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ABSTRACT

This paper presents the real time implementations of the Canny-Deriche optimal edge
detectors on RISC and DSP processors. For each type of architecture, the most leading
optimization techniques are described. A comparison is then made between DSP and
RISC processing speeds.

INTRODUCTION

Canny-Deriche operators have asserted themselves to the edge detection field which
stands as a fundamental component of image processing and computer vision.

The main drawback is the prohibitive computational power they require. It has led
people to design dedicated hardware implementations (FPGA, ASIC) to achieve the real
time execution of these detectors. On the other hand, the still increasing performance of
DSP and RISC calls into question the need for a dedicated architecture.

This paper shows that crafty software implementation of Canny-Deriche edge
detectors may achieve real time execution on state of the art DSP and RISC processors.
To achieve this goal, we introduce data parallelism techniques as well as flow
optimization methods.



1 OPTIMAL EDGE DETECTORS

In this section we introduce optimal edge detectors and the derived filters we will use
in the subsequent sections.

1.1 Canny’s optimal filters

Canny's approach [1] consists in finding the optimal FIR filter which satisfies the
three following constraints for a Heaviside input signal: good detection, good
localization, low maximum multiplicity due to the noise.

Deriche [3], using Canny's approach, has looked for an IIR filter which satisfies the
same constraints. He got the same differential equation, but while changing the
conditions at the limits, he obtained, for the Canny's performance index, an improvement
of 25%.

Deriche’s operators are used for two important methods of edge detection. The first is
based on the gradient maxima, the second, on the laplacian's zero crossings. The state of
the art methods combine both of them. In this paper we will focus on the gradient
method. The implemented operators are those proposed by Deriche in [3].

1.2 Deriche’s gradient

The horizontal derivative is the result of a smoothing in the vertical direction
followed by a derivation in the horizontal direction. Respectively, the vertical derivative
is based on those transposed directions. The smoothing operator is the sum of a causal
and an anti-causal filter:
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1.3 FGL’s optimizations

The first optimization consists in modifying the filter’s equation in order to reduce its
computational complexity. The major breakthrough was achieved by Frederico Garcia-
Lorca in [4]. He introduced a new decomposition of Deriche’s IIR filter with a lower
computational burden. Deriche’s smoother is replaced by the cascade of a causal and an
anti-causal filter in each direction. FGL provides the same Canny’s performance index
than Deriche thanks to the 2 passes of the following first order equations:



Causal smoothing filter : )1()()1()()1()( −+=−+−= nAynBxnynxny γγ

Anti-causal smoothing filter : )1()1()1()1()1()( +++=+++−= nAynBxnynxny γγ
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Deriche’s derivative filter is computed by the convolution of the following 2×2
kernels, followed by the L1 magnitude:
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We can even get a lower complexity by replacing the two passes of the FGL’s
smoother by a single pass of a 2nd order filter which is the square of the first order filter:
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We emphasize the fact that the sum of the coefficients are normalized. The following
table shows that the Garcia-Lorca’s operator complexity is half that of Deriche’s:

FGL 1st order FGL 2nd orderDeriche
& Gradient

MUL ADD ABS MUL ADD ABS MUL ADD ABS

28 29 2 16 15 2 12 15 2

Table 1: filters’ complexity

FGL’s first and second order filters being qualitatively equivalent, the next section
introduces the first order implementation on Texas Instrument’s C80. The second order is
preferred for the implementation on TI’s new C62 DSP and for the RISC architectures
with the aim of maximizing the performance (in section 3 and 4).

2 DSP IMPLEMENTATION ON THE C80

In this section, we present architectural optimization techniques which can lead to
real-time execution on the C80 processor. We review its main characteristics to better
understand the algorithmic mapping that we choose to target on the C80’s 4 advanced
DSPs. For those processors, we use the assembly language and the fixed point
representation. Finally, we review DMA implications for FGL’s algorithm.



2.1 C80’s VLIW advanced DSPs

TI’s C80 is capable of 2,5 Gops  at 60 Mhz thanks to a RISC floating point processor
(the master processor) and to 4 advanced 32 bits fixed point VLIWs (or Parallel
Processor, PP), all gathered in a single chip. Processors access internal memory (cache or
general purpose static memory) through a crossbar thus inducing minimum contention.
An advanced DMA controller performs all processors data transfers between off-chip and
on-chip memory where processing takes place. Its maximum bandwidth is of 480
Mbytes/s at 60 Mhz. Since the C80’s performance is essentially based on PP’s VLIW
instructions and their ALU capabilities, we now detail their features.

VLIW instructions

Each PP can perform 4 sets of operations in parallel in a single cycle VLIW
instruction: the multiply hardware, the general ALU hardware and 2 memory load/store
address units.

• PP’s multiply hardware: among many possible combinations, two cycles are
necessary for two rounded and truncated multiplies between two 16 bits integers and
two fixed point constants. We depict the first cycle mecanism:

←      32 bits registers         →
2 operands  in a 32 bits register o2 (16 bits) o1 (16 bits)

× Register storing the multiplier  c (16 bits)

32 bits intermediate result
(truncation) o1×c

= Truncated result combined with
unchanged second operand o1× c (16 bits) o2 (16 bits)

When this result is used as the operand of another run of this multiplication
mechanism with another multiplier coefficient c’, we gain o2×c and o1×c’ in a 32 bits
register.

• PP’s ALU:  It can combine algebraic and arithmetic operations in a single cycle. Its
general equation is of the form ( ) ( )CB,gCB,f&A ±  where A, B and C correspond to
the raw ALU input ports (& stands for bitwise logical AND). B can result from a
register left rotate ( ount\rotate_am\registerB ≡ ) and C can be used to generate a
mask of a specified number of bits ( 1n2C −=≡ %n ). f and g summarize independent
boolean functions.

• PP’s address units: two independent powerful address units can access data without
contention in a direct or indexed way. Moreover arithmetic (+/-) is allowed on any
pointer register before or after the memory access.

+1



Hardware loop controllers

To avoid handling a loop counter and the associated compare and branch instructions,
each PP features a hardware mechanism to cope with up to 3 nested loops.

2.2 SPMD mapping on the PPs

To achieve real-time performance with FGL, we choose to parallelize the processing
using the PPs and a SPMD data partitioning scheme.

• Mapping the first order FGL IIR filter:

We achieve 2 cycles per pixel using the multiplication mechanism we former
depicted. A and B coefficient range in ]0,1.0]. For the fixed point representation, we scale
those constants to use all the available 16 bits dynamic to code the decimals. With C
defining either A or B, its fixed point representation, c, is Cc ×−= )12( 16 .

PP’s registers file is “multi-ported”. Registers can be used both as operand and
destination of operations. Registers are modified at the end of all the parallel operations.
The following pseudo code gives the initialization phase and the two cycles kernel loop
(‘,’ stands for sequential, ‘||’ for parallel):

Init. : x ←  X[0] || τ ← 0, θ ←  x×B || x ← X[1]
1st cycle : θ←x× B || y←θ+τ || x←X[i← i+1]
2nd cycle : τ← y×A || Y[j←j+1] ←  y

 with τ and θ being intermediate results, X[i] the input data, Y[i] the output ones.
 

We detail the ALU features where the rotation and masking are used in accordance
with the first cycle of the fixed point multiply:

Init. : x ←  X[0] || τ ← 0, θ ←  x×B || x ← X[1], θ ←  θ\\16
1st cycle : θ←x× B || y←(θ  & %16)+(τ\\16 & %16) || x=X[i← i+1]
2nd cycle : τ← y×A || θ← θ\\16 || Y[j← j+1] ← y

 
• Gradient magnitude computation:

We achieve 12 cycles for 4 pixels per PP thanks to their ALU SIMD processing
ability we now present. The general ALU’s equation can operate on a 32 bits register split
as four separate bytes. A 4 bits multiple status flag (mf[1…4]) is maintained for each split
operation. In addition, the C port can be used to expand a mask from register mf:

C≡




=−×
=

=
− 1][)),1(8(\\0(|@

0,0

1i imfixFFmf
i

0...4:i
@mf 1

                                                                
1 ‘|’ stands for bitwise logical OR.



This introduces how we can perform four 8 bits absolute differences in just two cycles.

We use the following pixel organization 
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packing four pixel values as explained with the following figure:

Line n 1 2 3 4 5

Line n+1 1 2 3 4 5

X2

X1

X3

X4 and perform, using θ=X2+X4 and τ= X1+X3:

1st cycle : SIMD subtraction :  SplitDiffs ← θ – τ (we set mf base on the carry)
2nd cycle : gain absolute values: SplitAbsDiff ←  (SplitDiffs & @mf) | (-SplitDiffs & ~@mf)2

Here the expander serves as a selector between values of interest.

Performance estimates

The following table summarizes the estimated performance without the I/O impact:

Per PP
Cycles/pixel Num. pass

Tot. Cycles with 4 PPs

FGL 1st order 2/1 8 4×5122

Gradient 12/4 1 12/16×5122

Total cycles 1245184
Raw duration at 60 Mhz (without transfer) 20 ms

Table 2: C80 raw figures for a 5122 image

DMA transfer during calculation

To reduce the I/O impact, while processing, the DMA brings the completed data back
to external memory and downloads new data to be processed. We use the double
buffering technique to make sure no contention occurs between the DMA and the
processor when both access the same internal memory bank.

Time interval
1 2 3 4

Memory
Bank 1

1. DMA: Ext. →  Int. Processing
 (input = output)

1. DMA: Int. →  Ext.
2. DMA: Ext. →  Int.

Processing
(input = output)

Memory
Bank 2

1. DMA: Ext. →  Int. Processing
(input = output)

1. DMA: Int. →  Ext.
2. DMA: Ext. →  Int.

Table 3: The double buffering technique

                                                                
2 ‘~’ stands for logical bitwise negate.



As the DMA stands as a shared resource among all the processors, DMA requests’
contention can occur and stands as a bottleneck especially when processing is faster than
the transfer duration. This last parameter much depends on the type of external memory
that is interfaced with the c80 chip.

2.3 Conclusion

This program was implemented and benched on a 40 Mhz device with an external
DRAM memory requiring 3 cycles per column DRAM for reads and 2 cycles for writes.
50 ms are needed to process a 5122 image meaning that in our implementation, the DMA
roughly represents 2/5 of the total duration. We conclude that a 60 Mhz device interfaced
with synchronous DRAM may achieve real-time processing for image bigger than 5122.

3 VLIW PROCESSING ON THE C62 ADVANCED DSP

VLIW mono processor appears as an alternative to the MIMD parallel processors
such as the C80. After a short review of TI’s new C62’s architecture, the subsequent
sections introduce two optimization techniques on which we base the assembly
implementation of FGL’s second order edge detector in fixed point representation.

TI’s C62 is a VLIW DSP capable of 1.6 GIPS at 200 Mhz thanks to:
• a 12 levels VLIW instruction superpipeline with 5ns cycle
• 256 bits VLIW instruction coding 8 operations which can partially be executed

sequentially or concurrently3

• two 16x16 multiplications, 1 shift, 2 adds, 1 branch, 2 loads/stores (with pointer
modification) can be done in parallel thanks to 8 independent functional units

• Several DMAs leading to about 250 Mbytes/s peak.

The functional units are redundant and organized as 2 sets of 4 distinct blocks each
capable of executing certain operations. Each side (set) has its own associated register
file. Some operations allow one register operand to be connected to the other side’s file.
One register cross path per side and per VLIW instruction is allowed. The following
table summarizes the functional units and the delays for some operations of interest:

Units per sideOpcode Description Delay Description
.L .S .M .D

ADD/SUB Add/Sub 1 Add/Sub X X X
SHR Signed shift right 1 Signed shift right X
B Branch 6 Branch X
ADD2/SUB2 SIMD Add/Sub 1 SIMD Add/Sub X
ABS Absolute Val. 1 Absolute Val. X
MPY Multiply 2 Multiply X
LOAD/STORE 5 X

Table 4: Operations: delay and functional units

                                                                
3 Texas calls this the VelociTITM technology.



The C6x features two split 16 bits adds/subtracts which individually allow two
parallel additions of two 16 bits numbers (ADD2/SUB2), all in a single cycle.

3.1 Optimization techniques

Software pipelining is the main technique used to obtain performance from the C6x.
Due to the different delays of operations in the pipeline (Table 4), we maximize the use
of the different units by executing the largest number of parallel operations for the loop
kernel even if they do not concern the same processing iteration. We then provide a
prolog and epilog piece of code to guarantee that operations get properly time stamped in
accordance with the kernel.

Loop unrolling is another efficient method that can be used to fill the VLIW units.
Originally, this technique is intended to reduce the impact of loop handling. The contents
of the loop is replicated r time and the loop upper bound is divided per r. Replicating the
loop kernel induces more potential operations that can be executed in parallel.

3.2 C62’s implementation

We use the C6x SIMD processing ability and the software pipelining technique that
we detail to implement the gradient. To maximize performance, we use the same
technique that we combine with loop unrolling to map the second order smoother.

• Gradient magnitude computation:

First of all we demonstrate that an intermediate result for the horizontal gradient
calculation is shared between 2 adjacent positions of the mask. With the following pixel
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Assuming that p1,p2 and p3,p4 are loaded into two separate registers, we can take
advantage of the SIMD ADD2 and SUB2 instruction to fasten the calculation. To
combine the results, we use the shift right instruction (SHR) to access the upper part of
the result and the MPYHL instruction (2 delay slots) that multiplies the upper 16 bits of a
register with the lower part of another to extract the lower part (this stands for a masking
operation).

We then follow a three step procedure which consists in drawing an algorithmic
dependency graph, mapping this graph on the architecture and folding it up to software
pipeline the code.

We start drawing the dependency graph of our calculus. No specific rules yet apply,
we just try to limit register’s file cross references as we know it stands as a constraint
when assigning the nodes to the VLIW instructions. For each side and each height of the
graph, we try to diversify the units the nodes use.
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Figure 1: Algorithmic dependency graph with functional unit conflicts

For the gradient, we could obtain Figure 1. We have 26 nodes including the required
operations to handle the loop, meaning that we will need at least 26/8=4 VLIW
instructions to code the kernel. We don’t use any compare instruction for the loop since
the branch can be conditioned by the loop counter at the branch instruction level.
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Figure 2: The mapped dependency graph

The brackets used to describe some nodes detail the units we already know the
operations must be mapped to. The striped area underline contentions if the nodes are
executed in parallel (one occurrence of a functional unit per side ).



The second phase constitutes one step towards operations clustering into VLIW
instructions. We stretch the dependency graph so as to avoid concurrency regarding the
functional units and to take into account the nodes’ delay (eventually by filling those
delays with other nodes). In our example, the height of the graph is now of 14 nodes on
Figure 2.

The next step of the procedure consists in folding up the mapped dependency graph
so as to software pipeline the code. Let’s use the theoretical 4 VLIW instructions (4
cycles) as a goal. We need to find the starting point for the fold up operation.

We start the calculation at cycle 6, after loading the first values. If we place the
LOADs in the unit .D of the first 2 cycles of our 4 VLIW instructions loop, we get the
result at cycle 2 of the next iteration of our instructions’ set ((1+5) mod 4 = 2). Each
subsequent operations in the graph will be located at instruction n where n is the node’s
height modulus the loop kernel size (4).

The mapping of operations 0 to 7 is straight forward. Regarding side B, the
dependency graph allows us to choose when to execute some nodes (ADD1 can occur
either at cycle 6 (VLIW instruction 2), 7 (3) or 8 (0)). In addition multiple VLIW’s units
can sometimes be targeted to receive the same operation (as for ADD or SUB).

The following table reviews the mapping of nodes 8 to 11 over the 4 VLIW
instructions. The last column underlines the possible targets for the nodes 0 to 11 over
side B:

Side A Side BVLIW
Instr.

Unit

Mapped nodes Possible slots
for nodes [8-11]

Mapped nodes Possible slots
for nodes [8-11]

Possible slots for
nodes[0-11]

.L ←ADD1/SUB1

.S SHR1 ⇐ SHR1 ←ADD1/SUB1

.M MPYHL2 ⇐ MPYHL2
0

.D Load1 32 Load1 16

.L SUB1 ⇐ SUB1 ←SUB2 ←SUB1

.S SHR2 ←SUB2

.M1

.D Load2 32 Load2 16

.L ABS1 ⇐ABS1 ABS1 ⇐ ABS1 ←ADD1/SUB1

.S ADD2 B

.M2

.D ADD1 ⇐ ADD1 ADD2 ⇐ADD2 ←ADD1/SUB1

.L ABS2 ⇐ ABS2 ABS2 ⇐ ABS2

.S SUB2 ←ADD1/SUB1

.M MPYHL13

.D ←ADD1/SUB1

Regarding side A, all 8-11 operations overlap with those of cycle 0-7 without conflict
(either the operation’s unit is fixed or only 1 compatible unit is left). For side B, the
folding up operation reduces the choice of assignments for operations 0-11 (as for unit .L



of cycle 2 of the loop kernel that’s locked by ABS1). We place the branch instruction at
cycle 2 for it to take effect at the end of the next 4 cycle loop (delay of 6 cycles).

Left are operations of cycle 12-13 where we encounter a conflict for the STORE
operations. Regarding side A, only the .D unit of cycle 3 is left and no restriction apply
for using it.

Side A Side BVLIW
Instr.

Unit
Mapped
nodes

Possible slots for
nodes [12-13]

Mapped nodes Possible slots
for nodes [8-13]

Possible slots for
nodes [0-11]

.L ADD2 ⇐ ADD2 ADD3 ←ADD3 ←ADD1/SUB1

.S SHR1 ADD1 ←ADD3 ←ADD1/SUB1

.M MPYHL20

.D Load1 32 Load1 16

.L SUB1 SUB2 ← SUB2/SUB3 ←SUB1

.S SHR2 SUB3 ← SUB2/SUB3

.M1

.D Load2 32 ⇐ Store  16 Load2 16 ⇐ Store  16

.L ABS1 ABS1

.S ADD2 B

.M2

.D ADD1 ADD2

.L ABS2 ABS2

.S SUB2 SUB1 ←ADD1/SUB1

.M MPYHL13

.D Store 16 Store 16

Finally we complete the assignment of all the possible left combinations. We also
added the loop counter modification operation in a free slot. This procedure allows us to
achieve 4 cycles for 2 output 16 bits values with 16 bits inputs.

• Mapping the second order smoother:

Using the loop unrolling technique combined with software pipelining, we achieve 8
cycles for 4 output values.

Drawing the dependency graph of the second order smoother (Figure 3), we learn that
at least 4 cycles per output are needed to map the equation. For each cycle, few of the
functional units are used and we would like to launch several calculations of y(n) in
parallel but the y(n-1) dependency stands as a strong constraint.

We expand the equation in order to delay the y(n-1) dependency:
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Focusing on y0, 8 cycles are necessary to get the results as described in the following
table:

VLIW
Instr.#

Launch Result

0 b0⊗x1

1 a3⊗y-3

2 b1⊗x0 b0×x0

3 a’2⊗y-2

b0×x0⊕a3×y-3

a3×y-3

4 b0×x0+ a3×y-3⊕b1×x1 b1×x1

b0×x0+a3×y-3

5 y0’=b0×x0+ a3×y-3+b1×x1⊕a’2×y-

2

a’2×y-2

b0×x0+ a3×y-3+b1×x1

6 y0’>>p y0’
7 y0



Our goal is to launch the 4 iterations in parallel using 8 cycles (software pipelining
the code). If we launch 1 equation’s calculus every 2 cycle we make sure that we have
enough resources, especially regarding the multiplications (2 per VLIW instruction); see
Table 5. At the same time we make sure that the y(n-2) and y(n-3) dependencies are
satisfied (using Table 6). With n:0..N, the unrolled bounds are k:0..N/4,n=n+4:

VLIW resourceVLIW
Instr.# y0 y1 y2 y3

0 × >> + ×
1 ×  y-3 y1 + × y1

+
2 × × >> +
3 × y-2

+
×  y-2 y2 +

4 + × × >>
5 + × y-1

+
×  y-1 y3

6 >> + × ×
7 y0 + × y0

+
×  y0

Table 5: Mapping FGL 2

Unrolled loop y(n-2) y(n-3)
y0,k y-2,k=y2,k-1 y-3,k=y1,k-1

y1,k y-1,k=y3,k-1 y-2,k=y2,k-1

y2,k y0,k=y0,k y-1,k=y3,k-1

y3,k y1,k=y1,k y0,k=y0,k

Table 6: FGL 2 dependencies

Clearly, the gray part of the table stands as a sequence of operations that started the
previous loop iteration (k-1) and that continue the current k iteration. All the expected
results are available when we need them.

We won’t review the complete mapping (at the assembly level) but instead we
summarize the raw performance with the following table:

Cycles/pixel Num.pass Tot cycles
FGL 2nd order 8/4 4 8×5122

Gradient 4/2 1 2×5122

Total cycles for FGL 2 and Gradient 2621440
Raw duration at 200 Mhz (without transfer) 13 ms

Table 7: C62 raw estimation for a 5122 image

3.3 Conclusion

Using appropriate optimization techniques, we estimate very good raw performances.
Yet we have no precise figures on the I/O impact which can still be reduced using the
double buffering technique.

C62 single VLIW instruction pipeline stands as a true competitor to the latest RISC
superscalar processors. Instructions’ dynamic assignment and scheduling mechanisms we
find on those architectures (especially with out-of-order kernel) are replaced by static
ones that require more intelligent compilers.



4 COMPARISON WITH RISC IMPLEMENTATIONS

The same algorithm was coded in C using floating point for the smoother. Floating
point calculation isn’t meant to disadvantage RISC architectures since it appeared to run
faster than for the fixed point representation. As all the benched architectures had
separate pipelines for integer or floating operations and assuming that the integer pipeline
is used to handle the loop counter and the pixels’ indices, saying that the resources are
better used when both pipelines are used stands as a rough explanation. We unrolled
FGL’s second order smoother 3 times and benchmarked various architectures on various
image sizes. The following table summarize the results which we detail in [5]:
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Architecture Freq.
(Mhz)

L1 cache size
(Kbytes)

L2/L3 cache size
(Kbytes)

RAM Gradient
for 5122

FGL2+Grad.
for 5122

Real time’s size
FGL2+Grad.

HP PA8000 180 2 Mbytes 0 64 73 ms 135 ms 2412

Sun Ultra2 300 16+16 512 64 18 ms 93 ms 3722

Intel PII 300 300 16+16 512 32 25 ms 115 ms 3252

Alpha 21164 625 8+8 96/4 M bytes 128 10 ms 40 ms 5162

Apple G3 266 32+32 512 64 24 ms 97 ms 3642

5 CONCLUSION

Through what can be considered a novel approach for edge detection, this article
provides qualitative and quantitative elements to compare different processors’
architectures. Furthermore, in the very competitive race for computational power, it is not
an easy task to obtain liable figures.

The qualitative arguments we have put forward gather the hierarchical features we
used for FGL’s algorithm as well as the programming style and the optimization methods
we introduced. If we come to compare both detailed DSPs, we believe the C80 is more
flexible because of its four different sets of independent 64 bits VLIW instructions
running concurrently. This point of view is emphasized with PPs’ algebraic and logical
ALU that is optimized for video processing functions. Yet this flexibility leads to a
greater complexity. The C6x core and its 256 bits VLIW instruction is simpler and its
higher operational frequency makes it a true competitor for the C80. However, this
depends on the algorithm, as for the gradient calculation which runs almost as fast on



both architectures (the ratio of frequencies is almost balanced by the PPs’ SIMD
capabilities).

 Whereas pre-built operations are used for fast processing on the C80, software
pipelining and loop unrolling stands as generic methods the user or the compiler needs to
cope with to achieve good performances on the C62. Observe that the C80’s hardware
loop controllers replace the unrolling technique.

Speaking of RISC’s C floating point implementation, we generally encounter lower
performances than on the two DSPs but we emphasize that it also requires much less
effort and it allows for a better code reusability. Taking advantage of SIMD instructions
embedded with some RISCs (like Intel’s MMX technology) would reduce the
performance’s gap with the loss of the three enumerated advantages.

Focusing on the quantitative arguments, we have shown through estimations, that
software implementation in assembly language on advanced fixed point DSPs achieves
real time execution for image size larger than 5122. In section 4, we have shown through
benchmarks that C software implementation on floating point RISC processors achieve
real time execution of optimal filters for image sizes up to 5162 on DEC Alpha processors
and up to about 3502 on others.

More specifically, 5122 images may be processed at 25 frames/s on a 625 Mhz DEC
Alpha, 30 frames/s with a 60 Mhz C80 and at 75 with a 200 Mhz C62 which, however,
does not consider the impact of memory transfers. These results outperform state of the
art implementation of optimal edge detectors on DSPs [6], [7] and even FPGAs [8].
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