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Abstract 
We have implemented customized SIMD 16-bit floating 

point instructions on a NIOS II processor. On several 
image processing and media benchmarks for which the 
accuracy and dynamic range of this format is sufficient, a 
speed-up ranging from 1.5 to more than 2 is obtained 
versus the integer implementation. The hardware overhead 
remains limited and is compatible with the capacities of to-
day FPGAs. 

 
1. Introduction 

 
Graphics and media applications have become the 

dominant ones for general purpose or embedded 
microprocessors. While some applications need the 
dynamic range and accuracy of 32-bit FP numbers, a 
general trend is to replace FP by integer computations for 
better performance in embedded applications for which 
hardware resources are limited. In this paper, we show 
that 16-bit FP computations can produce a significant 
performance advantage over integer ones for significant 
image processing benchmarks using FPGA with soft core 
processors while limiting the hardware overhead. By 
customizing SIMD 16-bit instructions, we significantly 
improve performance over integer computations without 
needing the hardware cost of 32-bit FP operators. 

 
1.1 16-bit floating point formats 

16-bit floating formats have been defined for some DSP 
processors, but rarely used. Recently, a 16-bit floating 
point format has been introduced in the OpenEXP format 
[1] and in the Cg language [2] defined by NVIDIA. This 
format, called “half”, is presented in Figure 1.  

S Exponent Fraction
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Figure 1: NVIDIA “half” format 

A number is interpreted exactly as in the other IEEE FP 
formats. The exponent is biased with an excess value of 
15. Value 0 is reserved for the representation of 0 
(Fraction =0) and of the denormalized numbers (Fraction 
≠ 0). Value 31 is reserved for representing infinite 
(Fraction = 0) and NaN (Fraction ≠ 0). For 0<E<31, the 

general equation for calculating the value in a floating 
point number is (-1)S x (1.fraction) x 2(Exponent field-15). The 
range of the format extends from 2-24 = 6 x 10-8 and (216-
25) = 65504. In the remaining part of this paper, the 16-bit 
floating point format will be called half or F16. We have 
considered 16-bit operations for general purpose 
processors in previous papers [3, 4]. For all applications 
for which this format is useful, we have shown that a 
simplified version of the half format gives similar results 
compared to the 16-bit version of the IEEE FP formats. 
By comparing the images resulting from computations 
with different FP formats (according to PSNR measures), 
we have shown that denormalized numbers are useless and 
that rounding towards 0 (truncating the low order bits of 
the final mantissa after adding or multiplying mantissas) 
gives similar results to other rounding modes. In other 
words, the simplest hardware solution is sufficient. In the 
rest of the paper, the 16-bit FP format will be called F16 
and the usual “float” format will be called F32.  

 
1.2 Data format for image and media processing 

Image processing generally need both integer and FP 
formats. Convolution operations with byte inputs need 32-
bit integer formats for the intermediary results. Geometric 
operations need floating point formats. In many cases, 
using the “half” format would be a good trade-off: the 
precision and dynamic range of 32-bit FP numbers is not 
always needed and 16-bit FP computations are compatible 
with byte storage if efficient byte to/from half format is 
available.  

Research of points of interest within an image is a 
typical application: the objective is to reduce the image to 
a limited set of points considered as the most 
representative of the whole set to be used as an index for 
this image. Figure 2 shows the Achard and Harris 
algorithms. They share most computations and differ by 
the final step. They include a 3x3 Sobel gradient followed 
by 3x3 Gauss filters. The common part is typical of low 
level image processing. For integer computations, initial 
images with levels of gray have unsigned char format to 
code the pixels. Sobel gradient computations lead to short 
format to avoid overflow and the following multiplications 
lead to int. format. The 16-bit floating point numbers keep 
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the same format all along the computations without any 
overflow and a SIMD implementation is straightforward. 
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Figure 2: Achard and Harris algorithms for detection 
of Points of Interest (POI). 

Non standard FP formats have been proposed for image 
and media processing. In [5], Fang et al propose 
lightweight floating point arithmetic to enable FP signal 
processing applications in low-power mobile applications. 
Using IDCT as benchmark, the authors show that FP 
numbers with 5-bit exponent and 8-bit mantissa are 
sufficient to get a Peak-Signal-to-Noise-Ratio similar to 
the PSNR with 32-bit FP numbers. These results illustrate 
another case for which the “half” format is adequate 

 
1.3 FPGA with soft core processor. 

FPGAs with soft core processors are now currently 
available from many suppliers. Customizing F16 
instructions for the soft core is thus a simple approach to 
consider. Customized instruction-sets for embedded 
processors have been considered for a while [6]. Recently, 
transparent customization has been considered for ARM 
instruction set [7]. In this paper, we consider the 
customization of SIMD F16 instructions for the NIOS II 
processor provided by Altera for several boards. 
According to the different benchmarks, we consider the 
instructions to customize. Then, we measure the execution 
times of the different benchmarks with and without these 
supplementary instructions and we evaluate the 
corresponding hardware overhead. 

 
2. Methodology 

 
2.1. Description of benchmarks 

For image processing, we first consider convolution 
operators: the horizontal-vertical versions of Deriche 
filters and Deriche gradient [3, 4]: these filters operate on 
2D arrays of pixels (unsigned char), do some computation 
by using integers and deliver byte results. They are 
representative of spatial filters and have a relatively high 
computation to memory accesses ratio.  

Then, we consider some algorithms that can be 
considered as intermediate level image processing. Achard 
and Harris algorithms for the detection of points of 
interests belong to this category. They have already been 
introduced in Figure 2. Optical flow algorithms belong to 

the same category. It is a function which is used to 
understand the difference between images caused by the 
motion. Points of interest and Optical flow are mainly used 
for image stabilization. 

For media processing, we consider the FDCT functions 
of JPEG 6-a which are included in MediaBench [8]. There 
are three different versions of FDCT and IDCT functions 
called “integer”, “fast integer” and “float”. In [3, 4], we 
have shown that there is no significant difference between 
the original image and the final image (after coding and 
decoding) when using F16, integer or F32 formats. It is 
worthy to evaluate the execution time of the F16 format.   

 The code for all the benchmarks is provided in [9]. 
 

2.2. Hardware and software support 
All the experiments have been done with the Altera 

NIOS development kit (Cyclone Edition) which includes 
the EP1C20F400C7 FPGA device. We used the NIOS II/f 
version of the processor, which main features are 
summarized in Table 1. All information on the device and 
processor features can be found in [10].  

The NIOS II processor has a 50-MHz clock 
frequency when used with the Cyclone kit. As our 
benchmarks typically consist in loop nests for which 
branch outcomes are determined at compile time, the 
dynamic branch predictor is not useful. For integer 
computation, adding hardware multiplier and divider 
has a significant impact. A larger data cache size 
could also slightly improve performance. There is no 
hardware FP support: FP computations are done by 
software.  

All the benchmarks have been compiled with the 
Altera Integrated Development Environment (IDE), 
which uses the GCC tool chain. –O3 option has been 
used in release mode. Execution times have been 
measured with the high_res_timer that provides the 
number of processor clock cycles for the execution 
time. Most of the results use the Cycle per Pixel 
metrics, which is the total number of clock cycles 
divided by the number of pixels. For each benchmark, 
the execution time has been measured at least 5 times and 
we have taken the averaged value.  

Table 1: NIOS II/f processor features 

Fixed features Parameterized features 
32-bit RISC processor 
Branch prediction 
Dynamic branch predictor 
Barrel shifter 

HW integer multiplication 
HW integer division 
4 KB instruction cache 
2 KB data cache 

 
2.3. 16-bit floating point operators 

The 16-bit floating point operators have been designed 
from a VHDL library developed by P. Belanovic [11] for 
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embedded applications : it includes a 4-cycle pipelined 
version of an adder and a multiplier without all IEEE 
format specificities (no denormals, no NaN, etc). It has 
been written with behavioral VHDL code, which is the 
best way to profit from the Altera Quartus II compiler 
ability to exploit the FPGA features and the parameterized 
library of operators optimized for the FPGA devices. We 
first corrected some mistakes of the original design. After 
getting correct implementations of the 4-cycle adder and 
multiplier, we defined 2-cycle versions of the same 
operators to get the smaller latency compatible with the 
50-MHz clock frequency. To compare performance, 32-bit 
FP add/sub (4-cycles) and multiplier (3-cycles) circuits 
have also been implemented. 

The 16-bit divider has been implemented the non-
pipelined divider provided by another VHDL library [12]. 

 
2.4 Customization of instructions 

The technique to customize instructions for the NIOS 
processor is described in [13]. This technique is quite 
simple. Hardware operators defined with HDL language 
(VHDL or Verilog) can be introduced between input and 
output registers of the processor register file. Two types 
of operators can be defined. The combinational operators 
are used when the propagation delay is less than the 
processor cycle time. In that case, the defined interfaces 
are the 32-bit input data (dataa and datab) and the output 
data (result). When the propagation delay is greater than 
the clock cycle time, multi-cycle operations must be used. 
They have the same data interface than the combinational 
operators, plus clock and control signals: clk (processor 
clock), clk_enable, a global reset (reset), a start signal 
(active when the input data are valid) and a done signal 
(active when the result is available for the processor). As 
the processor need a 32-bit data interface, it is natural to 
define all our instructions as SIMD instructions: each one 
operates simultaneously on two 16-bit FP operands. This 
is a big advantage of using F16 operands as it doubles the 
throughput of operations.  

Using the customized instructions in a C program is 
straightforward. Two types of “define” are used as the 
instructions can have one or two input operands: 

- #define INST1(A) 
__builtin_custom_ini(Opcode_INSTR1, (A)) 

- #define INST2 (A, B) __builtin_custom_inii 
(Opcode_INSTR2, (A), (B)) 

 
3. The SIMD 16-bit FP instructions 

 
SIMD F16 instructions include data computation and 

data manipulation. Load and store instructions use the 32-
bit NIOS load and store instructions. 

 

3.1 Definition of SIMD F16 instructions 
An image generally consists of 8-bit data, coding levels 

of gray or each of the three basic colors. Data conversion 
instructions are thus needed, from/to bytes to/from F16 
formats. As a 32-bit access load or store four bytes, two 
types of conversion instructions are needed, one for the 
low order bytes of a 32-bit word and the other for the high 
order bytes. Conversion instructions between 16-bit 
integer and F16 formats are also needed. 

Low level image processing uses a lot of filters that 
compute a new pixel values according to the neighbor 
pixel values. The SIMD version of the code for these 
filters needs to correctly align the SIMD values before 
SIMD computation. Assuming that j = 0 mod 4, a 32-bit 
access loads the bytes T[i][j], T[i][j+1], T[i][j+2] and 
T[i][j+3] while the four neighbors are T[i][j+1], T[i][j+2], 
T[i][j+3] and T[i][j+4] or T[i][j-1], T[i][j], T[i][j+1] and 
T[i][j+2]  In any case, a special treatment is needed as one 
byte belongs to a word and the three other ones to another 
word. The trick is to combine the conversion with the shift 
as shown in Figure 3. The shift is not for free as some 
shifts require two memory accesses.  

Table 2 presents the different data conversion and 
manipulation instructions that are needed. 

 
i+3 i+2 i+1 i i-1 i-2 i-3 i-4

B2FSRL

B2FSRH

i+3 i+2 i+1 i i-1 i-2 i-3 i-4

B2FSRL

B2FSRH  

Figure 3: Byte to F16 and shift conversion instructions 

Table 2: SIMD conversion, conversion and shift and 
shift only instructions 

INST Effect 
B2F16L Converts the two lower bytes of a 32-bit word into 

two F16 
B2F16H Converts the two higher bytes of a 32-bit word into 

two F16 
F2BL Converts two F16 into two unsigned bytes in the 

lower part of a 32-bit word 
F2BH Converts two F16 into two unsigned bytes in the 

higher part of a 32-bit word 
S2F16 Converts two 16-bit integers into two F16 
F2S Converts two F16 into two 16-bit integers 
B2FSRL Converts the high order byte of a word and the low 

order byte of a word into two F16 
B2FSRH Converts the two middle bytes of a word into two 

F16 
FSR 
(B,A) 

Put the low order F16 of word B into high order 
F16 of results. Put the high order byte of word A 
into low order F16 of result. 
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Although the conversion and shift instructions have 
been defined as shift right instructions, it is easy to show 
that they can be used for shift left instructions. To shift left 
one position four bytes belonging to A (one byte) and B (3 
bytes), the instruction B2FSRL (A, B) delivers the high 
part and B2FSRH (B) delivers the lower part. 
Supplementary mnemonics can be used for readability of 
right and left shifts without needing more hardware 
operators.  

The arithmetic instructions are given in Table 3. 
Addition and Subtraction are implemented by a shared 
two-cycle operator. One control bit selects the operation. 
All the arithmetic instructions are multi-cycles instruction, 
except DP2 that divides by a power of 2 just by 
subtraction on the F16 exponents.  

Table 3: SIMD arithmetic instructions  

INST Effect Cycles 
Notation Word X consists of two F16 (XH and 

XL) 
 

ADDF RL ←AL + BL ; RH ← AH + BH 2 
SUBF RL ←AL – BL ; RH ← AH - BH 2 
MULF RL ←AL * BL ; RH ← AH * BH 2 
DIVF RL ←AL / BL ; RH ← AH / BH 5 
DP2 RL ←AL / 2 BL ; RH ← AH / 2HL 1 

 
3.2 Hardware cost of the SIMD F16 instructions 

The number of logic elements can be used as a rough 
metrics to evaluate the hardware cost of each customized 
instructions. Other metrics could also be considered such 
as the number of connections, but they would basically 
complicate the comparison without giving more 
significantly precise information. At least, the “logic 
element” metrics gives a rough estimation of the chip area 
that is used. To evaluate the operator’s complexity, we use 
two different percentage values. 

The first one is the percentage increase of the number 
of logic elements compared to the reference version of the 
basic computing system including the CPU + the main 
system overhead (JTAG, I/O, timers). This figure 
corresponds to the overhead resulting from the use of 
customized instructions versus the reference system. There 
exists a “custom instruction” overhead that is needed when 
at least one custom instruction is added to the CPU ISA. 
It is also interesting to include the overhead corresponding 
to integer hardware multiplication and division.  

The second one is the percentage of logic elements 
versus the overall number of logic elements available on 
the FPGA device (Cyclone kit in our experiments). This 
figure indicates the percentage of “logic element” 
resources that are lost for the rest of the applications.  

The reference version of the NIOS II:f processor uses 
2,409 logic elements and the system overhead uses 415 

logic elements. The reference version is the one presented 
in Table 1 without hardware multiplication and division. 

Table 4: Hardware cost of “customized instructions”  

Operators LE Overhead Use 

HW Mul 563 20.6% 2.8% 

HW Mul+Div 791 28.9% 3.9% 

CI overhead 415 15.2% 2.1% 

ADDF/SUBF 439 16.0% 2.2% 

MULF 561 20.5% 2.8% 

DIVF 962 35.1% 4.8% 

DP2 17 0.6% 0.1% 

B2FH 36 1.3% 0.2% 

B2FL 29 1.1% 0.1% 

B2FSRH 33 1.2% 0.2% 

B2FSRL 7 0.3% 0.0% 

F2BL 66 2.4% 0.3% 

F32 ADD/SUB 528 19.3% 2.6% 

F32 MUL 1094 40.0% 5.5% 

 
Table 4 gives the hardware cost of the customized 

instructions. Overhead is the percentage of supplementary 
logic elements versus the reference computing system. Use 
is the percentage of logic elements used versus the overall 
number of logic elements available in the FPGA device.  

As expected, the arithmetic operators use most of the 
extra resources with an overhead of respectively 16%, 
21% and 35% for the addition, multiplication and division 
to add to the CI overhead (15%). The overhead for the 
other instructions is small: the total overhead for all 
conversion instructions sums to 6.3%, which is far less 
than any basic arithmetic instruction (except D2P). Using 
all the F16 instructions of table leads to 93.7% overhead 
versus the reference version. Considering the FPGA 
device use, all the F16 instructions correspond to 12.8% 
of the LE resources while the computing system is 14.5%. 
F32 scalar operations use far more hardware resources. 

The supplementary F16 resources that are needed look 
quite reasonable. All the operations are not needed for all 
benchmarks, as shown in the next section. 

  
3.3 F16 instructions used by the benchmarks 

Table 5 shows the instructions that are used by our 
benchmarks. Not surprisingly, data conversions with and 
without shifts are present in all the image processing 
benchmarks, which also use the basic arithmetic 
instructions (ADDF, SUBF, MULF and DP2). Division is 
rare: it is only used by the optical flow benchmark. The 
DCT only use the three main arithmetic operations. 

 
4. Measured results 
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4.1 Basic loops 
We first give the execution time for some basic loops 

that help to evaluate the actual execution time of the main 
instructions (load, store, loop overhead, addition, 
multiplication, etc), either when using the usual integer 
instructions (with hardware multiplication and division) or 
when using SIMD F16 instructions. Table 6 gives the 
corresponding execution time (in clocks per iteration). In 
the SIMD case, the execution time corresponds to two 
F16 operations or two iterations of the inner loop when 
using F16 data. These figures will be useful to explain the 
measured execution times for the different next 
benchmarks. They both include the operation execution 
times and the data access time including the cache effects. 

Table 5: F16 instructions used by the different 
benchmarks (1: Deriche HV; 2: Deriche gradient; 3: 
Achard; 4: Harris; 5: Optical flow, 6: DCT). 

Instructions 1 2 3 4 5 6 
ADDF X X X X X X 
SUBF  X X X X X 
MULF X  X X X X 
DIVF     X  
DP2   X X X  

B2FH X X X X X  
B2FL X X X X X  

B2FSRH  X X X X  
B2FSRL  X X X X  

F2BL  X X X X  
F2BH  X X X X  

Table 6: Execution time of basic loops (Cycles per 
iteration (int or F32) or for two iterations (F16)  

Loop N=10 N=100 N=256 
X[i] = A[i] 14.2 14.9 18.9 
X[i] = i 6.7 6.6 6.25 
X[i] = A[i] + B[i] 17.8 23.3 23.6 
X[i] = A[i] + k 16 16.1 19.9 
X[i] = ADDF16 (A[i] ,B[i]) 21.6 26.9 27.6 
X[i] = ADDF16 (A[i] ,k) 20.3 20.1 23.9 
X[i] = A[i] * B[i] 31 35.1 35.7 
X[i] = A[i] * k 27.2 28.1 31.9 
X[i] = MULF16 (A[i] ,B[i]) 24.4 27.1 27.7 
X[i] = MULF16 (A[i] ,k) 18.2 20.1 23.9 
X[i] = ADDF32 (A[i] ,B[i]) 31.5 27.8 32.5 
X[i] = MULF32 (A[i] B[i]) 30.3 26.6 31.4 

 
4.2. Deriche benchmarks 

The Deriche benchmarks include the horizontal-vertical 
version of the Deriche filter and the Deriche gradient. 
They both use two arrays, which mean that the result array 
is different from the original one. The execution times for 
the filter are presented in Table 7 for the filter and in Table 

8 for the gradient. For the filter, the F16 version is more 
than 2 times faster than the integer one: it comes from the 
SIMD instructions, a slightly faster multiplication while 
the addition is slightly slower and a better cache behavior. 
The int. version has more cache conflicts (When N=258, 
CPP = 102). For the gradient, the speed-up is limited to 
1.3 for large enough images as SIMD advantage is 
counterbalanced by a lot of data manipulation and the only 
arithmetic operation is addition/subtraction which is 
slower with F16 than with integer operations. 

Both for Deriche filter and gradient, the float version is 
slower than the integer version. First, the cache behavior is 
worse as the float arrays are four times greater than the 
byte arrays. Then, the F32 multiplication and addition 
instructions are scalar and respectively use 3 and 4 cycles. 
For the other benchmarks, we will not give the F32 results 
as they cannot compete with the F16 versions when the 
F16 accuracy and dynamical range are sufficient.  

Table 7: Deriche filter execution time (CPP) on an 
NxN image according to N 

N 32 64 128 256 

F16 35.6 38.5 38.1 38.0 

INT. 89 117 120 122 

Speed-up 2.4 3 3.1 3.2 

F32  105.9 105.3 105 NA 

Table 8: Deriche gradient execution time (CPP)  

N 32 64 128 256 

F16 22.6 25.9 26.8 27.3 

INT. 20.8 35 35.4 35.7 

Speed-up 0.9 1.3 1.3 1.3 

F32 70.5 72.4 73.4 NA 

 
4.3 Achard and Harris benchmarks 

Tables 10 and 11 give the results for Achard and Harris 
algorithms. As the algorithms have a significant common 
part, the results are close and significant of algorithms 
including a lot of low-level image processing. In both 
cases, the speed-up is greater than 1.5.  
4.4 Optical flow benchmark 

The optical flow benchmark, which corresponds to the 
original algorithm[14], includes a lot of computation. The 
speed-up is greater than 1.6. Table 11 also shows one 
advantage of F16 format. The amount of memory that is 
needed for intermediate is reduced. The 256x256 image 
can be computed with F16 and the Cyclone board while 
external memory is insufficient for integer format. 
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4.5 JPEG DCT 
Table 12 gives the execution times of the “int.” version 

implemented in JPEG 6-a. F16 version is similar to the 
“float” version implemented in JPEG 6-a, except that any 
float data has been replaced by F16 data. As there is no 
simple SIMD version of this FP code, we used scalar F16 
operators by casting all the 32-bit results to 16-bit values. 
Even without using the SIMD feature, we have a 1.28 
speed-up because the supplementary computations that are 
needed to control the data range in the integer version are 
not needed in the FP versions. 

Table 9: Achard execution time (CPP)  

N 32 64 128 256 

F16 171 217 235 245 

INT. 293 349 360 366 

Speed-up 1.71 1.60 1.53 1.49 

Table 10: Harris execution time (CPP)   

N 32 64 128 256 

F16 166 212 230 240 

INT. 293 348 359 365 

Speed-up 1.76 1.64 1.56 1.52 

Table 11: Optical flow (CPP) on an NxN image  

N 32 64 128 256 

F16 137 183 198 207 

INT. 293 312 323 NA 

Short 318 339 350 356 

Speed-up 2.13 1.70 1.63 NA 

Table 12: JPEG DCT execution times (CPP)  

Version INT. F16 Speed-up 

CPP 59 46 1.28 

 
7. Concluding remarks 

 
Customizing 16-bit floating point SIMD instructions for 

the NIOS II processor leads to a significant speed-up for 
the image and media processing benchmarks for which the 
accuracy and data range of this format is sufficient. While 
the SIMD approach doubles the number of operations per 
iteration, the speed-up generally ranges from 1.5 to more 
than 2. Data manipulations that are needed for SIMD 
operations reduce the speed-up but the cache behavior is 
generally improved as the size of the arrays for the 
intermediate computations are divided by 2. F16 

computations are generally simpler than the corresponding 
integer ones, as optimized integer code adds specific 
computations to extend the limited dynamic range of 32-
bit integers. This is why the scalar F16 version of JPEG 
FDCT is faster than the integer version, even when it 
cannot benefit from the SIMD gain. 

The overhead for the SIMD F16 operators remains 
limited and looks totally compatible with the hardware 
capabilities of to-day FPGA devices. 
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