PARALLELIZATION OF AN ULTRASOUND RECONSTRUCTION ALGORITHM FOR NON
DESTRUCTIVE TESTING ON MULTICORE CPU AND GPU

Antoine Pédron', Lionel Lacassagne®, Franck Bimbard? and Stéphane Le Berre!

[1] CEA, LIST, F-91191 Gif-sur-Yvette, France
[2] Institut d’Electronique Fondamentale, UMR 8622, Université Paris-Sud 11, F-91405 Orsay, France

ABSTRACT

The CIVA software platform developed by CEA-LIST of-
fers various simulation and data processing modules dedica-
ted to non-destructive testing (NDT). In particular, ultrasonic
imaging and reconstruction tools are proposed, in the purpose
of localizing echoes and identifying and sizing the detected
defects. Because of the complexity of data processed, compu-
tation time is now a limitation for the optimal use of available
information. In this article, we present performance results on
parallelization of one computationally heavy algorithm on ge-
neral purpose processors (GPP) and graphic processing units
(GPU). GPU implementation makes an intensive use of ato-
mic intrinsics. Compared to initial GPP implementation, opti-
mized GPP implementation runs up to x 116 faster and GPU
implementation up to x631. This shows that, even with irre-
gular workloads, combining software optimization and hard-
ware improvements, GPU give high performance.

Index Terms— non-destructive testing, ultrasonic re-
construction, parallelization, general purpose processors, gra-
phic processing units

1. INTRODUCTION

Non destructive testing (NDT) consists in examining spe-
cimen or material integrity without damaging it. Ultrasonic
Testing is one of the most used method, because of its sensi-
tivity, its depth penetration, and its accuracy for positioning
and dimensioning internal defects as well as its simplicity of
implementation.

Ultrasonic testing consists scanning the component under
examination and acquiring signals at each probes positions.
Acquired data are processed for visualization and analysis
purpose, and different views are generally proposed:

— Ascan: ultrasonic signal’s curve (amplitude in function

of time)

— Bscan: two dimensional cross-section image view,
which visualizes the amplitude of signals through a
colormap. The horizontal axis corresponds to a one
dimensional probe scanning while time of flight is
represented on vertical axis.

— Cscan: two dimensional presentation as a top view of
the testing. The two axis correspond to two dimensio-
nal scanning of the probe and data is cumulated along
signals.

Besides these views visualizing raw data, different recons-
truction algorithms can be proposed to give a representation
of the data in real space.

This work is done in the context of the development at
CEA LIST of the CIVA software platform dedicated to simu-
lation and processing of NDT data [1]. Because of the com-
plexity of the data to be processed, computation time remains
a limitation for an optimal use of reconstruction algorithms.
Acceleration of reconstruction and visualization algorithms
would be a great step forward for the tools of analysis and au-
tomatic diagnosis. In this perspective, parallelization and ex-
ploitation of GPU are investigated. An ultrasound reconstruc-
tion algorithm called True Cumulated Views (TCV) has been
chosen for optimization and parallelization with the two most
common hardware platforms used nowadays, general purpose
processors (GPP) and graphic processing units (GPU). GPU
are well known to give high speedups, particularly when com-
putations are highly parallel [2].

The article is organized as follow: first of all, section 2
presents TCV algorithm and software optimization. Then, pa-
rallel implementations are detailed in section 3. After that,
section 4 shows experimental results. Finally, conclusion is in
section 5.

2. TRUE CUMULATED VIEW ALGORITHM

The True Cumulated View algorithm (TCV) offers a com-
plete visualization of the data through top, side and front
views of the specimen (figure 1). This algorithm postulates
that both the specimen geometry and material properties are
known. In complex cases, the geometry can be given as a
CAD description. Ultrasound reconstruction is a widely dis-
cussed topic and usually, reconstructions are based on Bscans.
TCV reconstruction is differentiated by the fact that inputs
are not Bscans but raw signals and geometry information
[3]. In subsection 2.1, a theoretical view of the algorithm
is given. Then, 2.2 presents a pseudo-code based on initial
implementation. Finally, 2.3 shows software optimization.

SIDE VIEW &

€~ TRANSDUCER

SPECIMEN VIEW < RAY PATH WAVE PROPAGATION

Fig. 1. In the top part : views computed by True Cumulated

View algorithm. In the bottom part : views assembled on a 3D
model.

2.1. Algorithm description

The inputs are:

— N signals (N is the number of ultrasonic shots) : am-
plitude in function of time. The signals are results of an
experimental acquisition or a simulation calculation.

— N ray-paths : geometrical polylines, which represent
the path of theoretical beam deviation inside the spe-
cimen. At each vertex of the polyline is associated the
time of flight value of the wave to reach this point.
Time of flight between two vertex are obtained through
simple linear interpolation. These ray-paths are pre-
calculated with CIVA simulation code [4].

— Area of reconstruction : 2D regular grid (that can be
confused with the final image).

The Output is :

— An image : amplitude is assigned to each point of the
reconstruction area and is represented by a color code.

Description of the algorithm (illustrated on figure 2):

1. First step: Projection of the signal to the ray-path. Each
value (amplitude,time) of the signal, can be localized
on the ray-path and converted to (amplitude, (X,y,z)) va-
lue.

2. Second step: for each value (amplitude, (x,y,z)), projec-
tion of the rectangular area to the final grid (figure 3).
Then, dilation of the amplitude value to a rectangular
area around the point (X,y,z). For each pixel, selection
of the max value between projected value and current
pixel image value.

This algorithm has an irregular workload whose inten-
sity depends on the data. Ray-paths can be either well aligned

UTDATA
Projection

TOP VIEW

<

UTDATA
Position on
specimen
frame

TESTING BOUNDARY BOX

Fig. 2. Top View computation pattern.

or disorganized, short or long, with a few or many segments
and in most cases can be source of memory conflicts in case
of parallelization.

2.2. Initial implementation

The initial implementation is a direct mapping of the phy-
sical algorithm. Sequential implementation (Algo. 1) samples
each ray-path along and, in order, each sample is projected on
the surface plan with a dilation of its energy on its neighbo-
rhood using a max operator. Dilation operation is very heavy
on resources because of the number of memory accesses nee-
ded.

Input: raypaths array r

Input: signals arrays sigs

Input: sampling step ¢

Input: dilation window size (du, §v)

Output: image T" of sizen X m

for each ray-paths r; do

for each segments sjof r; do

get end points(position, time):

(M;(Sj), tt) an'd (M;+1(Sj)’ i)

sample segment with §¢

for each sample ey, of s* do
get amplitude a from sigs for k on r;
ex (xt, y!) « project3Dto2D(ey (z, y, z))
compute T'[y/, z/] < max(a, T (y/, x/))
dilate(du, dv) on T'[y/, x/|

Algorithm 1: Initial implementation of TCV algorithm.

ov

Fig. 3. Illustration of strides between two projections. Energy
dilation is applied to the grey area.

2.3. Software optimization

Major optimization has been done on the dilation step.
Dilation area is constant for a full view reconstruction. With
this hypothesis, every projected point is processed in the same
way. Because of the idempotency property of the max opera-
tor, it is possible to postpone the on-the-fly du x v dilation
by a unique post-processing dilation. Instead of applying a
du x év dilation kernel for each projected point, this kernel is
applied only once to all pixels on the image. On-the-fly dila-
tion is replaced by a post-processed dilation performed after
the processing of all ray-paths and using kernel separability
to reduce compute complexity [5]. Moreover, this step can be
even more optimized by implementing Van Herk algorithm
[6] [7]. This type of optimization is well-know and used in
other projection algorithms such as maximum intensity pro-
jections [8].

3. PARALLEL IMPLEMENTATIONS

Ultrasonic image reconstruction has to deal with impor-
tant amount of data. Numerous elements are processed with
the same operation. This pattern can be mapped onto GPU
computing pattern which is based on large data sets with high
parallelism and minimal dependency between data elements.
Unlike GPP, GPU has to run a large number of threads to
be efficient. GPU threads are not like CPU ones : launching
a kernel with ten thousands threads takes about 12 ps with
synchronization [9]. As a result, parallelization strategies are
usually different. Two different strategies are discussed in this
section, both on GPP and GPU, in order to give a fair com-
parison. Both GPP and GPU have two implementations : one
with dilation like the initial implementation and another one
with post-processed dilation as discussed in subsection 2.3.

3.1. GPP implementations

The GPP approach is straight-forward and, if using a p-
core GPP, ray-paths are distributed among p threads (figure
4). These threads are created by using the OpenMP library
that automatically distributes a loop computation without mo-
difying the existing code. In addition, each of the previous
threads runs the TCV algorithm and generates its own image.
TCV algorithm being irregular, it cannot be vectorized by
using SIMD instructions.

Then the images are merged by extracting the maximum
value in each pixel (reduction). This step is parallelized by
using the OpenMP library and, being regular, is also vecto-
rized with SSE2 SIMD instructions. Then, the dilation step,
which is discussed in section 2.3, is also parallelized but not
vectorized.

Parallelized work
on p threads

@%@

Ray-path
computations

p intermediate
images

Final
Merge
Image

Fig. 4. Parallelization scheme for a p-core GPP.

3.2. GPU implementations

GPU implementation strategy is slightly different. Assu-
ming that GPU need to launch a very large number of threads
(thousand of them), multiple image reconstruction cannot be
used. Instead, one unique output image is used. Since dif-
ferent threads can potentially access the same address at the
same time, dilation has to be done synchronously to be thread
safe. These operations exist on Nvidia GPU since compute
capability 1.1 hardware and are named atomics. They allow
to create a mutual exclusion section to enforce serial access to
memory. At the moment, sections are restricted to basic ope-
rators like maz, inc, add, or a few other unitary operators.
These intrinsics are not advised for an intensive usage like
TCV which can potentially write hundreds of millions points.

Atomics are slow with 1.x hardware, but Nvidia announ-
ced with the latest generation of GPU (2.x) that they have im-
proved their atomic instructions up to a factor x20 [10][11].
Two aspects have to be differentiated: instruction latency and
lock latency. On one hand, instruction latency is the cost of the

(a) Front View

(a) Front View

(b) Side View

(c) Top View

Fig. 5. Reconstruction of EXZ dataset.

access, alone. On the other hand, lock latency is the duration
of the memory lock in order to execute a thread safe opera-
tion. If access are sparse enough, lock latency will not impact
on performance because no thread will access the same me-
mory at the same time. When collisions occur, and multiple
threads access the same data concurrently, afomic intrinsics
compute time is increased because it has to add instruction
latency to lock latency.

Like CPU, two implementations have been realized. Both
TCV kernels remove the upper loop of algorithm and instead,
one thread per ray-path is launched. Each thread computes its
own ray-path projection, using the same image as all threads,
with the use of atomicMax operator. Basic implementation
apply the dilation in the inner-loop, optimized kernel only
write one pixel per projected point. The latter implementa-
tion uses another kernel to apply dilation which is based on
CUDA SDK image convolution [12]. Since computations are
very irregular on TCV kernel, depending on numerous pa-
rameters (dataset, view, zoom, image size, etc.), thread block

(b) Side View

(c) Top View

Fig. 6. Reconstruction of PMF dataset.

size has been set to 64 (this value is discussed in the following
section).

4. BENCHMARKS

Benchmarks have been realized on a quad Core Intel
E5472 Harpertown at 3.0 GHz and two Nvidia GPU : Tesla
C1060 with 240 cores running at 1.3 GHz and Tesla C2070
with 448 cores running at 1.5 GHz. GPP codes were using Vi-
sual Studio 2010 compiler with SSE intrinsics and OpenMP
2.0. For GPU, CUDA 3.2 runtime has been used with version
266.58 of driver.

Two ultrasound defect response datasets have been selec-
ted as a representative subset of data that TCV use to deal
with. PMF is a 150k ray-paths with 1k sample per signal set
representing a 150M point projection for a full reconstruction
whereas EXZ is a 15k ray-path with 2k samples (30M point
projection). PMF has regular ray-paths compared to EXZ’s
which is a weld evaluation. Full reconstruction of different
views are shown on figures 5 and 6.

First subsection presents a benchmark of aromics perfor-
mance on TCV computation. Then, subsection 4.2 discusses
the block size parameters. Subsection 4.3 shows up access
sparsity and 4.4 discusses gpp scalability on TCV compu-
tation. Finally, subsection 4.5 deals with the overall perfor-
mance results for a complete reconstruction on GPP and GPU.

4.1. Impact of using atomic instructions

0.8

0.6

Time(s)

0.2

128 256 384 512 640 768 896 1024

Image Side Size
C1060 atomicMax - C1060 Max
C2050 atomicMax ==+ C2050 Max

Fig. 7. Pseudo-random atomicMax and max operator eva-
luation for an image size from 128 x 128 to 1024 x 1024 on
Tesla C1060 and C2070

Given that GPU implementations are using atomics intrin-
sics and pseudo-random accesses, one can wonder about the
performance of these operations.

On C1060, global memory is not cached [13] whereas
C2070 adds two levels of cache. L1 is local to a streaming
multiprocessor whereas L2 is global. L1 cache should not be
useful as in our case TCV has an intense atomics use whose
memory transactions are done in L2. But since concurrent ac-
cess intensity is low (i.e. compared to a histogram view), one
can wonder how caches impact on TCV and more generally
what cost has to be paid.

Figure 7 presents the results of a pseudo-random access
computation of max and at omicMax operators with C1060
and C2070. 150M points are written in a pseudo-random man-
ner in a 1D array so as to be able to compare with the experi-
mental results of TCV.

C1060 atomicMax curve is very noisy and basically
slow. When compared to a simple max operator (ignoring
concurrent accesses), atomicMax is about x2.5 slower.
With C2070, synchronization is still expensive when access
intensity is high but the gap between at omicMax and max
has been reduced with a slowdown lower than 50% for images
larger than 350 x 350 meaning that atomic instructions latency
has been greatly improved.

1.2

0.8

Time(s)

0.4 e

0.2

128 256 384 512 640 768 896 1024
Image Side Size

Side View atomicMax ¢ * * * Side View Max

(a) C1060

o
3

Thousands

o
~

o
o

0.5

0.4

Time (s)

03

0.2

0.1

128 256 384 512 640 768 896 1024
Image Side Size

Side View atomicMax ** * * Side View Max

(b) C2070

Fig. 8. TCV GPU computation time for a fixed number of
pixel accesses (PMF dataset, 150M point projection) with a
variation on image size between 128 x 128 and 1024 x 1024
for C1060 (a) and C2070 (b).

Figure 8 shows the main step of TCV on C1060 and
C2070 with atomicMax and max operators. For images
larger than 192 x 192, C1060 curves are outspread of a 1.5x
factor meaning that lock latency is basically free when access
intensity is high enough. Lock latency shows up for smaller
images with up to a 3x factor for 128 x 128 images. That
show how expensive atomics intrinsics are on old generation
hardware.

On C2070, both curves are different than C1060’s. M ax
curve is very stable with a 10% compute time increase bet-
ween 128 x 128 and 1024 x 1024. The main difference come
from atomicMax curve which is deceasing over time like
C1060’s but instead of following max curve with a factor, it
reaches max performance for images greater than 800 x 800.
This means atomicMax computation is not more expen-

sive than a simple max operation when concurrency does
not impact. Moreover, performance gain is significative bet-
ween C1060 and C2070 with a x1.5 to x2.8 factor between
atomicMax computation for 1024 x 1024 images.

In TCV algorithm, the use of atomics is mandatory to
avoid errors of computations. But depending on algorithm pa-
rameters, concurrent accesses are not the major part of the
computation. With Fermi boards, atomics can be used like
others non-atomic operators for random accesses as soon as
concurrency intensity is not too high.

4.2. Block Size settings

EXZ - C2070 PMF - C2070
s0 -l | L 350
300
60 1 F
250
40 1 r F
200 n
20 1 s s
150 =
0 100
v v Fv SV v FV
300 EXZ - C1060 1200 PMF - C1060

250 1000 m1e6

200 1 - 800 - - - 32
150 1 " " 600 | r 1 " 64
100 I - ' ' 400 I ' - ' 128
50 1 f f 200 + f 1 f 256
o 512
sv v FV NY v FV

0

Fig. 9. TCV computation time (ms) in function of thread
block size on both PMF and EXZ datasets with side, top and
front views (SV, TV, FV) on C2070 (up) and C1060 (down).

In order to get the highest performances on GPU, thread
bloc size has to be explored. Block size is a trade between
GPU architecture specifications and kernel code. More pre-
cisely, GPU streaming multiprocessor capabilities has to be
known, such as maximum number of running threads, num-
ber of registers, etc. Since TCV computations are irregular
and very data dependent, tests have been ran to check if and
how a block size has an impact on performance.

Figure 9 shows TCV computation time on EXZ and PMF
data samples on C1060 and C2070 with different block sizes.
As can be seen for the C1060, depending on the data or view,
best block size value varies. The amplitude of variation is dif-
ferent for each computation. On C2070, same observations
can be done, with also different amplitude variations. C2070
does not perform well with small bloc size probably because
of the dual warp scheduler.

Best overall value for C1060 is 128 unlike C2070 which
is 64. Taking into account that the performance variation is
small between 64 and 128 block size, 64 has been chosen for
all computations.

4.3. Access sparsity

FRONT VIEW

(a) Front View

SIDE VIEW

(b) Side View

TOP VIEW

(c) Top View

Fig. 10. Histogram of accesses for respectively side, top and
front views of PMF dataset with optimized kernel.

In order to get a better understanding of the differences
between the three views and associated computation times,
an histogram of the different memory access has been reali-
zed for the different views. Figure 11 shows that PMF front
and top views are very different than side view (same obser-
vation for EXZ). For each view, the total amount of memory
access is the same. The histogram focus on the distribution
of these accesses and the memory footprint. For example, on
side view, some pixels are written 3000 times, compared to up
to 8000 times for the top view and 14000 times for the front
view.

This observation is very interesting because it means that
even with higher access intensity, atomic intrinsics can be fas-
ter when locality is higher than fully random accesses. Top
view is the fastest because of its memory alignment. Given
that atomics are passing through L2 cache, some accesses are
using this cache to improve performance. On C1060, beha-

vior is different because its L2 cache is read-only compared
to Fermi’s which is read-write. View differences can be ve-
rified with profiler data where top view implies less DRAM
writes than other views (table 2) which means that many ac-
cesses are using cache features.

GPPO (initial)
time (ms) | # DRAM writes | ipc

View type PMF dataset / 800 x 800

Side View 257 2.56e7 0.60
Top View 109 1.04e7 0.87

Front View 295 1.96e7 0.56

Table 2. Profiling sample of PMF dataset processing for the
three views on C2070.

Comparison between side and front view is harder be-
cause with front view, lock latency is high. What we can see
on profiling data is that computation time is linked to ipc (ins-
tructions per cycle metric). Peak ipc performance is 2.0 on
Fermi GPU (compute capability 2.0) meaning that only 25%
to 33% of peak ipc is reached here. The point is that memory
aligned view is in favor compared to the two others. This can
seem obvious, but even though accesses strides are not predi-
cable, performance is still better with these views.

4.4. GPP scalability

GPP parallelization is very efficient, on both GPP imple-
mentations. GPPO is the initial implementation and GPP1 the
optimized one. Figure 11 shows up front view computation
time for PMF dataset for different image size for the two im-
plementations. With GPP0O implementation, computation time
depends directly on image size. Between a 128 x 128 recons-
truction and 1024 x 1024, up to a factor x5 is observed. Even
with this gap, GPP scalability remains exactly the same with
a x 3.8 factor gain in most cases for a 4 thread parallelization.
Same observation can be done for GPP1 implementation even
though computation time does not depend on image size as
much as GPP0O implementation. Actually, as told in section
2.3, dilation could be even more optimized so as to get a TCV
implementation where kernel size does not impact on compu-
tation time [6]. That would lower dependency on image size
too because in TCV computation, dilation kernel size grow
with image size.

These observations are exactly the same for others views
and EXZ dataset. Given that efficiency is very stable, we can
assume that this algorithm is computation bound and not me-
mory bound. Unlike GPU’s, GPP behavior is very stable.

4.5. Full reconstruction analysis

Table 1 presents a performance review of a full recons-
truction for 800 x 800 images for PMF and EXZ datasets
where GPPO and GPUO are the initial implementation without

"

128 256 384 512 640 768 896 1024
Image Side Size

""" GPPO 1 thread ——GPPO 4 threads GPP1 1 thread ====GPP1 4 threads

Fig. 11. GPP PMF front view reconstruction time for GPPO
and GPP1 implementations with 1 and 4 threads.

optimization and GPP1 and GPU1 are optimized implementa-
tions. Combining software optimization with GPU paralleli-
zation, True Cumulated View has been strongly improved and
runs up to a factor X631 compared to initial implementation.
GPU transfers are not taken into account since we consider in-
put data to be reused for a large number of TCV runs. Image
output transfer is fast enough to be ignored (about 1ms for the
image size selected here).

By removing the dilation step from the classical algorithm
and postponing it into a post-processing step, one can achieve
a speedup of x36 on GPP, up to a x50 on C1060 and %26 on
C2070. Combining that with OpenMP parallelization on GPP,
a speedup of x 116 can be reached on a quad core (EXZ data-
set, top view computation). Note that these speedups depend
on the dilation size and so, on control parameters.

Compared to the old generation of GPU, Fermi provides
a speedup between x1.9 and x3.8 on GPUO initial imple-
mentation and between X2 and x7 for GPUI implementa-
tion. Speedups are not in favor of C2070 because L2 cache
improve GPUO implementation performance. One can notice
that as all data dependent algorithm, performance may vary:
the speedup for EXZ is lower than PMF because of the diver-
gence between ray-paths. GPU1 implementation is fast, but
not efficient, mostly because of random accesses.

On GPP, performance is linear and depends only on the
number of points projected. Parallelized GPP1 performance
is the same on both EXZ and PMF datasets with a 100k point
projection per millisecond. Even though performances are a
lower than on GPU, GPP are predictable and can give good
performance even without SIMD parallelization.

5. CONCLUSIONS AND FUTURE WORK

This article has presented a study on the optimization and
parallelization of a non-destructive evaluation ultrasound re-

GPPO (initial) [GPP1 (optimized) GPUO (initial) [GPU1 (optimized) GPPO vs GPU1 GPP1 vs GPU1
1thread | 4threads | 1thread [4threads [| C1060 [C2070 | C1060 | C2070 [| slowest/fastest | fastest/ fastest
View type EXZ dataset / 800 x 800 image reconstruction
Side View 5.02 1.32 1.16 0.32 0.92 0.34 0.14 0.072 X 69 x4
Top View 43.12 11.37 1.19 0.37 10.36 1.71 0.21 0.068 %631 x5
Front View 14.07 3.67 1.22 0.36 6.19 1.86 0.24 0.077 %180 x5
PMF dataset / 800 x 800 image reconstruction
Side View 18.6 4.9 42 1.1 2.4 1.3 0.7 0.26 X72 x4
Top View 60.3 15.9 4.2 1.0 10.8 2.8 0.8 0.11 %548 x10
Front View 62.2 16.1 4.3 1.1 20.0 11.1 1.0 0.29 x214 x4

Table 1. Overall computation time in seconds for 800 x 800 True Cumulated View image reconstruction on EXZ and PMF

datasets.

construction algorithm.

High performance have been reached more specifically
with the latest generation of Nvidia GPU : Fermi. Compa-
red to initial implementation, optimized GPP implementation
runs up to x 116 faster and GPU implementation up to x631.
Some architectural optimizations are integrated in hardware
instructions such as atomic intrinsics and allow the user to
reap the benefits of this optimization in a transparent way.
The developer avoids a lot of hardware details that has to be
known when programming some types of specific parallel ar-
chitectures.

Software optimizations combined to GPU parallelization
allows the user to get a very fast reconstruction in human in-
teractive time which is a major step into NDE ultrasound re-
construction.

These results are indeed very motivating and other algo-
rithms studies are on the way. GPU are on fast growing curve
and multicore GPP are evolving with a core number increa-
sing each year and architecture evolutions (Intel Sandy Bridge
or AMD Bulldozer). Their evaluation will be included into
future studies. Eventually, OpenCL offers a very promising
platform and its evolution has to be followed.

6. REFERENCES

[1] “CIVA : State of the art simulation software for Non
Destructive Testing,” http://www-civa.cea.
fr/.

[2] Michael Garland, Scott Le Grand, John Nickolls, Joshua
Anderson, Jim Hardwick, Scott Morton, Everett Phil-
lips, Yao Zhang, and Vasily Volkov, “Parallel computing
experiences with cuda,” IEEE Micro, vol. 28, pp. 13-27,
2008.

[3] J. Porre, S. Mahaut, S. Chatillon, and P. Calmon, “Simu-
lation of phased array techniques and model based data
reconstruction,” AIP Conference Proceedings, vol. 760,
no. 1, pp. 906-913, 2005.

[4] G.Ribay, C.Poidevin, G.Rougeron, and
B.Chassignole L.de Roumilly, “UT Data Recons-
truction in Anisotropic and Heterogenous Welds,” 8th

International Conference on NDE in Relation to Struc-
tural Integrity for Nuclear and Pressurised Components
Abstracts, 2010.

[5] Tarik Saidani, Lionel Lacassagne, Joel Falcou, Claude
Tadonki, and Samir Bouaziz, ‘“Parallelization schemes
for memory optimization on the cell processor: A case
study on the harris corner detector,” T. HiPEAC, vol. 3,
pp. 177-200, 2011.

[6] Marcel van Herk, “A fast algorithm for local minimum
and maximum filters on rectangular and octagonal ker-
nels,” Pattern Recogn. Lett., vol. 13, pp. 517-512, July
1992.

[7] Luke Domanski, Pascal Vallotton, and Dadong Wang,
“Parallel van Herk/Gil-Werman image morphology on
GPUs using CUDA,” GTC 2009.

[8] Jos B. T. M. Roerdink, “Multiresolution maximum in-
tensity volume rendering by morphological adjunction
pyramids.,” IEEE Trans Image Process, vol. 12, no. 6,
pp- 653-60, 2003.

[9] Vasily Volkov and James Demmel, “LU, QR and Cho-
lesky Factorizations using Vector Capabilities of GPUs,”
technical report, Electrical Engineering and Compu-
ter Sciences University of California at Berkeley, May
2008.

[10] David Patterson, “The top 10 innovations in the new
nvidia fermi architecture, and the top 3 next challenges,”
Tech. Rep., NVIDIA, 2009.

[11] “Whitepaper, NVIDIA’s Next Generation CUDA Com-
pute Architecture : Fermi,” Tech. Rep., NVIDIA, 2009.

[12] Victor Podlozhnyuk, “Image convolution with cuda,”
technical report, NVIDIA, June 2007.

[13] Henry Wong, Misel-Myrto Papadopoulou, Maryam
Sadooghi-Alvandi, and Andreas Moshovos, “Demysti-
fying GPU Microarchitecture through Microbenchmar-
king,” ISPASS, pp. 235-246, 2010.

