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ABSTRACT
High Level Synthesis for System on Chip is a challenging
way to cut off development time, while assuming a good le-
vel of performance. But the HLS tools are limited by the abs-
traction level of the description to perform some high level
transforms. This paper evaluates the impact of such high level
transforms for ASICs and softcores on FPGA. On the repre-
sentative example of motion detection, we show that we have
a speedup of ×1.5 for a softcore on FPGA and ×2.5 for an
ASIC while the energy is divided by a factor ×2.90 for the
ASIC.

Index Terms— High Level Synthesis, High Level Trans-
forms, algorithm transforms, software optimizations, soft-
core, FPGA, ASIC, power consumption, energy optimization,
motion detection.

1. INTRODUCTION

High Level Synthesis (HLS) for Systems on Chip is a
challenging way to cut off development time while assuming
a good level of performance. The latest version of HLS tools
integrates software optimizations that are coming from the
optimizing compiler area [1] like loop-unrolling, software
pipelining and using the polyhedral model to improve loop
scheduling.To further improve current performance, tools
should integrate the semantic of an application domain [2]
and the related algorithm transforms [3].

This paper evaluates the impact of such algorithm trans-
forms or high level transforms (HLT) for ASIC and softcore
on FPGA. More and more commercial or academic HLS tools
are available [4] like LegUp [5] or Gaut [6]. We have chosen
Catapult-C as it is the tool used by ST Microelectronics for
its synthesis farm. The Sigma-Delta algorithm (Σ∆) has been
selected as it was specially designed for embedded systems
and it is one of the best mono-modal algorithms [7] for mo-
tion detection. A comparison of other methods can be found
in [8]. It has been ported on GPP, parallel artificial retina [9],
embedded ARM processor [10] and FPGA [11]. So it assets
as a reference algorithm for robust motion detection with low

complexity. The impact of HLT has been evaluated on a soft-
core with instruction customization and on an ASIC with ST
65-nm CMOS technology. To improve efficiency, HLT are
combined on each target with software optimizations.

2. MOTION DETECTION ALGORITHM

2.1. Sigma-Delta algorithm

The basic principle of the Σ∆ algorithm is to estimate the
parameters of the background using Σ∆ modulation. Consi-
dering a time-varying signal ft (continuous or discrete), we
estimate a discrete signal dt by quantizing the time indexes
{ti}i∈N, and then performing at every time index i the follo-
wing update formulas:

If dti−1 < fti then dti = dti−1 − ε else dti = dti−1 + ε
where ε is the discretization step (least significant bit) of dt.
In Σ∆ background subtraction, the input signal is the value
of every pixel over time It, from which we compute the first
Σ∆ background estimator Mt. Then the values of the abso-
lute differences |Mt−It| are used to compute the second Σ∆
background estimator Vt, which is a parameter of dispersion.

Algorithm 1: Σ∆ algorithm
foreach pixel x do [step #1: Mt estimation]1

if Mt−1(x) < It(x) then Mt(x)←Mt−1(x) + 12
if Mt−1(x) > It(x) then Mt(x)←Mt−1(x)− 13
otherwise Mt(x)←Mt−1(x)4

foreach pixel x do [step #2: Ot computation]5
Ot(x) = |Mt(x)− It(x)|6

foreach pixel x do [step #3: Vt update]7
if Vt−1(x) < N ×Ot(x) then Vt(x)← Vt−1(x) + 18
if Vt−1(x) > N ×Ot(x) then Vt(x)← Vt−1(x)− 19
otherwise Vt(x)← Vt−1(x)10

foreach pixel x do [step #4: Êt estimation]11

if Ot(x) < Vt(x) then Êt(x)← 0 else Êt(x)← 112

In the basic version (Algo. 1), the Σ∆ background Mt

and Σ∆ variance Vt are updated every frame, according to



the comparison with the current image It and the current ab-
solute difference Ot respectively. N is an amplification factor
for Vt, allowing to compute the motion label Êt by simply
comparing Ot and Vt (typical values of N are between 1 and
4).

As shown in [7], one can improve the robustness of the
algorithm while keeping the complexity low with a two level
processing algorithm combined with a conditional update and
a Zipfian law for the update frequency. But the major impro-
vement is done by a morphological post-processing. Figure
2 focuses on the impact of a 3 × 3 morphological opening.
The next step to improve the segmentation robustness is to in-
clude a colorimetric model [12] to have a better segmentation
between the objects and their projected shadow (around the
man’s feet in the figure).

2.2. Morphological post-processing

The 3 × 3 opening is the combination of a 3 × 3 ero-
sion with a 3 × 3 dilation. As these two operators have the
same complexity and the same mathematical property (idem-
potence), we focus on the implementation of only one ope-
rator. Let us define ⊕ the operator min used for the erosion
and max for the dilation. Note that for binary images, these
operators are respectively replaced by the Boolean operators
AND and OR (our case here).

Algorithm 2: 1-pass implementation of the 3 × 3 mor-
phological filter with the 2D-filter corresponding to
equation (1), with explicit use of registers (Reg version)

Input: image X of size (n + 2)× (n + 2)
Output: image Y of size n× n
for i = 1 to n− 1 do1

for j = 1 to n− 1 do2
a0 ← X(i− 1, j − 1), b0 ← X(i− 1, j), c0 ←3
X(i− 1, j + 1)
a1 ← X(i, j − 1), b1 ← X(i, j), c1 ← X(i, j + 1)4
a2 ← X(i + 1, j − 1), b2 ← X(i + 1, j), c2 ←5
X(i + 1, j + 1)
r ← a0 ⊕ b0 ⊕ c0 ⊕ a1 ⊕ b1 ⊕ c1 ⊕ a2 ⊕ b2 ⊕ c26
Y (i, j)← r7

The classical problem of the borders processing is addres-
sed by the use of Iliffe arrays [13] based on offset addressing
that allows the programmer to allocate images with negative
indexes like[0− r : (n− 1) + r]× [0− r : (n− 1) + r], with
r the radius of the kernel: for a k × k kernel, k = 2r + 1.

3. HIGH LEVEL TRANSFORMS AND SOFTWARE
OPTIMIZATIONS FOR SOFTCORE AND ASIC

Optimizations can be classified according to three catego-
ries:

– High Level Transforms,
– Software optimizations, usually done by a compiler, but

that can also be applied manually,
– Hardware and architectural optimizations.

HLT are algorithmic transforms based on optimizations be-
longing to an application domain – like image and signal pro-
cessing – and are related to operator properties to reduce the
algorithm complexity. Examples of such transforms are filter
separation and factorization. In the next section, we will focus
on the separation and reduction of morphological operators.

The usual software optimizations are loop unrolling, and
more generally loop transforms, register rotation, register sca-
larization and software pipelining. Depending on the archi-
tecture, these optimizations will have an important or a small
impact on performance.

Finally, the architectural optimizations depend on the ar-
chitecture – here the RISC model. They take into account the
architectures properties to improve the execution of the al-
gorithm. That is to improve the pipeline efficiency (by increa-
sing the amount of independent computation and reducing the
pipeline stalls) and to improve cache performance (by redu-
cing cache misses but more globally memory accesses: the
cache cannot miss a memory access that does not exist!).

Another improvement is to use SIMD instructions [14] for
a software programmable processor, or to generate a SIMD
accelerator for a softcore processor, as it is known to be very
efficient for low level image processing (with regular compu-
tations) [9].

Concerning customization (modifying an architecture),
there are three levels of customization: 1) instruction custo-
mization, 2) function customization and 3) full-custom ASIC.
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Fig. 1. Instruction customization for NIOS II

Customizing instructions consists in designing instruc-
tions that are missing in the current processor instruction
set. Softcore processors offer the opportunity to add useful
and efficient instructions for an application domain, while
keeping the processor complexity low. Two commonly mis-
sing instructions for general purpose processors are min and



Fig. 2. Example of Σ∆ processing. Left: original image of Hall sequence, middle: Σ∆ without post-processing, right: Σ∆ with
3× 3 morphological opening (erosion + dilation).

max that avoid using conditional branches and consequently
branch mispredictions.

Instruction customization is user-friendly. For the C
compiler, a new instruction designed with VHDL or Ve-
rilog is declared with a pragma like #define MIN(a,b)

builtin custom inii(0,a,b) for NIOS II. So it is di-
rectly recognized by the compiler as an existing instruction
or a reserved keyword of the language.

From an electronic point of view, the piece of custom lo-
gic is interfaced with the input and output busses of the ALU:
data read from the register bank are rerouted to the custom lo-
gic and once the computation is done (in one or more cycles)
the result is available at the ALU output (Fig. 1). In this paper,
the SOPC Builder from Altera has been used.

If instruction customization can be considered as fine
granularity, function customization corresponds to an in-
termediate granularity. It consists in creating an external
hardware accelerator. The accelerator is connected to the pro-
cessor through a set of dedicated ports or busses, the data are
sent into specialized registers (or FIFO) and the accelerator
is activated through an interrupt. Depending on the architec-
ture, the result is sent back to the processor or written into
memory. A more general view of function customization is to
consider the generated hardware like any external hardware
that could read/write data from/to the memory with a DMA
or a dedicated bus.

The advantage of such a customization is that the compu-
tation is combinatory and no longer controlled by the proces-
sor clock: if there are many small operations to perform like
additions (in opposition to a multiplication) or binary opera-
tions, more than one operation can be achieved during one
cycle. In some cases, considering a low frequency processor,
and then low frequency synthesis, many computations can be
done in one cycle. The main drawback of such customization
is the communication delay from and to the processor: the
communication duration should be smaller than the time sa-
ved by the hardware computation compared to the software
computation. As the computation load for one loop iteration
is low (for both Σ∆ and morphological operators), hardware

accelerators could not be efficient here and will not be used
and detailed in this paper.
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Fig. 3. Software pipelining and initiation interval. Top: ii=3
⇒ one adder needed, middle: ii=2⇒ two adders needed, bot-
tom: ii=1 (fully pipelined)⇒ three adders needed. Example
from HLS Blue Book [15]

The most advanced level of customization is the full cus-
tom design than can be achieved with HLS tools for Electro-
nic System Level (ESL) methodology. Catapult-C from Ca-
lypto Design Systems has been used for the full-custom ap-
proach. The typical way of using such a tool is to provide a
C or C++ source code and to set the clock frequency to be
used. If almost all parameters are automatically explored by



the tool, at least one parameter can be set by the user: the ini-
tiation interval (ii). That is the latency, in cycles, between the
start of two iterations of a loop. Let us consider the following
computation t = a+ b+ c+d with classic 2-input adders and
assume that the duration of one addition is one cycle. This
example comes from HLS Blue Book [15].

In the first case, one wants one output written every 3
cycles (Fig. 3, top with ii=3). In that case there is no over-
lap of any operation and only one adder is required. With a
constraint of one output every 2 cycles (Fig. 3, middle with
ii=2) two adders are required as there are two additions on
cycle 3: the first one computes t3 = t2 + d from the first
lane, and the second to compute t1 = a + b from the second
lane. With a hard constraint of one output every cycle (Fig.
3, bottom with ii=1) three adders are required on cycle 3: the
first one computes t3 = t2 + d, the second one computes
t2 = t1 + c and the third one computes t1 = a+ b.

Note that is the electronic instance of software pipelining,
the most important optimization for VLIW processors. De-
pending on ii and the algorithm structure, one can have a di-
rect impact on the size and the performance of the circuit:
with smaller ii, the circuit is faster and bigger; with larger ii,
the circuit is slower and smaller.

For processors (softcore and hardcore), the main problem
is the memory bandwidth, as many algorithms (and the consi-
dered algorithms belong to that class) are memory bounded.
So the first target is to reduce the amount of memory accesses.
Then the second target is to reduce the amount of computa-
tions and the amount of hazards (comparisons that can stall
the pipeline).

In the next section we first present high level transforms,
then software and architectural optimizations.

3.1. High Level Transforms

As Σ∆ is a very simple pixel-to-pixel algorithm, there is
no HLT to apply. So we focus on the morphological operators.

The classical software optimization is Loop-Unrolling but
it suffers from one drawback: the code size increases by the
order of unrolling. So we prefer the Register-Rotation com-
bined with scalarisation (to put temporary results into regis-
ters). In algorithm 3, the pixel of the left and central column
are loaded into registers before the loop (lines 4-6). After the
computation registers are rotated (lines 14-16). Compared to
the initial algorithm with 9 LOADs, there are only 3 LOADs
in that version. The arithmetic complexity remains the same:
8 operations (named OP in the following). Register-Rotation
leads to two versions: Rot1 (Algo. 3) in 1 pass, Rot2 (Algo.
4) in two passes.

Taking into account the idempotent property of the mor-
phological operators, the 2D structuring element SE3×3 can
be replaced by two 1D elements (Eq. 1). This algorithmic
transformation called Rot2 (Algo. 4) reduces the complexity
(4 OP instead of 8 previously) but increases the number of

Algorithm 3: 1-pass implementation of the 3 × 3 mor-
phological filter with Register Rotation, Rot1 version

Input: image X of size n× n
Output: image Y of size n× n
for i = 1 to n− 1 do1

[preload the first two columns of each line]2
j ← 13
a0 ← X(i− 1, j − 1), b0 ← X(i− 1, j)4
a1 ← X(i, j − 1), b1 ← X(i, j)5
a2 ← X(i + 1, j − 1), b2 ← X(i + 1, j)6
for j = 1 to n− 1 step 3 do7

c0 ← X(i− 1, j + 1)8
c1 ← X(i, j + 1)9
c2 ← X(i + 1, j + 1)10
r ← a0 ⊕ b0 ⊕ c0 ⊕ a1 ⊕ b1 ⊕ c1 ⊕ a2 ⊕ b2 ⊕ c211
Y (i, j)← r12
a0 ← b0, b0 ← c0 [RR of the first line]13
a1 ← b1, b1 ← c1 [RR of the second line]14
a2 ← b2, b2 ← c2 [RR of the third line]15

LOADs to 6. The main problem is that such an algorithm re-
quires two passes on the image and then, if the image is too
large to entirely fit in the cache, it generates cache misses. So
Rot1 version will be prefered to Rot2.

SE3×3 =

24 1 1 1
1 1 1
1 1 1

35 =

24 1
1
1

35 ∗ ˆ 1 1 1
˜

(1)

Algorithm 4: 2-pass implementation of the 3 × 3 bi-
nomial filter with two 1-D filters of equation 1, Rot2
version

Input: image X of size n× n
Output: image Y of size n× n
for i = 1 to n− 1 do1

for j = 1 to n− 1 step 3 do2
x0 ← X(i− 1, j), x1 ← X(i, j), x2 ← X(i+1, j)3
r ← x0 ⊕ x1 ⊕ x24
Y (i, j)← r5

for i = 1 to n− 1 do6
for j = 1 to n− 1 step 3 do7

a← X(i, j − 1), b← X(i, j), c← X(i, j + 1)8
r ← a⊕ b⊕ c9
Y (i, j)← r10

By introducing another optimization, we can both facto-
rize the computations and reduce the number of memory ac-
cesses. The two passes of the 1D-filter on the image can be
combined within a single pass. First, the result of the first
1D-filter is stored in a register. This transformation is called
a reduction. In our case, it is a column-wise reduction: ins-
tead of memorizing 6 pixels (Algo. 3, lines 4-6), we compute
the reduced value by column (Algo. 5, lines 5 & 6). Then



the second operator is directly applied to the reduced values
(Algo. 5, line 12). In that version there are only 3 LOADs and
4 OPs. All the complexity figures are summarized in table 1
where MV stands for a move (to copy one register to another
one) and AI represents the arithmetic intensity (ratio between
arithmetic operators and memory accesses).

Algorithm 5: 1-pass implementation of the two sepera-
ted 1D operators with reduction, Red version

Input: image X of size n× n
Output: image Y of size n× n
for i = 1 to n− 1 do1

a0 ← X(i− 1, j − 1), b0 ← X(i− 1, j)2
a1 ← X(i, j − 1), b1 ← X(i, j)3
a2 ← X(i + 1, j − 1), b2 ← X(i + 1, j)4
ra ← a0 ⊕ a1 ⊕ a2 [reduction of the first column]5
rb ← b0 ⊕ b1 ⊕ b2 [reduction of the second column]6
for j = 1 to n− 1 do7

c0 ← X(i− 1, j + 1)8
c1 ← X(i, j + 1)9
c2 ← X(i + 1, j + 1)10
rc ← c0 ⊕ c1 ⊕ c2 [reduction of the third column]11
r ← ra⊕ rb⊕ rc [applying the horizontal operator]12
Y (i, j + 0)← r13
ra ← rb [rotation of the reduced registers]14
rb ← rc15

version OP LD + ST MV AI

Reg (1-pass of 2D-op) 8 9+1=10 0 0.8
Rot1 (1-pass of 2D-op) 8 3+1=4 6 2.0
Rot2 (2-pass 1D-op) 4 2(3+1)=8 0 0.5
Red (1-pass 1D-op) 4 3+1=4 2 1.0

Table 1. Morphological operator complexity and arithmetic
intensity

3.2. Low Level Transforms: software and architectural
optimizations

3.2.1. Software optimizations

In that section we present two optimizations answering
two questions. The first one addresses C code refactoring for
Catapult-C: how to write efficient C code ? The second one
addresses softcores: what can be done to reduce the execution
time when faced to many if-then-else tests ?

Algorithm 6: Basic double if-then-else
if r < x then r ← r + 11
if r > x then r ← r − 12

Let us focus on the double if-then-else of algorithm 1,
lines 2 & 3 (and also lines 8 & 9). As there are 3 cases (incre-

mentation, decrementation, nothing), it requires two Boolean
tests (Algo. 6). What is usually done to save a comparison (in
50 % of the cases) is to do a nested if-then-else (Algo. 7). but
the drawback of such optimization is the serialization of the
tests.

Algorithm 7: Nested double if-then-else
if r < x then1

r ← r + 12
else3

if r > x then4
r ← r − 15

Another way to reformulate the double if-then-else, is to
separate the comparisons from the computations. In algorithm
8, the comparisons (that can be nested) only set the value of δ
that is added at the end.

Algorithm 8: Double if-then-else with δ
δ ← 01
if r < x then δ ← +12
if r > x then δ ← −13
r ← r + δ4

The final reformulation (Algo. 9) is more an hack than
a software optimization, as it directly mixes arithmetic addi-
tion with comparisons. It relies on the fact that the result of a
comparison is 0x0 or 0xFFFFFFFF whether the result is false
or true and that 0xFFFFFFFF is also equal in 2-complement
arithmetic to -1. In that case the expression r ← r + 1 be-
comes r ← r− (−1) and finally r ← r− lt (line 3). The case
is similar for the other comparison.

The complexity of these 4 versions is summarized in the
table 2 where CMP stands for a comparison (< or >) and
ADD for an addition or a subtraction. As the comparison is
done with a subtraction, the total column is the sum of CMP
and ADD, while the last column is the number of conditio-
nal branches associated to the if-then-else. As we assume that
each comparison is completely random they are unpredictable
even with a branch predictor:the number of mispredictions is
proportional to the number of branches. As we can see, only
the hack version has no conditional branches. The hack ver-
sion has the largest complexity: four ADDs. Its main advan-
tage is that there is no more if-then-else, so we can avoid pi-
peline stalls associated to branch mispredictions. The bench-
mark section will present the impact of such a style of coding
for Catapult-C.

Algorithm 9: Hacked if-then-else with 2-complement
lt← (r < x)1
gt← (r > x)2
r ← r − lt3
r ← r + gt4



version CMP ADD total conditional BRANCH

basic 1 + 1 0.5 + 0.5 3 1+1=2
nested 1 + 0.5 0.5 + 0.25 2.25 1+0.5=1.5
delta 1 + 1 0.5 + 0.5 3 1+1=2
hack 1 + 1 1 + 1 4 0

Table 2. Complexity of if-then-else versions

Algorithm 10: Masked double if-then-else
lt← (r < x)1
gt← (r > x)2
inc← (+1) AND lt3
dec← (−1) AND gt4
r ← r + inc+ dec5

Considering softcores, we evaluate the impact of instruc-
tion customization (Fig. 1) for the NIOS II. We create two
new instructions: r=lt inc(r,x) and r=gt dec(r,x) that
replace the two considered if-then-else tests. One can per-
form the increment or the decrement in only one instruction
r=inc dec(r,x) as the VHDL synthesis implements the
two comparisons in parallel.

3.2.2. Architectural optimizations

Finally one can perform yet another software optimiza-
tion on the softcore. As the cache of the processor is direct-
mapped, miss conflicts are higher than with set-associative
caches. Reducing the number of memory accesses reduce the
number of instructions and may reduce the number of miss
conflicts.

The basic solution is to replace four consecutive 8-bit
LOADs by one 32-bit LOAD. That corresponds to a loop
unroll of 4. Once a 32-bit data is loaded, it is unpacked (with
classical shifts and masks instructions) into four 8-bit data
that are processed by the previous algorithm. Then the four
results are packed into a 32-bit data and stored by into me-
mory. For a softcore processor 32-bit specialized instructions
can be designed to perform Sub-Word Parallelism (SWP). As
Σ∆ operator is pixel-wise, such a design is straightforward.
For the morphological operator SWP are unnecessary as 32-
bit OR and AND exist (the gray-level version will required
four 8-bit MAX and MIN) but new instructions that merge two
32-bit registers should be designed (see [9] for vec left and
vec right macros to extract unaligned vectors).

4. BENCHMARKS: RESULTS AND ANALYSIS

4.1. Softcore processors

For softcore, an Altera board with a NIOS II onto a Stra-
tix2 (EP2S60F672C5ES) was used. . The clock frequency is
50 MHz. The 32-KB data cache is direct-mapped with 32-B
lines. To avoid the possibility of systematic eviction when two

different arrays are mapped into the same cache lines, padding
was used. For softcores, four configurations were benchmar-
ked (Tab. 3 & 4):

– 8-bit × SW: basic 8-bit code, without accelerator
– 8-bit × HW: basic 8-bit code, with 8-bit hardware ac-

celerator
– 32-bit × SW: 32-bit SWP code, without accelerator (8-

bit computations with software pack and unpack opera-
tions)

– 32-bit × HW: 32-bit SWP code, with SWP hardware
accelerator (32-bit computations done in hardware)

The metrics used are the average number of cycles per
pixel (cpp) and energy per pixel.

Concerning Σ∆ we can observe that 32-bit memory ac-
cesses are efficient only when coupled with instruction cus-
tomization. The reason is the cost to perform pack/unpack
steps is very high: 3 SHIFTs and 3 ANDs per unpack and 3
SHIFTs and 3 ORs per pack. That is a total of 18 SHIFTs and
18 Boolean instructions! When custom instructions are used,
there is no more such steps and the 32-bit version is fast. With
8-bit custom instructions, there is no more pipeline stall due
to if-then-else. That provides a speedup of ×1.23 versus the
software version. For the 32-bit version, compared to 8-bit
version, custom instructions provide a super-linear speedup
of ×7.35 that comes from an efficient usage of both the pi-
peline and the cache. Combined together the total speedup is
×9.06.

version SW HW gain SW/HW

Σ∆ 8-bit 47.1 38.2 × 1.23
Σ∆ 32-bit 109.0 5.2 × 20.96

32-bit gain × 0.43 × 7.35 ×9.06

Table 3. cpp of Σ∆ algorithm on softcore NIOS II processor

Concerning the morphological operators (Tab. 4), we
can make the same observation about 32-bit accesses: they
are efficient if and only if there is no extra instructions like
pack/unpack steps to process data. Regarding instruction cus-
tomization, there is no gain in 8-bit versions, and the gain of
32-bit versions is not pertinent. The reason is that instructions
(software or hardware) are scheduled by clock, so only one
instruction can be executed per cycle, and that such instruc-
tion must enforce a 2-operands-only form: there is no way
to perform two Boolean operations inside one instruction. So
Boolean instructions (AND or OR) go at the same speed, by
software or by hardware. If we now focus on HLT, we can
see that these optimizations are always efficient whatever the
other optimizations/transformations: the gain is approxima-
tively ×1.5 for all versions (we do not consider the 32-bit
software version for the previously explained reasons). Com-
bined together we reach a speedup of×7.85 for 32-bit custom



instructions with HLT on NIOS II compared to 8-bit software
version without HLT.

While the hardware cost of the NIOS processor is 1,703
LUTs, 1,354 registers, 332-Kb block memory bits and 82 4Kb
RAM blocks, the cost of the custom instructions is only 453
LUTs for both the 8-bit and 32-bit versions, which is a quite
small overhead.

version SW HW gain SW/HW

8-bit Reg 21.9 20.6 × 1.06
8-bit Rot1 22.0 21.0 × 1.05
8-bit Red 14.1 14.0 × 1.01

HLT gain (Reg/Red) ×1.55 ×1.47 -

32-bit Reg 31.4 5.9 ×5.32
32-bit Rot1 46.6 6.3 ×7.40
32-bit Red 17.15 4.0 ×4.29

HLT gain (Reg/Red) ×1.83 ×1.48 -

total gain (Reg8 / Red32) ×1.28 ×5.15 ×5.48

Table 4. cpp of morphologicial operator on NIOS II processor

4.2. Full-custom ASIC

For the full-custom approach, the ST 65 nm library with a
dual-port memory was used with Catapult-C. The evaluation
of the power consumption and the area was done with Sy-
nopsys Design Compiler without activating the capabilities
of Catapult-C to reduce the total power consumption gene-
rating local/global clock gating glue as we assume that the
ASIC is always running. Concerning ASIC, the cpp is quite
equal to the initiation interval. It is in fact a bit smaller be-
cause of the setup time tsu: we have texe = ii/F − tsu and
cpp = texe × F/n < ii.

Table 5 presents the results in term of energy/pixel for re-
factoring the if-then-else tests of Σ∆. For the four versions,
the best performance is always reached for ii=1, and the ave-
rage gain of the delta version (close to the hack) is ×1.14. If
this configuration is compared to the basic configuration that
leads to the smallest area, the average gain in energy is higher
than ×4: we cannot independently optimize for energy or for
size.

freq (MHz) 200 400 600 800 average

basic 1.75 1.52 1.47 1.87 1.65
nested 1.63 1.87 2.10 2.48 2.02
hack 1.40 1.41 1.59 1.50 1.48
delta 1.40 1.40 1.49 1.50 1.45

gain ×1.25 ×1.09 ×0.99 ×1.25 ×1.14

Table 5. Energy (pJ/pixel) of Σ∆ algorithm on 65 nm ASIC
with ii=1

For the morphological operator, HLT have a major impact
on the efficiency. Let us call “best” and “smallest” the confi-
gurations associated to the best energy consumption, and the

smallest area (Tab. 6 & 7). Let us also call ii = 0 the combi-
natory version. As the basic version (Reg) requires 9 LOADs
(Tab. 6) we need 9 cycles to perform all the LOADs with
a single-port RAM and d9/2e = 5 cycles with a dual-port
RAM. For the same reason, the minimum number of cycles
for Rot and Red versions (3 LOADs) is 2 cycles. That is
very important, as for all the explored configurations, the best
energy was reached for the smallest ii. We can see that the
average gain due to HLT is ×2.90. Moreover, with a single-
port RAM, the gap between Reg and Red versions would be
even greater, as the energy increases with the ii (Tab. 8). Fi-
nally, if we compare the configuration of the smallest area wi-
thout HLT to the best Red, the average gain reaches ×3.49.

freq (MHz) 200 400 600 800 average

smallest Reg (ii=0) 6.45 6.67 7.44 7.79 7.09

best Reg (ii=5) 5.49 5.76 6.44 5.87 5.89
best Rot1 (ii=2) 2.47 2.78 3.14 2.95 2.84
best Red (ii=2) 1.80 2.02 2.25 2.05 2.03

best Reg / best Red ×3.05 ×2.85 ×2.86 ×2.86 ×2.90
smallest Reg / best Red ×3.58 ×3.30 ×3.31 ×3.80 ×3.49

Table 6. Energy (pJ/pixel) of the morphological operator on
65 nm ASIC with best ii for Reg, Rot1 and Red versions

freq (MHz) 200 400 600 800 average

smallest Reg (ii=0) 2893 2893 2893 2986 2916
best Reg (ii=5) 3206 3208 3206 3030 3163

ratio best / smallest 1.11 1.11 1.11 1.01 1.08

smallest Rot1 (ii=4) 2905 2908 2923 2847 2896
best Rot1 (ii=2) 3534 3534 3563 3443 3519

ratio best / smallest 1.22 1.22 1.22 1.21 1.22

smallest Red (ii=4) 2374 2378 2400 2408 2390
best Red (ii=2) 2685 2685 2714 2616 2675

ratio best / smallest 1.13 1.13 1.13 1.09 1.12
smallest Reg / best Red 1.08 1.08 1.07 1.14 1.09

Table 7. Area (µm2) of the morphological operator on 65 nm
ASIC with best ii for Reg, Rot1 and Red versions: the smal-
lest area and the area associated to the best energy

We can perform the same analysis for the area (Tab. 7).
There is an average area increase of 8%, 22% and 12% for
each level of HLT optimization (Reg, Rot and Red). But if
we compare the smallest area without HLT to the area as-
sociated to the best Red energy, we can see that best Red
has a smaller area than the configuration without optimiza-
tion (smallest Reg). HLT has also a (small) impact on area.

5. CONCLUSION AND FUTURE WORK

We have shown that high level transforms (HLT) are very
efficient for both softcore on FPGA and ASIC. For softcore,



freq 200 400 600 800 average

combinatory logic 2.95 3.05 3.60 3.46 3.27
ii = 2 1.80 2.02 2.25 2.05 2.03
ii = 3 2.56 2.81 3.17 2.89 2.86
ii = 4 2.90 3.01 3.57 3.46 3.24
ii = 5 3.58 3.70 4.08 4.23 3.90
ii = 6 4.25 4.38 5.13 5.00 4.69
ii = 7 4.94 5.11 5.90 5.85 5.45
ii = 8 5.61 5.79 6.76 6.62 6.20

Table 8. Impact of ii on the energy (pJ/pixel) for Red version
of the morphological operator on ASIC: the smaller the better

HLT provide a speedup of ×1.5 with instruction customiza-
tion. For ASIC, the software optimizations are no more re-
quired as they are done by Catapult-C. Then, by reducing the
number of memory accesses, HLT allow synthesis for a smal-
ler value of the initiation interval: HLT provide a speedup of
×2.5. And as energy is related to the initiation interval, we
have an average gain of ×2.90. Usually one has to choose
between speed and low power consumption. With the combi-
nation of HLT and HLS, we do not have to choose: the ASIC
is both faster and greener!

In future works, we will implement HLT through algo-
rithmic skeletons [16] to make the whole process (algorithm
transformation and synthesis) fully automatic. For ASICs, we
will implement banked single-port RAM to try to reach a 1-
cycle throughput. For softcores on FPGA we will evaluate
other specialized instructions and the replacement of a direct-
mapped cache by a set-associative cache like those available
at OpenCores. Finally, for external accelerators we will im-
plement a color-version of the algorithm to increase algorithm
robustness and to provide more numbers to crunch for the ac-
celerator.
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