
Implementing motion Markov detection on General
Purpose Processor and Associative Mesh
J. Denoulet

Institut d’Electronique Fondamentale
Université Paris Sud

Email: denoulet@ief.u-psud.fr

G. Mostafaoui
Laboratoire des Instruments et Systemes

Université Paris 6
Email: mostafaoui@lis.jussieu.fr

L. Lacassagne and A. Mérigot
Institut d’Electronique Fondamentale

Université Paris Sud
Email: lacas|am@ief.u-psud.fr

Abstract— We present a robust implementation of a motion
detection algorithm based on a markovian relaxation both on
General Purpose Processors, and on a specialized architecture,
the Associative Mesh. The Mesh architecture is an instance of the
associative nets model targeting real time execution of low level
image algorithms and vision-Soc implementation. The algorithm
implementation on both architectures is described, and also the
required optimizations to speedup the execution.

Keywords

Vision-SoC, associative nets model, SIMD, motion detec-
tion, Markov Random Field.

I. INTRODUCTION

This paper presents the performance evaluation of the Asso-
ciative Mesh architecture and SIMD PowerPC G4 for motion
detection algorithm. Associative Mesh is a reconfigurable,
asynchronous and massively parallel SIMD design, targeted
towards image analysis implementation. Until now, most of the
algorithmic studies suggest that, to reach maximal efficiency,
the machine’s physical topology should converge towards one
SIMD processor per pixel. However, in the prospect of a
visual-SoC implementation of the Associative Mesh, it is
hazardous at this day to envision a 512 × 512 or even a
256 × 256 matrix of processors on one integrated circuit.
A solution to achieve this project consists in changing the
circuit’s architectural organization by modifying the Mesh’s
granularity and using a smaller number of more complex
processors (virtualization). In this paper, we present the new
structure of the Associative Mesh and show the contribution
of virtualization on the architecture’s performance through the
example of a motion detection algorithm based on markovian
relaxation. The first section describes a robust enhancement of
the classical motion detection algorithm, the second presents
the Associative Mesh and its virtualization targeting SoC
implementation. Third section deals with the optimizations
required to speedup the execution of the algorithm on Pow-
erPC and details the parallel and asynchronous implementa-
tion on the Associative Mesh. Benchmark results are given
in the fourth section which provides information about bus
bandwidth and “memory wall problem”.

II. MOTION MARKOV DETECTION

Markov Random Field based algorithms have asserted them-
selves in a lot of image processing areas for regularizing ill-

posed problems. Their main advantage is their robustness, and
their well-known main drawback is their CPU consuming due
to the huge amount of calculations. This has led researchers to
study a lot of solutions to speed their execution up, as parallel
machine, or dedicated architecture [1][2] [6] [14].

The latest version of the algorithm is composed of 3 parts:

• the pre-processing step: usually image difference and
binarization to initialize the labels, now replaced by a
Σ − ∆ algorithm

• the processing step: a determinist relaxation (ICM) is
applied to the image frame difference.

• the post-processing step (for color): an hysteresis thresh-
old is applied to color images to strengthen the relaxation

A. Markov Random Field

The aim of the markovian process is to improve the quality
of the image difference. Because of changes of illumination
this image is very noisy: a lot of pixels are labelled as in
motion and the regions are not filled. The energy model has
been introduced by the LIS-Grenoble laboratory [5] and is
derived from IRISA model [3][13].

Let It the grey level image at the moment t, and Ot

the observation, that is the absolute difference between two
consecutive images (Ot = |It − It−1|) or between the current
image and a reference image (Ot = |It − Iref |). Then
thresholding Ot initializes the estimated field of labels Êt.
The Iterated Conditional Modes (ICM) is then applied to E t−2,
Êt−1 and Êt to obtain the relaxed field Et−1.

1) Energy clique function: The energy used u is the sum of
two energies: um model energy that is a regulation term which
ensures a spatio-temporal homogeneity and ua adequation
energy.

u (os, es) = um (es) + ua (os, es)

um (es) =
X
c∈C

Vc (es, er)

ua (os, es) =
1

2σ2
[os − ψ (es)]

2 , ψ(es) =


0 if background
α if motion

Clique associated to um energy is a spatiotemporal and
second order clique Vc (figure 1) composed with a second
order spatial clique associated to the potential Vs and two first
order temporal associated to Vp et Vf . Potentials are defined
as follow:

tt-1 t+1

s

Fig. 1. spatio-temporal clique

Vc (es, er) = Vs (es, er) + Vp(e
t
s, e

t−1
s) + Vf (et

s, e
t+1
s)

Vs (es, er) =

 −βs if es = er

+βs if es �= er

Vp

`
et

s, e
t−1
s

´
=

 −βp if et
s = et−1

s

+βp if et
s �= et−1

s

Vf

`
et

s, e
t+1
s

´
=

 −βf if et
s = et+1

s

+βf if et
s �= et+1

s

2) Sigma-Delta initialization: The use of a Σ−∆ algorithm
designed by Manzanera [17] is an aesthetic way to tackle
the problems of updating the reference image and automatic
thresholding. It is composed of four steps: update the back-
ground image Mt with a Σ − ∆ filter, compute the image
of difference Ot, update the time-variance image Vt from Ot

with a Σ − ∆ filter and initialize Êt. The typical value of N
is in [2..4].

for each pixel x:
if Mt−1(x) < It(x), Mt(x) = Mt−1(x) + 1
if Mt−1(x) > It(x), Mt(x) = Mt−1(x) − 1
otherwise Mt(x) = Mt−1(x)

step1: update Mt

for each pixel x:
Ot(x) = |Mt(x) − It(x)|

step2: compute Ot

for each pixel x such that Ot(x) �= 0:
if Vt−1(x) < N × Ot(x), Vt(x) = Vt−1(x) + 1
if Vt−1(x) > N × Ot(x), Vt(x) = Vt−1(x) − 1
otherwise Vt(x) = Vt−1(x)

step3: update Vt

for each pixel x:
if Ot(x) < Vt(x)

then Êt = 0

else Êt = 1

step4: estimate Êt

Another important robust feature of this Σ − ∆ pre-
processing is that it can be customized to different kind of
motion and image noise, by specifying the update steps for
the background image Mt, and the standard deviation image
Vt.

We have modified the algorithm to enhance the detection
quality: by updating Mt and Vt only if there is no motion in
Et−1. The Mt update becomes:

for each pixel x:
if Et−1(x) = 0 then

if Mt−1(x) < It(x), Mt(x) = Mt−1(x) + 1
if Mt−1(x) > It(x), Mt(x) = Mt−1(x) − 1

otherwise Mt(x) = Mt−1(x)
step1’: modified Mt update

3) Color version: For some very noisy sequences (bad
conditions of acquisition, fast variations of illumination), the
motion segmentation could be inefficient. A color version,
which is more than a 3-copy version of the monochrome
version, is a way to tackle such problems.

It = (IR
t , IG

t , IB
t)

Three thresholds are required for the estimation of Êt: θR,
θG and θB . The pixel color represents the number of plane
where motion is detected:

• primary colors (R, G and B): only one plan for motion,
• secondary colors, yellow (R + G) magenta (R + B) and

cyan (G + B): two plans of ‘motion’,
• white (R +G+B): the pixel is estimated to be ‘motion’

on three plans.

In the second step, we apply the ICM for each plane
independently of the others. The goal of this post-processing
is to deal with false detections:

• pixel detected in motion, but corresponding to still back-
ground,

• pixel not detected in motion, and belonging to moving
objects.

We developed three different post-processings:

• level k diffusion, applied after the 4 ICM iterations,
• level k ceiling, applied at each ICM iterations
• hysteresis threshold, applied after the 4 ICM iterations

Let (R, G, B) be the color components of a site s of Êt

(R, G, B ∈ {0, 1}). The definition of diffusion and ceiling
are:

ceiling-k (s) =
{

(R, G, B) if R + G + B ≥ k
(0, 0, 0) if R + G + B < k

diffusion-k (s) =
{

(1, 1, 1) if R + G + B ≥ k
(0, 0, 0) if R + G + B < k

More higher is k, more the noise is removed from image,
but more useful information (moving pixels) can be omitted.
The ceiling method could be more robust than the diffusion
method: by remaining the values unchanged, ceiling prevent
the noise to propagate from on color channel to another.

Nevertheless, the dilemma “decrease the noise or recover
useful information” still remains. A solution is to mix results
of high confidence (k = 3) for very noisy areas with low
confidence (k = 1) for slightly noisy areas. So an hysteresis
threshold can be applied to the number of components of a
site. Given two thresholds, (high & low) sH sL, a site s is:

• in motion, if R + G + B ≥ sH ,
• stationary if R + G + B < sL,

• in motion if R + G + B ∈ [sL..sH] and if there is a
connect path between the current site, and a site such
R + G + B ≥ sH

Such efficient algorithm must be based on connected-
component labelling algorithm where the tests are done once
for each region and not for every pixel like the LSL algorithm
[12][21]. The three possible couples of values for the thresh-
olds are: (1,2), (1,3) and (2,3). To remove noise, s H must be
set to 3.

We have tested other color spaces like Y UV or
Y CbCr, but they are too close to RGB for signifi-
cant enhancement. HLS (Hue Lightning Saturation) is
more robust, but the camera used to grab sequence had
a small SNR and hadn’t a tri-CCD sensor to prevent
from chrominance decimation. Sequences are available at
www.ief.u-psud.fr∼lacas/demo/camp2005.html

III. ASSOCIATIVE MESH

Algorithm implementation on a dedicated architecture often
has a real-time execution aim. However, even though there
are many architectures to perform low-level image processing,
there is currently no machine able to efficiently perform a com-
plete image analysis: the diversity of the implied algorithms
complicates a unique representation of data-movements and
their irregularity restricts architectural optimization options
[20]. Reconfigurability and asynchronism offer solutions to
adapt architectures to this context [4].

Our approach intends to exploit a massive data-parallelism,
originating from a model based on network dynamic recon-
figurability: the Associative Nets Model [18]. The Associative
Mesh [10], based on this model, is a SIMD structure of proces-
sors built from the observation of data-movements and data-
structures encountered in image processing, These movements
are irregular, and changing according to data in the course of
a process. The Associative Mesh’s second originality comes
from its asynchronous electronic used in communication and
global operation aspects. This technique allows the design to
save area, power and also reach a higher clock frequency in
the synchronous part of the circuit. Several studies have shown
that most techniques of image processing can be implemented
using the Associative Mesh [11][19].

A. Associative Nets Model Theory

The Associative Nets Model is characterized by the ap-
plication of associative operators on a locally reconfigurable
directed interconnection graph G = (P, E), where P is
the set of nodes/processors and E, the set of edges joining
processors in the graph. Operations are performed on a subset
G′ = (P, E′) of G, where E ′ is a subset of E. G′ is also called
mgraph and can be implemented by coding in every node a
subset of the incoming edges of E. This local implementation
by a parallel variable allows a dynamic evolution of mgraphs
in the course of an algorithm.

Mgraphs can represent usual objects which are coded,
processed or manipulated in an image such as connected
areas, edges, oriented trees... Therefore, it will allow us not

OR-Association 60 ns

MAX-Association 80 ns

PLUS-Association 200 ns

Spanning Tree 20 ns

TABLE I

ASSOCIATION COMPUTATION TIMES FOR 512X512

to think in terms of point-to-point communication between
processors but rather apprehend information at a higher level,
corresponding to manipulated objects.

Operations in the Associative Nets Model combine commu-
nication and computation aspects and are called associations.
They consist in a global application of an operator - supposed
to be associative and commutative - on data spread over a
connect set of the considered mgraph.

As a basic example, this primitive can be used to asyn-
chronously compute the area of a region by globally summing
1 per pixel on the mgraph connected components. Associations
can also be used to compute the maximal - or minimal - value
of a region, find its perimeter or its average value.

Operators used in associations include logical operators,
maximum and minimum, addition, as well as mgraph ma-
nipulation primitives, in particular spanning tree generation.
It happens that most complex algorithms can be realized
by iterating these primitive global data movements. Local
associations are also allowed and are named Step Associations;
the operator in this case is used to combine the local value of
a processor with its nearest neighbors on the mgraph.

B. Associative Mesh Architecture

The Associative Mesh is a SIMD architecture based on
the Associative Nets Model, G being in this case a 8-
connected 2D mesh. The structure’s originality comes from
an asynchronous implementation of associations, as there are
no memory registers to stock local results before sending
them to neighboring processors. Therefore, the interconnection
graph can be seen as an asynchronous path where data freely
circulate from a processor to another, and where local results
propagate themselves to their neighbors until global stability is
achieved. With this asynchronous treatment, the crossing time
of each processor is very short and therefore the basic global
primitives of the model, associations, are performed in a very
interesting computation time (table I) for a frequency of 500
MHz.

Reconfigurability directly stems from the concept of
mgraphs. Each processor includes an 8-bit mgraph register,
where each bit emulates the absence or presence of an in-
coming edge originating from a neighboring processor. The
mgraph register is connected to the input of an and-gate mask,
which filters data emitted by the neighbors.

The elementary processor, also called PE, of the Associative
Mesh is built around two distinct layers: an asynchronous
layer which performs associations, and a synchronous layer
dedicated to local operations and memory tasks, featuring an

Fig. 2. Processor Architecture with virtualization

all-purpose memory bench, dedicated registers to save the
local mgraph value, an independent scan-register for image
input/output and a 4-bit wide ALU to perform basic local
operations.

C. Processor virtualization & SIMD

With currently available microelectronic technologies, the
architecture discussed above is not optimized with a SoC
approach, meaning a complete image analysis machine on one
chip. A way to improve the Associative Mesh integration is
to change the structure’s granularity by assigning a group of
N pixels to each physical processor. So we now consider that
we have N virtual PE per physical PE (we also call N degree
of virtualization).

To retain the benefits of asynchronism (very fast com-
putation time, easy controllability), the asynchronous layer
is preserved in its original configuration. Thus, only the
synchronous parts are affected by the virtualization process.
Figure 2 presents a virtualized PE dealing with two pixels.

This reorganization allows us to envision the architecture as
the juxtaposition of an asynchronous communication network
and a set of virtualized synchronous units, each managing N
pixels of the image. This new structure enables a significant
area gain: we have shown that the design’s area is reduced by
20% if N = 16 and 25% if N = 1024 [8]. With N = 1024,
the hardware cost of a 256×256 Associative Mesh, including
64 synchronous units managing 32 × 32 pixels, amounts to
165 millions of transistors.

A consequence of virtualization is an increase of computa-
tion time due to theserialization of local operations. But we
can use the synchronous units to compensate for this cost: by
implementing a SIMD unit in each virtualized PE, we will
be able to parallelize, up to a certain point, local operations
for pixels managed by the same virtualized unit, and reduce a
significant amount of computation time [9].

IV. SOFTWARE OPTIMIZATIONS

In order to perform a fair comparison of these architectures,
the algorithm must be optimized for each one. Here are the
set of optimisations (table II sums up all the impacts):

A. Remove tests & comparisons

The first step is to remove tests from potential V function.
First, the sites are labeled 0/1 rather than −1/1, then, the
comparison of a site’s state to the central site’s state es is
replaced by accumulation: we just take into account sites
which state are 1 (p1, s1 and f1 for the past, present and
future images). With a central site state 1, the spatial energy
is: um1 = (8 − 2s1)βs + (1 − 2p1)βp + (1 − 2f1)βf , with
um0 = −um1. If um1 + ua1 < um0 + ua0, the state is
set to 1 otherwise it is set to 0. The change is performed
whatever the previous state is. This computation looks like a
3× 3 recursive kernel filter: the output is one of the inputs of
the next iteration. The um computation is simplified into the
summation of pixels and, eventually, access to LUTs (Look-Up
Tables) for multiplications.

B. Kernel optimization

The optimization of such kernel consists in unrolling the
inner loop to take advantage of the overlapping windows. To
go further, we must take into account the different update
strategies:

• site recursive: each updated site is used for the current
site relaxation

• block recursive: updated sites are used at the end of a
block (or a line)

• image recursive: no use of updated sites for the current
image relaxation

The site recursive strategy is the most constraining: there is a
loop carried path dependency from two consecutive iterations,
but it achieves the best energy minimization since all updates
are used for each computation. The opposite strategy, the
image recursive strategy, enables all kind of optimizations
and the largest amount of parallelism to perform relaxations.
This kind of strategy is implemented into massively parallel
architecture [15][16].

C. Memory caches

Taking into account the processor memory hierarchy, we can
reduce the duration of the relaxation by replacing four scans
of the image with one relaxation per site by one scan with four
relaxations per site. The figure 3 shows 3 optimized schemes
for scanning an image. The distance between the sites depends
on the strategy of both site update and neighbors update. On
the left: optimal scheme for energy minimization: a simple 4-
copy of the scalar version. In the middle a left-to-right order
must be enforced to maximize the number of updated sites
used. On the right the most parallel version: a line-recursive
strategy with 4 lines computation. Only the right scheme easily
allows to unroll the inner loop, while processing 4 lines in
parallel, in a loop body.

Fig. 3. scan strategies & optimized sites update

D. SIMD optimization

Except on former vector machines, SIMD sparse addressing
(SIMD LUT access) is not implemented, so computations
are done with arithmetic operations. With 128-bit registers,
sixteen 8-bit computations can be done in parallel for the
first steps of the algorithm (summations) and eight 16-bit
computations for the energy computations. For ua, a special
fixed-radix operation is performed to implement a∗x/2 p. Tests
are handled through vector comparison. The Σ − ∆ stage for
Mt update is performed as follow:

if m < x then inc = +1;
if m > x then inc = -1;
if m = x then inc = 0;
m = m + inc;

scalar Σ − ∆ version

inc1 = vec cmplt(m, x);
inc2 = vec cmplt(x, m);
m = vec sub(m, inc1);
m = vec add(m, inc2);

SIMD Σ − ∆ Altivec version

E. Associative Mesh optimizations

The Σ−∆ initialization is done by the SIMD PEs. The up-
date strategy used is image recursive for full-parallel updates.
The energies computation are held by the SIMD PEs while
the asynchronous network is used to compute p, the sum of
spatial 8-connected sites, using a local PLUS-ASSOCIATION

performed on the subgraph G1 = G. Conditional statements
like WHERE or ELSEWHERE are used to collect sites label from
Et−1 and Et+1 to compute Vp and Vf and also to set the final
label to the site, depending on the total energy u.

// Adequation energy computation
Ua = M × (2 × α);
Ua = Ua − α2;
Ua = Ua/4 × σ2;
// Energy due to potential Vp

WHERE(Et−1 == 1) Up = −βp;
ELSEWHERE Up = βp;
ENDWHERE;
// Energy due to potential Vf

WHERE(Et+1 == 1) Uf = −βf ;
ELSEWHERE Uf = βf ;
ENDWHERE;
// Energy due to potential Vs

s=PLUS-STEP-ASSOCIATION(G1,Et);
Us = (8 − 2s) × βs;
// Model energy computation
Um = Us + Up + Uf ; // Pixel labelling
WHERE(2 × Um < Ua)Êt = 1;
ELSEWHERE Êt = 0;
ENDWHERE;

Associative Mesh ICM version

version cpp gain

basic 147 -
LUT 41 ×3.6

internal Loop Unrolling 32 ×1.3
external Loop Unrolling 20 ×1.6

SIMD vectorization 2.6 ×7.7

TABLE II

POWERPC OPTIMIZATIONS IMPACT

V. BENCHMARKING

In order to compare the architecture, both from a qualitative
and quantitative point of view, we used the frame rate and the
cpp (Cycle Per Point):

cpp =
t × F

n2

The cpp is an architectural metric to estimate the adequation
of an algorithm to an architecture [12](PowerPC G4 specifica-
tions are given in table III). For each architecture, we provide,
the cpp both for Σ−∆ and one ICM iteration, the cpp of the
full algorithm and the frame rate (table V).

The algorithm has been implemented on a PowerPC G4,
using Altivec SIMD instructions and simulated on the Asso-
ciative Mesh with SystemC.

archi freq L1 / L2 cache transistors Watt

G4 1 GHz 32+32 KB / 512 KB 58 M 10 W

TABLE III

POWERPC G4 SPEC

If the Associative Mesh has an aggregate bandwidth of
400 GB/s, which is relatively close to the latest Cray vector
processor whith a bandwidth of 800 GB/s [7], it has 64 up
to 256 times more bandwidth than the generalist architectures
which still ‘wait for data’ when the Mesh’s distributed buses
can transfer 40 GB/s to feed processors (table IV).

architecture external bus internal bus

Associative Mesh 64 1024
G4 1 16

TABLE IV

BANDWIDTH: BYTES PER CYCLE

architecture size Σ − ∆ ICM cpp t(µs) rate

PowerPC 256 3.25 2.59 13.59 900 1123
PowerPC 512 12.25 8.87 46.11 12000 83

Associative Mesh 256 35 70 315 40.32 24801
Associative Mesh 512 35 70 315 40.32 24801

TABLE V

cpp AND FRAME RATE OF POWERPC G4, ASSOCIATIVE MESH

On the Associative Mesh, the ICM cpp is about 70 for
one ICM relaxation (varying from 70 to 80, depending on
the degrees of SIMD and virutalization) and 35 for Σ − ∆.

About cache impact: Sigma-Delta algorithm was devel-
oped for automatic pre-processing, with the conviction of a
flyweight overhead (compared to frame difference and bina-
rization). From an academic point of view its complexity is
lower than the ICM complexity, whatever the implemented
optimizations (even SIMD). But from a practical point of view,
it is no more true: for large images, Sigma-Delta’s cpp is
multiplied by 3.8 between 256×256 and 512×512 images and
is 40% bigger than ICM’s one. Figure 4 shows that Sigma-
Delta cpp is always higher than ICM cpp (for image size
varying from 32 to 1024).

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15
PowerPC G4

sigma
markov

Fig. 4. ICM cpp on PowerPC G4

Table II shows, for PowerPC, that scalar optimizations are
as important as SIMD optimizations: ×7 ! As usual, the most
efficient optimization is the highest level optimization: the
algorithmic transform by LUT utilization provides a speedup
of ×3.6. Caches have also an important impact on perfor-
mances whether the data fit in the cache (256 × 256)or
not (512 × 512 and more). The Associative Mesh cpp is
higher than PowerPC cpp because of 1-bit implementation
of PLUS-ASSOCIATION. But with SIMD distributed pro-
cessing power, even with virtualization, the Mesh achieves
spectacular performances. With a frame rate of 24801 images/s
the processing limitation comes from the number of incident
photon impact(s) on the associated sensor.

CONCLUSION

We presented the implementation of a robust motion detec-
tion algorithm based on markovian relaxation for two different
architectures: PowerPC G4 and Associative Mesh. Algorithmic
and software optimizations provide a speedup of ×56 for
the G4. The G4 implementation can lead to SoC integration:
reducing the clock frequency from 1GHz to 100 MHz, for
example, will always ensure real time execution (100 images/s)
while the electrical consumption will be reduced to nearly 1
Watt.

We also showed the performance of a virtualized Asso-
ciative Mesh. The implementation of such a CPU-intensive
algorithm shows that complex treatments can be computed
in a very interesting time. The adjunction of a SIMD ALU
drastically reduces the processing latency introduced by vir-
tualization. The objective of real-time image processing is
still achived, even with operators primarily composed of

local operations, which are yet the most penalizing for the
virtualized architecture.

The area estimation allow us to envision a Visual-SoC
implementation of an Associative Mesh with a large number
of processors. With only three times more transistors the Mesh
is twenty times faster, that is eight times more efficient!

Still, more architectural optimizations could be operated: for
instance, with the current structure, an important number of
redundant operations are performed by the synchronous units.
Identical operations could be performed only once for each
physical processor and then distributed to the virtual proces-
sors instead of being computed for each virtual processor. This
would generate an additional speedup if we can manage the
controllability issues raised by this modification .

REFERENCES

[1] R. Azencott. Simulated annealing: parallelization techniques. John Wi-
ley, 1992.

[2] A. Bellon. Détection et suivi de véhicule en mouvement, implémentation
parallèle sur un systèeme à mémoire distribuée. Thèse Lasmea 1996.

[3] P. Bouthémy, P. Lalande. Recovery of moving object in an image
sequence using local spatiotemporal contextual information. Optical
Engineering, 36-2, 1993.

[4] G. Blelloch, Vector Models for Data-Parallel Computing, MIT Press,
Cambridge, 1990.

[5] A. Caplier. Modèles markoviens de détection de mouvements dans les
squences d’images: approche spatio-temporelle et mise en oeuvre temps
réel. Thse INPG 1995.

[6] J.P. Cocquerez, S. Philipp. Analyse d’images: filtrage et segmentation.
MAsson 1995. Temps de calcul sur Sparc5 et CM2 page 220.

[7] Cray X1: http://www.cray.com/products/x1/specifications.html
[8] J. Denoulet, A. Mérigot, System on chip evolution of a SIMD architec-

ture for image processing, CAMP 2003.
[9] J. Denoulet, A. Mérigot, Evaluation of a SIMD architecture dedicated

to image processing. GSPx (Global Signal Processing) 2004.
[10] D. Dulac, Contribution au parallèlisme massif en analyse d’image: une

architecture SIMD fondée sur la reconfigurabilité et l’asynchronisme.
PhD thesis, University of Paris XI, 1996.

[11] S. Guezguez, Etude de l’adequation du modèle de réseaux associatifs
avec les algorithmes d’analyse d’images.Thèse Université de Paris Sud,
1999.

[12] L. Lacassagne. Détection de mouvement et suivi d’objets en temps réel,
Thèse Université Pierre et Marie Curie - Paris6, 2000.

[13] P. Lalande. Détection du mouvement dans les séquences d’images selon
une approche markovienne, application à la robotique sous marine”,
Thèse Université de Renne I, 1990.

[14] F. Lohier, L. Lacassagne, P. Garda, “Generic programming method for
real time implementation of MRF based motion detection algorithm on
a multiprocessors DSP with multidimentionnal DMA”. GRETSI 1999.

[15] A. Manzanera, Vision artificielle rtinienne. Thèse ENST 2000.
[16] A. Manzanera, F. Prêteux, T. Bernard. Markovian-based modeling on

programmable retina. QCAV 2001.
[17] A. Manzanera, J. Richefeu “A robust and computationally efficient

motion detection algorithm based on Sigma-Delta background estima-
tion” Proceedings Indian Conference on Computer Vision, Graphics and
Image Processing, Kolkata, India, December 2004, ICVGIP ’04.

[18] A. Mérigot, Asociative Nets Model: a graph based parallel computing
model, IEEE Transaction on Computer, 46(5), 558-571, 1997.

[19] A. Mérigot G.Constantinescu B.Ducourthial D.Dulac & S.Guezguez,
Evaluation d’un modèle de calcul parallèle pour l’analyse d’images,
AAA 1998.

[20] A. Mérigot & B.Zavidovique, Image analysis on massively parallel
computers: an architecture point of view. nternational journal of pattern
recognition and image analysis. 6(3), 2002.

[21] G. Mostafaoui, T. Kunlin, L. Lacassagne Relaxation markovienne et
seuillage par hystérésis pour une détection de mouvement temps réel
dans des séquences couleur, International Symposium on Image/Video
Communications over fixed and mobile networks, ISIVC, Jully 2004,
Brest, France.

