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Abstract— In this paper, a generic and simple approach to
design Continuous-Time Sigma-Delta Modulators (CT XAMs)
based on Finite Impulse Response Digital-to-Analog Converter
(FIR DAC) is introduced. The numerical conversion from
Continuous-Time to Discrete-Time allows the designer to
explore complex modulator architectures and different feedback
DAC shapes, without dealing with difficult equations needed in
other published design approaches.

I. INTRODUCTION

Continuous-Time (CT) Sigma-Delta Modulators (ZAMs)
are receiving more and more attention due to their advantages
compared to Discrete-Time (DT) XAMs. Inherent anti-
aliasing filtering, lower thermal noise, higher sampling rate
and lower power consumption are all attractive advantages of
CT ZAMs that make them interesting solutions for high data-
rate wireless communication systems [1].

On the other hand, the mixed-signal nature of CT ZAMs
makes their design and analysis more complicated than its DT
counterpart. An efficient way to design a CT XAM is to start
by calculating its DT equivalent model, as shown in Fig. 1, by
converting the loop gain from s-domain to z-domain using the
impulse invariant transformation [2]:

Ger (Z) = ZiEl [H(S)HDAC (S)]

where H(s) is the transfer function of the loop filter, Hp,(s) is
the feedback Digital-to-Analog Converter (DAC) transfer
function and 7j is the sampling time. This z-domain loop gain
can be calculated numerically using Matlab® CT-to-DT
conversion function “c2d”, and it has the general form:

Ber (Z )
Gl

Usually this loop gain, which will be referred as CT LG, is
not optimal and needs to be modified to match the optimal
loop gain of the DT £AM of the same type and order, which is
calculated using Schreier toolbox [3]. This optimal discrete
time loop gain will be referred as DT LG, and it has the
general form:
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Figure 1. Equivalence between CT and DT ZAMs.

There are several techniques to match CT LG to DT LG.
The direct method is to design the CT filter coefficient to
match the DT equivalent as in [4]. This method is simple, but
it is not suitable for LC based modulators, where there are no
sufficient degrees of freedom to change the filter coefficients.
Another technique is to use multi-feedback by adding a
delayed version of the feedback DAC [5] or an integrating
feedback DAC [6]. The multi-feedback technique was
generalized by [7] to a more flexible technique based on
matching the loop gain using FIR (Finite Impulse Response)
DAC. The FIR is added between the modulator output and the
feedback DAC, as shown Fig. 2, and the FIR coefficients are
chosen such that the CT LG multiplied by the FIR is equal to
the desired DT LG:

GDT(Z):GCT(Z)'F(Z) 4)

The authors of [7] suggested a systematic design approach
that is based on equating the partial fractions of both sides to
calculate the FIR coefficients. Although this method is
accurate, it is very difficult to generalize, due to the
complicated formulas used. The method is getting more
complicated when applied to higher orders filters or different
shapes of the feedback DAC waveforms. In this work, a
numerical approach is proposed to overcome the complexity
of the analytical equations needed in the design method
suggested in [7].
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Figure 2. FIR-based CT ZAM.

II.  PROPOSED APPROACH

A. Approach Concept

As the denominator of CT LG is, by design, equal to DT
LG, we need only to match the numerators of both sides, so
(4) can be reduced to:
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BDT(Z):
By expanding both sides, we get:
(bDTO +....+bmz’”): (bcm +....+l)CTkz”‘)~(f0 +....+fmz”") (6)

By doing the multiplication, which is actually a convolution,
we get the following equations set, which can be written in
matrix format as:
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or symbolically as:
[bDT]: [bcr]' [f] 8)

And finally, the FIR coefficients are calculated directly using
matrix division:

[f]: [bcrjrl . [bDT]

B.  Half Period Delay DAC

It can be seen that the suggested method is much simpler
and more direct. However, the derived equations are valid
only for FIR that is clocked at the sampling frequency, i.e. the
delay between any two successive samples is 7;. For more
flexibility and lower power consumption, the FIR can work at
both the positive and the negative clock edges, i.e. the delay
between any two successive samples is 7,/2 [7]. To generalize
the derived equations for this case without adding more
complexity, we can divide the FIR into two parts: even part
and odd part, as shown in Fig. 3. For this case, the CT LG is
composed of two parts, even part and odd part, where the even
part is calculated as:
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Figure 3. Half period delay FIR DAC.

Ger, (Z ) = ZiE] [H (S )H DAC (S )] =nT, } (10)
and the odd part is calculated as:
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Numerically, we can find both parts of CT LG:
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As in the previous case, we need to match CT LG to DT LG:
GDT(Z): GCTW (Z)'Fvev(z)_’—GCT‘,,,(Z)' (Z) (14)

Again, the denominator is the same, and we need only to
match the numerators:
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By multiplication and writing in matrix format:
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Finally, the FIR coefficients can be found directly by matrix
division.



C. Compensation DAC

In some cases, and due to excess loop delay, the feedback
FIR DAC is not sufficient to match CT LG to DT LG. It was
proposed in [8] to solve this problem by adding a delay
compensation branch as shown in Fig. 4. The loop gain of the
compensation branch can be calculated using the same CT-to-
DT conversion technique, but due to the fact that the feedback
DAC of the compensation branch is connected directly before
the sampler, the CT-to-DT conversion is much simpler:

Ger (Z ) = Zi[;l [H DAC (S )] (=nT, }

where d(0) is the feedback DAC output at the instance of
sampling. Without loss of generality, the value of d(0) can be
set to unity. Now the overall CT LG should be matched to the
DT LG:

GDT(Z): GCTW (Z) Fev(z)+ GCT,,(,(Z)'F:)d(Z)_FZil Fc(z) (19)

By multiplying both sides with CT LG denominator Acr(z) we
get:

BDT(Z): B(‘Tm, (Z) F;v(z)+BC7j,(, (Z) F:;d(z)+ Zﬁ]Acr(Z)' E;(Z) (20)

Similar to the previous two cases, the expansion gives:
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By multiplication and writing in matrix format:
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Finally, the FIR coefficients are found by matrix division, as
the previous cases.

III.

To validate the proposed technique, it is used to design a
4™ order LC-based bandpass CT ZAM. The first step is to
design the equivalent DT modulator using Schreier toolbox.
By using the synthesis function to design a bandpass NTF
centered at quarter the sampling frequency with 1.5 out-of-
band gain we get the following DT LG transfer function:

DESIGN EXAMPLE

077z +0.56z7"

Gor (Z) B 1+2z72+z7*

(23)

The next step is to design the CT LC filter shown in Fig. 5,
such that CT filter poles are coinciding with DT poles:

23

t=nT, ufn
X(1) ——>0—> ; > /1]
A H(S) u(t) ); _+_
Filter Comparator
Hpac(s) [* Fe(z) [+
DAC FIR
HDAC(S) - Fev(Z) [
DAC FIR
72 ‘
delay [+ HDac(s) [ Fou(z) |+
DAC FIR
Figure 4. Adding delay compensation branch
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where G, is the coupling transconductance between the two
tank circuits, , is the resonance frequency, and L is the
inductance. In this example, the center frequency is 915MHz,
the inductance is 10nH and the coupling transconductance is
ImA/V. The transfer function of the rectangular NRZ
feedback DAC is given by:

HDAC(S):E(l_eﬂTE)

Substituting from (24) and (25) into (10) and (11), the DT
equivalent is calculated using Matlab® function “c2d” with
“impulse sampling” option. The two parts of the CT LG are
found to be:

(25)
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Substituting from (23), (26) and (27) in (22), we get the
following set of equations:
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By removing the first trivial zeros row of the equations set,
and doing matrix division, we get the FIR coefficients:
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The CT XAM and its DT equivalent were simulated using
Simulink®. The output spectrums of both modulators are
plotted in Fig. 6, and the SNR (Signal-to-Noise Ratio) of both
modulators are plotted versus the input amplitude in Fig. 7. It
can be seen that there is a good agreement between the CT
YAM and its DT equivalent.

IV. CONCLUSION

A generic and simple approach for designing CT ZAM
based on FIR DAC was introduced. The technique was further
generalized to include FIR with half period delay and to
modulators with delay compensation feedback branch. The
numerical nature of the proposed technique, significantly
simplifies the design, and increases the designer options. The
technique was applied to a design example of a bandpass 4"
order CT XAM based on LC filter, and the simulations showed
a good agreement between the designed CT XAM and its DT
equivalent.

REFERENCES

[11 A. Ashry and H. Aboushady, “Using excess loop delay to simplify LC-
based XA modulators,” Electronics Letters, vol. 45, no. 25, pp. 1298—
1299, Dec. 2009.

[2] O. Shoaei and W. Snelgrove, “Optimal (bandpass) continuous-time LA
modulator,” in Proc. IEEE International Symposium on Circuits and
Systems, (ISCAS’94), vol. 5, May 1994, pp. 489-492.

[3] R. Schreier, “The delta-sigma toolbox for matlab,” Oregon State
University, Nov. 1999.

[4] H. Aboushady and M. Louerat, “Systematic approach for discrete-time
to continuous-time transformation of £A modulators,” in Proc. IEEE
International Symposium on Circuits and Systems, (ISCAS’02), vol. 4,
May 2002, pp. IV-229-232.

[5] O. Shoaei and W. Snelgrove, “A multi-feedback design for lc bandpass
delta-sigma modulators,” in Proc. IEEE International Symposium on
Circuits and Systems, (ISCAS’95), vol. 1, May 1995, pp. 171-174.

[6] B. K. Thandri and J. Silva-Martinez, “A 63 dB SNR, 75-mW Bandpass
RF XA ADC at 950 MHz Using 3.8-GHz Clock in 0.25-um SiGe
BiCMOS Technology,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp.
269-279, Feb. 2007.

[7] N. Beilleau, A. Kammoun, and H. Aboushady, “Systematic design
method for Ic bandpass sigma delta modulators with feedback firdacs,”
in Proc. IEEE International Symposium on Circuits and Systems,
(ISCAS’06), Sept. 2006, pp. 1896—1899.

[8] P. Benabes, M. Keramat, and R. Kielbasa, “A methodology for
designing continuous-time sigma-delta modulators,” in Proc. European
Design and Test Conference, (ED&TC’97), Mar. 1997, pp. 46-50.

24

in > - out
> > I
Ly C Ly C
> >
Figure 5. Loop filter of the modulator.
Simulation PSD
0 —CT
—DT
20
-40
B
g 60
2
S 80
-100
-120
-140
0 005 01 015 02 025 03 035 04 045 05
frequency (normalized)
Figure 6. Output Spectrum of the modulator output.
A
H
‘% \
=<
%o 70 %0 50 0 S0 v W0 0 0
Amp (dB)
Figure 7. SNR of the modulator versus the input amplitude.



