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1 Introduction

By their universal character, general purpose micro-

processors may be used to simulate arti�cial neural

networks. However, until now, they were not capa-

ble to perform these simulations in real-time. On the

other hand, the computational power of these proces-

sors has tremendously increased recently. Thus, one

may wonder whether up-to-date general purpose micro

processors can simulate neural networks in real-time.

To answer this question, we need to evaluate the

performances of these architectures for the simulation

of neural networks.

To realize this evaluation we have developed an orig-

inal methodology [7] which can predict the simulation

time of a neural network on an electronic architecture.

This prediction is based on an analytic model of the

architecture performances.

2 Neural Nets models

In this article we consider the two most used kind of

neural networks, which are the Multi-Layer Percep-

trons (MLP) and the Radial Basis Function networks

(RBF).

To determine if general purpose micro-processor can

perform real-time simulation of arti�cial neural net-

works, we simulated two neural nets: a MLP called

Mlpphys, a RBF called Rbfphysmanh and a RBF

called Rbfphysmaha.

� Mlpphys is a Multi-Layer Perceptron with 3 lay-

ers, it's topology is 64x64x1. It was designed for

physics experiments and described in [10]. The

simulation time of this network has to be less than

8�s.

� Rbfphysmanh [7, 6] is a Radial Basis Function

network. Its 3 layers include respectively 8, 8 and

1 neurons, and it uses the Manhattan distance.

this network was designed for physics experiments

and described in [9].

� Rbfphysmanh [7, 6] is a Radial Basis Function

network. Its 3 layers include respectively 8, 8 and

1 neurons. This network is similar to Rbfphys-

manh, the di�erence is that it uses the Maha-

lanobis distance. This distance may increase dras-

tically the classi�cation rate of the network [5].

3 Evaluation

To determine the interest of general purpose micro-

processors for the real-time simulation of neural net-

works, we have developed an original methodology for

the evaluation and prediction of the processors perfor-

mances [7].

3.1 Method

The usual method to predict the simulation time of

neural networks on an electronic architecture is based

on the measure of an average speed S for the connec-

tions processing. Then the simulation time of a MLP

or a RBF with C connections is simply taken as S �C.

We have demonstrated in [8] that this method cannot

be applied for a general neural network architecture

because it leads to very high predictions errors. Thus

we introduced a new method for this prediction.

3.1.1 Description

This methodology is based on the extraction of an an-

alytical model for the computational primitives of the

neural network model. These primitives are the basic

mathematical operations that de�ne the model.

The extracted analytical model is a mathematical

function that provides the simulation time of a neural

network depending on some neural network parameters

like the number of neurons or the kind of connections

(local or full). It also depends on some hardware pa-

rameters like the cache size or the clock frequency.

To get the total simulation time of the a neural net-

work, we simply accumulate the simulation times given

by the analytical model for all the primitives.
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3.1.2 Primitives for MLP

The equations 1 and 2 give the primitives associated

to the MLP model.
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m determines the range of the neuron state, included

in [�1 : 1], and � is the slope of f .

3.1.3 Primitives for RBF

The equations 3 and 4 give the primitives associated

to the RBF model, when the Mahalanobis distance is

used.
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� characterizes the in
uence zone of the neuron. ��1i
is the inverse of the covariance matrix associated to the

neuron i.

3.1.4 Number of primitives

In a general purpose micro-processor, there are two

major kinds of computation units, an integer unit and

a 
oating-point unit. Thus we have evaluated these

two units and we have programmed the four primitives

described above in an integer and in a 
oating-point

version: this leads to eight primitives.

3.2 Analytical models for a general

purpose micro-processor

To determine the execution time of a primi-

tive P , we �rst determine the total NumBer

of Instructions needed to simulate this primitive

NBIP (k; l; : : : ;m; n), as a function of the sizes

(k; l; : : : ;m; n) of the layers (w; x; : : : ; y; z). This step

can be realized by an analysis of the assembler code of

the programmed primitive.

Thanks to this function, we can estimate the number

of Cycles Per Instruction CPIP for this primitive, with

the formula:

CPIP (k; l; : : : ;m; n) =
T � F

NBIP (k; l; : : : ;m; n)
(5)

where F is the CPU frequency and T is the simula-

tion time measured for this primitive. To approximate

the CPIP , we have made numerous simulations of the

primitives, measured the simulation time and deter-

mined the CPIP with the formula 5.

At this point we have two functions: a function

NBIP which provides the number of instuctions for

the primitive executed as a function of the sizes of the

layers of a neural network, and a function CPIP which

provides the number of cycles per instruction for the

primitives as a function of the sizes of the layers of a

neural network.

Let us take now a neural network character-

ized by the primitives p 2 � and by the layers

(ap; bp; : : : ; cp; dp) for the primitive p. We can com-

pute the simulation time TS of this neural network

with the formula:

TS = 1=F �

X
p2�

(NBIp(ap; bp; : : : ; cp; dp) (6)

�CPIp(ap; bp; : : : ; cp; dp))

With the equation 7, we can predict the simulation

time of any neural network without programming it

on the architecture. Moreover this analytical model

depends on the size of the layers but also on the pa-

rameters of the architecture like the clock frequency,

the cache size, etc : : : . Then if we change the value

of a parameter, for example the clock frequency, we

can compute the simulation time of a neural network

on a new architecture which is a minor modi�cation of

the architecture originaly evaluated. Thus we can fore-

cast now the performances of a processor which will be

introduced in the future.

But it's hard to give a deterministic analytical

model for the architecture of a general purpose micro-

processor, because it includes complex mechanisms.

Such mechanisms are:

� Memory management including two or three

memory cache levels.

� Instruction 
ow sequencing mechanismwith

branch prediction.

� Out of order execution of the instructions.

These mechanisms introduce non deterministic exe-

cution times of the instructions 
ow, because they de-

pend on the values and the nature of the data. The

consequences of these features are that the estimation

of the CPIp given by equation 5 show a very large

dispersion.

To overcome this problem we estimate the range of

CPIp thanks to two extrema, CPImin
p and CPI

max
p .

These two values are de�ned such as for any network:

CPI
min
p � CPIp(k; l; : : : ;m; n) � CPI

max
p

With these two extrema, our methodology gives two

predicted times, a maximumpredicted time and a min-

imum predicted time. Then if the maximum predicted

time is smaller than the real time constraint we can say

that the neural network is simulated in real-time.

2



4 Evaluation of Sparc and X86

family processors

To determine the analytic models of the Sparc and

X86 processors, we used two commercial C lan-

guage compilers: Sun Microsystem CC-4.2 compiler for

Sparc and Microsoft Visual C++ 5 for X86.

4.1 The processors : UltraSparcII

Firstly we evaluated a processor of the Sparc family:

the UltraSparcII.

4.1.1 Hardware

In this section, we describe the hardware architecture

of the evaluated processors. These descriptions are de-

rived from [11, 2, 1].

The Sparc 1 architecture is derived from the Berke-

ley university studies between 1984 and 1987. It's a

RISC architecture owned by Sun microsystems. The

evaluated processor characteristics are:

� UltraSparcII complies to the Sparc V9 norm.

It is a four degree superscalar processor. It has one

integer unit with two ALU, one 
oating-point and

VIS 2 graphic unit with 5 processing units, one

memory management unit, a 16 KB L1 instruc-

tions cache and 16 KB of L1 data cache. It has a

L2 cache, its size is in the range [512 KB ,16 MB].

Its clock frequency is 250 Mhz, it has 3.8 millions

of transistors in a 0,29 �m CMOS technology.

4.2 The processors X86

The X86 processors family is derived from an Intel

seventies CISC architecture. But to compete with

other micro-processors in scienti�c applications, there

is with Pentium micro-processors an evolution to-

wards a RISC internal micro-architecture.

4.2.1 Hardware

� Pentium II is a CISC-RISC micro-processor, the

�rst stage of the pipeline is dedicated to translate

CISC instructions into 118 bits RISC-like micro-

instructions. This micro-processor has an integer

unit with two ALU, a 
oating-point unit, a mem-

ory management unit, 16 KB of L1 instructions

cache and 16 KB of L1 data cache. There are

MMX 3 graphic units, the L2 cache is running

at 2/3 of the CPU clock with and its size is not

limited to 512 KB. There are 7.5 millions of tran-

sistors in a 0,28 �m CMOS technology and a CPU

clock of 266 MHz.

1Scalable Processor ARChitecture
2Visual Instructions Set
3MultiMedia eXtension

4.3 Analytical models

We extracted the analytical models for the eight prim-

itives and for the four processors. We cannot give in

this article all the models, but we give the example of

the PentiumII processor for the interger Mahalanobis

distance primitive in table 1. The range of CPImahai

is:

CPI
min
mahai = 1:1311 and CPI

max
mahai = 3:5772.

The function h is de�ned as:

h(x) = 1 if x > 0 else h(x) = 0

Primitives Analytical model

Mahalanobis (1:1311=F )� (39 + h(size] � (9 + 12 � size)

Distance +h(size � 3) � (11 + b
size

4
c � (9 + 19 � size))

Integer version +h(size%4)) � (7 + (size%4) � (8 + 9 � size)))

for CPImin

mahai

Mahalanobis (3:5772=F )� (39 + h(size] � (9 + 12 � size)

Distance +h(size � 3) � (11 + b
size

4
c � (9 + 19 � size))

Integer version +h(size%4)) � (7 + (size%4) � (8 + 9 � size)))

for CPImax

mahai

Table 1: Example of PentiumII analytical models,

where F is the clock frequency

With all the analytical models we can perform both

evaluation and prediction.

4.4 Evalution and Prediction

We present here the predicted and measured simulation

time of the three neural networks, Mlpphys, Rbf-

physmanh and Rbfphysmaha.

4.4.1 Sparc family

Processor Neural Minimum Maximum
Network Predicted Predicted

Time Time
(in �s) (in �s)

UltraSparcII Mlpphys integer 124.74 354.65
Mlpphys 
oat 103.44 241.04
Rbfphysmanh integer 2.29 5.89
Rbfphysmanh 
oat 2.58 4.87
Rbfphysmaha integer 24.07 51.82
Rbfphysmaha 
oat 18.00 38.14

Table 2: Predicted simulation time forMlpphys, Rbf-

physmanh and Rbfphysmaha on UltraSparcII

processor at 250 MHz

The table 2 shows that minimum predicted times are

one order larger than the required 8�s latency for the

Mlpphys network in its two versions. But for the Rbf-

physmanh network the required 8�s latency is guaran-

teed and for the Rbfphysmaha there is only a factor of

2 between the required 8�s latency and the simulation

time of the network.
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4.4.2 X86 family

Processor Neural Minimum Maximum
Network Predicted Predicted

Time Time

(in �s) (in �s)

PentiumII Mlpphys integer 62.46 187.35
Mlpphys 
oat 61.82 290.19

Rbfphysmanh integer 1.48 5.59
Rbfphysmanh 
oat 2.83 6.97
Rbfphysmaha integer 10.26 37.84
Rbfphysmaha 
oat 11.74 39.58

Table 3: Predicted simulation time on PentiumII at

266 MHz

Similarly to the Sparc family, the table 3 shows that

Mlpphys andRbfphysmaha networks cannot be sim-

ulated in 8�s by the current Intel micro-processors, but

Rbfphysmanh can be.

5 Predicted performances for

future electronic architectures

Our methodology can evaluate actual electronic archi-

tectures, but it can also predict the simulation time

of future evolutions of these architectures. We used it

to predict the simulation times of the neural networks

Mlpphys, Rbfphysmanh andRbfphysmaha on four

possible future evolutions of the UltraSparcII and

PentiumII. For the sake of simplicity, we modi�ed

only a single parameter: the clock frequency. The pre-

diction will be pessimistic, because progress in micro-

electronics technology may lead to a speedup larger

than the ratio of the clock frequencies as we saw when

we compared the SuperSparc and the UltraSparc.

The four evolutions for which we predict the simula-

tion time ofMlpphys, Rbfphysmanh and Rbfphys-

maha networks are:

� an UltraSparcII with a 400 MHz clock fre-

quency,

� an UltraSparcII with a 1 GHz clock frequency,

� a PentiumII with a 400 MHz clock frequency,

� a PentiumII with a 1 GHz clock frequency.

The clock frequency of 400 MHz is up-to-date as

the current generation of PentiumII have a frequency

of 450 MHz, and the UltraSparcIIi a frequency of

360 MHz.

The 1 GHz frequency will be available before year

2002. This is not a dream, as said Peter Bannon of

Compaq at the MicroProcessor Forum on October 1,

1998. The Alpha EV7 micro-processor, the next gen-

eration of Alpha processors will be operated at more

than 1 GHz [4]. Sun announces in its roadmap [3] a

new generation of UltraSparc processor with a fre-

quency of 1.5 GHz in 2002.

The prediction results are shown in table 4.

UltraSparcII PentiumII

400 Mhz 400 Mhz
Neural Minimum Maximum Minimum Maximum
Network Time Time Time Time

(in �s) (in �s) (in �s) (in �s)

MLPphys integer 77.97 221.66 41.54 124.59
MLPphys float 64.65 150.65 41.11 192.98
Rbfphysmanh integer 1.43 3.68 0.98 3.72
Rbfphysmanh float 1.61 3.05 1.89 4.64
Rbfphysmaha integer 15.04 32.39 6.83 25.17
Rbfphysmaha float 11.25 23.84 7.81 27.33

Table 4: Predicted time for UltraSparcII and Pen-

tiumII with 400 MHz clock frequency

The table 4 shows that the time simulation of Rbf-

physmaha will be very close to the 8�s required la-

tency, and that the simulation time of Rbfphysmanh

will be lower than 5�s.

UltraSparcII PentiumII

1 Ghz 1 Ghz
Neural Minimum Maximum Minimum Maximum
Network Time Time Time Time

(in �s) (in �s) (in �s) (in �s)

MLPphys integer 31.19 88.67 16.62 49.84
MLPphys float 25.86 60.26 16.45 77.19
Rbfphysmanh integer 0.58 1.48 0.40 1.49
Rbfphysmanh float 0.65 1.22 0.76 1.86
Rbfphysmaha integer 6.02 12.96 2.73 10.07
Rbfphysmaha float 4.5 9.54 3.13 10.53

Table 5: Predicted time for UltraSparcII and Pen-

tiumII with 1 GHz clock frequencies

The table 5 shows that with 1 GHz clock frequen-

cies, simulations of the Rbfphysmaha network could

take place in less than 11�s but the simulation of the

Mlpphys network could not: so specialized hardware

will be needed to stand a 8�s simulation time latency.

6 Conclusion

In this article we propose a new methodology to evalu-

ate and predict the simulation time of MLP and RBF

neural networks on general purpose micro-processors.

With this methodology we evaluated two processors

family, Sparc and X86 and we demonstrated that the

general purpose micro-processors can not now simu-

late MultiLayer Perceptrons with a 8�s real time con-

straint.

We used also our methodology to predict the simu-

lation time of neural networks on two future possible

evolutions of Sparc and X86 family, and we showed

that these architectures would simulate Radial Basis

Function networks with Mahalanobis distance in real

time with a 8�s time constraint. They could be avail-

able in the next three years. But these architectures

would not simulateMulti-Layer Perceptron in real time

with a 8�s constraint.
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