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Abstract. This paper addresses the multi-target tracking problem with
the help of a matching method where moving objects are detected in each
frame, tracked when it is possible and matched by similarity of covariance
matrices when difficulties arrive. Three contributions are proposed. First,
a compact vector based on color invariants and Local Binary Patterns
Variance is compared to more classical features vectors. To accelerate
object re-identification, our second proposal is the use of a more effi-
cient arrangement of the covariance matrices. Finally, a multiple-target
algorithm with special attention in occlusion handling, merging and sep-
aration of the targets is analyzed. Our experiments show the relevance
of the method, illustrating the trade-off that has to be made between
distinctiveness, invariance and compactness of the features.

1 Introduction

Multiple objects tracking or matching is a classical task required in most surveil-
lance systems. More than being useful for analyzing trajectories and behaviors
in a mono-camera context, it is a challenging issue when objects have to be re-
detected from a second camera under different set-ups, or at two very different
times. The task faces many difficulties such as scale or appearance change, illu-
mination variations or occlusion. Ideally, the representation of the target has to
be chosen so as to be invariant and robust to such phenomena. Unfortunately,
most color invariants, although robust against lighting changes, can reduce the
separability between the targets and can lead to matching ambiguities. In ad-
dition, when targets have a non rigid motion or have low textural or structural
contents, the gradient or corner-based methods, such as the classical KLT [1] or
SIFT [2] are not appropriate.

Kernel-based methods like Mean-shift [3] are usually well adapted to such
objects since they rely on a global statistical distribution. The price to pay
is a decrease of discriminant power, therefore several attempts have enhanced
the method by background subtraction [4], colorspace switch [5] and by using
a spatio-colorimetric histogram [6]. Covariance Tracking [7] is an interesting
alternative which employs a compact representation of the correlation between
spatial and statistical features within the object window. High performances can
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be achieved even for low textured objects, since they are represented by a global
model. However, the choice of the features is still an issue.

The aim of this paper is to develop a robust and fast solution for multi-
ple target detection, labeling and re-identification. It evaluates the behavior of
several sets of color and texture/gradient features for covariance matching. In
addition, a strategy is proposed for multi-target matching. Note that, contrary
to most tracking techniques [7] where the targets have a consistent trajectory,
the present work focuses on matching in order to evaluate the descriptors in the
context of large motion and object re-identification applications.

The continuation of the paper is structured as follows. Section 2 introduces
the covariance matching and the descriptors. Then, Section 3 explains the princi-
ples of the objects handling, and how the occlusion, collision and separations are
treated in a probabilistic context. To conclude, Section 4 compares the behavior
of the features and evaluates the multi-target matching.

2 Covariance Descriptors

2.1 Principles

From each pixel in the observed image It of size W × H a feature vector is
obtained by the mapping function φ, such that a W ×H×d dimensional feature
image F is generated F (x, y) = φ(I, x, y), where local information represented
by φ can be position, color, gradients, filter responses, etc. A rectangular region
{zk}k=1···n of n feature points is represented by the d× d matrix

CR =
1

n

n∑
k=1

(zk − µ)(zk − µ)
T

(1)

where vector µ is the mean of the feature points inside the region. Targets are
represented with covariance matrices CR which preserve spatial and statistical
information and allow to compare different sized regions. Tracking is performed
searching for the most similar region in a list of candidate regions in It with the
object’s model in t− 1. However, direct arithmetic subtraction fails to compare
covariance matrices because these type of matrices do not lie on the Euclidean
space. The matching can be done applying the dissimilarity measure defined in
[8] as the sum of squared logarithms of the generalized eigenvalues. Here, this
distance is noted dcov.

Adapting the model for changes of shape, size and appearance is also neces-
sary. This is done by keeping a set of T previous covariance matrices [C1 · · ·CT ]
where C1 denotes the current one, and by computing the mean covariance ma-
trix through Riemannian geometry. A comprehensive explanation of the update
mechanism can be found in [9].

2.2 Covariance features

One of our objectives is to test the distinctiveness of several covariance matrices
based on descriptors different both in size and nature. Classical features such as
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luminance I, image gradients (gx,gy), color RGB, and HSV models were tested
as well as two color invariants that are worth of interest: the normalized (r, g, b),
where r stands for R

R+G+B (similar for G and B) because it offers a separation of
luminance and color; then, invariant L1 from [10] is interesting because if offers a
compact mixture of (r, g, b) and luminance by use of a color relevance measure.
Finally, the LBP variance operator V ARLBP is compared to the classical gx
and gy. Specifically, the tested feature vectors combinations have the following
generic form:

FA,B =
[
x y A B

]
(2)

where A is a color feature vector and B a texture descriptor. Five color
features A are tested: Lum (a scalar luminance value), [RGB], [H S V ], [r g b],
and [L1V ], as defined in [10] where L1 = max(r, g, b) and V is the luminance
normalized in the object. Two texture descriptors are compared: grads = [gx gy]
is the gradient vector and LBP is the LBP variance value. Thus, ten feature
vectors are compared.

2.3 Covariance matching for re-identification

Here, the Mean Rimemannian Covariance (MRC) matrices proposed by Bak
et al. [11] are used to blend appearance information from multiple images.

Given a set of N covariance matrices {C1, C2, · · · , CN − 1}, the Karcher or
Fréchet mean, is the value µ which minimizes the set of squared distances

µ = arg min
C∈M

N∑
i=1

ρ2(C,Ci) (3)

For the case of covariance matrices, the value of µ is calculated iteratively,
following the Newton gradient descent method for Riemannian manifolds. The
approximate value of µ at step t+ 1 is

µt+1 = expµt

[
1

N

N∑
i=1

logµt
(Ci)

]
(4)

where, expµt and logµt are specific operators uniquely defined on the Rie-
mannian manifold. Equations (5) and (6) express how to calculate them.

Y = expX(W ) = X
1
2 exp(W )X

1
2 (5)

Y = logX(W ) = log(X−
1
2WX−

1
2 ) (6)

Bak et. al [11] achieve great re-identification rates using a dense grid of of
MRC matrices. For the case of human signatures, each image is scaled into a
fixed size of 64 × 192 pixels where a grid of overlapping 16 × 16 pixel size cells
is constructed. Neighboring cells are separated by 8 pixel steps. In total, 161
MRC are used to construct the human signature.
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To reduce the re-identification computational cost we propose a different ar-
rangement of MRC matrices. Images are re-scaled to 96×128 pixels, then, rings
of concentric rectangles are formed around the image center with exponentially
increasing areas allowing some area overlapping. The proposed pattern is in-
spired in FREAK and DAISY [12, 13] but for rectangular covariance regions, in
order to be easily accelerated by the integral images method.

Fig. 1: Proposed MRC pattern and its resemblance to FREAK

In our configuration, a total of 42 MRC descriptors were employed mostly
concentrated at the center while more variability is tolerated at the periphery.
To further simplify things MRC descriptors are compared one to one in contrast
to [11] where comparison is maid sliding one grid against the other.

3 Object Handling

In this section, we describe the multiple-tracking algorithm that we implemented
together with the re-identification method (2.3). An approach similar to [14]
was followed. A list is kept handling multiple levels of representation: blobs,
people and groups. The algorithm receives an image It which corresponds to
frame t. This image is introduced to the Sigma-Delta [15] background subtraction
algorithm where data extracted from the set of previous frames {I0, · · · , It−1}
is employed to separate foreground and background into a binary image Ft.

Blobs are detected in Ft after applying the Light-Speed Labeling algorithm
[16], signaling areas of the image of important change. Blobs of sufficient size
are appended to an object list and small blobs are filtered out 1. The accepted
blobs inside the list are now considered objects to match/track exploiting their
location, size, trajectory and appearance, modeled with the help of covariance
descriptors.

In regular conditions, matching is done considering information of location,
size and previous trajectory. Appearance information is used to confirm those
estimations, a single low-dimensional (four to six features) covariance descriptor
covering the whole object is preferred for simple situations. The complete set of

1 The parameter used in the paper is 1500px for an image of 768× 576
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descriptors described in section 4.1 is computed anyway as a preventive measure
against faults such as object occlusions, target crossings and objects getting in
and out from the scene.

When two or more existing objects become too spatially close, they are
merged together to become a group. Groups are inserted into a separate list
but in general, their location, trajectory and appearance are treated in the same
way as any single object. Groups in contrast to single objects, are able to split
into separate combinations of their composing original objects.

To each blob in Ft an identity is attributed, which comes from existing or
newer objects/groups. As depicted in Fig.3, the identities can transit in five
different states: detected, tracked, occluded, collision and lost. Consider a target
blobB, and a set ofN candidate objects {Oi}i=0···N−1, defined by their bounding
boxes. For tracking purposes, the euclidean distance dbb between the centers of
B and Oi, denoted {dbb(B,Oi)}, provides a first matching hint. Objects located
far from B are filtered out by

dbb(B,Oi) > Kmax(W,H) (7)

where K is an adjustable factor and W,H correspond to the blob’s width and
height. Note that, when no assumptions can be made on the object location, for
multiple-camera object re-identification for example, the location information of
(7) is not taken into account.

Consider now a set Z = {Oj}j=0···M−1, formed by the objects which satisfy
inequality (7) where M ≤ N . A uniform probability P (Oj) = 1/M is assigned to
each object. These probabilities are updated considering the evidence provided
by the set of distances Dbb = {dbb(B,Oj)}j=0···M−1 as

P (Oj |Dbb) =
d−1bb (B,Oj)∑
j d
−1
bb (B,Oj)

(8)

Similarly, the set of covariance descriptor distancesDcov = {dcov(B,Oj)}j=0···M−1
allows a second object probability update

P (Oj |DbbDcov) =
exp (−dcov(B,Oj))P (Oj |Dbb)∑
j exp (−dcov(B,Oj))P (Oj |Dbb)

(9)

the object Oj with the highest posterior probability is assigned to B if it
surpasses a minimum threshold.

Groups are formed when multiple objects are merged into one blob, when
their spatial distance dbb(Oi, Oj) is low (under a value which depends on the
sizes of the two objects).

The covariance descriptors of each individual object are stored before group-
ing, and additional covariance descriptors are computed for each group, and
matched as any other object. When the objects in a group cannot be matched
individually with separated new candidate objects, then the matching of the
whole group is performed. The individual objects are identified as group mem-
bers and all of them are set in the state of collision sharing the same image
location.
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Figure 2, displays an example of a merge: at t = 128 a descriptor is calculated
for the candidate fusion area (red dotted line). Next frame, (due to the closeness)
only one blob is detected, and its covariance descriptor matches with the fusion
area of previous frame. So, a group is created, it is tracked from frames t = 130
to t = 135, after this, each object is re-identified individually as described in
section 4.1.

Fig. 2: Example of fusion and separation.

Unmatched blobs are then compared with the objects considered in collision
or occluded at t− 1.

Finally, covariance descriptors are regularly updated calculating their covari-
ance mean (equation 3). To avoid model contamination, objects inside a group
must not be updated (they are not reliable due to partial occlusion) until they are
re-identified individually outside the group. The whole object handling algorithm
is summarized in Algorithm 1.

4 Experiments and results

Our experiments evaluated two different aspects: the re-identification success
rate of the proposed MRC set for the different feature configurations (details
in subsection 2.2), and the proposed multiple-target tracking algorithm.

4.1 Object re-identification experiments

To validate our method of re-identification we used the same performance mea-
sure of [11] and [17], which is the Cumulative Matching Characteristic (CMC)
which represents the percentage of times the correct identity match is found in
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the top n matches. Tests were performed for the ETHZ [18] and PETS’09
L1-Walking-Sequence 1 [19] datasets.

ETHZ dataset is composed by images from three different sequences (each
one formed by 83, 35 and 28 individuals). Each individual, is captured by the
same camera which suits just fine to our single-camera tracking objectives.
For this experiment, eight different individuals from PETS’09 L1-Walking-
Sequence 1 were extracted taking discontinuous samples.

For each individual, 10 images were selected from the beginning ant the
end and their MRC matrices (subsection 4.1) were calculated. The recognition
rate was tested, taking random images and comparing against the registered
signatures. Care was taken to avoid reusing any of the images occupied during
signature calculation. Success is declared when the corresponding image identity
is found inside the top n list.

To find out which is more discriminant, measurements were taken for the fol-
lowing feature configurations: 1)Flum,LBP , 2)Flum,grads, 3)FRGB,grads, 4)FL1,grads
and 5)FHSV,grads. Figure 4 reports the results obtained for each sequence.

Except for the first sequence, FRGB,grads is the more powerful configura-
tion to use, achieving good recognition percentages even for the rank-1 score.
FL1,grads and FHSV,grads behave similar, because they explicitly separate lumi-
nance and colour and they show some resistance to low saturation conditions. On
the other side, Flum,grads shows poor recognition performance being overtaken
three times by Flum,LBP which has only 4 components.
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Algorithm 1: Object handling algorithm

Input: Blobs list blobs and Object list objList
Get blobs covariance descriptors1

Match blobs - tracked objects2

Match blobs - candidate collisions3

Match blobs - occluded and collision objects4

Non-matched blobs create new objects inside objList5

Dissolve collisions with only one child6

Remove lost objects7

Update object states and models8

Detect candidate collisions9

The obtained re-identification rates are comparable to the ones reported in
[11] employing a 75% less covariance matrices and fewer components inside them.

4.2 Multiple object tracking

Our tracking algorithm was tested on a randomly walking sparse crowd sequence
from the PETS’09 L1-Walking-Sequence 1 dataset [19].

Feature vectors proposed in subsection 2.2 are evaluated considering Tracker’s
Purity (TP) [20], which is the ratio of frames a tracker εi correctly identifies a
target ni,j to the total number of frames the tracker exists ni: TP =

ni,j

ni
.

Feature vector combinations which lead to the finest TP results were: 1)
FRGB,grads, 2) FL1,LBP , 3) Flum,grads, 4) FL1,grads, 5) FRGB,LBP and 6) Flum,LBP .
TPs for these combinations are displayed in Figure 6. The points on the circle
of radius TP = 1 are related to objects which are always correctly identified
in the sequence. The more area is covered, the more often the targets are cor-
rectly identified. Mean TP values for these combinations are shown in Table 1.
Obviously, tracker purity TP increases when using color since it provides rele-
vant information that improves distinctiveness. Note that, although FL1,LBP is
less distinctive than FRGB,grads, it has two advantages: the covariance matrix is
more compact (5 × 5 instead of 7 × 7) therefore the matching is more rapid,
and it offers a better invariance against illumination variations as shown in [10].
The features vectors based on HSV and (r, g, b) are not convincing, since for low
saturation the hue is ill-defined and (r, g, b) is not distinctive enough. Flum,LBP
degrades severely in comparison to Flum,grads, while in the case of the mixture
L1, the use of V ARLBP does not alter the performances.

5 Conclusions

We have proposed mainly three things in this article: 1) a reduced set of MRC
matrices which achieves similar to state of the art performances, 2) the incor-
poration of the V ARLBP operator which produces smaller matrices and 3) a



ACCV-12 submission ID 878 9

1 2 3 4 5
Rank score

50

60

70

80

90

100

R
e
co
g
n
it
io
n
 p
e
rc
e
n
ta
g
e

CMC Curve ETHZ Seq 1

Lum_LBP

Lum_grads

RGB_grads

L1_grads

HSV_grads

(a)

1 2 3 4 5
Rank score

50

60

70

80

90

100

R
e
co
g
n
it
io
n
 p
e
rc
e
n
ta
g
e

CMC Curve ETHZ Seq 2

Lum_LBP

Lum_grads

RGB_grads

L1_grads

HSV_grads

(b)

1 2 3 4 5
Rank score

50

60

70

80

90

100

R
e
co
g
n
it
io
n
 p
e
rc
e
n
ta
g
e

CMC Curve ETHZ Seq 3

Lum_LBP

Lum_grads

RGB_grads

L1_grads

HSV_grads

(c)

1 2 3 4 5
Rank score

50

60

70

80

90

100

R
e
co
g
n
it
io
n
 p
e
rc
e
n
ta
g
e

CMC Curve PETS 2009

Lum_LBP

Lum_grads

RGB_grads

L1_grads

HSV_grads

(d)

Fig. 4: Cumulative Matching Characteristic CMC curves. a) to c) for ETHZ
sequences and d) for PETS’09 L1-Walking-Sequence 1

tracking algorithm which blends localization, trajectory and appearance infor-
mation providing it with re-identification capabilities.

Here, we have evaluated several descriptors. Note that the use of the invariant
L1 [10], especially FL1,LBP allows to maintain a performance similar to RGB
while being more compact. The use of L1 to match images from different cameras
and suffering drastic changes of color illumination, will be subject of further
investigation.

The proposed multiple-target matching has shown encouraging results. In-
deed, although there is intentionally no constraint on the temporal consistency
of the trajectories, most objects are correctly matched due to the good distinc-
tiveness of the chosen covariance features. Single crossings between two targets
are handled fine regardless of the chosen feature vector combination. Still there
are some targets non-consistently identified throughout the sequence (those with
low TP). This is due to some issues not considered by the model. For example,
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Fig. 5: Some frames of PETS’09 showing the re-identification at different times
and points of view.

some problems occur when several targets are crossing each other while some of
them experiment background occlusion.
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