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Abstract – In this paper we propose a feedback architecture with a 
thermoresistive sensor, based on the thermal sigma-delta principle 
to realize digital measurement of physical quantities that interacts 
with the sensor: temperature, thermal radiation, fluid speed. This 
architecture uses a 1-bit sigma-delta modulator for which a 
considerable part of the conversion functions is performed by a 
thermoresistive sensor. The sensor is modelled using the electrical 
equivalence principle and the constant temperature measurement 
method is applied. We present an analysis of the system 
performance, in terms of frequency response and system 
measurement resolution, of a 1-bit first-order Σ-∆ thermal 
modulator. It is shown that the system performance depends on the 
system oversampling ratio (OSR) and on the system transfer 
function pole and zero, which in turn, depends on the thermal and 
physical sensor characteristics and on the system operating 
conditions. This system is proposed as anemometer. 
  
Keywords – Thermoresistive sensor, Anemometer, Sigma–delta 
modulation, Constant temperature architecture, Microsensors. 

I. INTRODUCTION 

The classical architectures of hot-wire anemometer are 
based on the equivalence principle for which the sensing 
element is a thermoresistive sensor, the estimated output is an 
analog signal and the configuration used is an Wheatstone 
bridge with the sensor placed in one of its branches in a 
constant temperature arrangement. Other Wheatstone bridge 
configurations use pulse width modulation in the feedback 
loop. The simplicity and robustness of sigma-delta A/D 
converters makes this category of A/D converters an 
excellent candidate for smart sensor applications [1, 2]. 
Realizing both functional and economical characteristics of 
integrating sensor and signal processing functions on a chip 
sets a challenge of complexity and component tolerance on 
the integrated circuit design. An easier alternative is the use 
of sigma–delta configurations with the sensor as part of the 
feedback loop.  

A mono-bit first-order thermal Σ-∆ modulator, as shown in 
Figure 1, was proposed as anemometer, which is based on the 
electric equivalence principle with the sensor operating at a 
constant temperature [3]. This fluid speed measurement 
system directly transforms the physical signal into its 

equivalent digital form and may be integrated with a 
microsensor. 

In the proposed mono-bit first-order Σ-∆ modulator 
architecture, the sum and integration operations are 
performed by the sensor. In this paper, the proposed 
anemometer system performance is analyzed and discussed. 

II. BACKGROUND DEFINITIONS 

The dynamic heat equation for a thermoresistive sensor 
can be expressed by [3-5]: 

( ) s
e s f

dT
P +αHS = hS T T + mc

dt
− . (1) 

where, αSH is the incident thermal radiation absorbed by the 
sensor, Pe = I2

sRs is the electrical power delivered to the 
sensor, h is the heat transfer coefficient referred to the sensor 
surface area S, Ts is the sensor temperature, Tf is the fluid 
temperature, m is the sensor mass, c is the sensor specific 
heat.  

The sensor temperature, Ts, can is given by: 

( )( )1 2
s s s s fT = αHS + I R hS T T dt

mc
− −∫  (2) 

Figure 1 shows the block diagram of a first-order sigma-
delta modulator. The summing and integrating blocks are in 
evidence, showing the similarity with (2). 

The idea of including the microsensor into a 1-bit first-
order sigma–delta loop comes from the mentioned similarity 
and from the fact that the sensor temperature response curve 
leads to an almost exponential function in response to a 
squared current step for small steps amplitudes. Thus, 

 
Figure 1. Block diagram of a first-order sigma-delta modulator. 
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considering that the sampling frequency, fs, is much greater 
than the sensor linear transfer function pole frequency, this 
exponential can be approximated by an integration function, 
for which the gain is the exponential function initial slope. 
Considering that the step response for an ideal integrator and 
for the exponential are almost coincident until 10% of the 
exponential time constant, some studies were carried out 
analyzing the small signals model for the sigma–delta 
converters, employed for the measurement of thermal 
radiation and environment temperature [6]. Based on these 
studies and assuming that H is equal to zero, we propose a 
structure based on sigma–delta modulation for estimation 
fluid speed (ϑ). Hence, Ts, can be expressed by: 

( )21
s s s s fT = I R hS T T dt

mc
− −∫  (3) 

The thermoresistive microsensor used has a positive 
temperature coefficient, PTC. The thermal behavior 
mathematical model of the PTC is given by: 

( )1s o s fR = R + β T T −   (4) 

where Ro is the sensor resistance at 0 oC and β is the thermal 
coefficient, which is a function of the sensor material.  

Rewritten (3), considering the substitutions: I2
s for Ys and 

h = a + bϑn and assuming the condition of static thermal 
balance, the sensor squared current (Ys), can be expressed by: 

( )( )1 n
s s f

s

Y = S a+b T T
R

 ϑ −   (5) 

Thus, assuming that the sensor temperature is kept almost 
constant, ϑ can be evaluated from the knowledge Ys as: 

( )

1/

1
n

s s

s f

Y R
a

b S T T

    ϑ = − 
 −   

 (6) 

A. Continuous Current modulator ∑−∆ model 

Figure 2 shows the block diagram the continuous current 
(CC) sigma-delta modulator behavioural model with the 
thermoresistive microsensor working as the summing and 
integrating component. The fluid speed ϑ(t) and the sensor 
squared current, Ys´(t), are the input signals whereas the 
sensor temperature, Ts, is the output signal. The sensor 
substitutes the original 1-bit first-order Σ-∆ modulator sum 
and integration functions.  

 
As the sensor is designed to operate at constant 

temperature, a comparator is included into feedback loop to 
verify sensor temperature. If sensor temperature is greater 
than a reference value the 1-bit D/A (quantizer) generates a 
“1” bit at the modulator output. This bit, introduced in 
modulator feedback path, reduces the sensor current reducing 
also the sensor temperature. If sensor temperature is smaller 
than the reference value the 1-bit D/A generates a “-1” bit at 
the modulator output. This bit introduced in modulator 
feedback path increases the sensor current increasing also the 
sensor temperature. 

B. Pulsed current ∑−∆ modulator model. 

Figure 3 shows the block diagram of the pulsed-current 
(PC) sigma-delta behavioural model. The squared current Ys, 
from the continuous-signal model, is replaced by a pulsed 
current Is(PWM), generated by the PWM block, which is 
proportional to Ys. The PWM generates a pulsed current with 
only two pulse widths, one pulse width for quantizer output  
“1” and another pulse width for quantizer output “-1”. In the 
thermal equilibrium state, the pulse width has a theoretical 
value of 50% of the PWM period (TPWM). The fluid speed 
information is now in the pulse width, which has a nonlinear 
relationship with the former. 

III. PERFORMANCE ANALYSIS 

A performance analysis for the continuous current system 
is carried out in this section, in terms of the system frequency 
response and measurement resolution.  

A. Continuous Signal System Transfer Function. 

Figure 4 shows the block diagram of a sampled version in 
the s-domain of the proposed architecture, based on the 
continuous signal model, which is used to analyze the system 
performance. In this block diagram it was used the sensor 
small signal model. The quantizer was linearized and 
modelled by a white noise source, E(s), that was added to the 
sensor temperature, Ts(s), which is a function of the fluid 
speed, ϑ(s). The unity gain block between sensor output and 

 
Figure 2. Block diagram of the continuous signal Σ−∆ modulator model. 

 

Figure 3. Block diagram of the pulsed current Σ−∆ modulator model. 



 
the white noise source is used to transform the sensor 
temperature scale to the quantizer scale. The block Ao(s) is a 
zero-order holder and ∆Yso is the squared current gain of the 
D/A converter in the ∑−∆ modulator feedback path. The 
sensor small signal model is described by: 

( ) ( )1
s Y ss

T = K s + K Y s
s p ϑ

 ϑ −
 (7) 

 
Figure 4. Block diagram used to analyze the system performance. 

In which, p = ((a+bϑn)S+βRsoYso)/mc is the inverse of the 
sensor time constant, kϑ =bϑnS(Tf -Ts)/mc, and ky =Rso/mc are 
the coefficients associated to the fluid speed and to the sensor 
squared current Ys, respectively. A zero-order holder, Ao(s), 
transforms the modulator output samples to a continuous 
signal, with T as the oversampling period. Ao(s) is given by:  

( ) ( )1 sT
oA s = e s−−  (8) 

With the model of the measurement system transfer 
function in the z-domain, it is possible to analyse the 
behaviour of the quantization noise frequency spectrum at the 
Σ-∆ modulator output and consequently the quantization in-
band noise power in the Σ-∆ converter output. Finally, we can 
determinate the signal/noise relationship (SNR) and the 
effective resolution of the proposed measurement system. 

B. Continuous Current System Transfer Function in the z-
domain 

The velocity step response for the mono-bit first-order Σ-∆ 
modulator with the thermoresistive sensor can be expressed 
by its z-domain transfer function as:  

( ) ( ) ( )z
qz
rz+zE

qz
rz=zF

−
−

−
−  (9) 

where, r is the quantizer error transfer function zero and q is 
the system transfer function pole.  

The quantizer noise (error) transfer function (NTF) has a 
zero that depends on the sensor small signal model pole p, for 
r=epT

 with T being the oversampling period. The system 
transfer function pole q also depends on this parameter, and 
can be foud as  

( )1y sok ∆Y
q = +r +r

p
. 

The NTF zero degrades the noise attenuation in the signal 
band once there is a finite attenuation at DC frequency 

instead of an infinite attenuation as in the ideal first-order 
sigma-delta modulator [7]. The frequency spectral density 
magnitude of the proposed measurement system quantization 
noise can be expressed by: 

( )
( ) ( )

( )

2 2

2 2

1 4 sin
2

1 4 sin
2

s

y

s

wTE f r + r

E f =
wTq + q

   −     
   −     

 (10) 

The Σ-∆ converter output noise power signal band with a 
first order sensor, 2

eyσ , in the frequency domain, is calculated 
from Σ-∆ modulator output noise spectral density, assuming 
that the modulator output signal has being filtered by an ideal 
filter on signal band frequency. The signal band noise power 
depends on the OSR and on the quadratic relationship 
involving the NTF zero and pole. Then: 

( )( ( ( )
( )

22
22

2

1

1
rms

ey y

σ r
σ = E f df =

OSR q

−

−∫  (11) 

C. Continuous Current System Measurement Resolution  

To obtain the system theoretical resolution, the system 
noise power was compared to an N-bits Nyquist PCM noise 
power and the resolution, in number of bits, is given by (12). 
This expression shows the resolution dependence with OSR-1 
and the quadratic relationship involving the NTF zero and 
pole.  

( )
( )

2

2 2

11 1log
2 1

r
N =

OSR q

 − −  
−  

 (12) 

A better SNR can be obtained by increasing the modulator 
quantizer number of bits, by increasing the modulator order, 
or by limiting the input signal band under the sensor pole 
frequency. To verify the theoretical results, the pulsed current 
system was simulated in the time domain for a sine wave 
speed input. The system resolution is improved by half bit 
every time that the oversampling ratio is doubled.  

IV. SIMULATION RESULTS 

The sensor characteristics used in the theoretical analysis 
and in the system simulations were: β = 0.000784 oC-1, 
R0 = 102 Ω, S = 4x10-9m2, mc = 292x10-12 J °C-1. The sensor 
temperature theoretical operation point was defined at 80 oC 
and the fluid speed range was defined from ϑmin=0 to 20 m/s. 
The signal band frequency was chosen to be near system 
transfer function pole frequency, fB = 0.9fsr. Simulations were 
made for the continuous current model using the developed 
analyses presented in the previous section, and are shown in 
Figures 5 to 7. Simulations for the pulsed current model, 
shown in Figure 3, were made and the results are compared 



 
with continuous model results, as presented in Figure 8 and in 
Table 1.  

Figure 5 shows the theoretical system output noise 
magnitude for the oversampling ratio equal to 256, zoomed 
into the signal band frequency. At DC there is a finite 
attenuation (-38.9 dB). This attenuation is –35.9 dB and–3 dB 
at the NTF zero and pole frequencies, respectively, which 
limit the system application in the signal band frequency. 

Figure 6 shows the system NTF zero and pole locations in 
the z-plane. 

Figure 7 shows theoretical system resolution, obtained 
from (12), as a function of the OSR. The system resolution is 
improved by half bit every doubling of the oversampling 
ratio. 

To verify theoretical results the pulsed current system was 
simulated in the time domain for a sinusoidal fluid speed, 
expressed by (13), covering the full measurement range. The 
sine wave frequency was selected to be smaller than the 
sensor small model pole frequency. 

ϑ(t)=[10+10 sin (πt/105)]  (m/s) (13) 

The fluid speed was estimated, through simulation, from 
the data at the Σ-∆ modulator output, using a digital filter as 
presented in [8]. 

Figure 8 shows the estimated fluid speed absolute error for 
the pulsed current system, for the fluid speed full range of 20 
m/s, and disregarding the dynamic resolution lost around the 
positive peak of the estimated fluid speed due to the fluid 
temperature mathematical compensation. These absolute 
errors are shown for the OSR equal to 64, 128 and 256. 

The mean squared error for the pulsed current system was 
obtained from estimated fluid speed samples at the end of the 
converter, after the stabilization, and was calculated by  

[ ]
2 2

2

1max max

2 1 ( ) ( )
Na

ey n
a

σ = i i
N

 
ϑ − ϑ ϑ − ϑ 

∑  (14) 

where Na is the number of samples, ϑn is the estimated fluid 
speed at the output of the converter and ϑ is the fluid speed at 
the input of the converter. 

The estimated fluid speed mean squared error was 

 
Figure 5. System noise transfer function magnitude. 

 
Figure 6. System NTF zero-pole located in z-plane. 

 
Figure 7. System resolution. 

 
Figure 8. Pulsed current system: estimated absolute error. 



 
compared with the N-bits Nyquist PCM noise power to 
obtain system resolution in time domain. The system 
resolution was given by equation (11): 

( )
[ ]

2

2 2
1max min

12 10.5log ( ) ( )
Na

n
a

N i i
N

  = − ϑ − ϑ 
ϑ − ϑ  

∑  (15) 

Table 1 shows system resolution results obtained for three 
oversampling ratio values. The first column refers to system 
resolution results calculated from (12) and the two columns 
refer to the pulsed current system time domain simulation 
results that were calculated from (15). The pulsed current 
system resolution values are worst due to the uncompensated 
environment temperature, when comparing to theoretical 
system.  
 

Table 1. Theoretical and Pulsed current systems simulated measurement 
resolution results. 

 Resolution (number of bits) 
OSR Theoretical System Pulsed current System 

64 9.7 6.4 
218 10.2 7.3 

256 10.7 8.2 

V. CONCLUSION 

The pulsed current fluid speed architecture presented here 
realized the expected A/D conversion with a lower resolution 
when compared to an ideal 1-bit Σ-∆ modulator. To obtain 
better measurement resolution, the input signal band 
frequency must be limited under sensor small signal transfer 
function pole frequency and the modulator output samples 
must be filtered at the sensor small signal pole frequency. 

The pulsed current system SNR values are lower them for 
an ideal 1-bit Σ-∆ modulator, which is 1.5 bits for every 
doubling of the oversampling ratio.  

This pulsed-current fluid speed measurement architecture 
does not need a 1-bit D/A converter in the feedback loop 
because this function is realized by PWM. 

Fluid speed measurement system based on this same 
principle, with compensation of the environment temperature, 
will be our future objective. 
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