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Abstract—Overloading of the integrators in loop filter of 
Sigma-Delta modulators is a performance degrading factor in 
circuit implementations. In this paper, it is shown that in 
resonator-based Â∆ modulators scaling factors should be 
introduced in order to adjust the integrators' input. A 
systematic method is presented to calculate these scaling 
factors without modifying the noise and signal transfer 
functions. The effect of the scaling factors on circuit 
implementation is also discussed. Several examples are given to 
illustrate the influence of the scaling factors on the Â∆ 
performances depending on the order, architecture and 
number of bits of the quantizer. 

I. INTRODUCTION 
 

Sigma Delta ADCs are very popular due to their high 
resolution capability with more relaxed analog component 
specifications. Many works have been published on discrete- 
time (DT) and continuous-time (CT) design methodologies 
at the system level [1][2]. Clearly, for circuit level 
implementations, all the signal swings resulting from the 
system level design must be within allowed limits. The 
problem on limiting output signal swings of the integrators 
of Ê∆ Modulator was studied in [3], but large input signal 
swings of the integrators are also problematic. Input signal 
swings must be scaled down to allowable limits so that the 
integrators stay in their normal operating region and no 
related performance losses occur in the modulator.  

In this paper, we present a simple method for limiting 
the input signal swings of the integrators in Ê∆ modulators 
suitable for both DT and CT architectures with feedforward 
(FF), Fig. 1, and feedback (FB), Fig. 2, loop filter 
topologies. It will be shown that the method does not 
change the Signal and Noise Transfer Functions, (STF and 
NTF), of the modulator and significantly improves the SNR 
degraded due to overloading of integrators in the system 
level. In section II, we explain the method and present a 
simple approach for finding the scaling factors. Possible 
non-idealities arising from circuit level implementation 
issues are discussed in section III.  

 

Figure 1. Feedforward architectures of Sigma-Delta Modulators (CRFF) 

 
 

Figure 2. Feedback architectures of  Sigma-Delta Modulators (CRFB) 

Various examples showing the effectiveness of the 
method are given in section IV. And the paper is concluded 
in section V. 

II. DESCRIPTION OF THE SCALING METHOD 
 

In even order architectures, because of the feedback 
coefficient of the resonator, the most critical signal swings 
occur at inputs of the first (front) integrators of the 
resonators in the loop filter. So, although the method is 
general (i.e. can be applied for limiting any integrator’s 
input signal swing in both FF and FB topologies), it is 
useful mainly for limiting the critical input signal swings of 
the first integrator in resonators of the loop filter. In the 
following, we’ll explain the method by focusing on a 
resonator structure. 
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Figure 3. General structure for the application of 1/ki  scaling method  

A. 1/ki  Scaling Method 
Fig. 3. shows the general form of the front part of a 

resonator, which is a common structure in both even-order 
FF and FB topologies. 

The method can be described with the help of Fig 3. 
shortly as follows: the input signals to the summer unit are 
linearly scaled down by division with a ‘ki’ factor (resulting 
in a reduced signal swing at the input of the integrator), and 
then the output signal of the integrator is scaled up by 
multiplication with the same ‘ki’ factor.  Fig. 4. illustrates the 
1/ki scaling method graphically.     

B.  Conservation of Transfer Funtions  
The method can easily be proved mathematically as 

follows:  

Before 1/ki scaling, (bs), (Fig.3) :  
 

 
 

After 1/ki scaling, (as), (Fig. 4) :  

 
(Although the proof is given for CT case, equations are 

also the same for the DT case). 

It is clear from the above calculations that, while we get a 
scaled signal, (I1/ki), at the input of the integrator, the output 
signal, (Y1), remains unchanged which means that the input-
output relation does not change with the addition of ki 
factors. So, the method preserves all the transfer functions of 
modulator and is valid for both FF and FB topologies as it is 
for DT and CT cases. 

C. Determination of 1/ki Scaling Factors: 
Since Ê∆ modulators are non-linear systems because of 

the quantizer inside, practically we use behavioral 
simulations [3] [4] [5] for determining the 1/ki coefficients. 

 

Figure 4. General structure after the application of 1/ki  scaling method 

Using an ideal model with an input signal of sine wave 
with frequency in bandwidth and peak-SNR amplitude, ki 
factors for each of the integrators (most often, the first 
integrators of resonators) in the loop filter may be 
determined one by one. But, since the method preserves the 
output signals of integrators (Y1 in Fig.3 and Fig.4), the 
value of the ki

th factor has no effect on ki+1
th factor, and so the 

order of determination is not important. ki factors may be 
determined as follows: 

1) Simulate the modulator and determine the “critical” 
integrators which have input signal swing peak amplitudes  
larger than  the allowed limits (i.e.overloading thresholds). 

2) For every critical integrator, using the following 
formula, calculate the ki scaling factor.  

 
Naturally, system and circuit level design choices will 

specify the levels of maximum allowable input signal swings 
of the resonators. 

III.  CIRCUIT IMPLEMENTATION ISSUES   
From the point of view of implementation, it is obvious 

that ki factors may easily be realized by joining them with the 
nearest gain stages. For example the 1/ki factor on the 
feedback path of a resonator can be absorbed by the gain 
stage implementing the feedback coefficient. And also the ki 
factor after the integrator can be realized by including it 
within the gain of the integrator. So generally, less than 3 
separate 1/ki blocks will be enough for implementing the 
method.  

The most problematic place for this separate 1/ki factor is 
the one that is placed just in front of the loop filter (after the 
differencing unit which outputs the error signal of the 
modulator) for limiting the signal swing of the first integrator 
(most often the first one within the resonator structure). 
Since this block is the most critical one, we may call it 
shortly as 1/kf , where ‘f’ stands for the word ‘front’. As it 
will be the first stage of the loop filter, this 1/kf block’s gain 
and noise performance will have great effect on the overall 
noise figure (NF) of the loop filter. And since 1/ki factors 
will always be smaller than 1, this separate 1/kf block will 
always increase the NF of the loop filter and adversely affect 
the overall performance of the modulator. But considering 
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the contribution of the 1/ki scaling method to the SNR 
performance of the modulator (~ 39dB for a 4th order 
Cascade of Resonators Feedforward (CRFF) type CT 
bandpass SD Modulator, Fig. 5), the effect of increase in NF 
of the loop filter becomes unimportant. As a result, it can be 
said that 1/ki factors must be chosen as high as possible, 
closer to 1. 

IV. DESIGN EXAMPLES  
 

In the examples following, we have used ideal behavioral 
models of bandpass CT Ê∆ modulators with an 
oversampling ratio (OSR) of 128 and made SNR calculations 
with 16384 time points. -6 dBFS (sine wave) was used for 
the input amplitudes, this is a reasonable common condition 
for simulations, since all the modulators approach their peak-
SNR around -6 dBFS. In the behavioral models, DT 
coefficients (from R. Schreier toolbox, [5]) transformed into 
CT coefficients with the techniques given in [2] [3] were 
used. The simulated models are as following:  

a) Mono-bit quantizer : 2, 4 and 6th order with CRFF 
topology and 4th order with CRFB  topology. 

b) Multi-bit  quantizer (2 and 3 bits) : 4th order with 
CRFF and 4th order with CRFB topology. 

The simulations were done with and without saturation 
blocks at the inputs and outputs of the integrators. And it was 
assumed that, as the case for a mono-bit quantizer, the 
integrators were also overloaded with input amplitudes larger 
than ± 2 (normalized to 1/Vref). 

Fig. 6. shows a histogram plot of the input signal of the 
first integrator of a 4th order CT bandpass Ê∆ Modulator 
with CRFF topology. The modulator model does not include 
saturation blocks at the inputs and outputs of the integrators. 
Assuming the normal operating region for this integrator is ± 
2 (normalized to 1/Vref), it is clear that this integrator will be 
overloaded and cause a degradation in SNR of the 
modulator. In Fig 7., we see the limiting effect of using 1/ki 
scaling method (with k1=2), on the histogram plot of the 
same signal with same conditions. 

Fig. 5. shows the DR plots of the mono-bit 4th order CT 
bandpass Ê∆ modulator with CRFF topology for three cases: 
the first one for the ideal case representing no overloading of 
integrators (without saturation blocks at the inputs and 
outputs of the integrators), the second one for the case of 
overloading of integrators (with saturation blocks at the 
inputs and outputs of the integrators), and the third one for 
the case of application of 1/ki scaling method in saturation 
conditions. It is clear from the figure that, the method greatly 
restores the SNR (heavily degraded due to saturation 
conditions), back to the one in ideal case of no overloading 
of integrators. 

 

-90 -80 -70 -60 -50 -40 -30 -20 -10 0
InputAmplitude HdBFSL

20

40

60

80

100

R
NS

HBd L

Ideal
SatIn&Out, NoScaling
SatIn&Out, 1ê ki Scaling

 
Figure 5. SNR plot of 1-bit 4th Order CT Bandpass Ê∆ CRFF Topology 

illustrating the effectiveness of the method 

In Table I., we see the effect of the method on the SNR 
performance of mono-bit modulators with different orders of 
loop filter all with CRFF topology. The important point in 
Table I. is that k1 factors are very close to each other           
(~ 1.65, scaling the signal swings to 1.9) for different orders. 
They form the 1/kf factors in front of the loop filter, and 
nearly do not change with the order.  

 
Figure 6. Histogram plot illustrating the signal swing at the input of the 

first integrator in 1-bit 4th order CRFF topology before 1/ki scaling  

 

 
Figure 7. Histogram plot illustrating the signal swing at the input of the 

first integrator in 1-bit 4th order CRFF topology after  1/ki scaling  
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TABLE 1. SIMULATION RESULTS OF MONO-BIT BANDPASS CRFF 
MODULATORS WITH DIFFERENT ORDERS   

Mono-bit CRFF 2 CRFF 4 CRFF 6 
SNR (Ideal) 

No Saturation Blocks 
No 1/ki Scaling 

61.339 87.144 100.514 

SNR 
Sat Blocks In & Out 

No 1/ki Scaling 
38.122 48.365 Unstable 

Int1_In_Max 3.0632 2.99 3.1653 

Int3_In_Max - 1.8327 1.1977 

Int5_In_Max - - 4.6724 

k1 1.6122 1.5736 1.6659 

k2 - 0.9645 0.6303 

k3 - - 2.4591 

SNR 
Sat Blocks In & Out 

With 1/ki Scaling 
61.339 87.144 100.514 

 

 
We see the effect of the method on multi-bit cases in 

Tables 2 and 3. As the number of bits of the quantizer (N) 
increases, the peak amplitudes of signal swings at the inputs 
of integrators decrease in general, meaning that value of ki 
factors also decrease, which is good for the NF of the loop 
filter. For example ki factors become useless for the CRFF 
topology of 4th order with N=3. 

 
 

TABLE 2. SIMULATION RESULTS OF  CT 4TH ORDER BANDPASS CRFF 
MODULATORS WITH MONO-BIT AND MULTI-BIT QUANTIZERS 

CRFF 4th Order 1-Bit  2-Bit  3-Bit  
SNR (Ideal) 

No Saturation Blocks 
No 1/ki Scaling 

87.144 92.886 98.894 

SNR 
Sat Blocks In & Out 

No 1/ki Scaling 
48.365 91.594 

98.894 
(No need 

for scaling) 

k1 1.5736 0.6971 0.5320 

k2 0.9645 1.0853 0.6094 

SNR 
Sat Blocks In & Out 

With 1/ki Scaling 
87.144 92.886 

98.894 
(Without 
scaling) 

 
 

TABLE 3. SIMULATION RESULTS OF CT 4TH ORDER BANDPASS CRFB 
MODULATORS WITH MULTI-BIT QUANTIZERS 

CRFB 4th Order 1-Bit  2-Bit  3-Bit  
SNR (Ideal) 

No Saturation Blocks 
No 1/ki Scaling 

87.040 95.038 97.016 

SNR 
Sat Blocks In & Out 

No 1/ki Scaling 
37.341 unstable 63.608 

k1 1.9978 1.5638 1.4295 

k2 1.6282 0.6896 0.5885 

SNR 
Sat Blocks In & Out 

With 1/ki Scaling 
87.743 95.038 97.016 

 

 

Observing Table 2. (CRFF 4th Order) and Table 3. 
(CRFB 4th Order), we see that integrators in the FB 
topologies suffer more from the overloading of integrators 
compared to FF topologies, consistent with the idea that, 
mainly, the feedback coefficients (especially the large ones) 
cause overloading of the front integrators in resonators of the 
loop filter. 

V. CONCLUSION  
In this paper, we have presented a scaling method for 

limiting the input signal swings of integrators, which is valid 
for FF and FB topologies of DT and CT Ê∆ Modulators. The 
method greatly improves the performance of modulators 
suffering from SNR degradation due integrators' input 
overload. Several examples were given to demonstrate the 
effectiveness of the proposed method. It has been shown that 
the scaling method is particularly important in mono-bit as 
well as feedback architectures.  
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