A SystemC TLM Framework for
Distributed Simulation of Complex Systems
with Unpredictable Communication

Julien Peeters, Nicolas Ventroux, Tanguy Sassolas, Lionel Lacassagne
CEA, LIST,
Embedded Computing Laboratory
91191 Gif-sur-Yvette CEDEX, FRANCE
Email: julien.peeters @cea.fr

Abstract—Increasingly complex systems need parallelized sim-
ulation engines. In the context of SystemC simulation, existing
proposals require predicting communication in the simulated
system. However, this is often unpredictable.

In order to deal with unpredictable systems, this paper
presents a parallelization approach using asynchronous com-
munication without modification of the SystemC simulation
engine. Simulated system model is cut up and distributed across
separate simulation engines, each part being evaluated in parallel
of others. Functional consistency is preserved thanks to the
simulated system write exclusive memory access policy while
temporal consistency is guaranteed using explicit synchroniza-
tion. Experimental results show up a speed-up up to 13x on 16
processors.

I. INTRODUCTION

Hardware complexity is continuously increasing. For in-
stance, System-on-Chip (SoC’s) now integrate ever more
sophisticated architectures, targeting multimedia (H.264,
VC-1...) or wireless communication (UMTS, WiMAX...). Sim-
ulation of such systems slows down as their complexity
increases [1].

SystemC is a C++ class library that supports mixed soft-
ware/hardware system design. System modeling can be done
at different levels of abstraction and accuracy. As a conse-
quence, SystemC has become widely used as a tool to explore
design space of complex systems. For this task, there is no
need for bit-level accuracy. Instead, wire-level communication
is abstracted away as high-level transactions implemented
by a SystemC extension named Transaction-Level Modeling
(TLM).

A promising approach is to parallelize simulation. Re-
lated proposals [1]-[7] preserve simulation temporal causality
thanks to conservative synchronization [8], avoiding the man-
agement of an expensive checkpoint/rollback strategy required
when using the optimistic variant. However, conservative
synchronization becomes a bottleneck when communication
is unpredictable. Indeed, such synchronization must occur as
soon as a communication can be initiated by any module in
the simulated system. In the present context, we assume that
this might happen at each simulated system clock cycle, called
further a cycle. In addition, we will talk, in this paper, about

temporal consistency which allows a temporal error under
certain conditions in opposite to strict causality as defined in
previous work.

We focus our work on two key points, which lead to
two contributions, addressing simulation and design space
exploration of complex unpredictable systems:

o We propose (section II) a parallelization approach, draw-
ing its inspiration from proposals of Mello [2] and
Galiano [6]. We partition the system model into clusters
and evaluate each of them in a separate simulation
engine. Communication between clusters is made asyn-
chronous so as to avoid blocking simulation. In order
to deal with unpredictable systems, we introduce a new
synchronization mechanism divided in two parts. One
relies on the write exclusive memory access policy of
the simulated system and preserves simulation functional
consistency. The other generates explicit synchronization
to bound the temporal error introduced by asynchronous
communication.

o We implement (section III) our approach as a SystemC
TLM framework. Thanks to this framework, the par-
allelization of a simulation does not imply to rewrite
or adapt the simulated system model. Parallelization is
transparent for the system designer and does not require
modifying the SystemC simulation engine. This frame-
work guarantees that functional modeling semantics is
preserved when simulation is parallelized.

So as to validate our approach, we build a customizable
validation environment (section IV). We use our approach
to run many parallel simulations against many environment
configurations. The results (section V) offer to characterize
the simulation speed-up and accuracy. Furthermore, we deduce
from results two simulation modes, which give a simulation
speed-up up to 13x on 16 processors compared to a standard
non-distributed simulation.

Finally, we compare our approach with related work (section
VI) and conclude (section VII) on the results and features
given by our approach.

II. BACKGROUND AND SUGGESTED NEW APPROACH

Among promising approaches speeding up SystemC simu-
lation, Mello [2] and Galiano [6] propose to cut up the model
describing the system to simulate, also called the simulated
system model, into clusters. A cluster is a partition of the
whole simulated system model and then is purely virtual and
does not represent a concrete structure in the simulated system.
Thereafter, each cluster is evaluated in parallel with each
other in a separate simulation engine, running on a separate
processor.

Parallel Discrete Event Simulation (PDES) theory [8] pro-
vides a formal representation of synchronization in parallel
simulation. It has two variants: conservative and optimistic.
The optimistic variant lets the simulation speculate on its
future states. A rollback mechanism returns to a valid state
in case of an incorrect speculation. This requires to record
checkpoints during simulation in order to roll back to the last
valid state when necessary. However, simulation state history
becomes difficult to manage while the simulated system com-
plexity increases [S5]. In return, the conservative variant does
not comprise a speculation nor a rollback mechanism. Instead,
simulation is only allowed to progress when synchronization
is assured that no past time-annotated communication might
occur. This way, it guarantees temporal causality at any time
during simulation. For this reason, most of related works
implement a conservative synchronization mechanism.

The conservative variant requires knowing the minimum
duration between two communications occurring in the sim-
ulated system [5], [6]. This duration is called lookahead and
represents the time during which the parallel simulation can
be evaluated without synchronizing. The longer the lookahead,
the greater the speed-up. However, in some systems, communi-
cation rate cannot be specified. Consequently, lookahead must
be shortened to the worst case value: one simulated system
clock cycle. This causes the simulation to dramatically slow
down or even become unusable.

Our approach draws its inspiration from Mello [2] and
Galiano [6] proposals. In our case, communication between
clusters is implemented using the Message Passing Interface
(MPI) [9]. Our implementation transforms any inter-cluster
communication into asynchronous calls. This lets the simula-
tion locally progress on the initiator side while waiting for the
communication to complete.

In order to deal with unpredictable systems, we propose a
hybrid synchronization approach that is divided in two parts.
One part guarantees the functional modeling consistency when
a cluster accesses data from another cluster, constraining the
simulated system to have a write exclusive memory access pol-
icy. This means that a writer has exclusive access to memory
when it is writing. Hence, it must wait for all the readers to
have finished reading before writing. This constraint creates
implicit synchronization between clusters. Here, writers and
readers are SystemC modules in the simulated system model.
However, even if functional consistency is guaranteed, nothing
prevents clusters from diverging in time as communication

Module

Module ?

(a)

Module Module

Module ? j

A

(b)

Fig. 1. Example of (a) an initiator connected to a target and (b) chaining of
modules. Arrows indicate the direction from an initiator to a target.

is asynchronous, thereby potentially introducing a temporal
error. This error varies according to the relative simulation
speed deviation between communicating clusters. Then the
other part of the synchronization mechanism sends explicit
synchronization at regular intervals so as to bound this error.
The explicit synchronization period is specified by the system
designer. The designer can also change the period value so as
to tune the simulation accuracy.

We will now present the implementation details of our
parallelization approach as a SystemC TLM framework.

III. FRAMEWORK IMPLEMENTATION DETAILS

In the TLM specification an initiator initiates a request
and sends it to a target. The target processes the request and
sends back a response. Such a request-response pair is named
a transaction. In this context, initiator and target are both
SystemC modules (figure 1a). According to the specification,
a communication between an initiator and a target may be
either blocking or non-blocking. In the latter case, the response
part of a transaction may be omitted. SystemC modules may
also be chained. In this case, intermediate modules act like
a target for the previous module and like an initiator for the
next module in the chain (figure 1b).

When parallelizing a SystemC simulation, the simulated
system model is cut up into clusters. Therefore, some com-
munication links between SystemC modules are broken as
the result of the cutting. These broken links are replaced
by virtual links, providing the inter-cluster communication
substrate. However, the introduction of virtual links does not
modify the initial semantics of the simulated system model.
Figures 2a and 2b illustrate this transformation.

A virtual link is composed of two end-points named wrap-
pers. A wrapper acts both like an interface to the distributed
communication layer (i.e. the MPI middleware) and to one of
the initiator or target involved in the link (figure 2c). As a
consequence, a SystemC module connected to a virtual link
ignores whether the link is virtual or not. Then, there is no
requirement to modify or adapt initiators and targets for the
parallel simulation to work.

Explicit synchronization, introduced in section II, is the
central mechanism that prevents cluster’s simulations from

Cluster 0 Cluster 2n
CPU CPU
> Mem > Mem
CPU CPU CPU
> Mem > Mem | Mem N * + * +
* f * f * f Distributed interconnect
Interconnect -
f * f * f * Mem > Mem
> Mem H»>{ Mem H»{ Mem CPU CPU
CPU CPU CPU
L Cluster 1 Cluster 2n+1
(@ (b)
Clusteri ! Cluster j
|t oo
Module Proxy |—» MPI —»| Remote Module
? Wrapper |[€—— Middleware <+ Wrapper
e —— n
S
Virtual link '
(©
Fig. 2. Using our approach, the parallelization of a SystemC simulation begins with the transformation of the non-distributed model (a) of the simulated

system to a distributed one (b). In the same time, the interconnect is split across clusters and, thereafter, is known as distributed interconnect. Finally, links
carrying communication through the interconnect are replaced by virtual links (c). The latter exchange data through the MPI middleware abstracted and hidden

in the distributed interconnect.

diverging in time with one another. This part of the whole
synchronization approach implements a handshake between
clusters sharing at least one virtual link. The implementation
takes place in a SystemC module named synchronization
module, one assigned to each cluster.

In the following paragraphs, we will deeper detail wrapping
and synchronization mechanisms and implementations.

A. Wrappers

In a standard non-distributed SystemC TLM simulation,
an initiator communicates with its targets through transport
methods, where the name method refers to a C++ one. A
transport method literally transports a transaction from an
initiator to a target, or at least to an intermediate SystemC
module acting like a target when modules are chained. When
the simulation is distributed, an initiator and a target commu-
nicating together may be mapped onto different clusters. So
as to hide this mapping from both initiator and target point of
views, wrappers are introduced in the simulated system model.
These wrappers transform the call to the transport method into
an asynchronous MPI communication, thereby implementing
the abstraction exposed by the virtual link.

On the initiator side, the wrapper is named the proxy
wrapper; on the target side, the wrapper is named the remote
wrapper. The proxy wrapper mimics the behavior of the target
as if the initiator was directly connected to it. The remote
wrapper is in charge of forwarding the request to the target
and the response back to the initiator. In order to handle the

asynchronous nature of MPI communication, both wrappers
are implemented as SystemC modules. They contain one
process that is activated when a transaction is received. This
activation is managed by an event dispatcher, one assigned to
each cluster. The event dispatcher polls MPI communication
from remote clusters sharing at least one virtual link with
the cluster owning the event dispatcher. Figure 3 illustrates
communication between an initiator and a target.

Wrapper association, used to create a virtual link, is made
before the simulation begins. Associations are specified in a
configuration file, containing wrappers unique identifiers. This
file is loaded at start-up and parsed to build virtual links.

B. Synchronization module

Synchronization in a parallel simulation aims to keep the
simulation state consistent among all parts of the simulation
environment. In our case, synchronization only occurs between
clusters sharing at least one communication dependency be-
tween an initiator and a target, assuming both modules are on
different clusters. Consequently, if two clusters do not share
such dependency, they never synchronize.

The synchronization module implements the explicit part of
our hybrid synchronization approach as a handshake between
clusters. The implementation of this handshake is detailed
in figure 4. In opposite to distributed transactional commu-
nication, synchronization is done synchronously. Then, the
main issue is to prevent deadlocks as SystemC processes are

Module Proxy 4_ Event
(initiator) Wrapper Disp.
MPI
Middleware
Module Remote <« Event
(target) Wrapper @ Disp.

Fig. 3. When an initiator sends a transaction to a target, the proxy wrapper
connected to this initiator receives the transaction (1). The proxy wrapper
forwards the transaction to its associated remote wrapper (2) and waits for the
response. On the other side, the remote wrapper wakes up when the transaction
arrives (3), previously notified by the event dispatcher of its cluster. The
remote wrapper transfers the transaction to the target (4), which processes
it (5). When the target returns the response (6), the remote wrapper sends
it back to the proxy wrapper (7), which is notified by the initiator’s cluster
event dispatcher (8). Finally, the proxy wrapper forwards the response to the
initiator (9).

evaluated sequentially. To do so, explicit synchronization is
done as follows, considering the point of view of a cluster:

1) A synchronization order is sent (send_sync) to all
clusters containing one or more targets connected to one
or more initiator in the current cluster (lines 2-4);

2) Upon a synchronization order is received from an ini-
tiator’s cluster (recv_sync), an acknowledge is sent
back (send_ack) to it (lines 5-8);

3) Finally, the current cluster wait (recv_ack) for receiv-
ing all acknowledges for all synchronization orders it
sent at the first phase (lines 9-11).

Explicit synchronization occurs at regular intervals in the
simulation. The time spent during two explicit synchroniza-
tions is called the synchronization period. This period is
specified by the simulated system designer and/or simulation
end-user. So as to reduce the cost of synchronization during
the simulation, explicit synchronization is implemented as a
SystemC method process. This kind of SystemC process (i.e
SC_METHOD) corresponds to a function call, where the other
kind, named a thread process (i.e. SC_THREAD), generates
thread context switches, which is more expensive.

Nonetheless, it is mandatory to guarantee that explicit
synchronization will effectively bound the temporal error
introduced by asynchronous communication between clusters.
Actually, this is already guaranteed by the nature of explicit
synchronization and its periodicity. Indeed, explicit synchro-
nization occurs in each cluster with the same period and the
synchronization is processed synchronously between related
clusters. Moreover, all clusters start their part of the simulation

1: procedure EXPLICIT_SYNCHRONIZATION
2 for c; € remote_target_clusters do
3 SEND_SYNC(ct)

4 end for

5: for c¢; € remote_initiator_clusters do
6 RECV_SYNC(c;)

7 SEND_ACK(c;)

8 end for

9: for c; € remote_target_clusters do
10: RECV_ACK(¢;)

11: end for

12: end procedure

Fig. 4. Listing of the explicit synchronization algorithm.

evaluation at time zero. As a result, when clusters synchronize,
their local times converge to a global simulation time.

Figure 5 illustrates how explicit synchronization effectively
bounds the temporal error. In the given example, at step (2),
cluster j is in advance compared to cluster <. Their local times
differ by a certain ¢, previously defined as the temporal error.
Next, at step (3), cluster ¢ is in advance compared to cluster
7 and their local times differ again by a certain, possibly
different, 6. Finally, at step (4), clusters initiate a handshake
and block until the synchronization completes. Thereafter,
cluster ¢ and j continue the simulation with their synchronized
local times.

Simulation termination is another issue we address in this
paper. When a part of the whole simulation terminates in a
cluster, there is, a priori, no reason for other clusters to know
whether that cluster has finished its part of the simulation.
Worse, some clusters may wait for the terminated cluster to
synchronize, resulting in a deadlock.

So as to deal with this issue, we propose to use a cooper-
ative termination method, based on the algorithm of explicit
synchronization (figure 4). When the simulation is expected
to end, a call to the sim_stop function is made. This
causes synchronization modules to send stop orders instead of
synchronization one. Then, all clusters are allowed to respond
to pending transactions until the last (stop) synchronization is
achieved.

IV. VALIDATION ENVIRONMENT

The validation environment is composed of two parts: a
dedicated hardware simulation infrastructure and a SystemC
TLM validation model.

A. Simulation hardware

The hardware used for validation is composed of four nodes.
Each node is a quad-core Xeon W3550 at 3.06 GHz with 24
GB RAM and two 1000 BaseT network interfaces. All run
a 2.6.9-67 RHEL 4 SMP Linux kernel without support for
HyperThreading.

The MPI implementation is OpenMPI version 1.4.2.
The command line used to launch distributed simulation
depends on the number of clusters involved in the simulation.

. | | >
cluster i I i | : I >
0 ety ty & |1 T local time
1 o | [} ! |
| 0 o : 1
TR HE - E
= | [
cluster j i i A L i* I >
0 t1 | ' ts T local time
I
| P b |
1 1 ! 1 1 1
1 1 ! 1 1 1
| | | | | | >
[[[[I I S
0 t1—90 t; ty — 0 to T simulation time
Fig. 5. Example of relative time deviation between clusters and effect of

explicit synchronization on the local time of clusters. First, all clusters start
the simulation at time zero (1). Next, a cluster ¢’s initiator sends a transaction
to a target of cluster j through a transport method and receives a response
(2). After a little while, a cluster j’s initiator send a transaction to a target of
cluster 7 and receives a response (3). When the synchronization period (7°)
has elapsed, cluster ¢ and cluster j synchronize synchronously (4).

For instance, when using 4 clusters, the command line
looks like mpiexec —--mca btl tcp,self —--mca
mpi_paffinity_alone 1 -hostfile mpi.hosts
-n 4 ./top.

B. Validation model

The hardware part of the validation model (figure 2a) is
composed of processing cores (CPU’s), distributed memories
(Mem) and a network interconnect. Each memory is accessible
directly to one processor as its local memory, using a dedicated
port, and to all other processors through the network intercon-
nect. The address space is globally shared. Communication
between CPU’s is made thanks through local memories and is
assumed to be unpredictable.

The application implemented for validation purpose follows
a data-flow software model. In this context, each CPU executes
two tasks. The first one aims to represent realistic thread
context switches involved in genuine complex system simula-
tions. It implements a fixed-length integer sum. This task is
executed at each cycle and does not produce communications
outside the CPU. The second task can be a producer or a
consumer task, implementing a variable length integer sum.
This task is executed periodically following a user-defined
simulated period (given in cycles). In a producer task, the
sum is processed and the result is written to a consumer local
memory. In a consumer task, the sum is processed as soon as
a new data is available in its local memory. This new data is
used as the initial value of the processed sum. For the purpose
of the validation, producers and consumers are chained two-
by-two, each producer providing data to only one consumer.

In order to distribute the SystemC model of figure 2a,
the model is cut up into clusters as defined in section II.
In the present case, CPU’s are grouped with their local
memories and the network interconnect is distributed among
clusters. The resulting SystemC model is presented figure 2b.

The transformation from a standard non-distributed SystemC
model to a distributed one is completely automated. Though,
the current implementation of this automated transformation is
only valid for the module pattern of figure 2a at this time, the
transformation process can be easily extended to a general
case. For instance, SystemCXML [10], PinaVM [11] and
Scoot [12] are tools that can be used to extract communication
dependency information and generate a top-level SystemC
module with the appropriate allocation of clusters.

The validation model we propose here is customizable. The
following parameters can be changed: the number of CPU’s,
the computational load in CPU’s, the local memory size, the
number of clusters and the explicit synchronization period.
Nevertheless, in order to keep the testing set size reasonable,
some constraints have been put on the model parameter values:
producer and consumer tasks have all the same computational
load (i.e. the same sum size) and the explicit synchronization
period is identical for all clusters.

It is important to notice that the system model used for
validation only aims to be theoretical and does not intend to
be implemented on silicon. Nevertheless, it aims to express
the following system properties: a high degree of parallelism
through a great number of tasks and a high degree of inter-
connection.

V. EXPERIMENTAL RESULTS

For each distributed simulation, the validation model is
composed of 64 CPU’s and 64 memories. The distribution is
made following three configurations for which the simulated
system model is partitioned in 4, 8 and 16 clusters respectively.
The number of modules per cluster is chosen so as to balance
the load among node resources. In addition, we forced a cluster
to be evaluated alone on one node core.

In order to characterize the behavior of a distributed
SystemC TLM simulation using our approach, we ran the
simulations in three modes, corresponding to three pro-
ducer/consumer task simulated period values:

« using a fixed value of 100 cycles (no random variation);
« following an uniform law of probability with a mean of
100 cycles and a variance of 20% (i.e. 20 cycles);
« following a Poisson law of probability with a mean of
100 cycles and a variance of 20% (i.e. 20 cycles).
We also ran distributed simulations with a variance equals to
40% of the mean. In those cases, the results were similar to
ones exposed thereafter, so we will not discuss them in this
paper.

Figure 6 shows the results we obtained for each distributed
configuration and each producer/consumer task simulated pe-
riod value. The results present the influence of the real-time
duration of producer/consumer tasks for a given simulated
period, which we are going to discuss now.

A. Speed-up characterization

Figure 6a, 6d and 6g show up the relationship between
T., the real-time producer/consumer task duration, and 7,
the explicit synchronization period. One can notice that T

4 u 4 4
—8— 1 cycle
—A— 10 cycles
3 | —©— 100 cycles a 3 3
o —x— 1000 cycles a o
7 —+— 10000 cycles =] 3
B 20 B 2f B 2F
[Q [
=% =% =%
wn wn wn
1+ 1+ 1+
ol vl vl il vl 1 vl vl v vl vl 11l T TTT B S U171 B S I I R U1 B N A W U171 S I MR N 1| B BRI
1076 107° 107* 1073 10=2 107! 1076 107 10=* 10732 1072 107! 1076 107 107* 1073 10=2 107!
Task average duration (seconds) Task average duration (seconds) Task average duration (secs)
(@) (b) (©
8 T 8 [T o
—8— 1 cycle
—A— 10 cycles
6 | —=©— 100 cycles B (2 a 6 =
o —>— 1000 cycles a o
2 —+— 10000 cycles 2 2
B 4f B 4+ - B 4t .
Q (5] Q
=% =% =%
N 1) n
2 |-
1 I ¢
ol 1l \Hu\ TR TIT| B WA RNTT B R WAt vl vl v vl vl 11l T TTT B S U171 B S I I R U1 B N A W U171 S I MR N 1| B BRI
10=% 107 10=* 10=% 1072 107! 10=% 1075 107* 1073 1072 107! 107 1075 10=* 1073 1072 107!
Task average duration (seconds) Task average duration (seconds) Task average duration (seconds)
(d (©) ()
A a1 e 111 AU B R I a1 N L s N AL
15 a1 cycle B 15} B 15} B
—A— 10 cycles
—6— 100 cycles
o 10H —— 1000 cycles | o 101 N o 101) |
2 —— 10000 cycles 2 3
= =] =
3 8 8
j=9 (=¥ (=¥
wn] 0]
| | | | | é\/A/A/A/A’/K
PR " - —E= = 1
nul Lol 0 nul o T T T O W W V1 I W 111 A W uiit| 0 TTTTY L Iy I B A W W11 N N W WA T B R WA Auini
107% 1075 107* 1072 1072 107! 107 1075 107* 1072 1072 107! 107 1075 107* 1072 1072 107!
Task average duration (seconds) Task average duration (seconds) Task average duration (seconds)
(8) (h) ()

Fig. 6. Speed-up of SystemC TLM distributed simulations compared to a non-distributed one. These results present the speed-up we achieved using our new
approach, considering several explicit synchronization periods given in cycles. Rows correspond, in order, to the three distributed configuration composed of
4, 8, 16 clusters. The first column gives the results for a fixed value of the simulated producer/consumer task period. The second and third columns give the
results for a random producer/consumer task simulated period, following an uniform probability law and a Poisson probability law respectively.

also represents the communication real-time period. When
T.s < T., more than one synchronization occur during a
period of T;.. As a consequence, the number of thread context
switches grows within the SystemC simulation engine, slowing
down the distributed simulation. On the other side, increasing
T.s beyond T, does not provide a significant benefit. Indeed,
simulation throughput is limited by implicit synchronization,
which its period equals 7.

As shown in the second and third columns of figure 6, a
random producer/consumer task simulated period gives a bet-
ter speed-up for shorter values of 7. than with a non-random

simulated task period. This is explained by the probability
that the producer/consumer task simulated period is less than
100 cycles (i.e. the mean value). Therefore, the number of
synchronization during a period of T, decreases. In addition,
the acceleration given by such a scenario is greater than the
slowdown caused when the task simulated period value is
greater than 100 cycles.

Looking at validation results, our approach is scalable.
Indeed, the maximum speed-up in all cases is very close
to the theoretical speed-up. For instance, for a non-random
SystemC TLM distributed simulation composed of 16 clusters,

TABLE I
TEMPORAL ERROR GIVEN IN PERCENT OF THE PROCUDER/CONSUMER
TASK SIMULATED PERIOD (100 CYCLES). VALUES GIVEN HERE ARE THE
MAXIMUM GENERATED ERROR CONSIDERING ALL VALUES OF T¢.

e Explicit synchronization period
#clusters | ——1—15—1 00 [1000 | 10000
4 1.00% | 42% | 8.6% | 143.90% | 1517.70%
8 099% | 3.4% | 13.1% | 231.90% | 1388.60%
16 095% | 42% | 15.5% | 73.00% | 2193.60%

the speed-up equals 13.33 compared to a non-distributed
simulation; the maximum speed-up for distributed simulation
composed of 16 clusters and following a uniform random law
equals 12.54.

B. Error characterization

Table I shows the temporal error, as defined in section
II, along with different values of the explicit synchronization
period.

One can see that the temporal error is always bounded by the
explicit synchronization period. For instance, given an explicit
synchronization period of 10 cycles, the maximum error equals
4.2% in average. As expected, when the explicit synchro-
nization period gets longer, the temporal error increases. In
addition, as detailed in section IV, communication in producer
and consumer tasks is surrounded by task evaluations. In the
case of a SystemC TLM simulation, these tasks are sequen-
tially evaluated like any other concurrent SystemC process in
a given simulation engine. Then, when a producer/consumer
task is evaluated, clusters do not synchronize with one another.
Therefore, the longer the producer/consumer task evaluation,
the greater the temporal error.

C. Exploiting distributed simulation properties

When looking at the boundary behavior, two distinct situa-
tions can be observed according to the explicit synchronization
period. Indeed, on one hand, short periods (< 10 cycles)
give little throughput but high precision. On the other hand,
long periods (> 100 cycles) give higher throughput, but little
precision. Therefore, we propose two simulations modes: one
ought to use a period around 100 cycles when expecting
a high throughput; in return one ought to use an explicit
synchronization period of 1 cycle when more precision is
required.

VI. RELATED WORK

SystemC is a discrete event simulator using delta cycles
to simulate concurrent processes in a system. Such a process
can be modeled like a function call or a thread depending
on its nature. Buchmann [13], Mouchard [14] and Naguib
[15] observed that the default SystemC dynamic process
scheduling produces more thread context switches than effec-
tively needed. So, they proposed a static scheduling relying
on communication dependencies between SystemC processes.
The scheduling is obtained thanks to a static analysis of the
simulated system model. However, when communication is
unpredictable this approach cannot be used. An alternative is

to parallelize concurrent process evaluation. To do so, two
methods are exposed in related work.

One method requires modifying the SystemC simulation
engine. Ezudheen [1] do it by adding OpenMP [16] directives
while Mello [2] use the QuickThread framework [17]. More
radically, Nanjundappa [18] implement a transformation chain
from SystemC to CUDA [19]. All these proposals make
severe modification of the SystemC implementation that leads
to relevant results. However, such modification implies an
expensive maintenance to stay compatible with future versions
of SystemC. Our aim is to focus on the synchronization
mechanism being one of the most critical part in parallel
simulation. The other parallelization method is the one our
approach relies on and we detailed in section II.

Combes [3] show up the synchronization bottleneck gener-
ated by the conservative variant of PDES. As a solution, they
propose an interesting distributed synchronization mechanism.
However, it requires modifying the SystemC simulation engine
what we proscribed. Our synchronization implementation is
close to their approach but ours is much simpler. We imple-
ment it at model level instead of inside the SystemC simulation
engine.

Yi [20] proposes an interesting method, called trace-driven
virtual synchronization, that separates event generation from
time alignment. However, implementing this in the context of a
SystemC simulation requires modifying the simulation engine,
which we exclude in this paper.

VII. CONCLUSION

In conclusion, this paper presents a new parallel approach
with a hybrid synchronization mechanism designed to deal
with unpredictable systems, offering to simulate and explore
design space of such systems. Simulation parallelization is
transparent to the simulated system designer thanks to a
dedicated SystemC TLM framework, thereby increasing reuse
of previously written SystemC model. This framework does
not require modifying the SystemC simulation engine at all.
Both features provide an easy to use and relevant simulation
environment.

Experimental results show that the distributed simulation
speed-up is conditioned by a threshold. This threshold is
inherent to distributed programming methods and relies on the
ratio between the simulation processing and the communica-
tion cost. Results also highlight the relationship between the
synchronization mechanism and the nature of communication
between clusters. Two simulation modes can be extracted from
results. A first one that provides little throughput but high
precision. In return, the second mode provides high throughput
but little precision.

In this second case, results underline that when the com-
munication simulated period is fixed, corresponding to the
ideal case, the best speed-up is obtained when the explicit
synchronization period overlaps with the communication pe-
riod. In addition, when the communication simulated period is
randomized, approaching the real case, acceleration values are
a few smaller but still brasatisfying. For instance, the speed-up

with a distributed simulation composed of 16 clusters com-
pared to a non-distributed simulation equals 13.33 and 12.54
for non-random and random cases respectively. In all cases, the
temporal error is bounded by explicit synchronization period.
These results require comparison with those of distributed
simulations using more realistic SystemC TLM models to be
fully validated.

[1]

[2]

[4]

[5]
[6]

[8]

REFERENCES

P. Ezudheen, P. Chandran, J. Chandra, B.P. Simon, and D. Ravi,
“Parallelizing SystemC Kernel for Fast Hardware Simulation on SMP
Machines,” in Proceedings of the 2009 ACM/IEEE/SCS 23rd Work-
shop on Principles of Advanced and Distributed Simulation. Montreal,
Canada, pp. 80-87, 2009.

A. Mello, I. Maia, A. Greiner, and F. Pecheux, ‘“Parallel Simulation of
SystemC TLM 2.0 Compliant MPSoC on SMP Workstations,” in Pro-
ceedings of Design, Automation and Test in Europe (DATE), Dresden,
Germany, pp. 606-609, 2010.

P. Combes, E. Caron, P. Desprez, B. Chopard and J. Zory, “Relaxing
Synchronization in a Parallel SystemC Kernel,” in Proceedings of IEEE
International Symposium on Parallel and Distributed Processing with
Applications (ISPA), Sydney, Australia, pp. 180-187, 2008.

B. Chopard, P. Combes, and J. Zory, “A Conservative Approach to
SystemC Parallelization,” in Proceedings of International Conference
on Computational Science (ICCS), Reading, United Kingdom, pp. 653—
660, 2006.

M. Trams, “Conservative Distributed Discrete Event Simulation with
SystemC using Explicit Lookahead,” Digital Force White Papers, 2004.
V. Galiano, H. Migallon, D. Pérez-Caparrds, M. Martinez, “Distributing
SystemC Structures in Parallel Simulations,” in Proceedings of the 2009
Spring Simulation Multiconference, San Diego, CA, United States, pp.
1-8, 2009.

D. R. Cox, “RITSim: Distributed SystemC Simulation,” Master thesis
at Kate Gleason College of Engineering, 2005.

R. M. Fujimoto, “Parallel Discrete Event Simulation,” in Proceedings
of the 21st Conference on Winter Simulation,Washington D.C., United
States, pp. 19-28, 1989.

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]
[20]

Message Passing Interface Forum, “MPI: a Message Passing Interface
Standard,” Stuttgart, Germany, 2009.

D. Berner, J.-P. Talpin, H. D. Patel, D. Mathaikutty, S. K. Shukla.
“SystemCXML: An Exstensible SystemC Front-end Using XML,” in
Proceedings of Forum on specification and Design Languages (FDL),
Lausanne, Switzerland, pp. 405409, 2005.

K. Marquet, M. Moy, “PinaVM: a SystemC Front-end Based on an Ex-
ecutable Intermediate Representation,” in Proceedings of the 10th ACM
International Conference on Embedded Software (ICES), Scottsdale,
AZ, United States, pp. 79-88, 2010.

N. Blanc, D. Kroening, N. Sharygina, “Scoot: A Tool for the Analysis of
SystemC Models,” in Proceedings of the 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Budapest, Hungary, 2008, pp. 467-470.

R. Buchmann and A. Greiner, “A Fully Static Scheduling Approach for
Fast Cycle Accurate SystemC Simulation of MPSoCs,” in Proceedings
of International Conference on Microelectronics (ICM), Cairo, Egypt,
pp. 105-108, 2007.

G. Mouchard, D. G. Pérez, and O. Temam, “FastSysC: A Fast Simulation
Engine,” in Proceedings of Design, Automation and Test in Europe
(DATE), Paris, France, 2004.

Y. N. Naguib and R. S. Guindi, “Speeding up SystemC Simulation
Through Process Splitting,” in Proceedings of Design, Automation and
Test in Europe (DATE), Nice, France, pp. 111-116, 2007.

OpenMP Architecture Review Board, “OpenMP: The OpenMP API
specification for parallel programming,” http://www.openmp.org.
QuickThread Programming, LLC, “QuickThread framework,”,
http://www.quickthreadprogrammin.com

M. Nanjundappa, H. D. Patel, B. A. Jose, and S. K. Shukla, “SCGPSim:
A Fast SystemC Simulator on GPUS,” in Proceedings of the 15th Asia
and South Pacific Design Automation Conference (ASP-DAC), Taipei,
Taiwan, pp. 149-154, 2010.

NVidia, “CUDA technology,” http://www.nvidia.com.

Y. Yi, D. Kim, S. Ha, “Fast and Accurate Cosimulation of MPSoC
Using Trace-Driven Virtual Synchronization,” in IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems,Vol. 26, No.
12, pp. 2186-2200, 2007.

