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Abstract — In this paper, a programmable analog
retina is presented and compared with state of the
art MPU for embedded imaging applications. The
comparison is based on the energy requirement to
implement the same image processing task. Results
showed that analog processing requires lower power
consumption than digital processing. In addition,
the execution time is shorter since the size of the
retina is reasonably large.

1 INTRODUCTION

Smart sensors, vision chips[3, 4, 5, 6] have poten-
tial to take an increasing part in navigation or
surveillance systems: toys or industrial robots, car
driving assistance. . . For this class of applications,
one has to provide vision systems which feature
high processing capabilities, low cost, compactness
and reduced power consumption. In a previous
paper[10] we introduced the architecture of the X-
Cell, a universal analog computation cell. Com-
pared to its digital counterpart, lower power con-
somption and reduced silicium area are expected.
Such statement has to be proven with fairly quan-
titative study. Consequently, we propose a com-
parison between a vector of X-Cell dedicated to
image processing called PARIS and a similar digi-
tal architecture comprising SIMD units: PowerPC
G4 Altivec. This comparison is performed using
well-known algorithm, representative of image pro-
cessing task: edge detector. We present a detailed
implementation on both architectures and focus
on the hot spots for an optimized implementation.
Two benchmarks are provided, the first one is about
the execution time only to estimated the efficiency
of general purpose processor as a challenger to ded-
icated architectures, the second deals with the most
embedded constraining criterion: power consump-
tion.

2 PARIS ARCHITECTURE

In most vision chips, photodetectors form an array.
With our programmable approach, photodetec-

tors are associated to memory elements, them also
organized in array. These arrays are bordered on
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Figure 1: Array decoder architecture.

one of their side by a column of analog/digital pro-
cessors (see Fig. 1). Operations are performed se-
quentially on columns while snapshot mode image
acquisition is concurrently achieved. A decoder se-
lects then the column reached by processors. Fur-
thermore, each processor access to a set of rows by
the way of a mux (MUX3). Finally, fully random
addressing can be convenient for reading and writ-
ing images.

2.1 Architecture of rows

Each row of the retina is organized around two
mixed analog-digital buses used to connect vari-
ous functional units (see Figure 2). The functional
units which can compose the row of a vision chip
are: the rows of photosensors, the row of analog
memory map, the set of analog registers, the Ana-
log Processing Unit (X-Cell), the Boolean Process-
ing Unit and few special registers. These last are
notably required for I/O and global operators. In
each processor, linear processings are handle by the
analog processing unit. Boolean units associated
to the condition register allows to achieve differ-
ent operations according to locally stored values.
Binary data stemming from a comparator are com-
bined by the Boolean Processing Unit and can be
written in a condition register. Mixed registers will
then be modified wherever this condition is true.
Such architecture paves the way to numerous lin-
ear, isotropic or not algorithms [8].

2.2 Generic functional units

Derived from [10], each functional unit is organized
around one OTA, a set of capacitors associated to
switches and of two buses: a global one, and a lo-
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cal one (see Figure 3). The global bus, which is
dedicated to inputs/outputs, is named V -BUS. It
is intended to distribute a value represented by a
voltage, therefore allowing to realize none destruc-
tive copies. The voltage is forced by the output
of one OTA or by the output of a digital cell. A
voltage mode operating drastically reduce its sensi-
tivity to parasitic capacitors. The local Q-BUS, is
intended to realize charge transfers and balancing.
The charge transfer is used to perform accumula-
tions while division is based on charge balancing.
The voltage of the Q−BUS is set to VREF by the
output of one OTA thanks to a feedback. So, its
parasitic capacitor keeps its charge and thus has
little impact during the transfer of charges [10].

2.3 Operating with switched capacitors

All the functional units are based on switched ca-
pacitors structures. Four different operations are
used. They are illustrated by an example on the
scheme given figure 4. At the instant all the
switches close, the charge of all the capacitors are
modified:

1. The capacitor C0, is shorten, thus reset.

2. The capacitors C1 and C2 are also emptied of
their charges, Q1 and Q2, which flow by way
of the Q-BUS to capactors C3 and C4. It is a
cumulative transfer of charges.
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Figure 4: Operation of the switched capacitors

3. The total charge Q1 +Q2 +Q3 +Q4 divides up
between two parallel capacitors, C3 and C4, in
proportion to their respective capacitance. It
makes charge balancing.

4. The resulting voltage on capacitors C3 and C4

is copied onto capacitors C5 and C6 by way of
the V -BUS. It makes a copy in voltage mode.
The configuration of switches allows to do or
not a change of sign by reversal of the target
capacitor during the copy.

2.4 Analog processing unit

The analog processor is constituted by a set of
capacitors associated to switches allowing various
configurations. includes a set T of processing ca-
pacitors associated to registers-capacitors (cf. Fig.
5). To improve accuracy, each capacitor is an in-
stance of a unitary capacitor Cu. Let define the
weight of a set S of capacitors, the dimensionless
quantity: 1

Cu
×

∑
i∈S Ci, where Ci is the capaci-

tance of the ith capacitor of S.
More general operation of the analog proces-

sor, multiplication-accumulation can be decom-
posed into three steps: Load, Distribute, Accumu-
late. For each of these 3 steps, a set of the implied
capacitor (respectively L,B,A) is considered.

• During the first step (Load), the set L ⊂ T (of
weight l) is charged by one or more positive
or negative copies. Each input voltage Vn is
copied (positively or negatively) in one subset
Ln ⊂ L of capacitors (of weight ln) so that
L =

⋃
n Ln and Li ∩ Lj = ∅ for all i 6= j.

After N loads, the charge QL, stored in set L,
is QL =

∑
n±ln × Vn × Cu

• During the second step (Balancing), the charge
QL is distributed on the set B ⊃ L (of weight
b), so that each capacitor belonging to B has
a voltage VB = 1

b ×
∑

n±ln × Vn

• Finally, the last step (Accumulation) consists
in adding charges stored in a set of capacitors



A ⊂ B, of weight a, on a register-capacitor CR

of capacitance Cu. So: VCR
(t + 1) = VCR

(t) +
a
b

∑
n±ln × Vn

Hence, the realized operation is a set of multipli-
cation/accumulation of coefficient A

B × Ln. Obvi-
ously, if B = 1, and A is an integer lower than 8
step 2 can be omitted. As a consequence, the MAC
instruction duration is 2 or 3 cycles. Table ?? de-
scribes a subset of the X-Cell instructions. AR a,d
AAR represents any analog register and DR and
DAC any digital register. LC stands for Local Con-
dition.
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Figure 5: Architecture of the Analog Processing
Unit.

Instruction Description Cyc.

MAC AR A AAC ← AAC + A×AR 2
MAC AR A/B AAC ← AAC + A/B ×AR 3
ASTR AR AR← LC?AAC : AR 1
ARST AAC ← 0 1
CMP DAC ← (ACC > 0) 1
WHR LC ← DAC 1
WHRN LC ← notDAC 1
UWHR LC ← TRUE 1
AND DR DAC ← DACandDR 1
OR DR DAC ← DACorDR 1
NAND DR DAC ← DACandnotDR 1

SET DAC ← TRUE 1
DRST DAC ← FALSE 1
DSTR DR← DAC 1

Table 1: X-Cell Instruction subset

3 PHYSICAL IMPLEMENTATION

Two retinas prototypes were designed. Although
the first, PARIS I, is based on a slightly differ-
ent structure from the universal structure described
here, its functioning is somewhat identical. It is
consisted of 16 × 16 pixel array - each including a
photosensors and 3 analog memory elements - asso-
ciated to a minimal analog processor including only
four capacitors: three for processing and one for
register[8]. Its main characteristics are presented
in the table 2.

Parameter PARIS I PARIS II
Resolution 16× 16 256× 256
Processor 16 256
Pixel Size 50× 50µm2 25× 25µm2

Max Frequency 10MHz 40MHz
Power cons. 30mW 800mW

MixtRegisters 2 3
Resolution 7-bits 10-bits
Processing
Capacitors 2 4
Boolean

Processor No Yes
I/O 1 analog 1 analog

8 digital
Reduction No 1 global-OR
Operator 1 Mean Op

Table 2: Paris I and PARIS II parameters

This circuit has been successfully tested and op-
erates properly [13]. It is currently being evalu-
ated for applications in mobile robotics.The second
circuit, PARIS II, was designed according to the
principle described in this paper. It brings improve-
ments with regard to PARIS I, notably on reading
circuits of analog memory and photosensors [12].
Its main characteristics are presented in the table
2.

4 DERICHE BENCHMARK

In order to estimate the performance of the X-Cell
architecture, we have decided to compare it to an-
other SIMD vector architecture and to implement
a de facto image processing algorithm like edge de-
tection. The closest ”software” architecture are the
general purpose processor with multimedia SIMD
extension (also called SWAR for SIMD Within A
Register). The most embedded GPP are the Pow-
erPC Altivec and Intel Centrino. PowerPC has
a more extensive SIMD ISA for image processing
(crossbar capabilities, reductions and 8-bit multi-
plier) Centrino implements SSE2 but with only 16
multipliers, Pentium4 Prescott extends SSE2 in-
structions with reduction capabilities with SSE3,
but can not be considered as an ”embedded” pro-
cessor. Note that an SoC version of the Pow-
erPC G4 has been released by Motorola/Freescale
Other embedded processors might be chosen for
their SIMD: the ARM11 (SIMD in 32-bit registers:
four 8-bit computations in parallel) or the latest
Intel Xcale/PCA which includes a multimedia ex-
tension called Wireless MMX (64-bit registers for
8/16/32-bit integer and 32-bit FP).

Classical edges detector operators implemented



in artificial retinas FIR filters like Sobel, Prewitt
or Roberts filters. Canny-Deriche filters have assert
themselves for their robustness. These filters can be
expressed as a non recursive filter like Canny’s filter
or a recursive filter like Deriche’s one. Each have
drawback and advantage : Deriche have a fixed
complexity that does no depend on the smoother
coefficient, but requires large memory to hold a
complete image, Canny is more adapted to ”data-
flow” because the image must not be store in mem-
ory, only the current raw, but the filter size depends
on the smoother coefficient.

X-Cell is well-adapted to Deriche filter: it has
three planes to store 3 images, and the perfor-
mances of the processor vector array are not limited
by Deriche’s filter structure, if the vector displace-
ment is orthogonal to the filter. The Deriche’s fil-
ter complexity has been reduced by a factor two by
Garcia Lorca [16]. That is this filter that will be
implemented.

The second order filter is:

y(n) = b0x(n) + a1y(n− 1) + a2y(n− 2)

with:

γ = e−α b0 = (1− γ)2 a1 = 2γ a2 = −γ2

4.1 2D filter implementation

The Q8 fixed-radix code Deriche H & V smoothers
are:

for(i=0; i<n; i++)

for(j=0; j<n; j++)

x0 = X[i][j]

y1 = Y[i][j-1]

y2 = Y[i][j-2]

y0 = (b0.x0+a1.y1+a2.y2) >> 8

Y[i][j] = y0

Deriche H

for(j=0; j<n; j++)

for(i=0; i<n; i++)

x0 = X[i][j]

y1 = Y[i-1][j]

y2 = Y[i-2][j]

y0 = (b0.x0+a1.y1+a2.y2) >> 8

Y[i][j] = y0

Deriche V

b0=256× b0 a1= 256× a1 a2= 256× a2

4.2 PowerPC Altivec implementation

The three main problems to address for SIMD im-
plementation are:

• cache impact

• recursive filter structure

• underflow

The horizontal filter does not generate cache miss
whereas the vertical filter does. The solution is to
permute the internal loop with the external loop of
the filter to obtain an horizontal-like scan with a
vertical filter. Such a permutation correspond to a
cache blocking optimization [15].

for(i=0; i<n; i++)

for(j=0; j<n; j++)

x0 = X[i][j]

y1 = Y[i-1][j]

y2 = Y[i-2][j]

y0 = (b0.x0+a1.y1+a2.y2) >> 8

Y[i][j] = y0

Deriche VH

Between two iterations of the filter there is a
loop-carried dependency. The solution proposed
(figure 6) is to perform a block-transposition of
pixel into a band, to process the band and then
to perform a second block-transposition into the
source image.
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Figure 6: Deriche Band transposition

The last problem is about underflow: since the
coef a2 is negative, for a long set of zero input val-
ues, one can have x0 = 0, y1 = 0 but y2 6= 0, so an
underflow can happen.

4.3 X-Cell implementation

The following pseudo-code sources describe the
primitives used for edge detection. The program
iterates on all this routines for each column.



ARST

MAC I1(i, 0) 0.375

MAC I2(i-1, 0) 0.875

MAC I2(i-2, 0) 0.25

ASTR I2(i, 0)

PARIS horizontal smoother

ARST

MAC I2(i, 0) -1

MAC I2(i, 1) 1

MAC I2(i+1, 0) 1

MAC I2(i+1, 1) 1

ASTR AR0

CMP

PARIS horizontal gradient

ARST

MACC AR0 1

WHRN

ASTR AR0

UWHR

Horizontal absolute value

ARST

MAC I2(i, 0) -1

MAC I2(i+1, 0) 1

MAC I2(i, 1) 1

MAC I2(i+1, 1) 1

ASTR AR1

CMP

vertical gradient

ARST

MACC AR1 1

WHRN

ASTR AR1

UWHR

Vertical absolute value

ARST

MACC AR0 1

MACC AR1 1

ASTR I2(i, 0)

Addition of the two previous results

Each one of this four filters requires, for each col-
umn, 1 reset, 3 MAC and 1 write-back instruction.
These instruction are performed in eleven cycles, so
the output image requires 2816 cycles and apply-
ing the four filters requires 11264 cycles. Gradient
calculation costs twelve 2-cycle MAC and sixteen
other instructions, that means 40 cycles for each
column and 10240 for a entire image. All things
considered, the algorithm is performed 21504 cy-
cles, i.e. 0.54 ms at 40MHz.

5 RESULTS & ANALYSIS

To observe the impact of cache behavior we use the
cpp (Cycle Per Pixel):

cpp =
t× F

n2

n 128 256 512 1024

cpp Deriche H 2.95 2.85 3.31 3.87

cpp Deriche VH 4.86 4.88 5.24 6.19

cpp gradient 2.69 2.88 3.17 3.65

cpp total 10.5 10.61 11.72 13.71

Table 3: cpp for 128, 256, 512 and 1024 image size
for PowerPC

n 128 256 512 1024

t(ms) Deriche H 0.048 0.187 0.868 4.058

t(ms) Deriche VH 0.080 0.320 1.374 6.491

t(ms) gradient 0.044 0.189 0.831 3.827

t(ms) total 0.172 0.696 3.073 14.376

Table 4: execution time (ms) for 128, 256, 512 and
1024 image size for PowerPC

The execution time on the Xcell does not suffer
from cache misses: cpp is still constant: 11 cycles
per Deriche filter, for a total of 44 for the four filters
and 40 cycles for the gradient.

n 128 256 512 1024

time(ms) total 0.269 0.538 1.075 2.15

Table 5: execution time (ms) for 128, 256, 512 and
1024 image size for XCell

If we only compare the execution time, PowerPC
and Xcell run at same speed (the G4 is even faster),
for small images (128 and 256), when they fit the
G4 cache. Such a comparison is biased since it does
not take into account the required energy for these
architecture.

The classical metric used to compare embedded
processor is Mips/Watt. We do no believe that
Mips or Mops is still an up-to-date metric since
the latency of instructions may vary a lot, and so,
counting the number of instructions could lead to
erronous conclusion except if you want your system
to run the Dhrystone benchmark. Not very useful.
We prefer the t × Watt (in Joule) which is the
amount of energy required to apply an algorithm
on an image. The idea is that if a processor
is by far real-time for an application, it’s SoC
version will use a downclocked version of the classic
processor version, the energy remains constant
but the power is smaller. For 256 × 256 images
the classic G4 is 78 times faster that the realtime
constraint (40 ms). Dividing its clock frequency by
10 will also reduce its power consumption by ap-
proximately 10, for a still realtime 5.1 ms execution.

E = t×Watt



The technology used for the current XCell pro-
cessor is 0.60 µm. Switching from 0.60 to 0.25 µm
will decrease the capacitor surface, that is the leak-
ing capacitor, the required courant and finally the
consumption. A scale factor can be applied to es-
timate not a faster XCell but smaller XCell. The
factor is (0.60/0.25)1.5 the exponent is 1.5 and not 2
since it appears in the Literature that such a switch
provides a factor that is smaller than the gain in
surface, and closer to 1.5 than 2. For XCell we es-
timated the consumption of the micro-controler to
200 mW and 800mW for a 256 XCell vector. Witch
such assumption, the result for the new criterion is:

n 128 256 512 1024

PowerPC (mJ) 1.72 6.96 30.73 143.76

XCell (mJ) 0.16 0.54 1.94 7.31

scaled XCell (mJ) 0.07 0.24 0.86 3.26

gain 10.7 12.9 15.9 19.7

scaled gain 23.9 29.0 35.6 44.1

Table 6: Comparison of required energy for Pow-
erPC and XCell

With such criterion, the difference of perfor-
mances for extreme embedded applications is more
realistic from our point of view.

6 CONCLUSION

A programmable analog retina has been presented
and compared with state of the art MPU for em-
bedded imaging applications. The comparison is
based on the energy requirement to implement the
same image processing task. Each version has been
independently optimized to fit the considered ar-
chitecture. To complete the performance evalua-
tion, an evaluation of 1GHz DSP C64x is planned.
Right now, the valididty of such a analog design has
been demonstrated. Even when obsolete process
are used for the retina, results showed that analog
processing requires lower power consumption than
digital processing. In addition, the execution time
is shorter since the size of the retina is reasonably
large.
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[15] D. Demigny et al “Méthodes et architectures
pour le traitement du signal en temps rel.
Trait’e Information, Commande et Communi-
cation. Hermès. 2001.

[16] F. Garcia Lorca “Filtres récursifs temps réel
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