERE -- Print all the assumptions in the current logical context .
COUNTEREXAMPLE -- After an invalid QUERY or satisfiable CHECKSAT, print the context that is a witness for
invalidity/satisfiability.
COUNTERMODEL -- After an invalid QUERY or satisfiable CHECKSAT, print a model that makes the formula
invalid/satisfiable. The model is in terms of concrete values for each free symbol.
CONTINUE -- Search for a counter-example different from the current one (after an invalid QUERY or
satisfiable CHECKSAT).
RESTART -- Restart an invalid QUERY or satisfiable CHECKSAT with the additional assumption .

PUSH -- Save (checkpoint) the current state of the system.
POP -- Restore the system to the state it was in right before the last call to PUSH
POPTO -- Restore the system to the state it was in right before the most recent call to PUSH made from
stack level . Note that the current stack level is printed as part of the output of the WHERE command.

TRANSFORM -- Simplify and print the result.
PRINT -- Parse and print back the expression .
OPTION option value -- Set the command-line option flag option to value. Note that option is given as a
string enclosed in double-quotes and value as an integer.

The remaining commands take a single argument, given as a string enclosed in double-quotes.

TRACE flag -- Turn on tracing for the debug flag flag.
UNTRACE flag -- Turn off tracing for the debug flag flag.

ECHO string -- Print string
INCLUDE filename -- Read commands from the file filename.

Here, we explain some of the above commands in more detail.

QUERY

The command QUERY invokes the core functionality of CVC3 to check the validity of the formula with
respect to the assertions made thus far (). should be a formula as described in Terms and Formulas.

There are three possible answers.

When the answer is "Valid", this means that . After a valid query, the logical context is exactly
as it was before the query.
When the answer is "Invalid", this means that . In other words, there is a model of satisfying

. After an invalid query, the logical context is augmented with new literals such that
 is consistent in the theory , but . In fact, in this case propositionally satisfies

. We call the new context a counterexample for .
An answer of "Unknown" is very similar to an answer of "Invalid" in that additional literals are added to
the context which propositionally falsify the query formula . The difference is that because CVC3 is
incomplete for some theories, it cannot guarantee in this case that is actually consistent in . The
only sources of incompleteness in CVC3 are non-linear arithmetic and quantifiers.

Counterexamples can be printed out using WHERE or COUNTEREXAMPLE commands. WHERE always prints out all of
. COUNTEREXAMPLE may sometimes be more selective, printing a subset of those formulas from the context

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

which are sufficient for a counterexample.

Since the QUERY command may modify the current context, if you need to check several formulas in a row in
the same context, it is a good idea to surround every QUERY command by PUSH and POP in order to preserve
the context:

PUSH;
QUERY <formula>;
POP;

CHECKSAT

The command CHECKSAT behaves identically to QUERY .

RESTART

The command RESTART can only be invoked after an invalid query. For example:

QUERY <formula>;
Invalid.
RESTART <formula2>;

The behavior of the above command will be identical to the following:

PUSH;
QUERY <formula>;
POP;
ASSERT <formula2>;
QUERY <formula>;

The advantage of using the RESTART command is that it may be much more efficient than the above command
sequence. This is because when the RESTART command is used, CVC3 will re-use what it has learned rather
than starting over from scratch.

Instantiation Patterns

CVC3 processes each universally quantified formula in the current context by generating instances of the
formula obtained by replacing its universal variables with ground terms. Patterns restrict the choice of ground
terms for the quantified variables, with the goal of controlling the potential explosion of ground instances. In
essence, adding patterns to a formula is a way for the user to tell CVC3 to focus only on certain instances
which, in the user's opinion, will be most helpful during a proof.

In more detail, patterns have the following effect on formulas that are found in the logical context or get later
added to it while CVC3 is trying to prove the validity of some formula .

If a formula in the current context starts with an existential quantifier, CVC3 Skolemizes it, that is, replaces it
in the context by the formula obtained by substituting the existentially quantified variables by fresh constants
and dropping the quantifier. Any patterns for the existential quantifier are simply ignored.

If a formula starts with a universal quantifier , CVC3 adds to the context a
number of instances of the formula---with the goal of using them to prove the query valid. An instance is
obtained by replacing each with a ground term of the same type occurring in one of the formulas in the
context, and dropping the universal quantifier. If occurs in a pattern for the
quantifier, it will be instantiated only with terms obtained by simultaneously matching all the terms in the
pattern against ground terms in the current context .

Specifically, the matching process produces one or more substitutions for the variables in which
satisfy the following invariant: for each , is a ground term and there is a ground term in
such that . The variables of that occur in the pattern are instantiated only
with those substitutions (while any remaining variables are instantiated arbitrarily).

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

The Skolemized version or the added instances of a context formula may themselves start with a quantifier. The
same instantiation process is applied to them too, recursively.

Note that the matching mechanism is not limited to syntactic matching but is modulo the equations asserted in
the context. Because of decidability and/or efficiency limitations, the matching process is not exhaustive. CVC3
will typically miss some substitutions that satisfy the invariant above. As a consequence, it might fail to prove
the validity of the query formula , which makes CVC3 incomplete for contexts containing quantified formulas.
It should be noted though that exhaustive matching, which can be achieved simply by not specifying any
patterns, does not yield completeness anyway since the instantiation of universal variables is still restricted to
just the ground terms in the context (whereas in general additional ground terms might be needed).

Subtypes

CVC3's language includes the definition of subtypes of value types by means of predicate subtyping.

A subtype of a (sub)type is defined as a subset of that satisfies an associated predicate . More
precisely, if is a term of type , then for every model of (among the models of CVC3's built-
in theories), is the extension of , that is, the set of all and only the elements of that satisfy the
predicate .

Subtypes like above can be defined by the user with a declaration of the form:

where is either just a (previously declared) predicate symbol of type or a lambda abstraction
of the form where is any CVC3 formula whose set of free variables contains at most .

Here are some examples of subtype declarations:

Animal: TYPE;

fish : Animal;

is_fish: Animal -> BOOLEAN;

ASSERT is_fish(fish);

% Fish is a subtype of Animal:

Fish: TYPE = SUBTYPE(is_fish);

shark : Fish;

is_shark: Fish -> BOOLEAN;

ASSERT is_shark(shark);

% Shark is a subtype of Fish:

Shark: TYPE = SUBTYPE(is_shark);

% Subtypes of REAL

AllReals: TYPE = SUBTYPE(LAMBDA (x:REAL): TRUE);

NonNegReal: TYPE = SUBTYPE(LAMBDA (x:REAL): x >= 0);

% Subtypes of INT

DivisibleBy3: TYPE = SUBTYPE(LAMBDA (x:INT): EXISTS (y:INT): x = 3 * y);

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

CVC3 provides integers as a built-in subtype of . is a subtype and not a base type in order to
allow mixed real/integer terms without having to use coercion functions such as

 between terms of the two types. It is built-in because it is not definable by means of a
first-order predicate.

Note that, with the syntax introduced so far, it seems that it may be possible to define empty subtypes, that is,
subtypes with no values at all. For example:

NoReals: TYPE = SUBTYPE(LAMBDA (x:REAL): FALSE);

However, any attempt to do this results in an error. This is because CVC3's logic assumes types are not empty.
In fact, each time a subtype is declared CVC3 tries to prove that the subtype is non-empty; more precisely,
that it is non-empty in every model of the current context. This is done simply by attempting to prove the
validity of a formula of the form where is the value type of which is a subtype, and is the
predicate defining . If CVC3 succeeds, the declaration is accepted. If it fails, CVC3 will issue a type exception
and reject the declaration.

CVC3 might fail to prove the non-emptyness of a subtype either because the type is indeed empty in some
models or because of CVC3's incompleteness over quantified formulas. Consider the following examples:

Animal: TYPE;

is_fish: Animal -> BOOLEAN;

% Fish is a subtype of Animal:

Fish: TYPE = SUBTYPE(is_fish);

Interval_0_1: TYPE = SUBTYPE(LAMBDA (x:REAL): 0 < x AND x < 1);

% Subtypes of [REAL, REAL]

StraightLine: TYPE = SUBTYPE(LAMBDA (x:[REAL,REAL]): 3*x.0 + 2*x.1 + 6 = 0);

% Constant ARRAY subtype

ConstArray: TYPE = SUBTYPE(LAMBDA (a: ARRAY INT OF REAL):
 EXISTS (x:REAL): FORALL (i:INT): a[i] = x);

Each of these subtype declarations is rejected. For instance, the declaration of Fish is rejected because there are
models of CVC3's background theory in which is_fish has an empty extension. To fix that it is enough to
introduce a free constant of type Animal and assert that it is a Fish as we did above.

In the case of Interval_0_1 and Straightline, however, the type is indeed non-empty in every model, but
CVC3 is unable to prove it. In such cases, the user can help CVC3 by explicitly providing a witness value for the
subtype. This is done with this alternative syntax for subtype declarations:

where is again a unary predicate and is a term (denoting an element) that satisfies .

The following subtype declarations with witnesses are accepted by CVC3.

% Subtypes of REAL with witness

Interval_0_1: TYPE = SUBTYPE(LAMBDA (x:REAL): 0 < x AND x < 1, 1/2);

StraightLine: TYPE = SUBTYPE(LAMBDA (x:[REAL,REAL]): 3*x.0 + 2*x.1 + 6 = 0, (0, -3));

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

We observe that the declaration of ConstArray in the first example is rightly rejected under the empty context
because the subtype can be empty in some models. However, even under contexts that exclude this possibility
CVC3 is still unable to to prove the subtype's non-emptyness. Again, a declaration with witness helps in this
case. Example:

zero_array: ARRAY INT OF REAL;

ASSERT FORALL (i:INT): zero_array[i] = 0;

% At this point the context includes the constant array zero_array
% and the declaration below is accepted.

ConstArray: TYPE = SUBTYPE(LAMBDA (a: ARRAY INT OF REAL):
 EXISTS (x:REAL): FORALL (i:INT): a[i] = x, zero_array);

Adding witnesses to declarations to overcome CVC3's incompleteness is an adequate, practical solution in most
cases.

For additional convenience (when defining array types, for example) CVC3 has a special syntax for specifying
subtypes that are finite ranges of . This is however just syntactic sugar.

% subrange type

FiniteRangeArray: TYPE = ARRAY [-10..10] OF REAL;

% equivalent but less readable formulations

FiniteRange: TYPE = SUBTYPE(LAMBDA (x:INT): -10 <= x AND x <= 10);

FiniteRangeArray2: TYPE = ARRAY FiniteRange OF REAL;

FiniteRangeArray3: TYPE = ARRAY SUBTYPE(LAMBDA (x:INT): -10 <= x AND x <= 10) OF REAL;

Subtype Checking

The subtype relation between a subtype and its immediate supertype is transitive. This implies that every
subtype is a subtype of some value type, and so every term can be given a unique value type. This is important
because as far as type checking is concerned, subtypes are ignored by CVC3. By default, static type checking is
enforced only at the level of maximal supertypes, and subtypes play a role only during validity checking.

In essence, for every ground term of the form with in the logical context, whenever has
type where is a subtype defined by a predicate , CVC3 adds to the context the assertion

 constraining to be a value in .

This leads to correct answers by CVC3, provided that all ground terms are well-subtyped in the logical context of
the query; that is, if for all terms like above the logical context entails that is a value of .
When that is not the case, CVC3 may return spurious countermodels to a query, that is, countermodels that do
not respect the subtyping constraints.

For example, after the following declarations:

Pos: TYPE = SUBTYPE(LAMBDA (x: REAL): x > 0, 1);
Neg: TYPE = SUBTYPE(LAMBDA (x: REAL): x < 0, -1);

a: Pos;
b: REAL;

f: Pos -> Neg = LAMBDA (x:Pos): -x;

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

CVC3 will reply "Valid", as it should, to the command:

QUERY f(a) < 0;

However it will reply "Invalid" to the command:

QUERY f(b) < 0;

or to:

QUERY f(-4) < 0;

for that matter, instead of complaining in either case that the query is not well-subtyped. (The query is ill-
subtyped in the first case because there are models of the empty context in which the constant b is a non-
positive rational; in the second case because in all models of the context the term -4 is non-positive.)

In contrast, the command sequence

ASSERT b > 2*a + 3;
QUERY f(b) < 0;

say, produces the correct expected answer because in this case b is indeed positive in every model of the logical
context.

Semantically, CVC3's behavior is justified as follows. Consider, just for simplicity (the general case is analogous),
a function symbol of type where is a subtype of some value type . Instead of interpreting
as partial function that is total over and undefined outside , CVC3's interprets it as a total function from
to whose behavior outside is specified in an arbitrary, but fixed, way. The specification of the behavior
outside is internal to CVC3 and can, from case to case, go from being completely empty, which means that
CVC3 will allow any possible way to extend from to , to strong enough to allow only one way to extend

. The choice depends just on internal implementation considerations, with the understanding that the user is
not really interested in 's behavior outside anyway.

A simple example of this approach is given by the arithmetic division operation /. Mathematically division is a
partial function from to undefined over pairs in . CVC3 views / as a total
function from to that maps pairs in to and is defined as usual otherwise.
In other words, CVC3 extends the theory of rational numbers with the axiom . Under this
view, queries like

x: REAL;

QUERY x/0 = 0 ;
QUERY 3/x = 3/x ;

are perfectly legitimate. Indeed the first formula is valid because in each model of the empty context, x/0 is
interpreted as zero and = is interpreted as the identity relation. The second formula is valid, more generally,
because for each interpretation of x the two arguments of = will evaluate to the same rational number. CVC3
will answer accordingly in both cases.

While this behavior is logically correct, it may be counter-intuitive to users, especially in applications that intend
to give CVC3 only well-subtyped formulas. For these applications it is more useful to the user to get a type error
from CVC3 as soon as it receives an ill-subtyped assertion or query, such as for instance the two queries above.
This feature is provided in CVC3 by using the command-line option +tcc. The mechanism for checking well-
subtypedness is described below.

Type Correctness Conditions

CVC3 uses an algorithm based on Type Correctness Conditions, TCCs for short, to determine if a term or
formula is well-subtyped. This of course requires first an adequate notion of well-subtypedness. To introduce that

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

notion, let us start with the following definition where is the union of CVC3's background theories.

Let us say that a (well-typed) term containing no proper subterms of type is well-subtyped in a
model of (assigning an interpretation to all the free symbols and free variables of) if

 is a constant or a variable, or
it is of the form where has type and each is well-subtyped in and
interpreted as a value of .

Note that this inductive definition includes the case in which the term is an atomic formula. Then we can say
that an atomic formula is well-subtyped in a logical context if it is well-subtyped in every model of and .

While this seems like a sensible definition of well-subtypedness for atomic formulas, it is not obvious how to
extend it properly to non-atomic formulas. For example, defining a non-atomic formula to be well-subtyped in a
model if all of its atoms are well-subtyped is too stringent. Perfectly reasonable formulas like

with , , and free constants (or free variables) of type , say, would not be well-subtyped in the empty
context because there are models of in which the atom is not well-subtyped (namely, those that
interpret as zero).

A better definition can be given by treating logical connectives non-strictly with respect to ill-subtypedness. More
formally, but considering for simplicity only formulas built with atoms, negation and disjunction connectives, and
existential quantifiers (the missing cases are analogous), we define a non-atomic formula to be well-subtyped
in a model of if one of the following holds:

 has the form and is well-subtyped in ;
 has the form and (i) both and are well-subtyped in or (ii) holds and is well-

subtyped in or (iii) holds and is well-subtyped in ;
 has the form and (i) holds and is well-subtyped in some model that differs from at

most in the interpretation of or (ii) is well-subtyped in every such model .

In essence, this definition is saying that for well-subtypedness in a model it is irrelevant if a formula has an
ill-subtyped subformula, as long as the truth value of is independent from the truth value of that subformula.

Now we can say in general that a CVC3 formula is well-subtyped in a context if it is well-subtyped in every
model of and .

According to this definition, the previous formula , which is equivalent to ,
is well-subtyped in the empty context. In fact, in all the models of that interpret as zero, the subformula

 is true and well-subtyped; in all the others, both and are well-subtyped.

This notion of well-subtypedness has a number of properties that make it fairly robust. One is that it is invariant
with respect to equivalence in a context: for every context and formulas such that , the
first formula is well-subtyped in if and only if the second is.

Perhaps the most important property, however, is that the definition can be effectively reflected into CVC3's
logic itself: there is a procedure that for any CVC3 formula can compute a well-subtyped formula , a type
correctness condition for , such that is well-subtyped in a context if and only if . This has the
nice consequence that the very inference engine of CVC3 can be used to check the well-subtypedness of CVC3
formulas.

When called with the TCC option on (by using the command-line option +tcc), CVC3 behaves as follows.
Whenever it receives an ASSERT or QUERY command, the system computes the TCC of the asserted formula or
query and checks its validity in the current context (for ASSERTs, before the formula is added to the logical
context). If it is able to prove the TCC valid, it just adds the asserted formula to the context or checks the
validity of the query formula. If it is unable to prove the TCC valid, it raises an ill-subtypedness exception and
aborts.

It is worth pointing out that, since CVC3 checks the validity of an asserted formula in the current logical context
at the time of the assertion, the order in which formulas are asserted makes a difference. For instance,

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html

attempting to enter the following sequence of commands:

f: [0..100] -> INT;
x: [5..10];
y: REAL;

ASSERT f(y + 3/2) < 15;
ASSERT y + 1/2 = x;

results in a TCC failure for the first assertion because the context right before it does not entail that the term y
+ 3/2 is in the range 0..100. In contrast, the sequence

f: [0..100] -> INT;
x: [5..10];
y: REAL;

ASSERT y + 1/2 = x;
ASSERT f(y + 3/2) < 15;

is accepted because each of the formulas above is well-subtyped at the time of its assertion. Note that the
assertion of both formulas together in the empty context with

ASSERT f(y + 3/2) < 15 AND y + 1/2 = x

or with

ASSERT y + 1/2 = x AND f(y + 3/2) < 15

is also accepted because the conjunction of the two formulas is well-subtyped in the empty context.

SMT-LIB Input Language

CVC3 is able to read and execute queries in the SMT-LIB format.

Specifically, when called with the option -lang smt it accepts as input an SMT-LIB benchmark belonging to one
of the SMT-LIB sublogics. For a well-formed input benchmark, CVC3 returns the string "sat", "unsat" or
"unknown", depending on whether it can prove the benchmark satisfiable, unsatisfiable, or neither.

At the time of this writing CVC3 supported all SMT-LIB sublogics.

We refer the reader to the SMT-LIB website for information on SMT-LIB, its formats, its logics, and its on-line
library of benchmarks.

Generated on Thu Sep 1 2011 19:35:07 for CVC3 by 1.7.3

http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.cs.nyu.edu/acsys/cvc3/doc/namespaceCVC3.html
http://www.smt-lib.org/
http://www.doxygen.org/index.html

